libata: Restore Kconfig updated experimental levels and correct
[linux-2.6] / drivers / net / fs_enet / fs_enet-main.c
1 /*
2  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3  *
4  * Copyright (c) 2003 Intracom S.A. 
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  * 
7  * 2005 (c) MontaVista Software, Inc. 
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11  * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12  *
13  * This file is licensed under the terms of the GNU General Public License 
14  * version 2. This program is licensed "as is" without any warranty of any 
15  * kind, whether express or implied.
16  */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/pci.h>
28 #include <linux/init.h>
29 #include <linux/delay.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/spinlock.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 #include <linux/bitops.h>
37 #include <linux/fs.h>
38 #include <linux/platform_device.h>
39 #include <linux/phy.h>
40
41 #include <linux/vmalloc.h>
42 #include <asm/pgtable.h>
43
44 #include <asm/pgtable.h>
45 #include <asm/irq.h>
46 #include <asm/uaccess.h>
47
48 #include "fs_enet.h"
49
50 /*************************************************/
51
52 static char version[] __devinitdata =
53     DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
54
55 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
56 MODULE_DESCRIPTION("Freescale Ethernet Driver");
57 MODULE_LICENSE("GPL");
58 MODULE_VERSION(DRV_MODULE_VERSION);
59
60 int fs_enet_debug = -1;         /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
61 module_param(fs_enet_debug, int, 0);
62 MODULE_PARM_DESC(fs_enet_debug,
63                  "Freescale bitmapped debugging message enable value");
64
65
66 static void fs_set_multicast_list(struct net_device *dev)
67 {
68         struct fs_enet_private *fep = netdev_priv(dev);
69
70         (*fep->ops->set_multicast_list)(dev);
71 }
72
73 /* NAPI receive function */
74 static int fs_enet_rx_napi(struct net_device *dev, int *budget)
75 {
76         struct fs_enet_private *fep = netdev_priv(dev);
77         const struct fs_platform_info *fpi = fep->fpi;
78         cbd_t *bdp;
79         struct sk_buff *skb, *skbn, *skbt;
80         int received = 0;
81         u16 pkt_len, sc;
82         int curidx;
83         int rx_work_limit = 0;  /* pacify gcc */
84
85         rx_work_limit = min(dev->quota, *budget);
86
87         if (!netif_running(dev))
88                 return 0;
89
90         /*
91          * First, grab all of the stats for the incoming packet.
92          * These get messed up if we get called due to a busy condition.
93          */
94         bdp = fep->cur_rx;
95
96         /* clear RX status bits for napi*/
97         (*fep->ops->napi_clear_rx_event)(dev);
98
99         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
100
101                 curidx = bdp - fep->rx_bd_base;
102
103                 /*
104                  * Since we have allocated space to hold a complete frame,
105                  * the last indicator should be set.
106                  */
107                 if ((sc & BD_ENET_RX_LAST) == 0)
108                         printk(KERN_WARNING DRV_MODULE_NAME
109                                ": %s rcv is not +last\n",
110                                dev->name);
111
112                 /*
113                  * Check for errors. 
114                  */
115                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
116                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
117                         fep->stats.rx_errors++;
118                         /* Frame too long or too short. */
119                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
120                                 fep->stats.rx_length_errors++;
121                         /* Frame alignment */
122                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
123                                 fep->stats.rx_frame_errors++;
124                         /* CRC Error */
125                         if (sc & BD_ENET_RX_CR)
126                                 fep->stats.rx_crc_errors++;
127                         /* FIFO overrun */
128                         if (sc & BD_ENET_RX_OV)
129                                 fep->stats.rx_crc_errors++;
130
131                         skb = fep->rx_skbuff[curidx];
132
133                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
134                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
135                                 DMA_FROM_DEVICE);
136
137                         skbn = skb;
138
139                 } else {
140
141                         /* napi, got packet but no quota */
142                         if (--rx_work_limit < 0)
143                                 break;
144
145                         skb = fep->rx_skbuff[curidx];
146
147                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
148                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
149                                 DMA_FROM_DEVICE);
150
151                         /*
152                          * Process the incoming frame.
153                          */
154                         fep->stats.rx_packets++;
155                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
156                         fep->stats.rx_bytes += pkt_len + 4;
157
158                         if (pkt_len <= fpi->rx_copybreak) {
159                                 /* +2 to make IP header L1 cache aligned */
160                                 skbn = dev_alloc_skb(pkt_len + 2);
161                                 if (skbn != NULL) {
162                                         skb_reserve(skbn, 2);   /* align IP header */
163                                         skb_copy_from_linear_data(skb,
164                                                       skbn->data, pkt_len);
165                                         /* swap */
166                                         skbt = skb;
167                                         skb = skbn;
168                                         skbn = skbt;
169                                 }
170                         } else
171                                 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
172
173                         if (skbn != NULL) {
174                                 skb_put(skb, pkt_len);  /* Make room */
175                                 skb->protocol = eth_type_trans(skb, dev);
176                                 received++;
177                                 netif_receive_skb(skb);
178                         } else {
179                                 printk(KERN_WARNING DRV_MODULE_NAME
180                                        ": %s Memory squeeze, dropping packet.\n",
181                                        dev->name);
182                                 fep->stats.rx_dropped++;
183                                 skbn = skb;
184                         }
185                 }
186
187                 fep->rx_skbuff[curidx] = skbn;
188                 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
189                              L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
190                              DMA_FROM_DEVICE));
191                 CBDW_DATLEN(bdp, 0);
192                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
193
194                 /*
195                  * Update BD pointer to next entry. 
196                  */
197                 if ((sc & BD_ENET_RX_WRAP) == 0)
198                         bdp++;
199                 else
200                         bdp = fep->rx_bd_base;
201
202                 (*fep->ops->rx_bd_done)(dev);
203         }
204
205         fep->cur_rx = bdp;
206
207         dev->quota -= received;
208         *budget -= received;
209
210         if (rx_work_limit < 0)
211                 return 1;       /* not done */
212
213         /* done */
214         netif_rx_complete(dev);
215
216         (*fep->ops->napi_enable_rx)(dev);
217
218         return 0;
219 }
220
221 /* non NAPI receive function */
222 static int fs_enet_rx_non_napi(struct net_device *dev)
223 {
224         struct fs_enet_private *fep = netdev_priv(dev);
225         const struct fs_platform_info *fpi = fep->fpi;
226         cbd_t *bdp;
227         struct sk_buff *skb, *skbn, *skbt;
228         int received = 0;
229         u16 pkt_len, sc;
230         int curidx;
231         /*
232          * First, grab all of the stats for the incoming packet.
233          * These get messed up if we get called due to a busy condition.
234          */
235         bdp = fep->cur_rx;
236
237         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
238
239                 curidx = bdp - fep->rx_bd_base;
240
241                 /*
242                  * Since we have allocated space to hold a complete frame,
243                  * the last indicator should be set.
244                  */
245                 if ((sc & BD_ENET_RX_LAST) == 0)
246                         printk(KERN_WARNING DRV_MODULE_NAME
247                                ": %s rcv is not +last\n",
248                                dev->name);
249
250                 /*
251                  * Check for errors. 
252                  */
253                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
254                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
255                         fep->stats.rx_errors++;
256                         /* Frame too long or too short. */
257                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
258                                 fep->stats.rx_length_errors++;
259                         /* Frame alignment */
260                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
261                                 fep->stats.rx_frame_errors++;
262                         /* CRC Error */
263                         if (sc & BD_ENET_RX_CR)
264                                 fep->stats.rx_crc_errors++;
265                         /* FIFO overrun */
266                         if (sc & BD_ENET_RX_OV)
267                                 fep->stats.rx_crc_errors++;
268
269                         skb = fep->rx_skbuff[curidx];
270
271                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
272                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
273                                 DMA_FROM_DEVICE);
274
275                         skbn = skb;
276
277                 } else {
278
279                         skb = fep->rx_skbuff[curidx];
280
281                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
282                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
283                                 DMA_FROM_DEVICE);
284
285                         /*
286                          * Process the incoming frame.
287                          */
288                         fep->stats.rx_packets++;
289                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
290                         fep->stats.rx_bytes += pkt_len + 4;
291
292                         if (pkt_len <= fpi->rx_copybreak) {
293                                 /* +2 to make IP header L1 cache aligned */
294                                 skbn = dev_alloc_skb(pkt_len + 2);
295                                 if (skbn != NULL) {
296                                         skb_reserve(skbn, 2);   /* align IP header */
297                                         skb_copy_from_linear_data(skb,
298                                                       skbn->data, pkt_len);
299                                         /* swap */
300                                         skbt = skb;
301                                         skb = skbn;
302                                         skbn = skbt;
303                                 }
304                         } else
305                                 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
306
307                         if (skbn != NULL) {
308                                 skb_put(skb, pkt_len);  /* Make room */
309                                 skb->protocol = eth_type_trans(skb, dev);
310                                 received++;
311                                 netif_rx(skb);
312                         } else {
313                                 printk(KERN_WARNING DRV_MODULE_NAME
314                                        ": %s Memory squeeze, dropping packet.\n",
315                                        dev->name);
316                                 fep->stats.rx_dropped++;
317                                 skbn = skb;
318                         }
319                 }
320
321                 fep->rx_skbuff[curidx] = skbn;
322                 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
323                              L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
324                              DMA_FROM_DEVICE));
325                 CBDW_DATLEN(bdp, 0);
326                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
327
328                 /*
329                  * Update BD pointer to next entry. 
330                  */
331                 if ((sc & BD_ENET_RX_WRAP) == 0)
332                         bdp++;
333                 else
334                         bdp = fep->rx_bd_base;
335
336                 (*fep->ops->rx_bd_done)(dev);
337         }
338
339         fep->cur_rx = bdp;
340
341         return 0;
342 }
343
344 static void fs_enet_tx(struct net_device *dev)
345 {
346         struct fs_enet_private *fep = netdev_priv(dev);
347         cbd_t *bdp;
348         struct sk_buff *skb;
349         int dirtyidx, do_wake, do_restart;
350         u16 sc;
351
352         spin_lock(&fep->lock);
353         bdp = fep->dirty_tx;
354
355         do_wake = do_restart = 0;
356         while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
357
358                 dirtyidx = bdp - fep->tx_bd_base;
359
360                 if (fep->tx_free == fep->tx_ring)
361                         break;
362
363                 skb = fep->tx_skbuff[dirtyidx];
364
365                 /*
366                  * Check for errors. 
367                  */
368                 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
369                           BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
370
371                         if (sc & BD_ENET_TX_HB) /* No heartbeat */
372                                 fep->stats.tx_heartbeat_errors++;
373                         if (sc & BD_ENET_TX_LC) /* Late collision */
374                                 fep->stats.tx_window_errors++;
375                         if (sc & BD_ENET_TX_RL) /* Retrans limit */
376                                 fep->stats.tx_aborted_errors++;
377                         if (sc & BD_ENET_TX_UN) /* Underrun */
378                                 fep->stats.tx_fifo_errors++;
379                         if (sc & BD_ENET_TX_CSL)        /* Carrier lost */
380                                 fep->stats.tx_carrier_errors++;
381
382                         if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
383                                 fep->stats.tx_errors++;
384                                 do_restart = 1;
385                         }
386                 } else
387                         fep->stats.tx_packets++;
388
389                 if (sc & BD_ENET_TX_READY)
390                         printk(KERN_WARNING DRV_MODULE_NAME
391                                ": %s HEY! Enet xmit interrupt and TX_READY.\n",
392                                dev->name);
393
394                 /*
395                  * Deferred means some collisions occurred during transmit,
396                  * but we eventually sent the packet OK.
397                  */
398                 if (sc & BD_ENET_TX_DEF)
399                         fep->stats.collisions++;
400
401                 /* unmap */
402                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
403                                 skb->len, DMA_TO_DEVICE);
404
405                 /*
406                  * Free the sk buffer associated with this last transmit. 
407                  */
408                 dev_kfree_skb_irq(skb);
409                 fep->tx_skbuff[dirtyidx] = NULL;
410
411                 /*
412                  * Update pointer to next buffer descriptor to be transmitted. 
413                  */
414                 if ((sc & BD_ENET_TX_WRAP) == 0)
415                         bdp++;
416                 else
417                         bdp = fep->tx_bd_base;
418
419                 /*
420                  * Since we have freed up a buffer, the ring is no longer
421                  * full.
422                  */
423                 if (!fep->tx_free++)
424                         do_wake = 1;
425         }
426
427         fep->dirty_tx = bdp;
428
429         if (do_restart)
430                 (*fep->ops->tx_restart)(dev);
431
432         spin_unlock(&fep->lock);
433
434         if (do_wake)
435                 netif_wake_queue(dev);
436 }
437
438 /*
439  * The interrupt handler.
440  * This is called from the MPC core interrupt.
441  */
442 static irqreturn_t
443 fs_enet_interrupt(int irq, void *dev_id)
444 {
445         struct net_device *dev = dev_id;
446         struct fs_enet_private *fep;
447         const struct fs_platform_info *fpi;
448         u32 int_events;
449         u32 int_clr_events;
450         int nr, napi_ok;
451         int handled;
452
453         fep = netdev_priv(dev);
454         fpi = fep->fpi;
455
456         nr = 0;
457         while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
458
459                 nr++;
460
461                 int_clr_events = int_events;
462                 if (fpi->use_napi)
463                         int_clr_events &= ~fep->ev_napi_rx;
464
465                 (*fep->ops->clear_int_events)(dev, int_clr_events);
466
467                 if (int_events & fep->ev_err)
468                         (*fep->ops->ev_error)(dev, int_events);
469
470                 if (int_events & fep->ev_rx) {
471                         if (!fpi->use_napi)
472                                 fs_enet_rx_non_napi(dev);
473                         else {
474                                 napi_ok = netif_rx_schedule_prep(dev);
475
476                                 (*fep->ops->napi_disable_rx)(dev);
477                                 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
478
479                                 /* NOTE: it is possible for FCCs in NAPI mode    */
480                                 /* to submit a spurious interrupt while in poll  */
481                                 if (napi_ok)
482                                         __netif_rx_schedule(dev);
483                         }
484                 }
485
486                 if (int_events & fep->ev_tx)
487                         fs_enet_tx(dev);
488         }
489
490         handled = nr > 0;
491         return IRQ_RETVAL(handled);
492 }
493
494 void fs_init_bds(struct net_device *dev)
495 {
496         struct fs_enet_private *fep = netdev_priv(dev);
497         cbd_t *bdp;
498         struct sk_buff *skb;
499         int i;
500
501         fs_cleanup_bds(dev);
502
503         fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
504         fep->tx_free = fep->tx_ring;
505         fep->cur_rx = fep->rx_bd_base;
506
507         /*
508          * Initialize the receive buffer descriptors. 
509          */
510         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
511                 skb = dev_alloc_skb(ENET_RX_FRSIZE);
512                 if (skb == NULL) {
513                         printk(KERN_WARNING DRV_MODULE_NAME
514                                ": %s Memory squeeze, unable to allocate skb\n",
515                                dev->name);
516                         break;
517                 }
518                 fep->rx_skbuff[i] = skb;
519                 CBDW_BUFADDR(bdp,
520                         dma_map_single(fep->dev, skb->data,
521                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
522                                 DMA_FROM_DEVICE));
523                 CBDW_DATLEN(bdp, 0);    /* zero */
524                 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
525                         ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
526         }
527         /*
528          * if we failed, fillup remainder 
529          */
530         for (; i < fep->rx_ring; i++, bdp++) {
531                 fep->rx_skbuff[i] = NULL;
532                 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
533         }
534
535         /*
536          * ...and the same for transmit.  
537          */
538         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
539                 fep->tx_skbuff[i] = NULL;
540                 CBDW_BUFADDR(bdp, 0);
541                 CBDW_DATLEN(bdp, 0);
542                 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
543         }
544 }
545
546 void fs_cleanup_bds(struct net_device *dev)
547 {
548         struct fs_enet_private *fep = netdev_priv(dev);
549         struct sk_buff *skb;
550         cbd_t *bdp;
551         int i;
552
553         /*
554          * Reset SKB transmit buffers.  
555          */
556         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
557                 if ((skb = fep->tx_skbuff[i]) == NULL)
558                         continue;
559
560                 /* unmap */
561                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
562                                 skb->len, DMA_TO_DEVICE);
563
564                 fep->tx_skbuff[i] = NULL;
565                 dev_kfree_skb(skb);
566         }
567
568         /*
569          * Reset SKB receive buffers 
570          */
571         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
572                 if ((skb = fep->rx_skbuff[i]) == NULL)
573                         continue;
574
575                 /* unmap */
576                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
577                         L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
578                         DMA_FROM_DEVICE);
579
580                 fep->rx_skbuff[i] = NULL;
581
582                 dev_kfree_skb(skb);
583         }
584 }
585
586 /**********************************************************************************/
587
588 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
589 {
590         struct fs_enet_private *fep = netdev_priv(dev);
591         cbd_t *bdp;
592         int curidx;
593         u16 sc;
594         unsigned long flags;
595
596         spin_lock_irqsave(&fep->tx_lock, flags);
597
598         /*
599          * Fill in a Tx ring entry 
600          */
601         bdp = fep->cur_tx;
602
603         if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
604                 netif_stop_queue(dev);
605                 spin_unlock_irqrestore(&fep->tx_lock, flags);
606
607                 /*
608                  * Ooops.  All transmit buffers are full.  Bail out.
609                  * This should not happen, since the tx queue should be stopped.
610                  */
611                 printk(KERN_WARNING DRV_MODULE_NAME
612                        ": %s tx queue full!.\n", dev->name);
613                 return NETDEV_TX_BUSY;
614         }
615
616         curidx = bdp - fep->tx_bd_base;
617         /*
618          * Clear all of the status flags. 
619          */
620         CBDC_SC(bdp, BD_ENET_TX_STATS);
621
622         /*
623          * Save skb pointer. 
624          */
625         fep->tx_skbuff[curidx] = skb;
626
627         fep->stats.tx_bytes += skb->len;
628
629         /*
630          * Push the data cache so the CPM does not get stale memory data. 
631          */
632         CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
633                                 skb->data, skb->len, DMA_TO_DEVICE));
634         CBDW_DATLEN(bdp, skb->len);
635
636         dev->trans_start = jiffies;
637
638         /*
639          * If this was the last BD in the ring, start at the beginning again. 
640          */
641         if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
642                 fep->cur_tx++;
643         else
644                 fep->cur_tx = fep->tx_bd_base;
645
646         if (!--fep->tx_free)
647                 netif_stop_queue(dev);
648
649         /* Trigger transmission start */
650         sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
651              BD_ENET_TX_LAST | BD_ENET_TX_TC;
652
653         /* note that while FEC does not have this bit
654          * it marks it as available for software use
655          * yay for hw reuse :) */
656         if (skb->len <= 60)
657                 sc |= BD_ENET_TX_PAD;
658         CBDS_SC(bdp, sc);
659
660         (*fep->ops->tx_kickstart)(dev);
661
662         spin_unlock_irqrestore(&fep->tx_lock, flags);
663
664         return NETDEV_TX_OK;
665 }
666
667 static int fs_request_irq(struct net_device *dev, int irq, const char *name,
668                 irq_handler_t irqf)
669 {
670         struct fs_enet_private *fep = netdev_priv(dev);
671
672         (*fep->ops->pre_request_irq)(dev, irq);
673         return request_irq(irq, irqf, IRQF_SHARED, name, dev);
674 }
675
676 static void fs_free_irq(struct net_device *dev, int irq)
677 {
678         struct fs_enet_private *fep = netdev_priv(dev);
679
680         free_irq(irq, dev);
681         (*fep->ops->post_free_irq)(dev, irq);
682 }
683
684 static void fs_timeout(struct net_device *dev)
685 {
686         struct fs_enet_private *fep = netdev_priv(dev);
687         unsigned long flags;
688         int wake = 0;
689
690         fep->stats.tx_errors++;
691
692         spin_lock_irqsave(&fep->lock, flags);
693
694         if (dev->flags & IFF_UP) {
695                 phy_stop(fep->phydev);
696                 (*fep->ops->stop)(dev);
697                 (*fep->ops->restart)(dev);
698                 phy_start(fep->phydev);
699         }
700
701         phy_start(fep->phydev);
702         wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
703         spin_unlock_irqrestore(&fep->lock, flags);
704
705         if (wake)
706                 netif_wake_queue(dev);
707 }
708
709 /*-----------------------------------------------------------------------------
710  *  generic link-change handler - should be sufficient for most cases
711  *-----------------------------------------------------------------------------*/
712 static void generic_adjust_link(struct  net_device *dev)
713 {
714        struct fs_enet_private *fep = netdev_priv(dev);
715        struct phy_device *phydev = fep->phydev;
716        int new_state = 0;
717
718        if (phydev->link) {
719
720                /* adjust to duplex mode */
721                if (phydev->duplex != fep->oldduplex){
722                        new_state = 1;
723                        fep->oldduplex = phydev->duplex;
724                }
725
726                if (phydev->speed != fep->oldspeed) {
727                        new_state = 1;
728                        fep->oldspeed = phydev->speed;
729                }
730
731                if (!fep->oldlink) {
732                        new_state = 1;
733                        fep->oldlink = 1;
734                        netif_schedule(dev);
735                        netif_carrier_on(dev);
736                        netif_start_queue(dev);
737                }
738
739                if (new_state)
740                        fep->ops->restart(dev);
741
742        } else if (fep->oldlink) {
743                new_state = 1;
744                fep->oldlink = 0;
745                fep->oldspeed = 0;
746                fep->oldduplex = -1;
747                netif_carrier_off(dev);
748                netif_stop_queue(dev);
749        }
750
751        if (new_state && netif_msg_link(fep))
752                phy_print_status(phydev);
753 }
754
755
756 static void fs_adjust_link(struct net_device *dev)
757 {
758         struct fs_enet_private *fep = netdev_priv(dev);
759         unsigned long flags;
760
761         spin_lock_irqsave(&fep->lock, flags);
762
763         if(fep->ops->adjust_link)
764                 fep->ops->adjust_link(dev);
765         else
766                 generic_adjust_link(dev);
767
768         spin_unlock_irqrestore(&fep->lock, flags);
769 }
770
771 static int fs_init_phy(struct net_device *dev)
772 {
773         struct fs_enet_private *fep = netdev_priv(dev);
774         struct phy_device *phydev;
775
776         fep->oldlink = 0;
777         fep->oldspeed = 0;
778         fep->oldduplex = -1;
779         if(fep->fpi->bus_id)
780                 phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
781                                 PHY_INTERFACE_MODE_MII);
782         else {
783                 printk("No phy bus ID specified in BSP code\n");
784                 return -EINVAL;
785         }
786         if (IS_ERR(phydev)) {
787                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
788                 return PTR_ERR(phydev);
789         }
790
791         fep->phydev = phydev;
792
793         return 0;
794 }
795
796
797 static int fs_enet_open(struct net_device *dev)
798 {
799         struct fs_enet_private *fep = netdev_priv(dev);
800         int r;
801         int err;
802
803         /* Install our interrupt handler. */
804         r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
805         if (r != 0) {
806                 printk(KERN_ERR DRV_MODULE_NAME
807                        ": %s Could not allocate FS_ENET IRQ!", dev->name);
808                 return -EINVAL;
809         }
810
811         err = fs_init_phy(dev);
812         if(err)
813                 return err;
814
815         phy_start(fep->phydev);
816
817         return 0;
818 }
819
820 static int fs_enet_close(struct net_device *dev)
821 {
822         struct fs_enet_private *fep = netdev_priv(dev);
823         unsigned long flags;
824
825         netif_stop_queue(dev);
826         netif_carrier_off(dev);
827         phy_stop(fep->phydev);
828
829         spin_lock_irqsave(&fep->lock, flags);
830         (*fep->ops->stop)(dev);
831         spin_unlock_irqrestore(&fep->lock, flags);
832
833         /* release any irqs */
834         phy_disconnect(fep->phydev);
835         fep->phydev = NULL;
836         fs_free_irq(dev, fep->interrupt);
837
838         return 0;
839 }
840
841 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
842 {
843         struct fs_enet_private *fep = netdev_priv(dev);
844         return &fep->stats;
845 }
846
847 /*************************************************************************/
848
849 static void fs_get_drvinfo(struct net_device *dev,
850                             struct ethtool_drvinfo *info)
851 {
852         strcpy(info->driver, DRV_MODULE_NAME);
853         strcpy(info->version, DRV_MODULE_VERSION);
854 }
855
856 static int fs_get_regs_len(struct net_device *dev)
857 {
858         struct fs_enet_private *fep = netdev_priv(dev);
859
860         return (*fep->ops->get_regs_len)(dev);
861 }
862
863 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
864                          void *p)
865 {
866         struct fs_enet_private *fep = netdev_priv(dev);
867         unsigned long flags;
868         int r, len;
869
870         len = regs->len;
871
872         spin_lock_irqsave(&fep->lock, flags);
873         r = (*fep->ops->get_regs)(dev, p, &len);
874         spin_unlock_irqrestore(&fep->lock, flags);
875
876         if (r == 0)
877                 regs->version = 0;
878 }
879
880 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
881 {
882         struct fs_enet_private *fep = netdev_priv(dev);
883         return phy_ethtool_gset(fep->phydev, cmd);
884 }
885
886 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
887 {
888         struct fs_enet_private *fep = netdev_priv(dev);
889         phy_ethtool_sset(fep->phydev, cmd);
890         return 0;
891 }
892
893 static int fs_nway_reset(struct net_device *dev)
894 {
895         return 0;
896 }
897
898 static u32 fs_get_msglevel(struct net_device *dev)
899 {
900         struct fs_enet_private *fep = netdev_priv(dev);
901         return fep->msg_enable;
902 }
903
904 static void fs_set_msglevel(struct net_device *dev, u32 value)
905 {
906         struct fs_enet_private *fep = netdev_priv(dev);
907         fep->msg_enable = value;
908 }
909
910 static const struct ethtool_ops fs_ethtool_ops = {
911         .get_drvinfo = fs_get_drvinfo,
912         .get_regs_len = fs_get_regs_len,
913         .get_settings = fs_get_settings,
914         .set_settings = fs_set_settings,
915         .nway_reset = fs_nway_reset,
916         .get_link = ethtool_op_get_link,
917         .get_msglevel = fs_get_msglevel,
918         .set_msglevel = fs_set_msglevel,
919         .get_tx_csum = ethtool_op_get_tx_csum,
920         .set_tx_csum = ethtool_op_set_tx_csum,  /* local! */
921         .get_sg = ethtool_op_get_sg,
922         .set_sg = ethtool_op_set_sg,
923         .get_regs = fs_get_regs,
924 };
925
926 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
927 {
928         struct fs_enet_private *fep = netdev_priv(dev);
929         struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
930         unsigned long flags;
931         int rc;
932
933         if (!netif_running(dev))
934                 return -EINVAL;
935
936         spin_lock_irqsave(&fep->lock, flags);
937         rc = phy_mii_ioctl(fep->phydev, mii, cmd);
938         spin_unlock_irqrestore(&fep->lock, flags);
939         return rc;
940 }
941
942 extern int fs_mii_connect(struct net_device *dev);
943 extern void fs_mii_disconnect(struct net_device *dev);
944
945 static struct net_device *fs_init_instance(struct device *dev,
946                 struct fs_platform_info *fpi)
947 {
948         struct net_device *ndev = NULL;
949         struct fs_enet_private *fep = NULL;
950         int privsize, i, r, err = 0, registered = 0;
951
952         fpi->fs_no = fs_get_id(fpi);
953         /* guard */
954         if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
955                 return ERR_PTR(-EINVAL);
956
957         privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
958                             (fpi->rx_ring + fpi->tx_ring));
959
960         ndev = alloc_etherdev(privsize);
961         if (!ndev) {
962                 err = -ENOMEM;
963                 goto err;
964         }
965         SET_MODULE_OWNER(ndev);
966
967         fep = netdev_priv(ndev);
968         memset(fep, 0, privsize);       /* clear everything */
969
970         fep->dev = dev;
971         dev_set_drvdata(dev, ndev);
972         fep->fpi = fpi;
973         if (fpi->init_ioports)
974                 fpi->init_ioports((struct fs_platform_info *)fpi);
975
976 #ifdef CONFIG_FS_ENET_HAS_FEC
977         if (fs_get_fec_index(fpi->fs_no) >= 0)
978                 fep->ops = &fs_fec_ops;
979 #endif
980
981 #ifdef CONFIG_FS_ENET_HAS_SCC
982         if (fs_get_scc_index(fpi->fs_no) >=0 )
983                 fep->ops = &fs_scc_ops;
984 #endif
985
986 #ifdef CONFIG_FS_ENET_HAS_FCC
987         if (fs_get_fcc_index(fpi->fs_no) >= 0)
988                 fep->ops = &fs_fcc_ops;
989 #endif
990
991         if (fep->ops == NULL) {
992                 printk(KERN_ERR DRV_MODULE_NAME
993                        ": %s No matching ops found (%d).\n",
994                        ndev->name, fpi->fs_no);
995                 err = -EINVAL;
996                 goto err;
997         }
998
999         r = (*fep->ops->setup_data)(ndev);
1000         if (r != 0) {
1001                 printk(KERN_ERR DRV_MODULE_NAME
1002                        ": %s setup_data failed\n",
1003                         ndev->name);
1004                 err = r;
1005                 goto err;
1006         }
1007
1008         /* point rx_skbuff, tx_skbuff */
1009         fep->rx_skbuff = (struct sk_buff **)&fep[1];
1010         fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1011
1012         /* init locks */
1013         spin_lock_init(&fep->lock);
1014         spin_lock_init(&fep->tx_lock);
1015
1016         /*
1017          * Set the Ethernet address. 
1018          */
1019         for (i = 0; i < 6; i++)
1020                 ndev->dev_addr[i] = fpi->macaddr[i];
1021         
1022         r = (*fep->ops->allocate_bd)(ndev);
1023         
1024         if (fep->ring_base == NULL) {
1025                 printk(KERN_ERR DRV_MODULE_NAME
1026                        ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
1027                 err = r;
1028                 goto err;
1029         }
1030
1031         /*
1032          * Set receive and transmit descriptor base.
1033          */
1034         fep->rx_bd_base = fep->ring_base;
1035         fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1036
1037         /* initialize ring size variables */
1038         fep->tx_ring = fpi->tx_ring;
1039         fep->rx_ring = fpi->rx_ring;
1040
1041         /*
1042          * The FEC Ethernet specific entries in the device structure. 
1043          */
1044         ndev->open = fs_enet_open;
1045         ndev->hard_start_xmit = fs_enet_start_xmit;
1046         ndev->tx_timeout = fs_timeout;
1047         ndev->watchdog_timeo = 2 * HZ;
1048         ndev->stop = fs_enet_close;
1049         ndev->get_stats = fs_enet_get_stats;
1050         ndev->set_multicast_list = fs_set_multicast_list;
1051         if (fpi->use_napi) {
1052                 ndev->poll = fs_enet_rx_napi;
1053                 ndev->weight = fpi->napi_weight;
1054         }
1055         ndev->ethtool_ops = &fs_ethtool_ops;
1056         ndev->do_ioctl = fs_ioctl;
1057
1058         init_timer(&fep->phy_timer_list);
1059
1060         netif_carrier_off(ndev);
1061
1062         err = register_netdev(ndev);
1063         if (err != 0) {
1064                 printk(KERN_ERR DRV_MODULE_NAME
1065                        ": %s register_netdev failed.\n", ndev->name);
1066                 goto err;
1067         }
1068         registered = 1;
1069
1070
1071         return ndev;
1072
1073       err:
1074         if (ndev != NULL) {
1075
1076                 if (registered)
1077                         unregister_netdev(ndev);
1078
1079                 if (fep != NULL) {
1080                         (*fep->ops->free_bd)(ndev);
1081                         (*fep->ops->cleanup_data)(ndev);
1082                 }
1083
1084                 free_netdev(ndev);
1085         }
1086
1087         dev_set_drvdata(dev, NULL);
1088
1089         return ERR_PTR(err);
1090 }
1091
1092 static int fs_cleanup_instance(struct net_device *ndev)
1093 {
1094         struct fs_enet_private *fep;
1095         const struct fs_platform_info *fpi;
1096         struct device *dev;
1097
1098         if (ndev == NULL)
1099                 return -EINVAL;
1100
1101         fep = netdev_priv(ndev);
1102         if (fep == NULL)
1103                 return -EINVAL;
1104
1105         fpi = fep->fpi;
1106
1107         unregister_netdev(ndev);
1108
1109         dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
1110                           fep->ring_base, fep->ring_mem_addr);
1111
1112         /* reset it */
1113         (*fep->ops->cleanup_data)(ndev);
1114
1115         dev = fep->dev;
1116         if (dev != NULL) {
1117                 dev_set_drvdata(dev, NULL);
1118                 fep->dev = NULL;
1119         }
1120
1121         free_netdev(ndev);
1122
1123         return 0;
1124 }
1125
1126 /**************************************************************************************/
1127
1128 /* handy pointer to the immap */
1129 void *fs_enet_immap = NULL;
1130
1131 static int setup_immap(void)
1132 {
1133         phys_addr_t paddr = 0;
1134         unsigned long size = 0;
1135
1136 #ifdef CONFIG_CPM1
1137         paddr = IMAP_ADDR;
1138         size = 0x10000; /* map 64K */
1139 #endif
1140
1141 #ifdef CONFIG_CPM2
1142         paddr = CPM_MAP_ADDR;
1143         size = 0x40000; /* map 256 K */
1144 #endif
1145         fs_enet_immap = ioremap(paddr, size);
1146         if (fs_enet_immap == NULL)
1147                 return -EBADF;  /* XXX ahem; maybe just BUG_ON? */
1148
1149         return 0;
1150 }
1151
1152 static void cleanup_immap(void)
1153 {
1154         if (fs_enet_immap != NULL) {
1155                 iounmap(fs_enet_immap);
1156                 fs_enet_immap = NULL;
1157         }
1158 }
1159
1160 /**************************************************************************************/
1161
1162 static int __devinit fs_enet_probe(struct device *dev)
1163 {
1164         struct net_device *ndev;
1165
1166         /* no fixup - no device */
1167         if (dev->platform_data == NULL) {
1168                 printk(KERN_INFO "fs_enet: "
1169                                 "probe called with no platform data; "
1170                                 "remove unused devices\n");
1171                 return -ENODEV;
1172         }
1173
1174         ndev = fs_init_instance(dev, dev->platform_data);
1175         if (IS_ERR(ndev))
1176                 return PTR_ERR(ndev);
1177         return 0;
1178 }
1179
1180 static int fs_enet_remove(struct device *dev)
1181 {
1182         return fs_cleanup_instance(dev_get_drvdata(dev));
1183 }
1184
1185 static struct device_driver fs_enet_fec_driver = {
1186         .name           = "fsl-cpm-fec",
1187         .bus            = &platform_bus_type,
1188         .probe          = fs_enet_probe,
1189         .remove         = fs_enet_remove,
1190 #ifdef CONFIG_PM
1191 /*      .suspend        = fs_enet_suspend,      TODO */
1192 /*      .resume         = fs_enet_resume,       TODO */
1193 #endif
1194 };
1195
1196 static struct device_driver fs_enet_scc_driver = {
1197         .name           = "fsl-cpm-scc",
1198         .bus            = &platform_bus_type,
1199         .probe          = fs_enet_probe,
1200         .remove         = fs_enet_remove,
1201 #ifdef CONFIG_PM
1202 /*      .suspend        = fs_enet_suspend,      TODO */
1203 /*      .resume         = fs_enet_resume,       TODO */
1204 #endif
1205 };
1206
1207 static struct device_driver fs_enet_fcc_driver = {
1208         .name           = "fsl-cpm-fcc",
1209         .bus            = &platform_bus_type,
1210         .probe          = fs_enet_probe,
1211         .remove         = fs_enet_remove,
1212 #ifdef CONFIG_PM
1213 /*      .suspend        = fs_enet_suspend,      TODO */
1214 /*      .resume         = fs_enet_resume,       TODO */
1215 #endif
1216 };
1217
1218 static int __init fs_init(void)
1219 {
1220         int r;
1221
1222         printk(KERN_INFO
1223                         "%s", version);
1224
1225         r = setup_immap();
1226         if (r != 0)
1227                 return r;
1228
1229 #ifdef CONFIG_FS_ENET_HAS_FCC
1230         /* let's insert mii stuff */
1231         r = fs_enet_mdio_bb_init();
1232
1233         if (r != 0) {
1234                 printk(KERN_ERR DRV_MODULE_NAME
1235                         "BB PHY init failed.\n");
1236                 return r;
1237         }
1238         r = driver_register(&fs_enet_fcc_driver);
1239         if (r != 0)
1240                 goto err;
1241 #endif
1242
1243 #ifdef CONFIG_FS_ENET_HAS_FEC
1244         r =  fs_enet_mdio_fec_init();
1245         if (r != 0) {
1246                 printk(KERN_ERR DRV_MODULE_NAME
1247                         "FEC PHY init failed.\n");
1248                 return r;
1249         }
1250
1251         r = driver_register(&fs_enet_fec_driver);
1252         if (r != 0)
1253                 goto err;
1254 #endif
1255
1256 #ifdef CONFIG_FS_ENET_HAS_SCC
1257         r = driver_register(&fs_enet_scc_driver);
1258         if (r != 0)
1259                 goto err;
1260 #endif
1261
1262         return 0;
1263 err:
1264         cleanup_immap();
1265         return r;
1266         
1267 }
1268
1269 static void __exit fs_cleanup(void)
1270 {
1271         driver_unregister(&fs_enet_fec_driver);
1272         driver_unregister(&fs_enet_fcc_driver);
1273         driver_unregister(&fs_enet_scc_driver);
1274         cleanup_immap();
1275 }
1276
1277 /**************************************************************************************/
1278
1279 module_init(fs_init);
1280 module_exit(fs_cleanup);