1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/delay.h>
4 #include <linux/errno.h>
5 #include <linux/hpet.h>
6 #include <linux/init.h>
7 #include <linux/sysdev.h>
9 #include <linux/delay.h>
11 #include <asm/fixmap.h>
13 #include <asm/i8253.h>
16 #define HPET_MASK CLOCKSOURCE_MASK(32)
19 /* FSEC = 10^-15 NSEC = 10^-9 */
20 #define FSEC_PER_NSEC 1000000
23 * HPET address is set in acpi/boot.c, when an ACPI entry exists
25 unsigned long hpet_address;
26 static void __iomem *hpet_virt_address;
28 unsigned long hpet_readl(unsigned long a)
30 return readl(hpet_virt_address + a);
33 static inline void hpet_writel(unsigned long d, unsigned long a)
35 writel(d, hpet_virt_address + a);
40 #include <asm/pgtable.h>
42 static inline void hpet_set_mapping(void)
44 set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
45 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
46 hpet_virt_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
49 static inline void hpet_clear_mapping(void)
51 hpet_virt_address = NULL;
56 static inline void hpet_set_mapping(void)
58 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
61 static inline void hpet_clear_mapping(void)
63 iounmap(hpet_virt_address);
64 hpet_virt_address = NULL;
69 * HPET command line enable / disable
71 static int boot_hpet_disable;
74 static int __init hpet_setup(char* str)
77 if (!strncmp("disable", str, 7))
78 boot_hpet_disable = 1;
79 if (!strncmp("force", str, 5))
84 __setup("hpet=", hpet_setup);
86 static int __init disable_hpet(char *str)
88 boot_hpet_disable = 1;
91 __setup("nohpet", disable_hpet);
93 static inline int is_hpet_capable(void)
95 return (!boot_hpet_disable && hpet_address);
99 * HPET timer interrupt enable / disable
101 static int hpet_legacy_int_enabled;
104 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
106 int is_hpet_enabled(void)
108 return is_hpet_capable() && hpet_legacy_int_enabled;
112 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
113 * timer 0 and timer 1 in case of RTC emulation.
116 static void hpet_reserve_platform_timers(unsigned long id)
118 struct hpet __iomem *hpet = hpet_virt_address;
119 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
120 unsigned int nrtimers, i;
123 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
125 memset(&hd, 0, sizeof (hd));
126 hd.hd_phys_address = hpet_address;
127 hd.hd_address = hpet;
128 hd.hd_nirqs = nrtimers;
129 hd.hd_flags = HPET_DATA_PLATFORM;
130 hpet_reserve_timer(&hd, 0);
132 #ifdef CONFIG_HPET_EMULATE_RTC
133 hpet_reserve_timer(&hd, 1);
136 hd.hd_irq[0] = HPET_LEGACY_8254;
137 hd.hd_irq[1] = HPET_LEGACY_RTC;
139 for (i = 2; i < nrtimers; timer++, i++)
140 hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
141 Tn_INT_ROUTE_CNF_SHIFT;
147 static void hpet_reserve_platform_timers(unsigned long id) { }
153 static unsigned long hpet_period;
155 static void hpet_legacy_set_mode(enum clock_event_mode mode,
156 struct clock_event_device *evt);
157 static int hpet_legacy_next_event(unsigned long delta,
158 struct clock_event_device *evt);
161 * The hpet clock event device
163 static struct clock_event_device hpet_clockevent = {
165 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
166 .set_mode = hpet_legacy_set_mode,
167 .set_next_event = hpet_legacy_next_event,
173 static void hpet_start_counter(void)
175 unsigned long cfg = hpet_readl(HPET_CFG);
177 cfg &= ~HPET_CFG_ENABLE;
178 hpet_writel(cfg, HPET_CFG);
179 hpet_writel(0, HPET_COUNTER);
180 hpet_writel(0, HPET_COUNTER + 4);
181 cfg |= HPET_CFG_ENABLE;
182 hpet_writel(cfg, HPET_CFG);
185 static void hpet_resume_device(void)
190 static void hpet_restart_counter(void)
192 hpet_resume_device();
193 hpet_start_counter();
196 static void hpet_enable_legacy_int(void)
198 unsigned long cfg = hpet_readl(HPET_CFG);
200 cfg |= HPET_CFG_LEGACY;
201 hpet_writel(cfg, HPET_CFG);
202 hpet_legacy_int_enabled = 1;
205 static void hpet_legacy_clockevent_register(void)
209 /* Start HPET legacy interrupts */
210 hpet_enable_legacy_int();
213 * The period is a femto seconds value. We need to calculate the
214 * scaled math multiplication factor for nanosecond to hpet tick
217 hpet_freq = 1000000000000000ULL;
218 do_div(hpet_freq, hpet_period);
219 hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
221 /* Calculate the min / max delta */
222 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
224 hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
228 * Start hpet with the boot cpu mask and make it
229 * global after the IO_APIC has been initialized.
231 hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
232 clockevents_register_device(&hpet_clockevent);
233 global_clock_event = &hpet_clockevent;
234 printk(KERN_DEBUG "hpet clockevent registered\n");
237 static void hpet_legacy_set_mode(enum clock_event_mode mode,
238 struct clock_event_device *evt)
240 unsigned long cfg, cmp, now;
244 case CLOCK_EVT_MODE_PERIODIC:
245 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
246 delta >>= hpet_clockevent.shift;
247 now = hpet_readl(HPET_COUNTER);
248 cmp = now + (unsigned long) delta;
249 cfg = hpet_readl(HPET_T0_CFG);
250 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
251 HPET_TN_SETVAL | HPET_TN_32BIT;
252 hpet_writel(cfg, HPET_T0_CFG);
254 * The first write after writing TN_SETVAL to the
255 * config register sets the counter value, the second
256 * write sets the period.
258 hpet_writel(cmp, HPET_T0_CMP);
260 hpet_writel((unsigned long) delta, HPET_T0_CMP);
263 case CLOCK_EVT_MODE_ONESHOT:
264 cfg = hpet_readl(HPET_T0_CFG);
265 cfg &= ~HPET_TN_PERIODIC;
266 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
267 hpet_writel(cfg, HPET_T0_CFG);
270 case CLOCK_EVT_MODE_UNUSED:
271 case CLOCK_EVT_MODE_SHUTDOWN:
272 cfg = hpet_readl(HPET_T0_CFG);
273 cfg &= ~HPET_TN_ENABLE;
274 hpet_writel(cfg, HPET_T0_CFG);
277 case CLOCK_EVT_MODE_RESUME:
278 hpet_enable_legacy_int();
283 static int hpet_legacy_next_event(unsigned long delta,
284 struct clock_event_device *evt)
288 cnt = hpet_readl(HPET_COUNTER);
290 hpet_writel(cnt, HPET_T0_CMP);
292 return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
296 * Clock source related code
298 static cycle_t read_hpet(void)
300 return (cycle_t)hpet_readl(HPET_COUNTER);
304 static cycle_t __vsyscall_fn vread_hpet(void)
306 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
310 static struct clocksource clocksource_hpet = {
316 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
317 .resume = hpet_restart_counter,
323 static int hpet_clocksource_register(void)
328 /* Start the counter */
329 hpet_start_counter();
331 /* Verify whether hpet counter works */
336 * We don't know the TSC frequency yet, but waiting for
337 * 200000 TSC cycles is safe:
344 } while ((now - start) < 200000UL);
346 if (t1 == read_hpet()) {
348 "HPET counter not counting. HPET disabled\n");
352 /* Initialize and register HPET clocksource
354 * hpet period is in femto seconds per cycle
355 * so we need to convert this to ns/cyc units
356 * approximated by mult/2^shift
358 * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
359 * fsec/cyc * 1ns/1000000fsec * 2^shift = mult
360 * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
361 * (fsec/cyc << shift)/1000000 = mult
362 * (hpet_period << shift)/FSEC_PER_NSEC = mult
364 tmp = (u64)hpet_period << HPET_SHIFT;
365 do_div(tmp, FSEC_PER_NSEC);
366 clocksource_hpet.mult = (u32)tmp;
368 clocksource_register(&clocksource_hpet);
374 * Try to setup the HPET timer
376 int __init hpet_enable(void)
380 if (!is_hpet_capable())
386 * Read the period and check for a sane value:
388 hpet_period = hpet_readl(HPET_PERIOD);
389 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
393 * Read the HPET ID register to retrieve the IRQ routing
394 * information and the number of channels
396 id = hpet_readl(HPET_ID);
398 #ifdef CONFIG_HPET_EMULATE_RTC
400 * The legacy routing mode needs at least two channels, tick timer
401 * and the rtc emulation channel.
403 if (!(id & HPET_ID_NUMBER))
407 if (hpet_clocksource_register())
410 if (id & HPET_ID_LEGSUP) {
411 hpet_legacy_clockevent_register();
417 hpet_clear_mapping();
418 boot_hpet_disable = 1;
423 * Needs to be late, as the reserve_timer code calls kalloc !
425 * Not a problem on i386 as hpet_enable is called from late_time_init,
426 * but on x86_64 it is necessary !
428 static __init int hpet_late_init(void)
430 if (boot_hpet_disable)
434 if (!force_hpet_address)
437 hpet_address = force_hpet_address;
439 if (!hpet_virt_address)
443 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
447 fs_initcall(hpet_late_init);
449 #ifdef CONFIG_HPET_EMULATE_RTC
451 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
452 * is enabled, we support RTC interrupt functionality in software.
453 * RTC has 3 kinds of interrupts:
454 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
456 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
457 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
458 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
459 * (1) and (2) above are implemented using polling at a frequency of
460 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
461 * overhead. (DEFAULT_RTC_INT_FREQ)
462 * For (3), we use interrupts at 64Hz or user specified periodic
463 * frequency, whichever is higher.
465 #include <linux/mc146818rtc.h>
466 #include <linux/rtc.h>
468 #define DEFAULT_RTC_INT_FREQ 64
469 #define DEFAULT_RTC_SHIFT 6
470 #define RTC_NUM_INTS 1
472 static unsigned long hpet_rtc_flags;
473 static unsigned long hpet_prev_update_sec;
474 static struct rtc_time hpet_alarm_time;
475 static unsigned long hpet_pie_count;
476 static unsigned long hpet_t1_cmp;
477 static unsigned long hpet_default_delta;
478 static unsigned long hpet_pie_delta;
479 static unsigned long hpet_pie_limit;
482 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
483 * is not supported by all HPET implementations for timer 1.
485 * hpet_rtc_timer_init() is called when the rtc is initialized.
487 int hpet_rtc_timer_init(void)
489 unsigned long cfg, cnt, delta, flags;
491 if (!is_hpet_enabled())
494 if (!hpet_default_delta) {
497 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
498 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
499 hpet_default_delta = (unsigned long) clc;
502 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
503 delta = hpet_default_delta;
505 delta = hpet_pie_delta;
507 local_irq_save(flags);
509 cnt = delta + hpet_readl(HPET_COUNTER);
510 hpet_writel(cnt, HPET_T1_CMP);
513 cfg = hpet_readl(HPET_T1_CFG);
514 cfg &= ~HPET_TN_PERIODIC;
515 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
516 hpet_writel(cfg, HPET_T1_CFG);
518 local_irq_restore(flags);
524 * The functions below are called from rtc driver.
525 * Return 0 if HPET is not being used.
526 * Otherwise do the necessary changes and return 1.
528 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
530 if (!is_hpet_enabled())
533 hpet_rtc_flags &= ~bit_mask;
537 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
539 unsigned long oldbits = hpet_rtc_flags;
541 if (!is_hpet_enabled())
544 hpet_rtc_flags |= bit_mask;
547 hpet_rtc_timer_init();
552 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
555 if (!is_hpet_enabled())
558 hpet_alarm_time.tm_hour = hrs;
559 hpet_alarm_time.tm_min = min;
560 hpet_alarm_time.tm_sec = sec;
565 int hpet_set_periodic_freq(unsigned long freq)
569 if (!is_hpet_enabled())
572 if (freq <= DEFAULT_RTC_INT_FREQ)
573 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
575 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
577 clc >>= hpet_clockevent.shift;
578 hpet_pie_delta = (unsigned long) clc;
583 int hpet_rtc_dropped_irq(void)
585 return is_hpet_enabled();
588 static void hpet_rtc_timer_reinit(void)
590 unsigned long cfg, delta;
593 if (unlikely(!hpet_rtc_flags)) {
594 cfg = hpet_readl(HPET_T1_CFG);
595 cfg &= ~HPET_TN_ENABLE;
596 hpet_writel(cfg, HPET_T1_CFG);
600 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
601 delta = hpet_default_delta;
603 delta = hpet_pie_delta;
606 * Increment the comparator value until we are ahead of the
610 hpet_t1_cmp += delta;
611 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
613 } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
616 if (hpet_rtc_flags & RTC_PIE)
617 hpet_pie_count += lost_ints;
618 if (printk_ratelimit())
619 printk(KERN_WARNING "rtc: lost %d interrupts\n",
624 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
626 struct rtc_time curr_time;
627 unsigned long rtc_int_flag = 0;
629 hpet_rtc_timer_reinit();
631 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
632 rtc_get_rtc_time(&curr_time);
634 if (hpet_rtc_flags & RTC_UIE &&
635 curr_time.tm_sec != hpet_prev_update_sec) {
636 rtc_int_flag = RTC_UF;
637 hpet_prev_update_sec = curr_time.tm_sec;
640 if (hpet_rtc_flags & RTC_PIE &&
641 ++hpet_pie_count >= hpet_pie_limit) {
642 rtc_int_flag |= RTC_PF;
646 if (hpet_rtc_flags & RTC_PIE &&
647 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
648 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
649 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
650 rtc_int_flag |= RTC_AF;
653 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
654 rtc_interrupt(rtc_int_flag, dev_id);