2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/capability.h>
25 #include <linux/freezer.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/nsproxy.h>
29 #include <asm/param.h>
30 #include <asm/uaccess.h>
31 #include <asm/unistd.h>
32 #include <asm/siginfo.h>
33 #include "audit.h" /* audit_signal_info() */
36 * SLAB caches for signal bits.
39 static struct kmem_cache *sigqueue_cachep;
42 * In POSIX a signal is sent either to a specific thread (Linux task)
43 * or to the process as a whole (Linux thread group). How the signal
44 * is sent determines whether it's to one thread or the whole group,
45 * which determines which signal mask(s) are involved in blocking it
46 * from being delivered until later. When the signal is delivered,
47 * either it's caught or ignored by a user handler or it has a default
48 * effect that applies to the whole thread group (POSIX process).
50 * The possible effects an unblocked signal set to SIG_DFL can have are:
51 * ignore - Nothing Happens
52 * terminate - kill the process, i.e. all threads in the group,
53 * similar to exit_group. The group leader (only) reports
54 * WIFSIGNALED status to its parent.
55 * coredump - write a core dump file describing all threads using
56 * the same mm and then kill all those threads
57 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
59 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
60 * Other signals when not blocked and set to SIG_DFL behaves as follows.
61 * The job control signals also have other special effects.
63 * +--------------------+------------------+
64 * | POSIX signal | default action |
65 * +--------------------+------------------+
66 * | SIGHUP | terminate |
67 * | SIGINT | terminate |
68 * | SIGQUIT | coredump |
69 * | SIGILL | coredump |
70 * | SIGTRAP | coredump |
71 * | SIGABRT/SIGIOT | coredump |
72 * | SIGBUS | coredump |
73 * | SIGFPE | coredump |
74 * | SIGKILL | terminate(+) |
75 * | SIGUSR1 | terminate |
76 * | SIGSEGV | coredump |
77 * | SIGUSR2 | terminate |
78 * | SIGPIPE | terminate |
79 * | SIGALRM | terminate |
80 * | SIGTERM | terminate |
81 * | SIGCHLD | ignore |
82 * | SIGCONT | ignore(*) |
83 * | SIGSTOP | stop(*)(+) |
84 * | SIGTSTP | stop(*) |
85 * | SIGTTIN | stop(*) |
86 * | SIGTTOU | stop(*) |
88 * | SIGXCPU | coredump |
89 * | SIGXFSZ | coredump |
90 * | SIGVTALRM | terminate |
91 * | SIGPROF | terminate |
92 * | SIGPOLL/SIGIO | terminate |
93 * | SIGSYS/SIGUNUSED | coredump |
94 * | SIGSTKFLT | terminate |
95 * | SIGWINCH | ignore |
96 * | SIGPWR | terminate |
97 * | SIGRTMIN-SIGRTMAX | terminate |
98 * +--------------------+------------------+
99 * | non-POSIX signal | default action |
100 * +--------------------+------------------+
101 * | SIGEMT | coredump |
102 * +--------------------+------------------+
104 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
105 * (*) Special job control effects:
106 * When SIGCONT is sent, it resumes the process (all threads in the group)
107 * from TASK_STOPPED state and also clears any pending/queued stop signals
108 * (any of those marked with "stop(*)"). This happens regardless of blocking,
109 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
110 * any pending/queued SIGCONT signals; this happens regardless of blocking,
111 * catching, or ignored the stop signal, though (except for SIGSTOP) the
112 * default action of stopping the process may happen later or never.
116 #define M_SIGEMT M(SIGEMT)
121 #if SIGRTMIN > BITS_PER_LONG
122 #define M(sig) (1ULL << ((sig)-1))
124 #define M(sig) (1UL << ((sig)-1))
126 #define T(sig, mask) (M(sig) & (mask))
128 #define SIG_KERNEL_ONLY_MASK (\
129 M(SIGKILL) | M(SIGSTOP) )
131 #define SIG_KERNEL_STOP_MASK (\
132 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
134 #define SIG_KERNEL_COREDUMP_MASK (\
135 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
136 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
137 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
139 #define SIG_KERNEL_IGNORE_MASK (\
140 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
142 #define sig_kernel_only(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
144 #define sig_kernel_coredump(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
146 #define sig_kernel_ignore(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
148 #define sig_kernel_stop(sig) \
149 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
151 #define sig_needs_tasklist(sig) ((sig) == SIGCONT)
153 #define sig_user_defined(t, signr) \
154 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
155 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
157 #define sig_fatal(t, signr) \
158 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
159 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
161 static int sig_ignored(struct task_struct *t, int sig)
163 void __user * handler;
166 * Tracers always want to know about signals..
168 if (t->ptrace & PT_PTRACED)
172 * Blocked signals are never ignored, since the
173 * signal handler may change by the time it is
176 if (sigismember(&t->blocked, sig))
179 /* Is it explicitly or implicitly ignored? */
180 handler = t->sighand->action[sig-1].sa.sa_handler;
181 return handler == SIG_IGN ||
182 (handler == SIG_DFL && sig_kernel_ignore(sig));
186 * Re-calculate pending state from the set of locally pending
187 * signals, globally pending signals, and blocked signals.
189 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
194 switch (_NSIG_WORDS) {
196 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
197 ready |= signal->sig[i] &~ blocked->sig[i];
200 case 4: ready = signal->sig[3] &~ blocked->sig[3];
201 ready |= signal->sig[2] &~ blocked->sig[2];
202 ready |= signal->sig[1] &~ blocked->sig[1];
203 ready |= signal->sig[0] &~ blocked->sig[0];
206 case 2: ready = signal->sig[1] &~ blocked->sig[1];
207 ready |= signal->sig[0] &~ blocked->sig[0];
210 case 1: ready = signal->sig[0] &~ blocked->sig[0];
215 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
217 fastcall void recalc_sigpending_tsk(struct task_struct *t)
219 if (t->signal->group_stop_count > 0 ||
221 PENDING(&t->pending, &t->blocked) ||
222 PENDING(&t->signal->shared_pending, &t->blocked))
223 set_tsk_thread_flag(t, TIF_SIGPENDING);
225 clear_tsk_thread_flag(t, TIF_SIGPENDING);
228 void recalc_sigpending(void)
230 recalc_sigpending_tsk(current);
233 /* Given the mask, find the first available signal that should be serviced. */
236 next_signal(struct sigpending *pending, sigset_t *mask)
238 unsigned long i, *s, *m, x;
241 s = pending->signal.sig;
243 switch (_NSIG_WORDS) {
245 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
246 if ((x = *s &~ *m) != 0) {
247 sig = ffz(~x) + i*_NSIG_BPW + 1;
252 case 2: if ((x = s[0] &~ m[0]) != 0)
254 else if ((x = s[1] &~ m[1]) != 0)
261 case 1: if ((x = *s &~ *m) != 0)
269 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
272 struct sigqueue *q = NULL;
273 struct user_struct *user;
276 * In order to avoid problems with "switch_user()", we want to make
277 * sure that the compiler doesn't re-load "t->user"
281 atomic_inc(&user->sigpending);
282 if (override_rlimit ||
283 atomic_read(&user->sigpending) <=
284 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
285 q = kmem_cache_alloc(sigqueue_cachep, flags);
286 if (unlikely(q == NULL)) {
287 atomic_dec(&user->sigpending);
289 INIT_LIST_HEAD(&q->list);
291 q->user = get_uid(user);
296 static void __sigqueue_free(struct sigqueue *q)
298 if (q->flags & SIGQUEUE_PREALLOC)
300 atomic_dec(&q->user->sigpending);
302 kmem_cache_free(sigqueue_cachep, q);
305 void flush_sigqueue(struct sigpending *queue)
309 sigemptyset(&queue->signal);
310 while (!list_empty(&queue->list)) {
311 q = list_entry(queue->list.next, struct sigqueue , list);
312 list_del_init(&q->list);
318 * Flush all pending signals for a task.
320 void flush_signals(struct task_struct *t)
324 spin_lock_irqsave(&t->sighand->siglock, flags);
325 clear_tsk_thread_flag(t,TIF_SIGPENDING);
326 flush_sigqueue(&t->pending);
327 flush_sigqueue(&t->signal->shared_pending);
328 spin_unlock_irqrestore(&t->sighand->siglock, flags);
332 * Flush all handlers for a task.
336 flush_signal_handlers(struct task_struct *t, int force_default)
339 struct k_sigaction *ka = &t->sighand->action[0];
340 for (i = _NSIG ; i != 0 ; i--) {
341 if (force_default || ka->sa.sa_handler != SIG_IGN)
342 ka->sa.sa_handler = SIG_DFL;
344 sigemptyset(&ka->sa.sa_mask);
350 /* Notify the system that a driver wants to block all signals for this
351 * process, and wants to be notified if any signals at all were to be
352 * sent/acted upon. If the notifier routine returns non-zero, then the
353 * signal will be acted upon after all. If the notifier routine returns 0,
354 * then then signal will be blocked. Only one block per process is
355 * allowed. priv is a pointer to private data that the notifier routine
356 * can use to determine if the signal should be blocked or not. */
359 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
363 spin_lock_irqsave(¤t->sighand->siglock, flags);
364 current->notifier_mask = mask;
365 current->notifier_data = priv;
366 current->notifier = notifier;
367 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
370 /* Notify the system that blocking has ended. */
373 unblock_all_signals(void)
377 spin_lock_irqsave(¤t->sighand->siglock, flags);
378 current->notifier = NULL;
379 current->notifier_data = NULL;
381 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
384 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
386 struct sigqueue *q, *first = NULL;
387 int still_pending = 0;
389 if (unlikely(!sigismember(&list->signal, sig)))
393 * Collect the siginfo appropriate to this signal. Check if
394 * there is another siginfo for the same signal.
396 list_for_each_entry(q, &list->list, list) {
397 if (q->info.si_signo == sig) {
406 list_del_init(&first->list);
407 copy_siginfo(info, &first->info);
408 __sigqueue_free(first);
410 sigdelset(&list->signal, sig);
413 /* Ok, it wasn't in the queue. This must be
414 a fast-pathed signal or we must have been
415 out of queue space. So zero out the info.
417 sigdelset(&list->signal, sig);
418 info->si_signo = sig;
427 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
430 int sig = next_signal(pending, mask);
433 if (current->notifier) {
434 if (sigismember(current->notifier_mask, sig)) {
435 if (!(current->notifier)(current->notifier_data)) {
436 clear_thread_flag(TIF_SIGPENDING);
442 if (!collect_signal(sig, pending, info))
450 * Dequeue a signal and return the element to the caller, which is
451 * expected to free it.
453 * All callers have to hold the siglock.
455 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
457 int signr = __dequeue_signal(&tsk->pending, mask, info);
459 signr = __dequeue_signal(&tsk->signal->shared_pending,
464 * itimers are process shared and we restart periodic
465 * itimers in the signal delivery path to prevent DoS
466 * attacks in the high resolution timer case. This is
467 * compliant with the old way of self restarting
468 * itimers, as the SIGALRM is a legacy signal and only
469 * queued once. Changing the restart behaviour to
470 * restart the timer in the signal dequeue path is
471 * reducing the timer noise on heavy loaded !highres
474 if (unlikely(signr == SIGALRM)) {
475 struct hrtimer *tmr = &tsk->signal->real_timer;
477 if (!hrtimer_is_queued(tmr) &&
478 tsk->signal->it_real_incr.tv64 != 0) {
479 hrtimer_forward(tmr, tmr->base->get_time(),
480 tsk->signal->it_real_incr);
481 hrtimer_restart(tmr);
485 recalc_sigpending_tsk(tsk);
486 if (signr && unlikely(sig_kernel_stop(signr))) {
488 * Set a marker that we have dequeued a stop signal. Our
489 * caller might release the siglock and then the pending
490 * stop signal it is about to process is no longer in the
491 * pending bitmasks, but must still be cleared by a SIGCONT
492 * (and overruled by a SIGKILL). So those cases clear this
493 * shared flag after we've set it. Note that this flag may
494 * remain set after the signal we return is ignored or
495 * handled. That doesn't matter because its only purpose
496 * is to alert stop-signal processing code when another
497 * processor has come along and cleared the flag.
499 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
500 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
503 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
504 info->si_sys_private){
506 * Release the siglock to ensure proper locking order
507 * of timer locks outside of siglocks. Note, we leave
508 * irqs disabled here, since the posix-timers code is
509 * about to disable them again anyway.
511 spin_unlock(&tsk->sighand->siglock);
512 do_schedule_next_timer(info);
513 spin_lock(&tsk->sighand->siglock);
519 * Tell a process that it has a new active signal..
521 * NOTE! we rely on the previous spin_lock to
522 * lock interrupts for us! We can only be called with
523 * "siglock" held, and the local interrupt must
524 * have been disabled when that got acquired!
526 * No need to set need_resched since signal event passing
527 * goes through ->blocked
529 void signal_wake_up(struct task_struct *t, int resume)
533 set_tsk_thread_flag(t, TIF_SIGPENDING);
536 * For SIGKILL, we want to wake it up in the stopped/traced case.
537 * We don't check t->state here because there is a race with it
538 * executing another processor and just now entering stopped state.
539 * By using wake_up_state, we ensure the process will wake up and
540 * handle its death signal.
542 mask = TASK_INTERRUPTIBLE;
544 mask |= TASK_STOPPED | TASK_TRACED;
545 if (!wake_up_state(t, mask))
550 * Remove signals in mask from the pending set and queue.
551 * Returns 1 if any signals were found.
553 * All callers must be holding the siglock.
555 * This version takes a sigset mask and looks at all signals,
556 * not just those in the first mask word.
558 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
560 struct sigqueue *q, *n;
563 sigandsets(&m, mask, &s->signal);
564 if (sigisemptyset(&m))
567 signandsets(&s->signal, &s->signal, mask);
568 list_for_each_entry_safe(q, n, &s->list, list) {
569 if (sigismember(mask, q->info.si_signo)) {
570 list_del_init(&q->list);
577 * Remove signals in mask from the pending set and queue.
578 * Returns 1 if any signals were found.
580 * All callers must be holding the siglock.
582 static int rm_from_queue(unsigned long mask, struct sigpending *s)
584 struct sigqueue *q, *n;
586 if (!sigtestsetmask(&s->signal, mask))
589 sigdelsetmask(&s->signal, mask);
590 list_for_each_entry_safe(q, n, &s->list, list) {
591 if (q->info.si_signo < SIGRTMIN &&
592 (mask & sigmask(q->info.si_signo))) {
593 list_del_init(&q->list);
601 * Bad permissions for sending the signal
603 static int check_kill_permission(int sig, struct siginfo *info,
604 struct task_struct *t)
607 if (!valid_signal(sig))
610 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
611 && ((sig != SIGCONT) ||
612 (process_session(current) != process_session(t)))
613 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
614 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
615 && !capable(CAP_KILL))
618 error = security_task_kill(t, info, sig, 0);
620 audit_signal_info(sig, t); /* Let audit system see the signal */
625 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
628 * Handle magic process-wide effects of stop/continue signals.
629 * Unlike the signal actions, these happen immediately at signal-generation
630 * time regardless of blocking, ignoring, or handling. This does the
631 * actual continuing for SIGCONT, but not the actual stopping for stop
632 * signals. The process stop is done as a signal action for SIG_DFL.
634 static void handle_stop_signal(int sig, struct task_struct *p)
636 struct task_struct *t;
638 if (p->signal->flags & SIGNAL_GROUP_EXIT)
640 * The process is in the middle of dying already.
644 if (sig_kernel_stop(sig)) {
646 * This is a stop signal. Remove SIGCONT from all queues.
648 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
651 rm_from_queue(sigmask(SIGCONT), &t->pending);
654 } else if (sig == SIGCONT) {
656 * Remove all stop signals from all queues,
657 * and wake all threads.
659 if (unlikely(p->signal->group_stop_count > 0)) {
661 * There was a group stop in progress. We'll
662 * pretend it finished before we got here. We are
663 * obliged to report it to the parent: if the
664 * SIGSTOP happened "after" this SIGCONT, then it
665 * would have cleared this pending SIGCONT. If it
666 * happened "before" this SIGCONT, then the parent
667 * got the SIGCHLD about the stop finishing before
668 * the continue happened. We do the notification
669 * now, and it's as if the stop had finished and
670 * the SIGCHLD was pending on entry to this kill.
672 p->signal->group_stop_count = 0;
673 p->signal->flags = SIGNAL_STOP_CONTINUED;
674 spin_unlock(&p->sighand->siglock);
675 do_notify_parent_cldstop(p, CLD_STOPPED);
676 spin_lock(&p->sighand->siglock);
678 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
682 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
685 * If there is a handler for SIGCONT, we must make
686 * sure that no thread returns to user mode before
687 * we post the signal, in case it was the only
688 * thread eligible to run the signal handler--then
689 * it must not do anything between resuming and
690 * running the handler. With the TIF_SIGPENDING
691 * flag set, the thread will pause and acquire the
692 * siglock that we hold now and until we've queued
693 * the pending signal.
695 * Wake up the stopped thread _after_ setting
698 state = TASK_STOPPED;
699 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
700 set_tsk_thread_flag(t, TIF_SIGPENDING);
701 state |= TASK_INTERRUPTIBLE;
703 wake_up_state(t, state);
708 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
710 * We were in fact stopped, and are now continued.
711 * Notify the parent with CLD_CONTINUED.
713 p->signal->flags = SIGNAL_STOP_CONTINUED;
714 p->signal->group_exit_code = 0;
715 spin_unlock(&p->sighand->siglock);
716 do_notify_parent_cldstop(p, CLD_CONTINUED);
717 spin_lock(&p->sighand->siglock);
720 * We are not stopped, but there could be a stop
721 * signal in the middle of being processed after
722 * being removed from the queue. Clear that too.
724 p->signal->flags = 0;
726 } else if (sig == SIGKILL) {
728 * Make sure that any pending stop signal already dequeued
729 * is undone by the wakeup for SIGKILL.
731 p->signal->flags = 0;
735 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
736 struct sigpending *signals)
738 struct sigqueue * q = NULL;
742 * fast-pathed signals for kernel-internal things like SIGSTOP
745 if (info == SEND_SIG_FORCED)
748 /* Real-time signals must be queued if sent by sigqueue, or
749 some other real-time mechanism. It is implementation
750 defined whether kill() does so. We attempt to do so, on
751 the principle of least surprise, but since kill is not
752 allowed to fail with EAGAIN when low on memory we just
753 make sure at least one signal gets delivered and don't
754 pass on the info struct. */
756 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
757 (is_si_special(info) ||
758 info->si_code >= 0)));
760 list_add_tail(&q->list, &signals->list);
761 switch ((unsigned long) info) {
762 case (unsigned long) SEND_SIG_NOINFO:
763 q->info.si_signo = sig;
764 q->info.si_errno = 0;
765 q->info.si_code = SI_USER;
766 q->info.si_pid = current->pid;
767 q->info.si_uid = current->uid;
769 case (unsigned long) SEND_SIG_PRIV:
770 q->info.si_signo = sig;
771 q->info.si_errno = 0;
772 q->info.si_code = SI_KERNEL;
777 copy_siginfo(&q->info, info);
780 } else if (!is_si_special(info)) {
781 if (sig >= SIGRTMIN && info->si_code != SI_USER)
783 * Queue overflow, abort. We may abort if the signal was rt
784 * and sent by user using something other than kill().
790 sigaddset(&signals->signal, sig);
794 #define LEGACY_QUEUE(sigptr, sig) \
795 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
799 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
803 BUG_ON(!irqs_disabled());
804 assert_spin_locked(&t->sighand->siglock);
806 /* Short-circuit ignored signals. */
807 if (sig_ignored(t, sig))
810 /* Support queueing exactly one non-rt signal, so that we
811 can get more detailed information about the cause of
813 if (LEGACY_QUEUE(&t->pending, sig))
816 ret = send_signal(sig, info, t, &t->pending);
817 if (!ret && !sigismember(&t->blocked, sig))
818 signal_wake_up(t, sig == SIGKILL);
824 * Force a signal that the process can't ignore: if necessary
825 * we unblock the signal and change any SIG_IGN to SIG_DFL.
827 * Note: If we unblock the signal, we always reset it to SIG_DFL,
828 * since we do not want to have a signal handler that was blocked
829 * be invoked when user space had explicitly blocked it.
831 * We don't want to have recursive SIGSEGV's etc, for example.
834 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
836 unsigned long int flags;
837 int ret, blocked, ignored;
838 struct k_sigaction *action;
840 spin_lock_irqsave(&t->sighand->siglock, flags);
841 action = &t->sighand->action[sig-1];
842 ignored = action->sa.sa_handler == SIG_IGN;
843 blocked = sigismember(&t->blocked, sig);
844 if (blocked || ignored) {
845 action->sa.sa_handler = SIG_DFL;
847 sigdelset(&t->blocked, sig);
848 recalc_sigpending_tsk(t);
851 ret = specific_send_sig_info(sig, info, t);
852 spin_unlock_irqrestore(&t->sighand->siglock, flags);
858 force_sig_specific(int sig, struct task_struct *t)
860 force_sig_info(sig, SEND_SIG_FORCED, t);
864 * Test if P wants to take SIG. After we've checked all threads with this,
865 * it's equivalent to finding no threads not blocking SIG. Any threads not
866 * blocking SIG were ruled out because they are not running and already
867 * have pending signals. Such threads will dequeue from the shared queue
868 * as soon as they're available, so putting the signal on the shared queue
869 * will be equivalent to sending it to one such thread.
871 static inline int wants_signal(int sig, struct task_struct *p)
873 if (sigismember(&p->blocked, sig))
875 if (p->flags & PF_EXITING)
879 if (p->state & (TASK_STOPPED | TASK_TRACED))
881 return task_curr(p) || !signal_pending(p);
885 __group_complete_signal(int sig, struct task_struct *p)
887 struct task_struct *t;
890 * Now find a thread we can wake up to take the signal off the queue.
892 * If the main thread wants the signal, it gets first crack.
893 * Probably the least surprising to the average bear.
895 if (wants_signal(sig, p))
897 else if (thread_group_empty(p))
899 * There is just one thread and it does not need to be woken.
900 * It will dequeue unblocked signals before it runs again.
905 * Otherwise try to find a suitable thread.
907 t = p->signal->curr_target;
909 /* restart balancing at this thread */
910 t = p->signal->curr_target = p;
912 while (!wants_signal(sig, t)) {
914 if (t == p->signal->curr_target)
916 * No thread needs to be woken.
917 * Any eligible threads will see
918 * the signal in the queue soon.
922 p->signal->curr_target = t;
926 * Found a killable thread. If the signal will be fatal,
927 * then start taking the whole group down immediately.
929 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
930 !sigismember(&t->real_blocked, sig) &&
931 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
933 * This signal will be fatal to the whole group.
935 if (!sig_kernel_coredump(sig)) {
937 * Start a group exit and wake everybody up.
938 * This way we don't have other threads
939 * running and doing things after a slower
940 * thread has the fatal signal pending.
942 p->signal->flags = SIGNAL_GROUP_EXIT;
943 p->signal->group_exit_code = sig;
944 p->signal->group_stop_count = 0;
947 sigaddset(&t->pending.signal, SIGKILL);
948 signal_wake_up(t, 1);
955 * There will be a core dump. We make all threads other
956 * than the chosen one go into a group stop so that nothing
957 * happens until it gets scheduled, takes the signal off
958 * the shared queue, and does the core dump. This is a
959 * little more complicated than strictly necessary, but it
960 * keeps the signal state that winds up in the core dump
961 * unchanged from the death state, e.g. which thread had
962 * the core-dump signal unblocked.
964 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
965 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
966 p->signal->group_stop_count = 0;
967 p->signal->group_exit_task = t;
970 p->signal->group_stop_count++;
971 signal_wake_up(t, 0);
974 wake_up_process(p->signal->group_exit_task);
979 * The signal is already in the shared-pending queue.
980 * Tell the chosen thread to wake up and dequeue it.
982 signal_wake_up(t, sig == SIGKILL);
987 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
991 assert_spin_locked(&p->sighand->siglock);
992 handle_stop_signal(sig, p);
994 /* Short-circuit ignored signals. */
995 if (sig_ignored(p, sig))
998 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
999 /* This is a non-RT signal and we already have one queued. */
1003 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1004 * We always use the shared queue for process-wide signals,
1005 * to avoid several races.
1007 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1011 __group_complete_signal(sig, p);
1016 * Nuke all other threads in the group.
1018 void zap_other_threads(struct task_struct *p)
1020 struct task_struct *t;
1022 p->signal->flags = SIGNAL_GROUP_EXIT;
1023 p->signal->group_stop_count = 0;
1025 if (thread_group_empty(p))
1028 for (t = next_thread(p); t != p; t = next_thread(t)) {
1030 * Don't bother with already dead threads
1036 * We don't want to notify the parent, since we are
1037 * killed as part of a thread group due to another
1038 * thread doing an execve() or similar. So set the
1039 * exit signal to -1 to allow immediate reaping of
1040 * the process. But don't detach the thread group
1043 if (t != p->group_leader)
1044 t->exit_signal = -1;
1046 /* SIGKILL will be handled before any pending SIGSTOP */
1047 sigaddset(&t->pending.signal, SIGKILL);
1048 signal_wake_up(t, 1);
1053 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1055 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1057 struct sighand_struct *sighand;
1060 sighand = rcu_dereference(tsk->sighand);
1061 if (unlikely(sighand == NULL))
1064 spin_lock_irqsave(&sighand->siglock, *flags);
1065 if (likely(sighand == tsk->sighand))
1067 spin_unlock_irqrestore(&sighand->siglock, *flags);
1073 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1075 unsigned long flags;
1078 ret = check_kill_permission(sig, info, p);
1082 if (lock_task_sighand(p, &flags)) {
1083 ret = __group_send_sig_info(sig, info, p);
1084 unlock_task_sighand(p, &flags);
1092 * kill_pgrp_info() sends a signal to a process group: this is what the tty
1093 * control characters do (^C, ^Z etc)
1096 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1098 struct task_struct *p = NULL;
1099 int retval, success;
1103 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1104 int err = group_send_sig_info(sig, info, p);
1107 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1108 return success ? 0 : retval;
1111 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1115 read_lock(&tasklist_lock);
1116 retval = __kill_pgrp_info(sig, info, pgrp);
1117 read_unlock(&tasklist_lock);
1122 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1125 struct task_struct *p;
1128 if (unlikely(sig_needs_tasklist(sig)))
1129 read_lock(&tasklist_lock);
1131 p = pid_task(pid, PIDTYPE_PID);
1134 error = group_send_sig_info(sig, info, p);
1136 if (unlikely(sig_needs_tasklist(sig)))
1137 read_unlock(&tasklist_lock);
1143 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1147 error = kill_pid_info(sig, info, find_pid(pid));
1152 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1153 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1154 uid_t uid, uid_t euid, u32 secid)
1157 struct task_struct *p;
1159 if (!valid_signal(sig))
1162 read_lock(&tasklist_lock);
1163 p = pid_task(pid, PIDTYPE_PID);
1168 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1169 && (euid != p->suid) && (euid != p->uid)
1170 && (uid != p->suid) && (uid != p->uid)) {
1174 ret = security_task_kill(p, info, sig, secid);
1177 if (sig && p->sighand) {
1178 unsigned long flags;
1179 spin_lock_irqsave(&p->sighand->siglock, flags);
1180 ret = __group_send_sig_info(sig, info, p);
1181 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1184 read_unlock(&tasklist_lock);
1187 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1190 * kill_something_info() interprets pid in interesting ways just like kill(2).
1192 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1193 * is probably wrong. Should make it like BSD or SYSV.
1196 static int kill_something_info(int sig, struct siginfo *info, int pid)
1201 ret = kill_pgrp_info(sig, info, task_pgrp(current));
1202 } else if (pid == -1) {
1203 int retval = 0, count = 0;
1204 struct task_struct * p;
1206 read_lock(&tasklist_lock);
1207 for_each_process(p) {
1208 if (p->pid > 1 && p->tgid != current->tgid) {
1209 int err = group_send_sig_info(sig, info, p);
1215 read_unlock(&tasklist_lock);
1216 ret = count ? retval : -ESRCH;
1217 } else if (pid < 0) {
1218 ret = kill_pgrp_info(sig, info, find_pid(-pid));
1220 ret = kill_pid_info(sig, info, find_pid(pid));
1227 * These are for backward compatibility with the rest of the kernel source.
1231 * These two are the most common entry points. They send a signal
1232 * just to the specific thread.
1235 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1238 unsigned long flags;
1241 * Make sure legacy kernel users don't send in bad values
1242 * (normal paths check this in check_kill_permission).
1244 if (!valid_signal(sig))
1248 * We need the tasklist lock even for the specific
1249 * thread case (when we don't need to follow the group
1250 * lists) in order to avoid races with "p->sighand"
1251 * going away or changing from under us.
1253 read_lock(&tasklist_lock);
1254 spin_lock_irqsave(&p->sighand->siglock, flags);
1255 ret = specific_send_sig_info(sig, info, p);
1256 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1257 read_unlock(&tasklist_lock);
1261 #define __si_special(priv) \
1262 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1265 send_sig(int sig, struct task_struct *p, int priv)
1267 return send_sig_info(sig, __si_special(priv), p);
1271 * This is the entry point for "process-wide" signals.
1272 * They will go to an appropriate thread in the thread group.
1275 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1278 read_lock(&tasklist_lock);
1279 ret = group_send_sig_info(sig, info, p);
1280 read_unlock(&tasklist_lock);
1285 force_sig(int sig, struct task_struct *p)
1287 force_sig_info(sig, SEND_SIG_PRIV, p);
1291 * When things go south during signal handling, we
1292 * will force a SIGSEGV. And if the signal that caused
1293 * the problem was already a SIGSEGV, we'll want to
1294 * make sure we don't even try to deliver the signal..
1297 force_sigsegv(int sig, struct task_struct *p)
1299 if (sig == SIGSEGV) {
1300 unsigned long flags;
1301 spin_lock_irqsave(&p->sighand->siglock, flags);
1302 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1303 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1305 force_sig(SIGSEGV, p);
1309 int kill_pgrp(struct pid *pid, int sig, int priv)
1311 return kill_pgrp_info(sig, __si_special(priv), pid);
1313 EXPORT_SYMBOL(kill_pgrp);
1315 int kill_pid(struct pid *pid, int sig, int priv)
1317 return kill_pid_info(sig, __si_special(priv), pid);
1319 EXPORT_SYMBOL(kill_pid);
1322 kill_proc(pid_t pid, int sig, int priv)
1324 return kill_proc_info(sig, __si_special(priv), pid);
1328 * These functions support sending signals using preallocated sigqueue
1329 * structures. This is needed "because realtime applications cannot
1330 * afford to lose notifications of asynchronous events, like timer
1331 * expirations or I/O completions". In the case of Posix Timers
1332 * we allocate the sigqueue structure from the timer_create. If this
1333 * allocation fails we are able to report the failure to the application
1334 * with an EAGAIN error.
1337 struct sigqueue *sigqueue_alloc(void)
1341 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1342 q->flags |= SIGQUEUE_PREALLOC;
1346 void sigqueue_free(struct sigqueue *q)
1348 unsigned long flags;
1349 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1351 * If the signal is still pending remove it from the
1354 if (unlikely(!list_empty(&q->list))) {
1355 spinlock_t *lock = ¤t->sighand->siglock;
1356 read_lock(&tasklist_lock);
1357 spin_lock_irqsave(lock, flags);
1358 if (!list_empty(&q->list))
1359 list_del_init(&q->list);
1360 spin_unlock_irqrestore(lock, flags);
1361 read_unlock(&tasklist_lock);
1363 q->flags &= ~SIGQUEUE_PREALLOC;
1367 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1369 unsigned long flags;
1372 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1375 * The rcu based delayed sighand destroy makes it possible to
1376 * run this without tasklist lock held. The task struct itself
1377 * cannot go away as create_timer did get_task_struct().
1379 * We return -1, when the task is marked exiting, so
1380 * posix_timer_event can redirect it to the group leader
1384 if (!likely(lock_task_sighand(p, &flags))) {
1389 if (unlikely(!list_empty(&q->list))) {
1391 * If an SI_TIMER entry is already queue just increment
1392 * the overrun count.
1394 BUG_ON(q->info.si_code != SI_TIMER);
1395 q->info.si_overrun++;
1398 /* Short-circuit ignored signals. */
1399 if (sig_ignored(p, sig)) {
1404 list_add_tail(&q->list, &p->pending.list);
1405 sigaddset(&p->pending.signal, sig);
1406 if (!sigismember(&p->blocked, sig))
1407 signal_wake_up(p, sig == SIGKILL);
1410 unlock_task_sighand(p, &flags);
1418 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1420 unsigned long flags;
1423 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1425 read_lock(&tasklist_lock);
1426 /* Since it_lock is held, p->sighand cannot be NULL. */
1427 spin_lock_irqsave(&p->sighand->siglock, flags);
1428 handle_stop_signal(sig, p);
1430 /* Short-circuit ignored signals. */
1431 if (sig_ignored(p, sig)) {
1436 if (unlikely(!list_empty(&q->list))) {
1438 * If an SI_TIMER entry is already queue just increment
1439 * the overrun count. Other uses should not try to
1440 * send the signal multiple times.
1442 BUG_ON(q->info.si_code != SI_TIMER);
1443 q->info.si_overrun++;
1448 * Put this signal on the shared-pending queue.
1449 * We always use the shared queue for process-wide signals,
1450 * to avoid several races.
1452 list_add_tail(&q->list, &p->signal->shared_pending.list);
1453 sigaddset(&p->signal->shared_pending.signal, sig);
1455 __group_complete_signal(sig, p);
1457 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1458 read_unlock(&tasklist_lock);
1463 * Wake up any threads in the parent blocked in wait* syscalls.
1465 static inline void __wake_up_parent(struct task_struct *p,
1466 struct task_struct *parent)
1468 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1472 * Let a parent know about the death of a child.
1473 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1476 void do_notify_parent(struct task_struct *tsk, int sig)
1478 struct siginfo info;
1479 unsigned long flags;
1480 struct sighand_struct *psig;
1484 /* do_notify_parent_cldstop should have been called instead. */
1485 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1487 BUG_ON(!tsk->ptrace &&
1488 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1490 info.si_signo = sig;
1492 info.si_pid = tsk->pid;
1493 info.si_uid = tsk->uid;
1495 /* FIXME: find out whether or not this is supposed to be c*time. */
1496 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1497 tsk->signal->utime));
1498 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1499 tsk->signal->stime));
1501 info.si_status = tsk->exit_code & 0x7f;
1502 if (tsk->exit_code & 0x80)
1503 info.si_code = CLD_DUMPED;
1504 else if (tsk->exit_code & 0x7f)
1505 info.si_code = CLD_KILLED;
1507 info.si_code = CLD_EXITED;
1508 info.si_status = tsk->exit_code >> 8;
1511 psig = tsk->parent->sighand;
1512 spin_lock_irqsave(&psig->siglock, flags);
1513 if (!tsk->ptrace && sig == SIGCHLD &&
1514 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1515 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1517 * We are exiting and our parent doesn't care. POSIX.1
1518 * defines special semantics for setting SIGCHLD to SIG_IGN
1519 * or setting the SA_NOCLDWAIT flag: we should be reaped
1520 * automatically and not left for our parent's wait4 call.
1521 * Rather than having the parent do it as a magic kind of
1522 * signal handler, we just set this to tell do_exit that we
1523 * can be cleaned up without becoming a zombie. Note that
1524 * we still call __wake_up_parent in this case, because a
1525 * blocked sys_wait4 might now return -ECHILD.
1527 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1528 * is implementation-defined: we do (if you don't want
1529 * it, just use SIG_IGN instead).
1531 tsk->exit_signal = -1;
1532 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1535 if (valid_signal(sig) && sig > 0)
1536 __group_send_sig_info(sig, &info, tsk->parent);
1537 __wake_up_parent(tsk, tsk->parent);
1538 spin_unlock_irqrestore(&psig->siglock, flags);
1541 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1543 struct siginfo info;
1544 unsigned long flags;
1545 struct task_struct *parent;
1546 struct sighand_struct *sighand;
1548 if (tsk->ptrace & PT_PTRACED)
1549 parent = tsk->parent;
1551 tsk = tsk->group_leader;
1552 parent = tsk->real_parent;
1555 info.si_signo = SIGCHLD;
1557 info.si_pid = tsk->pid;
1558 info.si_uid = tsk->uid;
1560 /* FIXME: find out whether or not this is supposed to be c*time. */
1561 info.si_utime = cputime_to_jiffies(tsk->utime);
1562 info.si_stime = cputime_to_jiffies(tsk->stime);
1567 info.si_status = SIGCONT;
1570 info.si_status = tsk->signal->group_exit_code & 0x7f;
1573 info.si_status = tsk->exit_code & 0x7f;
1579 sighand = parent->sighand;
1580 spin_lock_irqsave(&sighand->siglock, flags);
1581 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1582 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1583 __group_send_sig_info(SIGCHLD, &info, parent);
1585 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1587 __wake_up_parent(tsk, parent);
1588 spin_unlock_irqrestore(&sighand->siglock, flags);
1591 static inline int may_ptrace_stop(void)
1593 if (!likely(current->ptrace & PT_PTRACED))
1596 if (unlikely(current->parent == current->real_parent &&
1597 (current->ptrace & PT_ATTACHED)))
1600 if (unlikely(current->signal == current->parent->signal) &&
1601 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))
1605 * Are we in the middle of do_coredump?
1606 * If so and our tracer is also part of the coredump stopping
1607 * is a deadlock situation, and pointless because our tracer
1608 * is dead so don't allow us to stop.
1609 * If SIGKILL was already sent before the caller unlocked
1610 * ->siglock we must see ->core_waiters != 0. Otherwise it
1611 * is safe to enter schedule().
1613 if (unlikely(current->mm->core_waiters) &&
1614 unlikely(current->mm == current->parent->mm))
1621 * This must be called with current->sighand->siglock held.
1623 * This should be the path for all ptrace stops.
1624 * We always set current->last_siginfo while stopped here.
1625 * That makes it a way to test a stopped process for
1626 * being ptrace-stopped vs being job-control-stopped.
1628 * If we actually decide not to stop at all because the tracer is gone,
1629 * we leave nostop_code in current->exit_code.
1631 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1634 * If there is a group stop in progress,
1635 * we must participate in the bookkeeping.
1637 if (current->signal->group_stop_count > 0)
1638 --current->signal->group_stop_count;
1640 current->last_siginfo = info;
1641 current->exit_code = exit_code;
1643 /* Let the debugger run. */
1644 set_current_state(TASK_TRACED);
1645 spin_unlock_irq(¤t->sighand->siglock);
1647 read_lock(&tasklist_lock);
1648 if (may_ptrace_stop()) {
1649 do_notify_parent_cldstop(current, CLD_TRAPPED);
1650 read_unlock(&tasklist_lock);
1654 * By the time we got the lock, our tracer went away.
1657 read_unlock(&tasklist_lock);
1658 set_current_state(TASK_RUNNING);
1659 current->exit_code = nostop_code;
1663 * We are back. Now reacquire the siglock before touching
1664 * last_siginfo, so that we are sure to have synchronized with
1665 * any signal-sending on another CPU that wants to examine it.
1667 spin_lock_irq(¤t->sighand->siglock);
1668 current->last_siginfo = NULL;
1671 * Queued signals ignored us while we were stopped for tracing.
1672 * So check for any that we should take before resuming user mode.
1674 recalc_sigpending();
1677 void ptrace_notify(int exit_code)
1681 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1683 memset(&info, 0, sizeof info);
1684 info.si_signo = SIGTRAP;
1685 info.si_code = exit_code;
1686 info.si_pid = current->pid;
1687 info.si_uid = current->uid;
1689 /* Let the debugger run. */
1690 spin_lock_irq(¤t->sighand->siglock);
1691 ptrace_stop(exit_code, 0, &info);
1692 spin_unlock_irq(¤t->sighand->siglock);
1696 finish_stop(int stop_count)
1699 * If there are no other threads in the group, or if there is
1700 * a group stop in progress and we are the last to stop,
1701 * report to the parent. When ptraced, every thread reports itself.
1703 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1704 read_lock(&tasklist_lock);
1705 do_notify_parent_cldstop(current, CLD_STOPPED);
1706 read_unlock(&tasklist_lock);
1711 } while (try_to_freeze());
1713 * Now we don't run again until continued.
1715 current->exit_code = 0;
1719 * This performs the stopping for SIGSTOP and other stop signals.
1720 * We have to stop all threads in the thread group.
1721 * Returns nonzero if we've actually stopped and released the siglock.
1722 * Returns zero if we didn't stop and still hold the siglock.
1724 static int do_signal_stop(int signr)
1726 struct signal_struct *sig = current->signal;
1729 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1732 if (sig->group_stop_count > 0) {
1734 * There is a group stop in progress. We don't need to
1735 * start another one.
1737 stop_count = --sig->group_stop_count;
1740 * There is no group stop already in progress.
1741 * We must initiate one now.
1743 struct task_struct *t;
1745 sig->group_exit_code = signr;
1748 for (t = next_thread(current); t != current; t = next_thread(t))
1750 * Setting state to TASK_STOPPED for a group
1751 * stop is always done with the siglock held,
1752 * so this check has no races.
1754 if (!t->exit_state &&
1755 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1757 signal_wake_up(t, 0);
1759 sig->group_stop_count = stop_count;
1762 if (stop_count == 0)
1763 sig->flags = SIGNAL_STOP_STOPPED;
1764 current->exit_code = sig->group_exit_code;
1765 __set_current_state(TASK_STOPPED);
1767 spin_unlock_irq(¤t->sighand->siglock);
1768 finish_stop(stop_count);
1773 * Do appropriate magic when group_stop_count > 0.
1774 * We return nonzero if we stopped, after releasing the siglock.
1775 * We return zero if we still hold the siglock and should look
1776 * for another signal without checking group_stop_count again.
1778 static int handle_group_stop(void)
1782 if (current->signal->group_exit_task == current) {
1784 * Group stop is so we can do a core dump,
1785 * We are the initiating thread, so get on with it.
1787 current->signal->group_exit_task = NULL;
1791 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1793 * Group stop is so another thread can do a core dump,
1794 * or else we are racing against a death signal.
1795 * Just punt the stop so we can get the next signal.
1800 * There is a group stop in progress. We stop
1801 * without any associated signal being in our queue.
1803 stop_count = --current->signal->group_stop_count;
1804 if (stop_count == 0)
1805 current->signal->flags = SIGNAL_STOP_STOPPED;
1806 current->exit_code = current->signal->group_exit_code;
1807 set_current_state(TASK_STOPPED);
1808 spin_unlock_irq(¤t->sighand->siglock);
1809 finish_stop(stop_count);
1813 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1814 struct pt_regs *regs, void *cookie)
1816 sigset_t *mask = ¤t->blocked;
1822 spin_lock_irq(¤t->sighand->siglock);
1824 struct k_sigaction *ka;
1826 if (unlikely(current->signal->group_stop_count > 0) &&
1827 handle_group_stop())
1830 signr = dequeue_signal(current, mask, info);
1833 break; /* will return 0 */
1835 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1836 ptrace_signal_deliver(regs, cookie);
1838 /* Let the debugger run. */
1839 ptrace_stop(signr, signr, info);
1841 /* We're back. Did the debugger cancel the sig? */
1842 signr = current->exit_code;
1846 current->exit_code = 0;
1848 /* Update the siginfo structure if the signal has
1849 changed. If the debugger wanted something
1850 specific in the siginfo structure then it should
1851 have updated *info via PTRACE_SETSIGINFO. */
1852 if (signr != info->si_signo) {
1853 info->si_signo = signr;
1855 info->si_code = SI_USER;
1856 info->si_pid = current->parent->pid;
1857 info->si_uid = current->parent->uid;
1860 /* If the (new) signal is now blocked, requeue it. */
1861 if (sigismember(¤t->blocked, signr)) {
1862 specific_send_sig_info(signr, info, current);
1867 ka = ¤t->sighand->action[signr-1];
1868 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1870 if (ka->sa.sa_handler != SIG_DFL) {
1871 /* Run the handler. */
1874 if (ka->sa.sa_flags & SA_ONESHOT)
1875 ka->sa.sa_handler = SIG_DFL;
1877 break; /* will return non-zero "signr" value */
1881 * Now we are doing the default action for this signal.
1883 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1887 * Init of a pid space gets no signals it doesn't want from
1888 * within that pid space. It can of course get signals from
1889 * its parent pid space.
1891 if (current == child_reaper(current))
1894 if (sig_kernel_stop(signr)) {
1896 * The default action is to stop all threads in
1897 * the thread group. The job control signals
1898 * do nothing in an orphaned pgrp, but SIGSTOP
1899 * always works. Note that siglock needs to be
1900 * dropped during the call to is_orphaned_pgrp()
1901 * because of lock ordering with tasklist_lock.
1902 * This allows an intervening SIGCONT to be posted.
1903 * We need to check for that and bail out if necessary.
1905 if (signr != SIGSTOP) {
1906 spin_unlock_irq(¤t->sighand->siglock);
1908 /* signals can be posted during this window */
1910 if (is_current_pgrp_orphaned())
1913 spin_lock_irq(¤t->sighand->siglock);
1916 if (likely(do_signal_stop(signr))) {
1917 /* It released the siglock. */
1922 * We didn't actually stop, due to a race
1923 * with SIGCONT or something like that.
1928 spin_unlock_irq(¤t->sighand->siglock);
1931 * Anything else is fatal, maybe with a core dump.
1933 current->flags |= PF_SIGNALED;
1934 if (sig_kernel_coredump(signr)) {
1936 * If it was able to dump core, this kills all
1937 * other threads in the group and synchronizes with
1938 * their demise. If we lost the race with another
1939 * thread getting here, it set group_exit_code
1940 * first and our do_group_exit call below will use
1941 * that value and ignore the one we pass it.
1943 do_coredump((long)signr, signr, regs);
1947 * Death signals, no core dump.
1949 do_group_exit(signr);
1952 spin_unlock_irq(¤t->sighand->siglock);
1956 EXPORT_SYMBOL(recalc_sigpending);
1957 EXPORT_SYMBOL_GPL(dequeue_signal);
1958 EXPORT_SYMBOL(flush_signals);
1959 EXPORT_SYMBOL(force_sig);
1960 EXPORT_SYMBOL(kill_proc);
1961 EXPORT_SYMBOL(ptrace_notify);
1962 EXPORT_SYMBOL(send_sig);
1963 EXPORT_SYMBOL(send_sig_info);
1964 EXPORT_SYMBOL(sigprocmask);
1965 EXPORT_SYMBOL(block_all_signals);
1966 EXPORT_SYMBOL(unblock_all_signals);
1970 * System call entry points.
1973 asmlinkage long sys_restart_syscall(void)
1975 struct restart_block *restart = ¤t_thread_info()->restart_block;
1976 return restart->fn(restart);
1979 long do_no_restart_syscall(struct restart_block *param)
1985 * We don't need to get the kernel lock - this is all local to this
1986 * particular thread.. (and that's good, because this is _heavily_
1987 * used by various programs)
1991 * This is also useful for kernel threads that want to temporarily
1992 * (or permanently) block certain signals.
1994 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1995 * interface happily blocks "unblockable" signals like SIGKILL
1998 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2002 spin_lock_irq(¤t->sighand->siglock);
2004 *oldset = current->blocked;
2009 sigorsets(¤t->blocked, ¤t->blocked, set);
2012 signandsets(¤t->blocked, ¤t->blocked, set);
2015 current->blocked = *set;
2020 recalc_sigpending();
2021 spin_unlock_irq(¤t->sighand->siglock);
2027 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2029 int error = -EINVAL;
2030 sigset_t old_set, new_set;
2032 /* XXX: Don't preclude handling different sized sigset_t's. */
2033 if (sigsetsize != sizeof(sigset_t))
2038 if (copy_from_user(&new_set, set, sizeof(*set)))
2040 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2042 error = sigprocmask(how, &new_set, &old_set);
2048 spin_lock_irq(¤t->sighand->siglock);
2049 old_set = current->blocked;
2050 spin_unlock_irq(¤t->sighand->siglock);
2054 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2062 long do_sigpending(void __user *set, unsigned long sigsetsize)
2064 long error = -EINVAL;
2067 if (sigsetsize > sizeof(sigset_t))
2070 spin_lock_irq(¤t->sighand->siglock);
2071 sigorsets(&pending, ¤t->pending.signal,
2072 ¤t->signal->shared_pending.signal);
2073 spin_unlock_irq(¤t->sighand->siglock);
2075 /* Outside the lock because only this thread touches it. */
2076 sigandsets(&pending, ¤t->blocked, &pending);
2079 if (!copy_to_user(set, &pending, sigsetsize))
2087 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2089 return do_sigpending(set, sigsetsize);
2092 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2094 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2098 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2100 if (from->si_code < 0)
2101 return __copy_to_user(to, from, sizeof(siginfo_t))
2104 * If you change siginfo_t structure, please be sure
2105 * this code is fixed accordingly.
2106 * It should never copy any pad contained in the structure
2107 * to avoid security leaks, but must copy the generic
2108 * 3 ints plus the relevant union member.
2110 err = __put_user(from->si_signo, &to->si_signo);
2111 err |= __put_user(from->si_errno, &to->si_errno);
2112 err |= __put_user((short)from->si_code, &to->si_code);
2113 switch (from->si_code & __SI_MASK) {
2115 err |= __put_user(from->si_pid, &to->si_pid);
2116 err |= __put_user(from->si_uid, &to->si_uid);
2119 err |= __put_user(from->si_tid, &to->si_tid);
2120 err |= __put_user(from->si_overrun, &to->si_overrun);
2121 err |= __put_user(from->si_ptr, &to->si_ptr);
2124 err |= __put_user(from->si_band, &to->si_band);
2125 err |= __put_user(from->si_fd, &to->si_fd);
2128 err |= __put_user(from->si_addr, &to->si_addr);
2129 #ifdef __ARCH_SI_TRAPNO
2130 err |= __put_user(from->si_trapno, &to->si_trapno);
2134 err |= __put_user(from->si_pid, &to->si_pid);
2135 err |= __put_user(from->si_uid, &to->si_uid);
2136 err |= __put_user(from->si_status, &to->si_status);
2137 err |= __put_user(from->si_utime, &to->si_utime);
2138 err |= __put_user(from->si_stime, &to->si_stime);
2140 case __SI_RT: /* This is not generated by the kernel as of now. */
2141 case __SI_MESGQ: /* But this is */
2142 err |= __put_user(from->si_pid, &to->si_pid);
2143 err |= __put_user(from->si_uid, &to->si_uid);
2144 err |= __put_user(from->si_ptr, &to->si_ptr);
2146 default: /* this is just in case for now ... */
2147 err |= __put_user(from->si_pid, &to->si_pid);
2148 err |= __put_user(from->si_uid, &to->si_uid);
2157 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2158 siginfo_t __user *uinfo,
2159 const struct timespec __user *uts,
2168 /* XXX: Don't preclude handling different sized sigset_t's. */
2169 if (sigsetsize != sizeof(sigset_t))
2172 if (copy_from_user(&these, uthese, sizeof(these)))
2176 * Invert the set of allowed signals to get those we
2179 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2183 if (copy_from_user(&ts, uts, sizeof(ts)))
2185 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2190 spin_lock_irq(¤t->sighand->siglock);
2191 sig = dequeue_signal(current, &these, &info);
2193 timeout = MAX_SCHEDULE_TIMEOUT;
2195 timeout = (timespec_to_jiffies(&ts)
2196 + (ts.tv_sec || ts.tv_nsec));
2199 /* None ready -- temporarily unblock those we're
2200 * interested while we are sleeping in so that we'll
2201 * be awakened when they arrive. */
2202 current->real_blocked = current->blocked;
2203 sigandsets(¤t->blocked, ¤t->blocked, &these);
2204 recalc_sigpending();
2205 spin_unlock_irq(¤t->sighand->siglock);
2207 timeout = schedule_timeout_interruptible(timeout);
2209 spin_lock_irq(¤t->sighand->siglock);
2210 sig = dequeue_signal(current, &these, &info);
2211 current->blocked = current->real_blocked;
2212 siginitset(¤t->real_blocked, 0);
2213 recalc_sigpending();
2216 spin_unlock_irq(¤t->sighand->siglock);
2221 if (copy_siginfo_to_user(uinfo, &info))
2234 sys_kill(int pid, int sig)
2236 struct siginfo info;
2238 info.si_signo = sig;
2240 info.si_code = SI_USER;
2241 info.si_pid = current->tgid;
2242 info.si_uid = current->uid;
2244 return kill_something_info(sig, &info, pid);
2247 static int do_tkill(int tgid, int pid, int sig)
2250 struct siginfo info;
2251 struct task_struct *p;
2254 info.si_signo = sig;
2256 info.si_code = SI_TKILL;
2257 info.si_pid = current->tgid;
2258 info.si_uid = current->uid;
2260 read_lock(&tasklist_lock);
2261 p = find_task_by_pid(pid);
2262 if (p && (tgid <= 0 || p->tgid == tgid)) {
2263 error = check_kill_permission(sig, &info, p);
2265 * The null signal is a permissions and process existence
2266 * probe. No signal is actually delivered.
2268 if (!error && sig && p->sighand) {
2269 spin_lock_irq(&p->sighand->siglock);
2270 handle_stop_signal(sig, p);
2271 error = specific_send_sig_info(sig, &info, p);
2272 spin_unlock_irq(&p->sighand->siglock);
2275 read_unlock(&tasklist_lock);
2281 * sys_tgkill - send signal to one specific thread
2282 * @tgid: the thread group ID of the thread
2283 * @pid: the PID of the thread
2284 * @sig: signal to be sent
2286 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2287 * exists but it's not belonging to the target process anymore. This
2288 * method solves the problem of threads exiting and PIDs getting reused.
2290 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2292 /* This is only valid for single tasks */
2293 if (pid <= 0 || tgid <= 0)
2296 return do_tkill(tgid, pid, sig);
2300 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2303 sys_tkill(int pid, int sig)
2305 /* This is only valid for single tasks */
2309 return do_tkill(0, pid, sig);
2313 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2317 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2320 /* Not even root can pretend to send signals from the kernel.
2321 Nor can they impersonate a kill(), which adds source info. */
2322 if (info.si_code >= 0)
2324 info.si_signo = sig;
2326 /* POSIX.1b doesn't mention process groups. */
2327 return kill_proc_info(sig, &info, pid);
2330 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2332 struct k_sigaction *k;
2335 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2338 k = ¤t->sighand->action[sig-1];
2340 spin_lock_irq(¤t->sighand->siglock);
2341 if (signal_pending(current)) {
2343 * If there might be a fatal signal pending on multiple
2344 * threads, make sure we take it before changing the action.
2346 spin_unlock_irq(¤t->sighand->siglock);
2347 return -ERESTARTNOINTR;
2354 sigdelsetmask(&act->sa.sa_mask,
2355 sigmask(SIGKILL) | sigmask(SIGSTOP));
2359 * "Setting a signal action to SIG_IGN for a signal that is
2360 * pending shall cause the pending signal to be discarded,
2361 * whether or not it is blocked."
2363 * "Setting a signal action to SIG_DFL for a signal that is
2364 * pending and whose default action is to ignore the signal
2365 * (for example, SIGCHLD), shall cause the pending signal to
2366 * be discarded, whether or not it is blocked"
2368 if (act->sa.sa_handler == SIG_IGN ||
2369 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2370 struct task_struct *t = current;
2372 sigaddset(&mask, sig);
2373 rm_from_queue_full(&mask, &t->signal->shared_pending);
2375 rm_from_queue_full(&mask, &t->pending);
2376 recalc_sigpending_tsk(t);
2378 } while (t != current);
2382 spin_unlock_irq(¤t->sighand->siglock);
2387 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2393 oss.ss_sp = (void __user *) current->sas_ss_sp;
2394 oss.ss_size = current->sas_ss_size;
2395 oss.ss_flags = sas_ss_flags(sp);
2404 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2405 || __get_user(ss_sp, &uss->ss_sp)
2406 || __get_user(ss_flags, &uss->ss_flags)
2407 || __get_user(ss_size, &uss->ss_size))
2411 if (on_sig_stack(sp))
2417 * Note - this code used to test ss_flags incorrectly
2418 * old code may have been written using ss_flags==0
2419 * to mean ss_flags==SS_ONSTACK (as this was the only
2420 * way that worked) - this fix preserves that older
2423 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2426 if (ss_flags == SS_DISABLE) {
2431 if (ss_size < MINSIGSTKSZ)
2435 current->sas_ss_sp = (unsigned long) ss_sp;
2436 current->sas_ss_size = ss_size;
2441 if (copy_to_user(uoss, &oss, sizeof(oss)))
2450 #ifdef __ARCH_WANT_SYS_SIGPENDING
2453 sys_sigpending(old_sigset_t __user *set)
2455 return do_sigpending(set, sizeof(*set));
2460 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2461 /* Some platforms have their own version with special arguments others
2462 support only sys_rt_sigprocmask. */
2465 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2468 old_sigset_t old_set, new_set;
2472 if (copy_from_user(&new_set, set, sizeof(*set)))
2474 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2476 spin_lock_irq(¤t->sighand->siglock);
2477 old_set = current->blocked.sig[0];
2485 sigaddsetmask(¤t->blocked, new_set);
2488 sigdelsetmask(¤t->blocked, new_set);
2491 current->blocked.sig[0] = new_set;
2495 recalc_sigpending();
2496 spin_unlock_irq(¤t->sighand->siglock);
2502 old_set = current->blocked.sig[0];
2505 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2512 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2514 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2516 sys_rt_sigaction(int sig,
2517 const struct sigaction __user *act,
2518 struct sigaction __user *oact,
2521 struct k_sigaction new_sa, old_sa;
2524 /* XXX: Don't preclude handling different sized sigset_t's. */
2525 if (sigsetsize != sizeof(sigset_t))
2529 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2533 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2536 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2542 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2544 #ifdef __ARCH_WANT_SYS_SGETMASK
2547 * For backwards compatibility. Functionality superseded by sigprocmask.
2553 return current->blocked.sig[0];
2557 sys_ssetmask(int newmask)
2561 spin_lock_irq(¤t->sighand->siglock);
2562 old = current->blocked.sig[0];
2564 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)|
2566 recalc_sigpending();
2567 spin_unlock_irq(¤t->sighand->siglock);
2571 #endif /* __ARCH_WANT_SGETMASK */
2573 #ifdef __ARCH_WANT_SYS_SIGNAL
2575 * For backwards compatibility. Functionality superseded by sigaction.
2577 asmlinkage unsigned long
2578 sys_signal(int sig, __sighandler_t handler)
2580 struct k_sigaction new_sa, old_sa;
2583 new_sa.sa.sa_handler = handler;
2584 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2585 sigemptyset(&new_sa.sa.sa_mask);
2587 ret = do_sigaction(sig, &new_sa, &old_sa);
2589 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2591 #endif /* __ARCH_WANT_SYS_SIGNAL */
2593 #ifdef __ARCH_WANT_SYS_PAUSE
2598 current->state = TASK_INTERRUPTIBLE;
2600 return -ERESTARTNOHAND;
2605 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2606 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2610 /* XXX: Don't preclude handling different sized sigset_t's. */
2611 if (sigsetsize != sizeof(sigset_t))
2614 if (copy_from_user(&newset, unewset, sizeof(newset)))
2616 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2618 spin_lock_irq(¤t->sighand->siglock);
2619 current->saved_sigmask = current->blocked;
2620 current->blocked = newset;
2621 recalc_sigpending();
2622 spin_unlock_irq(¤t->sighand->siglock);
2624 current->state = TASK_INTERRUPTIBLE;
2626 set_thread_flag(TIF_RESTORE_SIGMASK);
2627 return -ERESTARTNOHAND;
2629 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2631 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2636 void __init signals_init(void)
2638 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);