2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir_sf.h"
37 #include "xfs_dir2_sf.h"
38 #include "xfs_attr_sf.h"
39 #include "xfs_dinode.h"
40 #include "xfs_inode.h"
41 #include "xfs_buf_item.h"
42 #include "xfs_inode_item.h"
43 #include "xfs_btree.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
56 kmem_zone_t *xfs_ifork_zone;
57 kmem_zone_t *xfs_inode_zone;
58 kmem_zone_t *xfs_chashlist_zone;
61 * Used in xfs_itruncate(). This is the maximum number of extents
62 * freed from a file in a single transaction.
64 #define XFS_ITRUNC_MAX_EXTENTS 2
66 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
67 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
68 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
69 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
74 * Make sure that the extents in the given memory buffer
88 for (i = 0; i < nrecs; i++) {
89 rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
90 rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
92 xfs_bmbt_disk_get_all(&rec, &irec);
94 xfs_bmbt_get_all(&rec, &irec);
95 if (fmt == XFS_EXTFMT_NOSTATE)
96 ASSERT(irec.br_state == XFS_EXT_NORM);
101 #define xfs_validate_extents(ep, nrecs, disk, fmt)
105 * Check that none of the inode's in the buffer have a next
106 * unlinked field of 0.
118 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
120 for (i = 0; i < j; i++) {
121 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
122 i * mp->m_sb.sb_inodesize);
123 if (!dip->di_next_unlinked) {
124 xfs_fs_cmn_err(CE_ALERT, mp,
125 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
127 ASSERT(dip->di_next_unlinked);
134 * This routine is called to map an inode number within a file
135 * system to the buffer containing the on-disk version of the
136 * inode. It returns a pointer to the buffer containing the
137 * on-disk inode in the bpp parameter, and in the dip parameter
138 * it returns a pointer to the on-disk inode within that buffer.
140 * If a non-zero error is returned, then the contents of bpp and
141 * dipp are undefined.
143 * Use xfs_imap() to determine the size and location of the
144 * buffer to read from disk.
162 * Call the space managment code to find the location of the
166 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
169 "xfs_inotobp: xfs_imap() returned an "
170 "error %d on %s. Returning error.", error, mp->m_fsname);
175 * If the inode number maps to a block outside the bounds of the
176 * file system then return NULL rather than calling read_buf
177 * and panicing when we get an error from the driver.
179 if ((imap.im_blkno + imap.im_len) >
180 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
182 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
183 "of the file system %s. Returning EINVAL.",
184 (unsigned long long)imap.im_blkno,
185 imap.im_len, mp->m_fsname);
186 return XFS_ERROR(EINVAL);
190 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
191 * default to just a read_buf() call.
193 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
194 (int)imap.im_len, XFS_BUF_LOCK, &bp);
198 "xfs_inotobp: xfs_trans_read_buf() returned an "
199 "error %d on %s. Returning error.", error, mp->m_fsname);
202 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
204 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
205 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
206 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
207 XFS_RANDOM_ITOBP_INOTOBP))) {
208 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
209 xfs_trans_brelse(tp, bp);
211 "xfs_inotobp: XFS_TEST_ERROR() returned an "
212 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
213 return XFS_ERROR(EFSCORRUPTED);
216 xfs_inobp_check(mp, bp);
219 * Set *dipp to point to the on-disk inode in the buffer.
221 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
223 *offset = imap.im_boffset;
229 * This routine is called to map an inode to the buffer containing
230 * the on-disk version of the inode. It returns a pointer to the
231 * buffer containing the on-disk inode in the bpp parameter, and in
232 * the dip parameter it returns a pointer to the on-disk inode within
235 * If a non-zero error is returned, then the contents of bpp and
236 * dipp are undefined.
238 * If the inode is new and has not yet been initialized, use xfs_imap()
239 * to determine the size and location of the buffer to read from disk.
240 * If the inode has already been mapped to its buffer and read in once,
241 * then use the mapping information stored in the inode rather than
242 * calling xfs_imap(). This allows us to avoid the overhead of looking
243 * at the inode btree for small block file systems (see xfs_dilocate()).
244 * We can tell whether the inode has been mapped in before by comparing
245 * its disk block address to 0. Only uninitialized inodes will have
246 * 0 for the disk block address.
265 if (ip->i_blkno == (xfs_daddr_t)0) {
267 * Call the space management code to find the location of the
271 error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP);
277 * If the inode number maps to a block outside the bounds
278 * of the file system then return NULL rather than calling
279 * read_buf and panicing when we get an error from the
282 if ((imap.im_blkno + imap.im_len) >
283 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
285 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
286 "(imap.im_blkno (0x%llx) "
287 "+ imap.im_len (0x%llx)) > "
288 " XFS_FSB_TO_BB(mp, "
289 "mp->m_sb.sb_dblocks) (0x%llx)",
290 (unsigned long long) imap.im_blkno,
291 (unsigned long long) imap.im_len,
292 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
294 return XFS_ERROR(EINVAL);
298 * Fill in the fields in the inode that will be used to
299 * map the inode to its buffer from now on.
301 ip->i_blkno = imap.im_blkno;
302 ip->i_len = imap.im_len;
303 ip->i_boffset = imap.im_boffset;
306 * We've already mapped the inode once, so just use the
307 * mapping that we saved the first time.
309 imap.im_blkno = ip->i_blkno;
310 imap.im_len = ip->i_len;
311 imap.im_boffset = ip->i_boffset;
313 ASSERT(bno == 0 || bno == imap.im_blkno);
316 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
317 * default to just a read_buf() call.
319 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
320 (int)imap.im_len, XFS_BUF_LOCK, &bp);
324 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
325 "xfs_trans_read_buf() returned error %d, "
326 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
327 error, (unsigned long long) imap.im_blkno,
328 (unsigned long long) imap.im_len);
334 * Validate the magic number and version of every inode in the buffer
335 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
338 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
342 for (i = 0; i < ni; i++) {
346 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
347 (i << mp->m_sb.sb_inodelog));
348 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
349 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
350 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
351 XFS_RANDOM_ITOBP_INOTOBP))) {
353 prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
355 (unsigned long long)imap.im_blkno, i,
356 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
358 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
360 xfs_trans_brelse(tp, bp);
361 return XFS_ERROR(EFSCORRUPTED);
364 #endif /* __KERNEL__ */
366 xfs_inobp_check(mp, bp);
369 * Mark the buffer as an inode buffer now that it looks good
371 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
374 * Set *dipp to point to the on-disk inode in the buffer.
376 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
382 * Move inode type and inode format specific information from the
383 * on-disk inode to the in-core inode. For fifos, devs, and sockets
384 * this means set if_rdev to the proper value. For files, directories,
385 * and symlinks this means to bring in the in-line data or extent
386 * pointers. For a file in B-tree format, only the root is immediately
387 * brought in-core. The rest will be in-lined in if_extents when it
388 * is first referenced (see xfs_iread_extents()).
395 xfs_attr_shortform_t *atp;
399 ip->i_df.if_ext_max =
400 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
404 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
405 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
406 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
407 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
408 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
409 (unsigned long long)ip->i_ino,
410 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
411 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
413 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
414 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
416 return XFS_ERROR(EFSCORRUPTED);
419 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
420 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
421 "corrupt dinode %Lu, forkoff = 0x%x.",
422 (unsigned long long)ip->i_ino,
423 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
424 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
426 return XFS_ERROR(EFSCORRUPTED);
429 switch (ip->i_d.di_mode & S_IFMT) {
434 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
435 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
437 return XFS_ERROR(EFSCORRUPTED);
440 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
446 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
447 case XFS_DINODE_FMT_LOCAL:
449 * no local regular files yet
451 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
452 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
454 "(local format for regular file).",
455 (unsigned long long) ip->i_ino);
456 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
459 return XFS_ERROR(EFSCORRUPTED);
462 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
463 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
464 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
466 "(bad size %Ld for local inode).",
467 (unsigned long long) ip->i_ino,
468 (long long) di_size);
469 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
472 return XFS_ERROR(EFSCORRUPTED);
476 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
478 case XFS_DINODE_FMT_EXTENTS:
479 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
481 case XFS_DINODE_FMT_BTREE:
482 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
485 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
487 return XFS_ERROR(EFSCORRUPTED);
492 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
493 return XFS_ERROR(EFSCORRUPTED);
498 if (!XFS_DFORK_Q(dip))
500 ASSERT(ip->i_afp == NULL);
501 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
502 ip->i_afp->if_ext_max =
503 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
504 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
505 case XFS_DINODE_FMT_LOCAL:
506 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
507 size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT);
508 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
510 case XFS_DINODE_FMT_EXTENTS:
511 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
513 case XFS_DINODE_FMT_BTREE:
514 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
517 error = XFS_ERROR(EFSCORRUPTED);
521 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
523 xfs_idestroy_fork(ip, XFS_DATA_FORK);
529 * The file is in-lined in the on-disk inode.
530 * If it fits into if_inline_data, then copy
531 * it there, otherwise allocate a buffer for it
532 * and copy the data there. Either way, set
533 * if_data to point at the data.
534 * If we allocate a buffer for the data, make
535 * sure that its size is a multiple of 4 and
536 * record the real size in i_real_bytes.
549 * If the size is unreasonable, then something
550 * is wrong and we just bail out rather than crash in
551 * kmem_alloc() or memcpy() below.
553 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
554 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
556 "(bad size %d for local fork, size = %d).",
557 (unsigned long long) ip->i_ino, size,
558 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
559 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
561 return XFS_ERROR(EFSCORRUPTED);
563 ifp = XFS_IFORK_PTR(ip, whichfork);
566 ifp->if_u1.if_data = NULL;
567 else if (size <= sizeof(ifp->if_u2.if_inline_data))
568 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
570 real_size = roundup(size, 4);
571 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
573 ifp->if_bytes = size;
574 ifp->if_real_bytes = real_size;
576 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
577 ifp->if_flags &= ~XFS_IFEXTENTS;
578 ifp->if_flags |= XFS_IFINLINE;
583 * The file consists of a set of extents all
584 * of which fit into the on-disk inode.
585 * If there are few enough extents to fit into
586 * the if_inline_ext, then copy them there.
587 * Otherwise allocate a buffer for them and copy
588 * them into it. Either way, set if_extents
589 * to point at the extents.
597 xfs_bmbt_rec_t *ep, *dp;
604 ifp = XFS_IFORK_PTR(ip, whichfork);
605 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
606 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
609 * If the number of extents is unreasonable, then something
610 * is wrong and we just bail out rather than crash in
611 * kmem_alloc() or memcpy() below.
613 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
614 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
615 "corrupt inode %Lu ((a)extents = %d).",
616 (unsigned long long) ip->i_ino, nex);
617 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
619 return XFS_ERROR(EFSCORRUPTED);
624 ifp->if_u1.if_extents = NULL;
625 else if (nex <= XFS_INLINE_EXTS)
626 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
628 ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
629 ASSERT(ifp->if_u1.if_extents != NULL);
632 ifp->if_bytes = size;
633 ifp->if_real_bytes = real_size;
635 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
636 xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip));
637 ep = ifp->if_u1.if_extents;
638 for (i = 0; i < nex; i++, ep++, dp++) {
639 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
641 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
644 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
646 if (whichfork != XFS_DATA_FORK ||
647 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
648 if (unlikely(xfs_check_nostate_extents(
649 ifp->if_u1.if_extents, nex))) {
650 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
653 return XFS_ERROR(EFSCORRUPTED);
656 ifp->if_flags |= XFS_IFEXTENTS;
661 * The file has too many extents to fit into
662 * the inode, so they are in B-tree format.
663 * Allocate a buffer for the root of the B-tree
664 * and copy the root into it. The i_extents
665 * field will remain NULL until all of the
666 * extents are read in (when they are needed).
674 xfs_bmdr_block_t *dfp;
680 ifp = XFS_IFORK_PTR(ip, whichfork);
681 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
682 size = XFS_BMAP_BROOT_SPACE(dfp);
683 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
686 * blow out if -- fork has less extents than can fit in
687 * fork (fork shouldn't be a btree format), root btree
688 * block has more records than can fit into the fork,
689 * or the number of extents is greater than the number of
692 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
693 || XFS_BMDR_SPACE_CALC(nrecs) >
694 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
695 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
696 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
697 "corrupt inode %Lu (btree).",
698 (unsigned long long) ip->i_ino);
699 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
701 return XFS_ERROR(EFSCORRUPTED);
704 ifp->if_broot_bytes = size;
705 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
706 ASSERT(ifp->if_broot != NULL);
708 * Copy and convert from the on-disk structure
709 * to the in-memory structure.
711 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
712 ifp->if_broot, size);
713 ifp->if_flags &= ~XFS_IFEXTENTS;
714 ifp->if_flags |= XFS_IFBROOT;
720 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
723 * buf = on-disk representation
724 * dip = native representation
725 * dir = direction - +ve -> disk to native
726 * -ve -> native to disk
729 xfs_xlate_dinode_core(
731 xfs_dinode_core_t *dip,
734 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
735 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
736 xfs_arch_t arch = ARCH_CONVERT;
740 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
741 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
742 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
743 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
744 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
745 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
746 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
747 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
748 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
751 memcpy(mem_core->di_pad, buf_core->di_pad,
752 sizeof(buf_core->di_pad));
754 memcpy(buf_core->di_pad, mem_core->di_pad,
755 sizeof(buf_core->di_pad));
758 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
760 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
762 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
764 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
766 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
768 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
770 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
772 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
773 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
774 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
775 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
776 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
777 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
778 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
779 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
780 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
781 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
782 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
787 xfs_dinode_core_t *dic,
792 if (di_flags & XFS_DIFLAG_ANY) {
793 if (di_flags & XFS_DIFLAG_REALTIME)
794 flags |= XFS_XFLAG_REALTIME;
795 if (di_flags & XFS_DIFLAG_PREALLOC)
796 flags |= XFS_XFLAG_PREALLOC;
797 if (di_flags & XFS_DIFLAG_IMMUTABLE)
798 flags |= XFS_XFLAG_IMMUTABLE;
799 if (di_flags & XFS_DIFLAG_APPEND)
800 flags |= XFS_XFLAG_APPEND;
801 if (di_flags & XFS_DIFLAG_SYNC)
802 flags |= XFS_XFLAG_SYNC;
803 if (di_flags & XFS_DIFLAG_NOATIME)
804 flags |= XFS_XFLAG_NOATIME;
805 if (di_flags & XFS_DIFLAG_NODUMP)
806 flags |= XFS_XFLAG_NODUMP;
807 if (di_flags & XFS_DIFLAG_RTINHERIT)
808 flags |= XFS_XFLAG_RTINHERIT;
809 if (di_flags & XFS_DIFLAG_PROJINHERIT)
810 flags |= XFS_XFLAG_PROJINHERIT;
811 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
812 flags |= XFS_XFLAG_NOSYMLINKS;
813 if (di_flags & XFS_DIFLAG_EXTSIZE)
814 flags |= XFS_XFLAG_EXTSIZE;
815 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
816 flags |= XFS_XFLAG_EXTSZINHERIT;
826 xfs_dinode_core_t *dic = &ip->i_d;
828 return _xfs_dic2xflags(dic, dic->di_flags) |
829 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
834 xfs_dinode_core_t *dic)
836 return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) |
837 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
841 * Given a mount structure and an inode number, return a pointer
842 * to a newly allocated in-core inode coresponding to the given
845 * Initialize the inode's attributes and extent pointers if it
846 * already has them (it will not if the inode has no links).
861 ASSERT(xfs_inode_zone != NULL);
863 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
868 * Get pointer's to the on-disk inode and the buffer containing it.
869 * If the inode number refers to a block outside the file system
870 * then xfs_itobp() will return NULL. In this case we should
871 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
872 * know that this is a new incore inode.
874 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno);
877 kmem_zone_free(xfs_inode_zone, ip);
882 * Initialize inode's trace buffers.
883 * Do this before xfs_iformat in case it adds entries.
885 #ifdef XFS_BMAP_TRACE
886 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
888 #ifdef XFS_BMBT_TRACE
889 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
892 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
894 #ifdef XFS_ILOCK_TRACE
895 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
897 #ifdef XFS_DIR2_TRACE
898 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
902 * If we got something that isn't an inode it means someone
903 * (nfs or dmi) has a stale handle.
905 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
906 kmem_zone_free(xfs_inode_zone, ip);
907 xfs_trans_brelse(tp, bp);
909 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
910 "dip->di_core.di_magic (0x%x) != "
911 "XFS_DINODE_MAGIC (0x%x)",
912 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
915 return XFS_ERROR(EINVAL);
919 * If the on-disk inode is already linked to a directory
920 * entry, copy all of the inode into the in-core inode.
921 * xfs_iformat() handles copying in the inode format
922 * specific information.
923 * Otherwise, just get the truly permanent information.
925 if (dip->di_core.di_mode) {
926 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
928 error = xfs_iformat(ip, dip);
930 kmem_zone_free(xfs_inode_zone, ip);
931 xfs_trans_brelse(tp, bp);
933 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
934 "xfs_iformat() returned error %d",
940 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
941 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
942 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
943 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
945 * Make sure to pull in the mode here as well in
946 * case the inode is released without being used.
947 * This ensures that xfs_inactive() will see that
948 * the inode is already free and not try to mess
949 * with the uninitialized part of it.
953 * Initialize the per-fork minima and maxima for a new
954 * inode here. xfs_iformat will do it for old inodes.
956 ip->i_df.if_ext_max =
957 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
960 INIT_LIST_HEAD(&ip->i_reclaim);
963 * The inode format changed when we moved the link count and
964 * made it 32 bits long. If this is an old format inode,
965 * convert it in memory to look like a new one. If it gets
966 * flushed to disk we will convert back before flushing or
967 * logging it. We zero out the new projid field and the old link
968 * count field. We'll handle clearing the pad field (the remains
969 * of the old uuid field) when we actually convert the inode to
970 * the new format. We don't change the version number so that we
971 * can distinguish this from a real new format inode.
973 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
974 ip->i_d.di_nlink = ip->i_d.di_onlink;
975 ip->i_d.di_onlink = 0;
976 ip->i_d.di_projid = 0;
979 ip->i_delayed_blks = 0;
982 * Mark the buffer containing the inode as something to keep
983 * around for a while. This helps to keep recently accessed
984 * meta-data in-core longer.
986 XFS_BUF_SET_REF(bp, XFS_INO_REF);
989 * Use xfs_trans_brelse() to release the buffer containing the
990 * on-disk inode, because it was acquired with xfs_trans_read_buf()
991 * in xfs_itobp() above. If tp is NULL, this is just a normal
992 * brelse(). If we're within a transaction, then xfs_trans_brelse()
993 * will only release the buffer if it is not dirty within the
994 * transaction. It will be OK to release the buffer in this case,
995 * because inodes on disk are never destroyed and we will be
996 * locking the new in-core inode before putting it in the hash
997 * table where other processes can find it. Thus we don't have
998 * to worry about the inode being changed just because we released
1001 xfs_trans_brelse(tp, bp);
1007 * Read in extents from a btree-format inode.
1008 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1020 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1021 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1023 return XFS_ERROR(EFSCORRUPTED);
1025 size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t);
1026 ifp = XFS_IFORK_PTR(ip, whichfork);
1028 * We know that the size is valid (it's checked in iformat_btree)
1030 ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
1031 ASSERT(ifp->if_u1.if_extents != NULL);
1032 ifp->if_lastex = NULLEXTNUM;
1033 ifp->if_bytes = ifp->if_real_bytes = (int)size;
1034 ifp->if_flags |= XFS_IFEXTENTS;
1035 error = xfs_bmap_read_extents(tp, ip, whichfork);
1037 kmem_free(ifp->if_u1.if_extents, size);
1038 ifp->if_u1.if_extents = NULL;
1039 ifp->if_bytes = ifp->if_real_bytes = 0;
1040 ifp->if_flags &= ~XFS_IFEXTENTS;
1043 xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents,
1044 XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip));
1049 * Allocate an inode on disk and return a copy of its in-core version.
1050 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1051 * appropriately within the inode. The uid and gid for the inode are
1052 * set according to the contents of the given cred structure.
1054 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1055 * has a free inode available, call xfs_iget()
1056 * to obtain the in-core version of the allocated inode. Finally,
1057 * fill in the inode and log its initial contents. In this case,
1058 * ialloc_context would be set to NULL and call_again set to false.
1060 * If xfs_dialloc() does not have an available inode,
1061 * it will replenish its supply by doing an allocation. Since we can
1062 * only do one allocation within a transaction without deadlocks, we
1063 * must commit the current transaction before returning the inode itself.
1064 * In this case, therefore, we will set call_again to true and return.
1065 * The caller should then commit the current transaction, start a new
1066 * transaction, and call xfs_ialloc() again to actually get the inode.
1068 * To ensure that some other process does not grab the inode that
1069 * was allocated during the first call to xfs_ialloc(), this routine
1070 * also returns the [locked] bp pointing to the head of the freelist
1071 * as ialloc_context. The caller should hold this buffer across
1072 * the commit and pass it back into this routine on the second call.
1084 xfs_buf_t **ialloc_context,
1085 boolean_t *call_again,
1095 * Call the space management code to pick
1096 * the on-disk inode to be allocated.
1098 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1099 ialloc_context, call_again, &ino);
1103 if (*call_again || ino == NULLFSINO) {
1107 ASSERT(*ialloc_context == NULL);
1110 * Get the in-core inode with the lock held exclusively.
1111 * This is because we're setting fields here we need
1112 * to prevent others from looking at until we're done.
1114 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1115 IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1122 ip->i_d.di_mode = (__uint16_t)mode;
1123 ip->i_d.di_onlink = 0;
1124 ip->i_d.di_nlink = nlink;
1125 ASSERT(ip->i_d.di_nlink == nlink);
1126 ip->i_d.di_uid = current_fsuid(cr);
1127 ip->i_d.di_gid = current_fsgid(cr);
1128 ip->i_d.di_projid = prid;
1129 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1132 * If the superblock version is up to where we support new format
1133 * inodes and this is currently an old format inode, then change
1134 * the inode version number now. This way we only do the conversion
1135 * here rather than here and in the flush/logging code.
1137 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1138 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1139 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1141 * We've already zeroed the old link count, the projid field,
1142 * and the pad field.
1147 * Project ids won't be stored on disk if we are using a version 1 inode.
1149 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1150 xfs_bump_ino_vers2(tp, ip);
1152 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1153 ip->i_d.di_gid = pip->i_d.di_gid;
1154 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1155 ip->i_d.di_mode |= S_ISGID;
1160 * If the group ID of the new file does not match the effective group
1161 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1162 * (and only if the irix_sgid_inherit compatibility variable is set).
1164 if ((irix_sgid_inherit) &&
1165 (ip->i_d.di_mode & S_ISGID) &&
1166 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1167 ip->i_d.di_mode &= ~S_ISGID;
1170 ip->i_d.di_size = 0;
1171 ip->i_d.di_nextents = 0;
1172 ASSERT(ip->i_d.di_nblocks == 0);
1173 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1175 * di_gen will have been taken care of in xfs_iread.
1177 ip->i_d.di_extsize = 0;
1178 ip->i_d.di_dmevmask = 0;
1179 ip->i_d.di_dmstate = 0;
1180 ip->i_d.di_flags = 0;
1181 flags = XFS_ILOG_CORE;
1182 switch (mode & S_IFMT) {
1187 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1188 ip->i_df.if_u2.if_rdev = rdev;
1189 ip->i_df.if_flags = 0;
1190 flags |= XFS_ILOG_DEV;
1194 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1197 if ((mode & S_IFMT) == S_IFDIR) {
1198 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1199 di_flags |= XFS_DIFLAG_RTINHERIT;
1200 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1201 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1202 ip->i_d.di_extsize = pip->i_d.di_extsize;
1204 } else if ((mode & S_IFMT) == S_IFREG) {
1205 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1206 di_flags |= XFS_DIFLAG_REALTIME;
1207 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1209 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1210 di_flags |= XFS_DIFLAG_EXTSIZE;
1211 ip->i_d.di_extsize = pip->i_d.di_extsize;
1214 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1215 xfs_inherit_noatime)
1216 di_flags |= XFS_DIFLAG_NOATIME;
1217 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1219 di_flags |= XFS_DIFLAG_NODUMP;
1220 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1222 di_flags |= XFS_DIFLAG_SYNC;
1223 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1224 xfs_inherit_nosymlinks)
1225 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1226 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1227 di_flags |= XFS_DIFLAG_PROJINHERIT;
1228 ip->i_d.di_flags |= di_flags;
1232 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1233 ip->i_df.if_flags = XFS_IFEXTENTS;
1234 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1235 ip->i_df.if_u1.if_extents = NULL;
1241 * Attribute fork settings for new inode.
1243 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1244 ip->i_d.di_anextents = 0;
1247 * Log the new values stuffed into the inode.
1249 xfs_trans_log_inode(tp, ip, flags);
1251 /* now that we have an i_mode we can set Linux inode ops (& unlock) */
1252 VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1259 * Check to make sure that there are no blocks allocated to the
1260 * file beyond the size of the file. We don't check this for
1261 * files with fixed size extents or real time extents, but we
1262 * at least do it for regular files.
1271 xfs_fileoff_t map_first;
1273 xfs_bmbt_irec_t imaps[2];
1275 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1278 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1282 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1284 * The filesystem could be shutting down, so bmapi may return
1287 if (xfs_bmapi(NULL, ip, map_first,
1289 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1291 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1294 ASSERT(nimaps == 1);
1295 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1300 * Calculate the last possible buffered byte in a file. This must
1301 * include data that was buffered beyond the EOF by the write code.
1302 * This also needs to deal with overflowing the xfs_fsize_t type
1303 * which can happen for sizes near the limit.
1305 * We also need to take into account any blocks beyond the EOF. It
1306 * may be the case that they were buffered by a write which failed.
1307 * In that case the pages will still be in memory, but the inode size
1308 * will never have been updated.
1315 xfs_fsize_t last_byte;
1316 xfs_fileoff_t last_block;
1317 xfs_fileoff_t size_last_block;
1320 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1324 * Only check for blocks beyond the EOF if the extents have
1325 * been read in. This eliminates the need for the inode lock,
1326 * and it also saves us from looking when it really isn't
1329 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1330 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1338 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1339 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1341 last_byte = XFS_FSB_TO_B(mp, last_block);
1342 if (last_byte < 0) {
1343 return XFS_MAXIOFFSET(mp);
1345 last_byte += (1 << mp->m_writeio_log);
1346 if (last_byte < 0) {
1347 return XFS_MAXIOFFSET(mp);
1352 #if defined(XFS_RW_TRACE)
1358 xfs_fsize_t new_size,
1359 xfs_off_t toss_start,
1360 xfs_off_t toss_finish)
1362 if (ip->i_rwtrace == NULL) {
1366 ktrace_enter(ip->i_rwtrace,
1369 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1370 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1371 (void*)((long)flag),
1372 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1373 (void*)(unsigned long)(new_size & 0xffffffff),
1374 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1375 (void*)(unsigned long)(toss_start & 0xffffffff),
1376 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1377 (void*)(unsigned long)(toss_finish & 0xffffffff),
1378 (void*)(unsigned long)current_cpu(),
1385 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1389 * Start the truncation of the file to new_size. The new size
1390 * must be smaller than the current size. This routine will
1391 * clear the buffer and page caches of file data in the removed
1392 * range, and xfs_itruncate_finish() will remove the underlying
1395 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1396 * must NOT have the inode lock held at all. This is because we're
1397 * calling into the buffer/page cache code and we can't hold the
1398 * inode lock when we do so.
1400 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1401 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1402 * in the case that the caller is locking things out of order and
1403 * may not be able to call xfs_itruncate_finish() with the inode lock
1404 * held without dropping the I/O lock. If the caller must drop the
1405 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1406 * must be called again with all the same restrictions as the initial
1410 xfs_itruncate_start(
1413 xfs_fsize_t new_size)
1415 xfs_fsize_t last_byte;
1416 xfs_off_t toss_start;
1420 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1421 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1422 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1423 (flags == XFS_ITRUNC_MAYBE));
1428 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
1429 * overlapping the region being removed. We have to use
1430 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
1431 * caller may not be able to finish the truncate without
1432 * dropping the inode's I/O lock. Make sure
1433 * to catch any pages brought in by buffers overlapping
1434 * the EOF by searching out beyond the isize by our
1435 * block size. We round new_size up to a block boundary
1436 * so that we don't toss things on the same block as
1437 * new_size but before it.
1439 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
1440 * call remapf() over the same region if the file is mapped.
1441 * This frees up mapped file references to the pages in the
1442 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
1443 * that we get the latest mapped changes flushed out.
1445 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1446 toss_start = XFS_FSB_TO_B(mp, toss_start);
1447 if (toss_start < 0) {
1449 * The place to start tossing is beyond our maximum
1450 * file size, so there is no way that the data extended
1455 last_byte = xfs_file_last_byte(ip);
1456 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1458 if (last_byte > toss_start) {
1459 if (flags & XFS_ITRUNC_DEFINITE) {
1460 VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1462 VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1467 if (new_size == 0) {
1468 ASSERT(VN_CACHED(vp) == 0);
1474 * Shrink the file to the given new_size. The new
1475 * size must be smaller than the current size.
1476 * This will free up the underlying blocks
1477 * in the removed range after a call to xfs_itruncate_start()
1478 * or xfs_atruncate_start().
1480 * The transaction passed to this routine must have made
1481 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1482 * This routine may commit the given transaction and
1483 * start new ones, so make sure everything involved in
1484 * the transaction is tidy before calling here.
1485 * Some transaction will be returned to the caller to be
1486 * committed. The incoming transaction must already include
1487 * the inode, and both inode locks must be held exclusively.
1488 * The inode must also be "held" within the transaction. On
1489 * return the inode will be "held" within the returned transaction.
1490 * This routine does NOT require any disk space to be reserved
1491 * for it within the transaction.
1493 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1494 * and it indicates the fork which is to be truncated. For the
1495 * attribute fork we only support truncation to size 0.
1497 * We use the sync parameter to indicate whether or not the first
1498 * transaction we perform might have to be synchronous. For the attr fork,
1499 * it needs to be so if the unlink of the inode is not yet known to be
1500 * permanent in the log. This keeps us from freeing and reusing the
1501 * blocks of the attribute fork before the unlink of the inode becomes
1504 * For the data fork, we normally have to run synchronously if we're
1505 * being called out of the inactive path or we're being called
1506 * out of the create path where we're truncating an existing file.
1507 * Either way, the truncate needs to be sync so blocks don't reappear
1508 * in the file with altered data in case of a crash. wsync filesystems
1509 * can run the first case async because anything that shrinks the inode
1510 * has to run sync so by the time we're called here from inactive, the
1511 * inode size is permanently set to 0.
1513 * Calls from the truncate path always need to be sync unless we're
1514 * in a wsync filesystem and the file has already been unlinked.
1516 * The caller is responsible for correctly setting the sync parameter.
1517 * It gets too hard for us to guess here which path we're being called
1518 * out of just based on inode state.
1521 xfs_itruncate_finish(
1524 xfs_fsize_t new_size,
1528 xfs_fsblock_t first_block;
1529 xfs_fileoff_t first_unmap_block;
1530 xfs_fileoff_t last_block;
1531 xfs_filblks_t unmap_len=0;
1536 xfs_bmap_free_t free_list;
1539 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1540 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1541 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1542 ASSERT(*tp != NULL);
1543 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1544 ASSERT(ip->i_transp == *tp);
1545 ASSERT(ip->i_itemp != NULL);
1546 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1550 mp = (ntp)->t_mountp;
1551 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1554 * We only support truncating the entire attribute fork.
1556 if (fork == XFS_ATTR_FORK) {
1559 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1560 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1562 * The first thing we do is set the size to new_size permanently
1563 * on disk. This way we don't have to worry about anyone ever
1564 * being able to look at the data being freed even in the face
1565 * of a crash. What we're getting around here is the case where
1566 * we free a block, it is allocated to another file, it is written
1567 * to, and then we crash. If the new data gets written to the
1568 * file but the log buffers containing the free and reallocation
1569 * don't, then we'd end up with garbage in the blocks being freed.
1570 * As long as we make the new_size permanent before actually
1571 * freeing any blocks it doesn't matter if they get writtten to.
1573 * The callers must signal into us whether or not the size
1574 * setting here must be synchronous. There are a few cases
1575 * where it doesn't have to be synchronous. Those cases
1576 * occur if the file is unlinked and we know the unlink is
1577 * permanent or if the blocks being truncated are guaranteed
1578 * to be beyond the inode eof (regardless of the link count)
1579 * and the eof value is permanent. Both of these cases occur
1580 * only on wsync-mounted filesystems. In those cases, we're
1581 * guaranteed that no user will ever see the data in the blocks
1582 * that are being truncated so the truncate can run async.
1583 * In the free beyond eof case, the file may wind up with
1584 * more blocks allocated to it than it needs if we crash
1585 * and that won't get fixed until the next time the file
1586 * is re-opened and closed but that's ok as that shouldn't
1587 * be too many blocks.
1589 * However, we can't just make all wsync xactions run async
1590 * because there's one call out of the create path that needs
1591 * to run sync where it's truncating an existing file to size
1592 * 0 whose size is > 0.
1594 * It's probably possible to come up with a test in this
1595 * routine that would correctly distinguish all the above
1596 * cases from the values of the function parameters and the
1597 * inode state but for sanity's sake, I've decided to let the
1598 * layers above just tell us. It's simpler to correctly figure
1599 * out in the layer above exactly under what conditions we
1600 * can run async and I think it's easier for others read and
1601 * follow the logic in case something has to be changed.
1602 * cscope is your friend -- rcc.
1604 * The attribute fork is much simpler.
1606 * For the attribute fork we allow the caller to tell us whether
1607 * the unlink of the inode that led to this call is yet permanent
1608 * in the on disk log. If it is not and we will be freeing extents
1609 * in this inode then we make the first transaction synchronous
1610 * to make sure that the unlink is permanent by the time we free
1613 if (fork == XFS_DATA_FORK) {
1614 if (ip->i_d.di_nextents > 0) {
1615 ip->i_d.di_size = new_size;
1616 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1619 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1620 if (ip->i_d.di_anextents > 0)
1621 xfs_trans_set_sync(ntp);
1623 ASSERT(fork == XFS_DATA_FORK ||
1624 (fork == XFS_ATTR_FORK &&
1625 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1626 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1629 * Since it is possible for space to become allocated beyond
1630 * the end of the file (in a crash where the space is allocated
1631 * but the inode size is not yet updated), simply remove any
1632 * blocks which show up between the new EOF and the maximum
1633 * possible file size. If the first block to be removed is
1634 * beyond the maximum file size (ie it is the same as last_block),
1635 * then there is nothing to do.
1637 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1638 ASSERT(first_unmap_block <= last_block);
1640 if (last_block == first_unmap_block) {
1643 unmap_len = last_block - first_unmap_block + 1;
1647 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1648 * will tell us whether it freed the entire range or
1649 * not. If this is a synchronous mount (wsync),
1650 * then we can tell bunmapi to keep all the
1651 * transactions asynchronous since the unlink
1652 * transaction that made this inode inactive has
1653 * already hit the disk. There's no danger of
1654 * the freed blocks being reused, there being a
1655 * crash, and the reused blocks suddenly reappearing
1656 * in this file with garbage in them once recovery
1659 XFS_BMAP_INIT(&free_list, &first_block);
1660 error = xfs_bunmapi(ntp, ip, first_unmap_block,
1662 XFS_BMAPI_AFLAG(fork) |
1663 (sync ? 0 : XFS_BMAPI_ASYNC),
1664 XFS_ITRUNC_MAX_EXTENTS,
1665 &first_block, &free_list, &done);
1668 * If the bunmapi call encounters an error,
1669 * return to the caller where the transaction
1670 * can be properly aborted. We just need to
1671 * make sure we're not holding any resources
1672 * that we were not when we came in.
1674 xfs_bmap_cancel(&free_list);
1679 * Duplicate the transaction that has the permanent
1680 * reservation and commit the old transaction.
1682 error = xfs_bmap_finish(tp, &free_list, first_block,
1687 * If the bmap finish call encounters an error,
1688 * return to the caller where the transaction
1689 * can be properly aborted. We just need to
1690 * make sure we're not holding any resources
1691 * that we were not when we came in.
1693 * Aborting from this point might lose some
1694 * blocks in the file system, but oh well.
1696 xfs_bmap_cancel(&free_list);
1699 * If the passed in transaction committed
1700 * in xfs_bmap_finish(), then we want to
1701 * add the inode to this one before returning.
1702 * This keeps things simple for the higher
1703 * level code, because it always knows that
1704 * the inode is locked and held in the
1705 * transaction that returns to it whether
1706 * errors occur or not. We don't mark the
1707 * inode dirty so that this transaction can
1708 * be easily aborted if possible.
1710 xfs_trans_ijoin(ntp, ip,
1711 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1712 xfs_trans_ihold(ntp, ip);
1719 * The first xact was committed,
1720 * so add the inode to the new one.
1721 * Mark it dirty so it will be logged
1722 * and moved forward in the log as
1723 * part of every commit.
1725 xfs_trans_ijoin(ntp, ip,
1726 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1727 xfs_trans_ihold(ntp, ip);
1728 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1730 ntp = xfs_trans_dup(ntp);
1731 (void) xfs_trans_commit(*tp, 0, NULL);
1733 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1734 XFS_TRANS_PERM_LOG_RES,
1735 XFS_ITRUNCATE_LOG_COUNT);
1737 * Add the inode being truncated to the next chained
1740 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1741 xfs_trans_ihold(ntp, ip);
1746 * Only update the size in the case of the data fork, but
1747 * always re-log the inode so that our permanent transaction
1748 * can keep on rolling it forward in the log.
1750 if (fork == XFS_DATA_FORK) {
1751 xfs_isize_check(mp, ip, new_size);
1752 ip->i_d.di_size = new_size;
1754 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1755 ASSERT((new_size != 0) ||
1756 (fork == XFS_ATTR_FORK) ||
1757 (ip->i_delayed_blks == 0));
1758 ASSERT((new_size != 0) ||
1759 (fork == XFS_ATTR_FORK) ||
1760 (ip->i_d.di_nextents == 0));
1761 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1769 * Do the first part of growing a file: zero any data in the last
1770 * block that is beyond the old EOF. We need to do this before
1771 * the inode is joined to the transaction to modify the i_size.
1772 * That way we can drop the inode lock and call into the buffer
1773 * cache to get the buffer mapping the EOF.
1778 xfs_fsize_t new_size,
1783 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1784 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1785 ASSERT(new_size > ip->i_d.di_size);
1788 * Zero any pages that may have been created by
1789 * xfs_write_file() beyond the end of the file
1790 * and any blocks between the old and new file sizes.
1792 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1793 ip->i_d.di_size, new_size);
1800 * This routine is called to extend the size of a file.
1801 * The inode must have both the iolock and the ilock locked
1802 * for update and it must be a part of the current transaction.
1803 * The xfs_igrow_start() function must have been called previously.
1804 * If the change_flag is not zero, the inode change timestamp will
1811 xfs_fsize_t new_size,
1814 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1815 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1816 ASSERT(ip->i_transp == tp);
1817 ASSERT(new_size > ip->i_d.di_size);
1820 * Update the file size. Update the inode change timestamp
1821 * if change_flag set.
1823 ip->i_d.di_size = new_size;
1825 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1826 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1832 * This is called when the inode's link count goes to 0.
1833 * We place the on-disk inode on a list in the AGI. It
1834 * will be pulled from this list when the inode is freed.
1846 xfs_agnumber_t agno;
1847 xfs_daddr_t agdaddr;
1854 ASSERT(ip->i_d.di_nlink == 0);
1855 ASSERT(ip->i_d.di_mode != 0);
1856 ASSERT(ip->i_transp == tp);
1860 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1861 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1864 * Get the agi buffer first. It ensures lock ordering
1867 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1868 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1873 * Validate the magic number of the agi block.
1875 agi = XFS_BUF_TO_AGI(agibp);
1877 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1878 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1879 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1880 XFS_RANDOM_IUNLINK))) {
1881 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1882 xfs_trans_brelse(tp, agibp);
1883 return XFS_ERROR(EFSCORRUPTED);
1886 * Get the index into the agi hash table for the
1887 * list this inode will go on.
1889 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1891 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1892 ASSERT(agi->agi_unlinked[bucket_index]);
1893 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1895 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1897 * There is already another inode in the bucket we need
1898 * to add ourselves to. Add us at the front of the list.
1899 * Here we put the head pointer into our next pointer,
1900 * and then we fall through to point the head at us.
1902 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1906 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1907 ASSERT(dip->di_next_unlinked);
1908 /* both on-disk, don't endian flip twice */
1909 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1910 offset = ip->i_boffset +
1911 offsetof(xfs_dinode_t, di_next_unlinked);
1912 xfs_trans_inode_buf(tp, ibp);
1913 xfs_trans_log_buf(tp, ibp, offset,
1914 (offset + sizeof(xfs_agino_t) - 1));
1915 xfs_inobp_check(mp, ibp);
1919 * Point the bucket head pointer at the inode being inserted.
1922 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1923 offset = offsetof(xfs_agi_t, agi_unlinked) +
1924 (sizeof(xfs_agino_t) * bucket_index);
1925 xfs_trans_log_buf(tp, agibp, offset,
1926 (offset + sizeof(xfs_agino_t) - 1));
1931 * Pull the on-disk inode from the AGI unlinked list.
1944 xfs_agnumber_t agno;
1945 xfs_daddr_t agdaddr;
1947 xfs_agino_t next_agino;
1948 xfs_buf_t *last_ibp;
1949 xfs_dinode_t *last_dip;
1951 int offset, last_offset;
1956 * First pull the on-disk inode from the AGI unlinked list.
1960 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1961 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1964 * Get the agi buffer first. It ensures lock ordering
1967 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1968 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1971 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1972 error, mp->m_fsname);
1976 * Validate the magic number of the agi block.
1978 agi = XFS_BUF_TO_AGI(agibp);
1980 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1981 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1982 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1983 XFS_RANDOM_IUNLINK_REMOVE))) {
1984 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1986 xfs_trans_brelse(tp, agibp);
1988 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
1990 return XFS_ERROR(EFSCORRUPTED);
1993 * Get the index into the agi hash table for the
1994 * list this inode will go on.
1996 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1998 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1999 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
2000 ASSERT(agi->agi_unlinked[bucket_index]);
2002 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2004 * We're at the head of the list. Get the inode's
2005 * on-disk buffer to see if there is anyone after us
2006 * on the list. Only modify our next pointer if it
2007 * is not already NULLAGINO. This saves us the overhead
2008 * of dealing with the buffer when there is no need to
2011 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2014 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2015 error, mp->m_fsname);
2018 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2019 ASSERT(next_agino != 0);
2020 if (next_agino != NULLAGINO) {
2021 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2022 offset = ip->i_boffset +
2023 offsetof(xfs_dinode_t, di_next_unlinked);
2024 xfs_trans_inode_buf(tp, ibp);
2025 xfs_trans_log_buf(tp, ibp, offset,
2026 (offset + sizeof(xfs_agino_t) - 1));
2027 xfs_inobp_check(mp, ibp);
2029 xfs_trans_brelse(tp, ibp);
2032 * Point the bucket head pointer at the next inode.
2034 ASSERT(next_agino != 0);
2035 ASSERT(next_agino != agino);
2036 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2037 offset = offsetof(xfs_agi_t, agi_unlinked) +
2038 (sizeof(xfs_agino_t) * bucket_index);
2039 xfs_trans_log_buf(tp, agibp, offset,
2040 (offset + sizeof(xfs_agino_t) - 1));
2043 * We need to search the list for the inode being freed.
2045 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2047 while (next_agino != agino) {
2049 * If the last inode wasn't the one pointing to
2050 * us, then release its buffer since we're not
2051 * going to do anything with it.
2053 if (last_ibp != NULL) {
2054 xfs_trans_brelse(tp, last_ibp);
2056 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2057 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2058 &last_ibp, &last_offset);
2061 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2062 error, mp->m_fsname);
2065 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2066 ASSERT(next_agino != NULLAGINO);
2067 ASSERT(next_agino != 0);
2070 * Now last_ibp points to the buffer previous to us on
2071 * the unlinked list. Pull us from the list.
2073 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2076 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2077 error, mp->m_fsname);
2080 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2081 ASSERT(next_agino != 0);
2082 ASSERT(next_agino != agino);
2083 if (next_agino != NULLAGINO) {
2084 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2085 offset = ip->i_boffset +
2086 offsetof(xfs_dinode_t, di_next_unlinked);
2087 xfs_trans_inode_buf(tp, ibp);
2088 xfs_trans_log_buf(tp, ibp, offset,
2089 (offset + sizeof(xfs_agino_t) - 1));
2090 xfs_inobp_check(mp, ibp);
2092 xfs_trans_brelse(tp, ibp);
2095 * Point the previous inode on the list to the next inode.
2097 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2098 ASSERT(next_agino != 0);
2099 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2100 xfs_trans_inode_buf(tp, last_ibp);
2101 xfs_trans_log_buf(tp, last_ibp, offset,
2102 (offset + sizeof(xfs_agino_t) - 1));
2103 xfs_inobp_check(mp, last_ibp);
2108 static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
2110 return (((ip->i_itemp == NULL) ||
2111 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2112 (ip->i_update_core == 0));
2117 xfs_inode_t *free_ip,
2121 xfs_mount_t *mp = free_ip->i_mount;
2122 int blks_per_cluster;
2125 int i, j, found, pre_flushed;
2129 xfs_inode_t *ip, **ip_found;
2130 xfs_inode_log_item_t *iip;
2131 xfs_log_item_t *lip;
2134 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2135 blks_per_cluster = 1;
2136 ninodes = mp->m_sb.sb_inopblock;
2137 nbufs = XFS_IALLOC_BLOCKS(mp);
2139 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2140 mp->m_sb.sb_blocksize;
2141 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2142 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2145 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2147 for (j = 0; j < nbufs; j++, inum += ninodes) {
2148 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2149 XFS_INO_TO_AGBNO(mp, inum));
2153 * Look for each inode in memory and attempt to lock it,
2154 * we can be racing with flush and tail pushing here.
2155 * any inode we get the locks on, add to an array of
2156 * inode items to process later.
2158 * The get the buffer lock, we could beat a flush
2159 * or tail pushing thread to the lock here, in which
2160 * case they will go looking for the inode buffer
2161 * and fail, we need some other form of interlock
2165 for (i = 0; i < ninodes; i++) {
2166 ih = XFS_IHASH(mp, inum + i);
2167 read_lock(&ih->ih_lock);
2168 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2169 if (ip->i_ino == inum + i)
2173 /* Inode not in memory or we found it already,
2176 if (!ip || (ip->i_flags & XFS_ISTALE)) {
2177 read_unlock(&ih->ih_lock);
2181 if (xfs_inode_clean(ip)) {
2182 read_unlock(&ih->ih_lock);
2186 /* If we can get the locks then add it to the
2187 * list, otherwise by the time we get the bp lock
2188 * below it will already be attached to the
2192 /* This inode will already be locked - by us, lets
2196 if (ip == free_ip) {
2197 if (xfs_iflock_nowait(ip)) {
2198 ip->i_flags |= XFS_ISTALE;
2200 if (xfs_inode_clean(ip)) {
2203 ip_found[found++] = ip;
2206 read_unlock(&ih->ih_lock);
2210 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2211 if (xfs_iflock_nowait(ip)) {
2212 ip->i_flags |= XFS_ISTALE;
2214 if (xfs_inode_clean(ip)) {
2216 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2218 ip_found[found++] = ip;
2221 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2225 read_unlock(&ih->ih_lock);
2228 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2229 mp->m_bsize * blks_per_cluster,
2233 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2235 if (lip->li_type == XFS_LI_INODE) {
2236 iip = (xfs_inode_log_item_t *)lip;
2237 ASSERT(iip->ili_logged == 1);
2238 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2240 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2242 iip->ili_inode->i_flags |= XFS_ISTALE;
2245 lip = lip->li_bio_list;
2248 for (i = 0; i < found; i++) {
2253 ip->i_update_core = 0;
2255 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2259 iip->ili_last_fields = iip->ili_format.ilf_fields;
2260 iip->ili_format.ilf_fields = 0;
2261 iip->ili_logged = 1;
2263 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2266 xfs_buf_attach_iodone(bp,
2267 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2268 xfs_istale_done, (xfs_log_item_t *)iip);
2269 if (ip != free_ip) {
2270 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2274 if (found || pre_flushed)
2275 xfs_trans_stale_inode_buf(tp, bp);
2276 xfs_trans_binval(tp, bp);
2279 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2283 * This is called to return an inode to the inode free list.
2284 * The inode should already be truncated to 0 length and have
2285 * no pages associated with it. This routine also assumes that
2286 * the inode is already a part of the transaction.
2288 * The on-disk copy of the inode will have been added to the list
2289 * of unlinked inodes in the AGI. We need to remove the inode from
2290 * that list atomically with respect to freeing it here.
2296 xfs_bmap_free_t *flist)
2300 xfs_ino_t first_ino;
2302 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2303 ASSERT(ip->i_transp == tp);
2304 ASSERT(ip->i_d.di_nlink == 0);
2305 ASSERT(ip->i_d.di_nextents == 0);
2306 ASSERT(ip->i_d.di_anextents == 0);
2307 ASSERT((ip->i_d.di_size == 0) ||
2308 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2309 ASSERT(ip->i_d.di_nblocks == 0);
2312 * Pull the on-disk inode from the AGI unlinked list.
2314 error = xfs_iunlink_remove(tp, ip);
2319 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2323 ip->i_d.di_mode = 0; /* mark incore inode as free */
2324 ip->i_d.di_flags = 0;
2325 ip->i_d.di_dmevmask = 0;
2326 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2327 ip->i_df.if_ext_max =
2328 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2329 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2330 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2332 * Bump the generation count so no one will be confused
2333 * by reincarnations of this inode.
2336 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2339 xfs_ifree_cluster(ip, tp, first_ino);
2346 * Reallocate the space for if_broot based on the number of records
2347 * being added or deleted as indicated in rec_diff. Move the records
2348 * and pointers in if_broot to fit the new size. When shrinking this
2349 * will eliminate holes between the records and pointers created by
2350 * the caller. When growing this will create holes to be filled in
2353 * The caller must not request to add more records than would fit in
2354 * the on-disk inode root. If the if_broot is currently NULL, then
2355 * if we adding records one will be allocated. The caller must also
2356 * not request that the number of records go below zero, although
2357 * it can go to zero.
2359 * ip -- the inode whose if_broot area is changing
2360 * ext_diff -- the change in the number of records, positive or negative,
2361 * requested for the if_broot array.
2371 xfs_bmbt_block_t *new_broot;
2378 * Handle the degenerate case quietly.
2380 if (rec_diff == 0) {
2384 ifp = XFS_IFORK_PTR(ip, whichfork);
2387 * If there wasn't any memory allocated before, just
2388 * allocate it now and get out.
2390 if (ifp->if_broot_bytes == 0) {
2391 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2392 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2394 ifp->if_broot_bytes = (int)new_size;
2399 * If there is already an existing if_broot, then we need
2400 * to realloc() it and shift the pointers to their new
2401 * location. The records don't change location because
2402 * they are kept butted up against the btree block header.
2404 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2405 new_max = cur_max + rec_diff;
2406 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2407 ifp->if_broot = (xfs_bmbt_block_t *)
2408 kmem_realloc(ifp->if_broot,
2410 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2412 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2413 ifp->if_broot_bytes);
2414 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2416 ifp->if_broot_bytes = (int)new_size;
2417 ASSERT(ifp->if_broot_bytes <=
2418 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2419 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2424 * rec_diff is less than 0. In this case, we are shrinking the
2425 * if_broot buffer. It must already exist. If we go to zero
2426 * records, just get rid of the root and clear the status bit.
2428 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2429 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2430 new_max = cur_max + rec_diff;
2431 ASSERT(new_max >= 0);
2433 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2437 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2439 * First copy over the btree block header.
2441 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2444 ifp->if_flags &= ~XFS_IFBROOT;
2448 * Only copy the records and pointers if there are any.
2452 * First copy the records.
2454 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2455 ifp->if_broot_bytes);
2456 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2458 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2461 * Then copy the pointers.
2463 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2464 ifp->if_broot_bytes);
2465 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2467 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2469 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2470 ifp->if_broot = new_broot;
2471 ifp->if_broot_bytes = (int)new_size;
2472 ASSERT(ifp->if_broot_bytes <=
2473 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2479 * This is called when the amount of space needed for if_extents
2480 * is increased or decreased. The change in size is indicated by
2481 * the number of extents that need to be added or deleted in the
2482 * ext_diff parameter.
2484 * If the amount of space needed has decreased below the size of the
2485 * inline buffer, then switch to using the inline buffer. Otherwise,
2486 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2487 * to what is needed.
2489 * ip -- the inode whose if_extents area is changing
2490 * ext_diff -- the change in the number of extents, positive or negative,
2491 * requested for the if_extents array.
2504 if (ext_diff == 0) {
2508 ifp = XFS_IFORK_PTR(ip, whichfork);
2509 byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t);
2510 new_size = (int)ifp->if_bytes + byte_diff;
2511 ASSERT(new_size >= 0);
2513 if (new_size == 0) {
2514 if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2515 ASSERT(ifp->if_real_bytes != 0);
2516 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2518 ifp->if_u1.if_extents = NULL;
2520 } else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) {
2522 * If the valid extents can fit in if_inline_ext,
2523 * copy them from the malloc'd vector and free it.
2525 if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2527 * For now, empty files are format EXTENTS,
2528 * so the if_extents pointer is null.
2530 if (ifp->if_u1.if_extents) {
2531 memcpy(ifp->if_u2.if_inline_ext,
2532 ifp->if_u1.if_extents, new_size);
2533 kmem_free(ifp->if_u1.if_extents,
2534 ifp->if_real_bytes);
2536 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2540 rnew_size = new_size;
2541 if ((rnew_size & (rnew_size - 1)) != 0)
2542 rnew_size = xfs_iroundup(rnew_size);
2544 * Stuck with malloc/realloc.
2546 if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) {
2547 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2548 kmem_alloc(rnew_size, KM_SLEEP);
2549 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
2550 sizeof(ifp->if_u2.if_inline_ext));
2551 } else if (rnew_size != ifp->if_real_bytes) {
2552 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2553 kmem_realloc(ifp->if_u1.if_extents,
2559 ifp->if_real_bytes = rnew_size;
2560 ifp->if_bytes = new_size;
2565 * This is called when the amount of space needed for if_data
2566 * is increased or decreased. The change in size is indicated by
2567 * the number of bytes that need to be added or deleted in the
2568 * byte_diff parameter.
2570 * If the amount of space needed has decreased below the size of the
2571 * inline buffer, then switch to using the inline buffer. Otherwise,
2572 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2573 * to what is needed.
2575 * ip -- the inode whose if_data area is changing
2576 * byte_diff -- the change in the number of bytes, positive or negative,
2577 * requested for the if_data array.
2589 if (byte_diff == 0) {
2593 ifp = XFS_IFORK_PTR(ip, whichfork);
2594 new_size = (int)ifp->if_bytes + byte_diff;
2595 ASSERT(new_size >= 0);
2597 if (new_size == 0) {
2598 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2599 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2601 ifp->if_u1.if_data = NULL;
2603 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2605 * If the valid extents/data can fit in if_inline_ext/data,
2606 * copy them from the malloc'd vector and free it.
2608 if (ifp->if_u1.if_data == NULL) {
2609 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2610 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2611 ASSERT(ifp->if_real_bytes != 0);
2612 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2614 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2615 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2620 * Stuck with malloc/realloc.
2621 * For inline data, the underlying buffer must be
2622 * a multiple of 4 bytes in size so that it can be
2623 * logged and stay on word boundaries. We enforce
2626 real_size = roundup(new_size, 4);
2627 if (ifp->if_u1.if_data == NULL) {
2628 ASSERT(ifp->if_real_bytes == 0);
2629 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2630 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2632 * Only do the realloc if the underlying size
2633 * is really changing.
2635 if (ifp->if_real_bytes != real_size) {
2636 ifp->if_u1.if_data =
2637 kmem_realloc(ifp->if_u1.if_data,
2643 ASSERT(ifp->if_real_bytes == 0);
2644 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2645 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2649 ifp->if_real_bytes = real_size;
2650 ifp->if_bytes = new_size;
2651 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2658 * Map inode to disk block and offset.
2660 * mp -- the mount point structure for the current file system
2661 * tp -- the current transaction
2662 * ino -- the inode number of the inode to be located
2663 * imap -- this structure is filled in with the information necessary
2664 * to retrieve the given inode from disk
2665 * flags -- flags to pass to xfs_dilocate indicating whether or not
2666 * lookups in the inode btree were OK or not
2676 xfs_fsblock_t fsbno;
2681 fsbno = imap->im_blkno ?
2682 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2683 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2687 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2688 imap->im_len = XFS_FSB_TO_BB(mp, len);
2689 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2690 imap->im_ioffset = (ushort)off;
2691 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2702 ifp = XFS_IFORK_PTR(ip, whichfork);
2703 if (ifp->if_broot != NULL) {
2704 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2705 ifp->if_broot = NULL;
2709 * If the format is local, then we can't have an extents
2710 * array so just look for an inline data array. If we're
2711 * not local then we may or may not have an extents list,
2712 * so check and free it up if we do.
2714 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2715 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2716 (ifp->if_u1.if_data != NULL)) {
2717 ASSERT(ifp->if_real_bytes != 0);
2718 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2719 ifp->if_u1.if_data = NULL;
2720 ifp->if_real_bytes = 0;
2722 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2723 (ifp->if_u1.if_extents != NULL) &&
2724 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) {
2725 ASSERT(ifp->if_real_bytes != 0);
2726 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2727 ifp->if_u1.if_extents = NULL;
2728 ifp->if_real_bytes = 0;
2730 ASSERT(ifp->if_u1.if_extents == NULL ||
2731 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2732 ASSERT(ifp->if_real_bytes == 0);
2733 if (whichfork == XFS_ATTR_FORK) {
2734 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2740 * This is called free all the memory associated with an inode.
2741 * It must free the inode itself and any buffers allocated for
2742 * if_extents/if_data and if_broot. It must also free the lock
2743 * associated with the inode.
2750 switch (ip->i_d.di_mode & S_IFMT) {
2754 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2758 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2759 mrfree(&ip->i_lock);
2760 mrfree(&ip->i_iolock);
2761 freesema(&ip->i_flock);
2762 #ifdef XFS_BMAP_TRACE
2763 ktrace_free(ip->i_xtrace);
2765 #ifdef XFS_BMBT_TRACE
2766 ktrace_free(ip->i_btrace);
2769 ktrace_free(ip->i_rwtrace);
2771 #ifdef XFS_ILOCK_TRACE
2772 ktrace_free(ip->i_lock_trace);
2774 #ifdef XFS_DIR2_TRACE
2775 ktrace_free(ip->i_dir_trace);
2778 /* XXXdpd should be able to assert this but shutdown
2779 * is leaving the AIL behind. */
2780 ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
2781 XFS_FORCED_SHUTDOWN(ip->i_mount));
2782 xfs_inode_item_destroy(ip);
2784 kmem_zone_free(xfs_inode_zone, ip);
2789 * Increment the pin count of the given buffer.
2790 * This value is protected by ipinlock spinlock in the mount structure.
2796 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2798 atomic_inc(&ip->i_pincount);
2802 * Decrement the pin count of the given inode, and wake up
2803 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2804 * inode must have been previoulsy pinned with a call to xfs_ipin().
2810 ASSERT(atomic_read(&ip->i_pincount) > 0);
2812 if (atomic_dec_and_test(&ip->i_pincount)) {
2813 vnode_t *vp = XFS_ITOV_NULL(ip);
2815 /* make sync come back and flush this inode */
2817 struct inode *inode = LINVFS_GET_IP(vp);
2819 if (!(inode->i_state & I_NEW))
2820 mark_inode_dirty_sync(inode);
2823 wake_up(&ip->i_ipin_wait);
2828 * This is called to wait for the given inode to be unpinned.
2829 * It will sleep until this happens. The caller must have the
2830 * inode locked in at least shared mode so that the buffer cannot
2831 * be subsequently pinned once someone is waiting for it to be
2838 xfs_inode_log_item_t *iip;
2841 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2843 if (atomic_read(&ip->i_pincount) == 0) {
2848 if (iip && iip->ili_last_lsn) {
2849 lsn = iip->ili_last_lsn;
2855 * Give the log a push so we don't wait here too long.
2857 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2859 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2864 * xfs_iextents_copy()
2866 * This is called to copy the REAL extents (as opposed to the delayed
2867 * allocation extents) from the inode into the given buffer. It
2868 * returns the number of bytes copied into the buffer.
2870 * If there are no delayed allocation extents, then we can just
2871 * memcpy() the extents into the buffer. Otherwise, we need to
2872 * examine each extent in turn and skip those which are delayed.
2877 xfs_bmbt_rec_t *buffer,
2881 xfs_bmbt_rec_t *dest_ep;
2883 #ifdef XFS_BMAP_TRACE
2884 static char fname[] = "xfs_iextents_copy";
2889 xfs_fsblock_t start_block;
2891 ifp = XFS_IFORK_PTR(ip, whichfork);
2892 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2893 ASSERT(ifp->if_bytes > 0);
2895 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2896 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2900 * There are some delayed allocation extents in the
2901 * inode, so copy the extents one at a time and skip
2902 * the delayed ones. There must be at least one
2903 * non-delayed extent.
2905 ep = ifp->if_u1.if_extents;
2908 for (i = 0; i < nrecs; i++) {
2909 start_block = xfs_bmbt_get_startblock(ep);
2910 if (ISNULLSTARTBLOCK(start_block)) {
2912 * It's a delayed allocation extent, so skip it.
2918 /* Translate to on disk format */
2919 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2920 (__uint64_t*)&dest_ep->l0);
2921 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2922 (__uint64_t*)&dest_ep->l1);
2927 ASSERT(copied != 0);
2928 xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip));
2930 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2934 * Each of the following cases stores data into the same region
2935 * of the on-disk inode, so only one of them can be valid at
2936 * any given time. While it is possible to have conflicting formats
2937 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2938 * in EXTENTS format, this can only happen when the fork has
2939 * changed formats after being modified but before being flushed.
2940 * In these cases, the format always takes precedence, because the
2941 * format indicates the current state of the fork.
2948 xfs_inode_log_item_t *iip,
2955 #ifdef XFS_TRANS_DEBUG
2958 static const short brootflag[2] =
2959 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2960 static const short dataflag[2] =
2961 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2962 static const short extflag[2] =
2963 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2967 ifp = XFS_IFORK_PTR(ip, whichfork);
2969 * This can happen if we gave up in iformat in an error path,
2970 * for the attribute fork.
2973 ASSERT(whichfork == XFS_ATTR_FORK);
2976 cp = XFS_DFORK_PTR(dip, whichfork);
2978 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2979 case XFS_DINODE_FMT_LOCAL:
2980 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2981 (ifp->if_bytes > 0)) {
2982 ASSERT(ifp->if_u1.if_data != NULL);
2983 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2984 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2986 if (whichfork == XFS_DATA_FORK) {
2987 if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
2988 XFS_ERROR_REPORT("xfs_iflush_fork",
2989 XFS_ERRLEVEL_LOW, mp);
2990 return XFS_ERROR(EFSCORRUPTED);
2995 case XFS_DINODE_FMT_EXTENTS:
2996 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2997 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2998 ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0));
2999 ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0));
3000 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
3001 (ifp->if_bytes > 0)) {
3002 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
3003 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
3008 case XFS_DINODE_FMT_BTREE:
3009 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
3010 (ifp->if_broot_bytes > 0)) {
3011 ASSERT(ifp->if_broot != NULL);
3012 ASSERT(ifp->if_broot_bytes <=
3013 (XFS_IFORK_SIZE(ip, whichfork) +
3014 XFS_BROOT_SIZE_ADJ));
3015 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3016 (xfs_bmdr_block_t *)cp,
3017 XFS_DFORK_SIZE(dip, mp, whichfork));
3021 case XFS_DINODE_FMT_DEV:
3022 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3023 ASSERT(whichfork == XFS_DATA_FORK);
3024 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
3028 case XFS_DINODE_FMT_UUID:
3029 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3030 ASSERT(whichfork == XFS_DATA_FORK);
3031 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3045 * xfs_iflush() will write a modified inode's changes out to the
3046 * inode's on disk home. The caller must have the inode lock held
3047 * in at least shared mode and the inode flush semaphore must be
3048 * held as well. The inode lock will still be held upon return from
3049 * the call and the caller is free to unlock it.
3050 * The inode flush lock will be unlocked when the inode reaches the disk.
3051 * The flags indicate how the inode's buffer should be written out.
3058 xfs_inode_log_item_t *iip;
3066 int clcount; /* count of inodes clustered */
3068 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3071 XFS_STATS_INC(xs_iflush_count);
3073 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3074 ASSERT(valusema(&ip->i_flock) <= 0);
3075 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3076 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3082 * If the inode isn't dirty, then just release the inode
3083 * flush lock and do nothing.
3085 if ((ip->i_update_core == 0) &&
3086 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3087 ASSERT((iip != NULL) ?
3088 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3094 * We can't flush the inode until it is unpinned, so
3095 * wait for it. We know noone new can pin it, because
3096 * we are holding the inode lock shared and you need
3097 * to hold it exclusively to pin the inode.
3099 xfs_iunpin_wait(ip);
3102 * This may have been unpinned because the filesystem is shutting
3103 * down forcibly. If that's the case we must not write this inode
3104 * to disk, because the log record didn't make it to disk!
3106 if (XFS_FORCED_SHUTDOWN(mp)) {
3107 ip->i_update_core = 0;
3109 iip->ili_format.ilf_fields = 0;
3111 return XFS_ERROR(EIO);
3115 * Get the buffer containing the on-disk inode.
3117 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0);
3124 * Decide how buffer will be flushed out. This is done before
3125 * the call to xfs_iflush_int because this field is zeroed by it.
3127 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3129 * Flush out the inode buffer according to the directions
3130 * of the caller. In the cases where the caller has given
3131 * us a choice choose the non-delwri case. This is because
3132 * the inode is in the AIL and we need to get it out soon.
3135 case XFS_IFLUSH_SYNC:
3136 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3139 case XFS_IFLUSH_ASYNC:
3140 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3143 case XFS_IFLUSH_DELWRI:
3153 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3154 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3155 case XFS_IFLUSH_DELWRI:
3158 case XFS_IFLUSH_ASYNC:
3161 case XFS_IFLUSH_SYNC:
3172 * First flush out the inode that xfs_iflush was called with.
3174 error = xfs_iflush_int(ip, bp);
3181 * see if other inodes can be gathered into this write
3184 ip->i_chash->chl_buf = bp;
3186 ch = XFS_CHASH(mp, ip->i_blkno);
3187 s = mutex_spinlock(&ch->ch_lock);
3190 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3192 * Do an un-protected check to see if the inode is dirty and
3193 * is a candidate for flushing. These checks will be repeated
3194 * later after the appropriate locks are acquired.
3197 if ((iq->i_update_core == 0) &&
3199 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3200 xfs_ipincount(iq) == 0) {
3205 * Try to get locks. If any are unavailable,
3206 * then this inode cannot be flushed and is skipped.
3209 /* get inode locks (just i_lock) */
3210 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3211 /* get inode flush lock */
3212 if (xfs_iflock_nowait(iq)) {
3213 /* check if pinned */
3214 if (xfs_ipincount(iq) == 0) {
3215 /* arriving here means that
3216 * this inode can be flushed.
3217 * first re-check that it's
3221 if ((iq->i_update_core != 0)||
3223 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3225 error = xfs_iflush_int(iq, bp);
3229 goto cluster_corrupt_out;
3238 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3241 mutex_spinunlock(&ch->ch_lock, s);
3244 XFS_STATS_INC(xs_icluster_flushcnt);
3245 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3249 * If the buffer is pinned then push on the log so we won't
3250 * get stuck waiting in the write for too long.
3252 if (XFS_BUF_ISPINNED(bp)){
3253 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3256 if (flags & INT_DELWRI) {
3257 xfs_bdwrite(mp, bp);
3258 } else if (flags & INT_ASYNC) {
3259 xfs_bawrite(mp, bp);
3261 error = xfs_bwrite(mp, bp);
3267 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3268 xfs_iflush_abort(ip);
3270 * Unlocks the flush lock
3272 return XFS_ERROR(EFSCORRUPTED);
3274 cluster_corrupt_out:
3275 /* Corruption detected in the clustering loop. Invalidate the
3276 * inode buffer and shut down the filesystem.
3278 mutex_spinunlock(&ch->ch_lock, s);
3281 * Clean up the buffer. If it was B_DELWRI, just release it --
3282 * brelse can handle it with no problems. If not, shut down the
3283 * filesystem before releasing the buffer.
3285 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3289 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3293 * Just like incore_relse: if we have b_iodone functions,
3294 * mark the buffer as an error and call them. Otherwise
3295 * mark it as stale and brelse.
3297 if (XFS_BUF_IODONE_FUNC(bp)) {
3298 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3302 XFS_BUF_ERROR(bp,EIO);
3310 xfs_iflush_abort(iq);
3312 * Unlocks the flush lock
3314 return XFS_ERROR(EFSCORRUPTED);
3323 xfs_inode_log_item_t *iip;
3326 #ifdef XFS_TRANS_DEBUG
3331 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3332 ASSERT(valusema(&ip->i_flock) <= 0);
3333 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3334 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3341 * If the inode isn't dirty, then just release the inode
3342 * flush lock and do nothing.
3344 if ((ip->i_update_core == 0) &&
3345 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3350 /* set *dip = inode's place in the buffer */
3351 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3354 * Clear i_update_core before copying out the data.
3355 * This is for coordination with our timestamp updates
3356 * that don't hold the inode lock. They will always
3357 * update the timestamps BEFORE setting i_update_core,
3358 * so if we clear i_update_core after they set it we
3359 * are guaranteed to see their updates to the timestamps.
3360 * I believe that this depends on strongly ordered memory
3361 * semantics, but we have that. We use the SYNCHRONIZE
3362 * macro to make sure that the compiler does not reorder
3363 * the i_update_core access below the data copy below.
3365 ip->i_update_core = 0;
3369 * Make sure to get the latest atime from the Linux inode.
3371 xfs_synchronize_atime(ip);
3373 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3374 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3375 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3376 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3377 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3380 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3381 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3382 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3383 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3384 ip->i_ino, ip, ip->i_d.di_magic);
3387 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3389 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3390 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3391 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3392 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3393 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3397 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3399 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3400 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3401 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3402 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3403 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3404 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3409 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3410 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3411 XFS_RANDOM_IFLUSH_5)) {
3412 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3413 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3415 ip->i_d.di_nextents + ip->i_d.di_anextents,
3420 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3421 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3422 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3423 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3424 ip->i_ino, ip->i_d.di_forkoff, ip);
3428 * bump the flush iteration count, used to detect flushes which
3429 * postdate a log record during recovery.
3432 ip->i_d.di_flushiter++;
3435 * Copy the dirty parts of the inode into the on-disk
3436 * inode. We always copy out the core of the inode,
3437 * because if the inode is dirty at all the core must
3440 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3442 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3443 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3444 ip->i_d.di_flushiter = 0;
3447 * If this is really an old format inode and the superblock version
3448 * has not been updated to support only new format inodes, then
3449 * convert back to the old inode format. If the superblock version
3450 * has been updated, then make the conversion permanent.
3452 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3453 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3454 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3455 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3459 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3460 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3463 * The superblock version has already been bumped,
3464 * so just make the conversion to the new inode
3467 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3468 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3469 ip->i_d.di_onlink = 0;
3470 dip->di_core.di_onlink = 0;
3471 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3472 memset(&(dip->di_core.di_pad[0]), 0,
3473 sizeof(dip->di_core.di_pad));
3474 ASSERT(ip->i_d.di_projid == 0);
3478 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3482 if (XFS_IFORK_Q(ip)) {
3484 * The only error from xfs_iflush_fork is on the data fork.
3486 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3488 xfs_inobp_check(mp, bp);
3491 * We've recorded everything logged in the inode, so we'd
3492 * like to clear the ilf_fields bits so we don't log and
3493 * flush things unnecessarily. However, we can't stop
3494 * logging all this information until the data we've copied
3495 * into the disk buffer is written to disk. If we did we might
3496 * overwrite the copy of the inode in the log with all the
3497 * data after re-logging only part of it, and in the face of
3498 * a crash we wouldn't have all the data we need to recover.
3500 * What we do is move the bits to the ili_last_fields field.
3501 * When logging the inode, these bits are moved back to the
3502 * ilf_fields field. In the xfs_iflush_done() routine we
3503 * clear ili_last_fields, since we know that the information
3504 * those bits represent is permanently on disk. As long as
3505 * the flush completes before the inode is logged again, then
3506 * both ilf_fields and ili_last_fields will be cleared.
3508 * We can play with the ilf_fields bits here, because the inode
3509 * lock must be held exclusively in order to set bits there
3510 * and the flush lock protects the ili_last_fields bits.
3511 * Set ili_logged so the flush done
3512 * routine can tell whether or not to look in the AIL.
3513 * Also, store the current LSN of the inode so that we can tell
3514 * whether the item has moved in the AIL from xfs_iflush_done().
3515 * In order to read the lsn we need the AIL lock, because
3516 * it is a 64 bit value that cannot be read atomically.
3518 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3519 iip->ili_last_fields = iip->ili_format.ilf_fields;
3520 iip->ili_format.ilf_fields = 0;
3521 iip->ili_logged = 1;
3523 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3525 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3529 * Attach the function xfs_iflush_done to the inode's
3530 * buffer. This will remove the inode from the AIL
3531 * and unlock the inode's flush lock when the inode is
3532 * completely written to disk.
3534 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3535 xfs_iflush_done, (xfs_log_item_t *)iip);
3537 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3538 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3541 * We're flushing an inode which is not in the AIL and has
3542 * not been logged but has i_update_core set. For this
3543 * case we can use a B_DELWRI flush and immediately drop
3544 * the inode flush lock because we can avoid the whole
3545 * AIL state thing. It's OK to drop the flush lock now,
3546 * because we've already locked the buffer and to do anything
3547 * you really need both.
3550 ASSERT(iip->ili_logged == 0);
3551 ASSERT(iip->ili_last_fields == 0);
3552 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3560 return XFS_ERROR(EFSCORRUPTED);
3565 * Flush all inactive inodes in mp.
3575 XFS_MOUNT_ILOCK(mp);
3581 /* Make sure we skip markers inserted by sync */
3582 if (ip->i_mount == NULL) {
3587 vp = XFS_ITOV_NULL(ip);
3589 XFS_MOUNT_IUNLOCK(mp);
3590 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3594 ASSERT(vn_count(vp) == 0);
3597 } while (ip != mp->m_inodes);
3599 XFS_MOUNT_IUNLOCK(mp);
3603 * xfs_iaccess: check accessibility of inode for mode.
3612 mode_t orgmode = mode;
3613 struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip));
3615 if (mode & S_IWUSR) {
3616 umode_t imode = inode->i_mode;
3618 if (IS_RDONLY(inode) &&
3619 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3620 return XFS_ERROR(EROFS);
3622 if (IS_IMMUTABLE(inode))
3623 return XFS_ERROR(EACCES);
3627 * If there's an Access Control List it's used instead of
3630 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3631 return error ? XFS_ERROR(error) : 0;
3633 if (current_fsuid(cr) != ip->i_d.di_uid) {
3635 if (!in_group_p((gid_t)ip->i_d.di_gid))
3640 * If the DACs are ok we don't need any capability check.
3642 if ((ip->i_d.di_mode & mode) == mode)
3645 * Read/write DACs are always overridable.
3646 * Executable DACs are overridable if at least one exec bit is set.
3648 if (!(orgmode & S_IXUSR) ||
3649 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3650 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3653 if ((orgmode == S_IRUSR) ||
3654 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3655 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3658 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3660 return XFS_ERROR(EACCES);
3662 return XFS_ERROR(EACCES);
3666 * xfs_iroundup: round up argument to next power of two
3675 if ((v & (v - 1)) == 0)
3677 ASSERT((v & 0x80000000) == 0);
3678 if ((v & (v + 1)) == 0)
3680 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3684 if ((v & (v + 1)) == 0)
3691 #ifdef XFS_ILOCK_TRACE
3692 ktrace_t *xfs_ilock_trace_buf;
3695 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3697 ktrace_enter(ip->i_lock_trace,
3699 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3700 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3701 (void *)ra, /* caller of ilock */
3702 (void *)(unsigned long)current_cpu(),
3703 (void *)(unsigned long)current_pid(),
3704 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);