4 * Support for VIA PadLock hardware crypto engine.
6 * Copyright (c) 2004 Michal Ludvig <michal@logix.cz>
8 * Key expansion routine taken from crypto/aes.c
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * ---------------------------------------------------------------------------
16 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
17 * All rights reserved.
21 * The free distribution and use of this software in both source and binary
22 * form is allowed (with or without changes) provided that:
24 * 1. distributions of this source code include the above copyright
25 * notice, this list of conditions and the following disclaimer;
27 * 2. distributions in binary form include the above copyright
28 * notice, this list of conditions and the following disclaimer
29 * in the documentation and/or other associated materials;
31 * 3. the copyright holder's name is not used to endorse products
32 * built using this software without specific written permission.
34 * ALTERNATIVELY, provided that this notice is retained in full, this product
35 * may be distributed under the terms of the GNU General Public License (GPL),
36 * in which case the provisions of the GPL apply INSTEAD OF those given above.
40 * This software is provided 'as is' with no explicit or implied warranties
41 * in respect of its properties, including, but not limited to, correctness
42 * and/or fitness for purpose.
43 * ---------------------------------------------------------------------------
46 #include <linux/module.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/crypto.h>
51 #include <linux/interrupt.h>
52 #include <linux/kernel.h>
53 #include <asm/byteorder.h>
56 #define AES_MIN_KEY_SIZE 16 /* in uint8_t units */
57 #define AES_MAX_KEY_SIZE 32 /* ditto */
58 #define AES_BLOCK_SIZE 16 /* ditto */
59 #define AES_EXTENDED_KEY_SIZE 64 /* in uint32_t units */
60 #define AES_EXTENDED_KEY_SIZE_B (AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))
63 uint32_t e_data[AES_EXTENDED_KEY_SIZE];
64 uint32_t d_data[AES_EXTENDED_KEY_SIZE];
74 /* ====== Key management routines ====== */
76 static inline uint32_t
77 generic_rotr32 (const uint32_t x, const unsigned bits)
79 const unsigned n = bits % 32;
80 return (x >> n) | (x << (32 - n));
83 static inline uint32_t
84 generic_rotl32 (const uint32_t x, const unsigned bits)
86 const unsigned n = bits % 32;
87 return (x << n) | (x >> (32 - n));
90 #define rotl generic_rotl32
91 #define rotr generic_rotr32
94 * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
97 byte(const uint32_t x, const unsigned n)
105 static uint8_t pow_tab[256];
106 static uint8_t log_tab[256];
107 static uint8_t sbx_tab[256];
108 static uint8_t isb_tab[256];
109 static uint32_t rco_tab[10];
110 static uint32_t ft_tab[4][256];
111 static uint32_t it_tab[4][256];
113 static uint32_t fl_tab[4][256];
114 static uint32_t il_tab[4][256];
116 static inline uint8_t
117 f_mult (uint8_t a, uint8_t b)
119 uint8_t aa = log_tab[a], cc = aa + log_tab[b];
121 return pow_tab[cc + (cc < aa ? 1 : 0)];
124 #define ff_mult(a,b) (a && b ? f_mult(a, b) : 0)
126 #define f_rn(bo, bi, n, k) \
127 bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
128 ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
129 ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
130 ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
132 #define i_rn(bo, bi, n, k) \
133 bo[n] = it_tab[0][byte(bi[n],0)] ^ \
134 it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
135 it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
136 it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
139 ( fl_tab[0][byte(x, 0)] ^ \
140 fl_tab[1][byte(x, 1)] ^ \
141 fl_tab[2][byte(x, 2)] ^ \
142 fl_tab[3][byte(x, 3)] )
144 #define f_rl(bo, bi, n, k) \
145 bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
146 fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
147 fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
148 fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
150 #define i_rl(bo, bi, n, k) \
151 bo[n] = il_tab[0][byte(bi[n],0)] ^ \
152 il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
153 il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
154 il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
162 /* log and power tables for GF(2**8) finite field with
163 0x011b as modular polynomial - the simplest prmitive
164 root is 0x03, used here to generate the tables */
166 for (i = 0, p = 1; i < 256; ++i) {
167 pow_tab[i] = (uint8_t) p;
168 log_tab[p] = (uint8_t) i;
170 p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
175 for (i = 0, p = 1; i < 10; ++i) {
178 p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
181 for (i = 0; i < 256; ++i) {
182 p = (i ? pow_tab[255 - log_tab[i]] : 0);
183 q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
184 p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
186 isb_tab[p] = (uint8_t) i;
189 for (i = 0; i < 256; ++i) {
194 fl_tab[1][i] = rotl (t, 8);
195 fl_tab[2][i] = rotl (t, 16);
196 fl_tab[3][i] = rotl (t, 24);
198 t = ((uint32_t) ff_mult (2, p)) |
199 ((uint32_t) p << 8) |
200 ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24);
203 ft_tab[1][i] = rotl (t, 8);
204 ft_tab[2][i] = rotl (t, 16);
205 ft_tab[3][i] = rotl (t, 24);
211 il_tab[1][i] = rotl (t, 8);
212 il_tab[2][i] = rotl (t, 16);
213 il_tab[3][i] = rotl (t, 24);
215 t = ((uint32_t) ff_mult (14, p)) |
216 ((uint32_t) ff_mult (9, p) << 8) |
217 ((uint32_t) ff_mult (13, p) << 16) |
218 ((uint32_t) ff_mult (11, p) << 24);
221 it_tab[1][i] = rotl (t, 8);
222 it_tab[2][i] = rotl (t, 16);
223 it_tab[3][i] = rotl (t, 24);
227 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
229 #define imix_col(y,x) \
235 (y) ^= rotr(u ^ t, 8) ^ \
239 /* initialise the key schedule from the user supplied key */
242 { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
243 t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \
244 t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \
245 t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \
246 t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \
250 { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
251 t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \
252 t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \
253 t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \
254 t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \
255 t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \
256 t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \
260 { t = rotr(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \
261 t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \
262 t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \
263 t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \
264 t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \
265 t = E_KEY[8 * i + 4] ^ ls_box(t); \
266 E_KEY[8 * i + 12] = t; \
267 t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \
268 t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \
269 t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \
272 /* Tells whether the ACE is capable to generate
273 the extended key for a given key_len. */
275 aes_hw_extkey_available(uint8_t key_len)
277 /* TODO: We should check the actual CPU model/stepping
278 as it's possible that the capability will be
279 added in the next CPU revisions. */
285 static inline struct aes_ctx *aes_ctx(void *ctx)
287 return (struct aes_ctx *)ALIGN((unsigned long)ctx, PADLOCK_ALIGNMENT);
291 aes_set_key(void *ctx_arg, const uint8_t *in_key, unsigned int key_len, uint32_t *flags)
293 struct aes_ctx *ctx = aes_ctx(ctx_arg);
294 const __le32 *key = (const __le32 *)in_key;
295 uint32_t i, t, u, v, w;
296 uint32_t P[AES_EXTENDED_KEY_SIZE];
299 if (key_len != 16 && key_len != 24 && key_len != 32) {
300 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
304 ctx->key_length = key_len;
307 * If the hardware is capable of generating the extended key
308 * itself we must supply the plain key for both encryption
311 ctx->E = ctx->e_data;
312 ctx->D = ctx->e_data;
314 E_KEY[0] = le32_to_cpu(key[0]);
315 E_KEY[1] = le32_to_cpu(key[1]);
316 E_KEY[2] = le32_to_cpu(key[2]);
317 E_KEY[3] = le32_to_cpu(key[3]);
319 /* Prepare control words. */
320 memset(&ctx->cword, 0, sizeof(ctx->cword));
322 ctx->cword.decrypt.encdec = 1;
323 ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
324 ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
325 ctx->cword.encrypt.ksize = (key_len - 16) / 8;
326 ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
328 /* Don't generate extended keys if the hardware can do it. */
329 if (aes_hw_extkey_available(key_len))
332 ctx->D = ctx->d_data;
333 ctx->cword.encrypt.keygen = 1;
334 ctx->cword.decrypt.keygen = 1;
339 for (i = 0; i < 10; ++i)
344 E_KEY[4] = le32_to_cpu(key[4]);
345 t = E_KEY[5] = le32_to_cpu(key[5]);
346 for (i = 0; i < 8; ++i)
351 E_KEY[4] = le32_to_cpu(in_key[4]);
352 E_KEY[5] = le32_to_cpu(in_key[5]);
353 E_KEY[6] = le32_to_cpu(in_key[6]);
354 t = E_KEY[7] = le32_to_cpu(in_key[7]);
355 for (i = 0; i < 7; ++i)
365 for (i = 4; i < key_len + 24; ++i) {
366 imix_col (D_KEY[i], E_KEY[i]);
369 /* PadLock needs a different format of the decryption key. */
370 rounds = 10 + (key_len - 16) / 4;
372 for (i = 0; i < rounds; i++) {
373 P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0];
374 P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1];
375 P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2];
376 P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3];
379 P[0] = E_KEY[(rounds * 4) + 0];
380 P[1] = E_KEY[(rounds * 4) + 1];
381 P[2] = E_KEY[(rounds * 4) + 2];
382 P[3] = E_KEY[(rounds * 4) + 3];
384 memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B);
389 /* ====== Encryption/decryption routines ====== */
391 /* These are the real call to PadLock. */
392 static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
393 void *control_word, u32 count)
395 asm volatile ("pushfl; popfl"); /* enforce key reload. */
396 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
397 : "+S"(input), "+D"(output)
398 : "d"(control_word), "b"(key), "c"(count));
401 static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
402 u8 *iv, void *control_word, u32 count)
404 /* Enforce key reload. */
405 asm volatile ("pushfl; popfl");
407 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"
408 : "+S" (input), "+D" (output), "+a" (iv)
409 : "d" (control_word), "b" (key), "c" (count));
414 aes_encrypt(void *ctx_arg, uint8_t *out, const uint8_t *in)
416 struct aes_ctx *ctx = aes_ctx(ctx_arg);
417 padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt, 1);
421 aes_decrypt(void *ctx_arg, uint8_t *out, const uint8_t *in)
423 struct aes_ctx *ctx = aes_ctx(ctx_arg);
424 padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt, 1);
427 static unsigned int aes_encrypt_ecb(const struct cipher_desc *desc, u8 *out,
428 const u8 *in, unsigned int nbytes)
430 struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm));
431 padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt,
432 nbytes / AES_BLOCK_SIZE);
433 return nbytes & ~(AES_BLOCK_SIZE - 1);
436 static unsigned int aes_decrypt_ecb(const struct cipher_desc *desc, u8 *out,
437 const u8 *in, unsigned int nbytes)
439 struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm));
440 padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt,
441 nbytes / AES_BLOCK_SIZE);
442 return nbytes & ~(AES_BLOCK_SIZE - 1);
445 static unsigned int aes_encrypt_cbc(const struct cipher_desc *desc, u8 *out,
446 const u8 *in, unsigned int nbytes)
448 struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm));
451 iv = padlock_xcrypt_cbc(in, out, ctx->E, desc->info,
452 &ctx->cword.encrypt, nbytes / AES_BLOCK_SIZE);
453 memcpy(desc->info, iv, AES_BLOCK_SIZE);
455 return nbytes & ~(AES_BLOCK_SIZE - 1);
458 static unsigned int aes_decrypt_cbc(const struct cipher_desc *desc, u8 *out,
459 const u8 *in, unsigned int nbytes)
461 struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm));
462 padlock_xcrypt_cbc(in, out, ctx->D, desc->info, &ctx->cword.decrypt,
463 nbytes / AES_BLOCK_SIZE);
464 return nbytes & ~(AES_BLOCK_SIZE - 1);
467 static struct crypto_alg aes_alg = {
469 .cra_driver_name = "aes-padlock",
471 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
472 .cra_blocksize = AES_BLOCK_SIZE,
473 .cra_ctxsize = sizeof(struct aes_ctx),
474 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
475 .cra_module = THIS_MODULE,
476 .cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
479 .cia_min_keysize = AES_MIN_KEY_SIZE,
480 .cia_max_keysize = AES_MAX_KEY_SIZE,
481 .cia_setkey = aes_set_key,
482 .cia_encrypt = aes_encrypt,
483 .cia_decrypt = aes_decrypt,
484 .cia_encrypt_ecb = aes_encrypt_ecb,
485 .cia_decrypt_ecb = aes_decrypt_ecb,
486 .cia_encrypt_cbc = aes_encrypt_cbc,
487 .cia_decrypt_cbc = aes_decrypt_cbc,
492 int __init padlock_init_aes(void)
494 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
497 return crypto_register_alg(&aes_alg);
500 void __exit padlock_fini_aes(void)
502 crypto_unregister_alg(&aes_alg);