2 | stanh.sa 3.1 12/10/90
4 | The entry point sTanh computes the hyperbolic tangent of
5 | an input argument; sTanhd does the same except for denormalized
8 | Input: Double-extended number X in location pointed to
9 | by address register a0.
11 | Output: The value tanh(X) returned in floating-point register Fp0.
13 | Accuracy and Monotonicity: The returned result is within 3 ulps in
14 | 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
15 | result is subsequently rounded to double precision. The
16 | result is provably monotonic in double precision.
18 | Speed: The program stanh takes approximately 270 cycles.
23 | 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3.
25 | 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by
26 | sgn := sign(X), y := 2|X|, z := expm1(Y), and
27 | tanh(X) = sgn*( z/(2+z) ).
30 | 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1,
33 | 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6.
35 | 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by
36 | sgn := sign(X), y := 2|X|, z := exp(Y),
37 | tanh(X) = sgn - [ sgn*2/(1+z) ].
40 | 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we
41 | calculate Tanh(X) by
42 | sgn := sign(X), Tiny := 2**(-126),
43 | tanh(X) := sgn - sgn*Tiny.
46 | 7. (|X| < 2**(-40)). Tanh(X) = X. Exit.
49 | Copyright (C) Motorola, Inc. 1990
52 | THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
53 | The copyright notice above does not evidence any
54 | actual or intended publication of such source code.
56 |STANH idnt 2,1 | Motorola 040 Floating Point Software Package
70 BOUNDS1: .long 0x3FD78000,0x3FFFDDCE | ... 2^(-40), (5/2)LOG2
79 |--TANH(X) = X FOR DENORMALIZED X
85 fmovex (%a0),%fp0 | ...LOAD INPUT
92 cmp2l BOUNDS1(%pc),%d0 | ...2**(-40) < |X| < (5/2)LOG2 ?
95 |--THIS IS THE USUAL CASE
96 |--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2).
101 addl #0x00010000,%d0 | ...EXPONENT OF 2|X|
103 andl #0x80000000,SGN(%a6)
104 fmovex X(%a6),%fp0 | ...FP0 IS Y = 2|X|
108 fmovemx %fp0-%fp0,(%a0)
109 bsr setoxm1 | ...FP0 IS Z = EXPM1(Y)
113 fadds #0x40000000,%fp1 | ...Z+2
118 fmovel %d1,%FPCR |restore users exceptions
129 |-- (5/2) LOG2 < |X| < 50 LOG2,
130 |--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X),
131 |--TANH(X) = SGN - SGN*2/[EXP(Y)+1].
136 addl #0x00010000,%d0 | ...EXPO OF 2|X|
137 movel %d0,X(%a6) | ...Y = 2|X|
138 andl #0x80000000,SGN(%a6)
140 fmovex X(%a6),%fp0 | ...Y = 2|X|
144 fmovemx %fp0-%fp0,(%a0)
145 bsr setox | ...FP0 IS EXP(Y)
148 fadds #0x3F800000,%fp0 | ...EXP(Y)+1
150 eorl #0xC0000000,%d0 | ...-SIGN(X)*2
151 fmoves %d0,%fp1 | ...-SIGN(X)*2 IN SGL FMT
152 fdivx %fp0,%fp1 | ...-SIGN(X)2 / [EXP(Y)+1 ]
155 orl #0x3F800000,%d0 | ...SGN
156 fmoves %d0,%fp0 | ...SGN IN SGL FMT
158 fmovel %d1,%FPCR |restore users exceptions
164 movew #0x0000,XDCARE(%a6)
166 fmovel %d1,%FPCR |restore users exceptions
167 fmovex X(%a6),%fp0 |last inst - possible exception set
172 |---RETURN SGN(X) - SGN(X)EPS
178 eorl #0x80800000,%d0 | ...-SIGN(X)*EPS
180 fmovel %d1,%FPCR |restore users exceptions