2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
43 * Encapsulates the major functions managing:
50 #include <linux/pci.h> /* for Tavor hack below */
52 #include "xprt_rdma.h"
59 # define RPCDBG_FACILITY RPCDBG_TRANS
67 * handle replies in tasklet context, using a single, global list
68 * rdma tasklet function -- just turn around and call the func
69 * for all replies on the list
72 static DEFINE_SPINLOCK(rpcrdma_tk_lock_g);
73 static LIST_HEAD(rpcrdma_tasklets_g);
76 rpcrdma_run_tasklet(unsigned long data)
78 struct rpcrdma_rep *rep;
79 void (*func)(struct rpcrdma_rep *);
83 spin_lock_irqsave(&rpcrdma_tk_lock_g, flags);
84 while (!list_empty(&rpcrdma_tasklets_g)) {
85 rep = list_entry(rpcrdma_tasklets_g.next,
86 struct rpcrdma_rep, rr_list);
87 list_del(&rep->rr_list);
90 spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags);
95 rpcrdma_recv_buffer_put(rep);
97 spin_lock_irqsave(&rpcrdma_tk_lock_g, flags);
99 spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags);
102 static DECLARE_TASKLET(rpcrdma_tasklet_g, rpcrdma_run_tasklet, 0UL);
105 rpcrdma_schedule_tasklet(struct rpcrdma_rep *rep)
109 spin_lock_irqsave(&rpcrdma_tk_lock_g, flags);
110 list_add_tail(&rep->rr_list, &rpcrdma_tasklets_g);
111 spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags);
112 tasklet_schedule(&rpcrdma_tasklet_g);
116 rpcrdma_qp_async_error_upcall(struct ib_event *event, void *context)
118 struct rpcrdma_ep *ep = context;
120 dprintk("RPC: %s: QP error %X on device %s ep %p\n",
121 __func__, event->event, event->device->name, context);
122 if (ep->rep_connected == 1) {
123 ep->rep_connected = -EIO;
125 wake_up_all(&ep->rep_connect_wait);
130 rpcrdma_cq_async_error_upcall(struct ib_event *event, void *context)
132 struct rpcrdma_ep *ep = context;
134 dprintk("RPC: %s: CQ error %X on device %s ep %p\n",
135 __func__, event->event, event->device->name, context);
136 if (ep->rep_connected == 1) {
137 ep->rep_connected = -EIO;
139 wake_up_all(&ep->rep_connect_wait);
144 void rpcrdma_event_process(struct ib_wc *wc)
146 struct rpcrdma_rep *rep =
147 (struct rpcrdma_rep *)(unsigned long) wc->wr_id;
149 dprintk("RPC: %s: event rep %p status %X opcode %X length %u\n",
150 __func__, rep, wc->status, wc->opcode, wc->byte_len);
152 if (!rep) /* send or bind completion that we don't care about */
155 if (IB_WC_SUCCESS != wc->status) {
156 dprintk("RPC: %s: %s WC status %X, connection lost\n",
157 __func__, (wc->opcode & IB_WC_RECV) ? "recv" : "send",
160 rpcrdma_schedule_tasklet(rep);
164 switch (wc->opcode) {
166 rep->rr_len = wc->byte_len;
167 ib_dma_sync_single_for_cpu(
168 rdmab_to_ia(rep->rr_buffer)->ri_id->device,
169 rep->rr_iov.addr, rep->rr_len, DMA_FROM_DEVICE);
170 /* Keep (only) the most recent credits, after check validity */
171 if (rep->rr_len >= 16) {
172 struct rpcrdma_msg *p =
173 (struct rpcrdma_msg *) rep->rr_base;
174 unsigned int credits = ntohl(p->rm_credit);
176 dprintk("RPC: %s: server"
177 " dropped credits to 0!\n", __func__);
180 } else if (credits > rep->rr_buffer->rb_max_requests) {
181 dprintk("RPC: %s: server"
182 " over-crediting: %d (%d)\n",
184 rep->rr_buffer->rb_max_requests);
185 credits = rep->rr_buffer->rb_max_requests;
187 atomic_set(&rep->rr_buffer->rb_credits, credits);
191 rpcrdma_schedule_tasklet(rep);
194 dprintk("RPC: %s: unexpected WC event %X\n",
195 __func__, wc->opcode);
201 rpcrdma_cq_poll(struct ib_cq *cq)
207 rc = ib_poll_cq(cq, 1, &wc);
209 dprintk("RPC: %s: ib_poll_cq failed %i\n",
216 rpcrdma_event_process(&wc);
223 * rpcrdma_cq_event_upcall
225 * This upcall handles recv, send, bind and unbind events.
226 * It is reentrant but processes single events in order to maintain
227 * ordering of receives to keep server credits.
229 * It is the responsibility of the scheduled tasklet to return
230 * recv buffers to the pool. NOTE: this affects synchronization of
231 * connection shutdown. That is, the structures required for
232 * the completion of the reply handler must remain intact until
233 * all memory has been reclaimed.
235 * Note that send events are suppressed and do not result in an upcall.
238 rpcrdma_cq_event_upcall(struct ib_cq *cq, void *context)
242 rc = rpcrdma_cq_poll(cq);
246 rc = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
248 dprintk("RPC: %s: ib_req_notify_cq failed %i\n",
257 static const char * const conn[] = {
274 rpcrdma_conn_upcall(struct rdma_cm_id *id, struct rdma_cm_event *event)
276 struct rpcrdma_xprt *xprt = id->context;
277 struct rpcrdma_ia *ia = &xprt->rx_ia;
278 struct rpcrdma_ep *ep = &xprt->rx_ep;
279 struct sockaddr_in *addr = (struct sockaddr_in *) &ep->rep_remote_addr;
280 struct ib_qp_attr attr;
281 struct ib_qp_init_attr iattr;
284 switch (event->event) {
285 case RDMA_CM_EVENT_ADDR_RESOLVED:
286 case RDMA_CM_EVENT_ROUTE_RESOLVED:
287 complete(&ia->ri_done);
289 case RDMA_CM_EVENT_ADDR_ERROR:
290 ia->ri_async_rc = -EHOSTUNREACH;
291 dprintk("RPC: %s: CM address resolution error, ep 0x%p\n",
293 complete(&ia->ri_done);
295 case RDMA_CM_EVENT_ROUTE_ERROR:
296 ia->ri_async_rc = -ENETUNREACH;
297 dprintk("RPC: %s: CM route resolution error, ep 0x%p\n",
299 complete(&ia->ri_done);
301 case RDMA_CM_EVENT_ESTABLISHED:
303 ib_query_qp(ia->ri_id->qp, &attr,
304 IB_QP_MAX_QP_RD_ATOMIC | IB_QP_MAX_DEST_RD_ATOMIC,
306 dprintk("RPC: %s: %d responder resources"
308 __func__, attr.max_dest_rd_atomic, attr.max_rd_atomic);
310 case RDMA_CM_EVENT_CONNECT_ERROR:
311 connstate = -ENOTCONN;
313 case RDMA_CM_EVENT_UNREACHABLE:
314 connstate = -ENETDOWN;
316 case RDMA_CM_EVENT_REJECTED:
317 connstate = -ECONNREFUSED;
319 case RDMA_CM_EVENT_DISCONNECTED:
320 connstate = -ECONNABORTED;
322 case RDMA_CM_EVENT_DEVICE_REMOVAL:
325 dprintk("RPC: %s: %s: %u.%u.%u.%u:%u"
326 " (ep 0x%p event 0x%x)\n",
328 (event->event <= 11) ? conn[event->event] :
329 "unknown connection error",
330 NIPQUAD(addr->sin_addr.s_addr),
331 ntohs(addr->sin_port),
333 atomic_set(&rpcx_to_rdmax(ep->rep_xprt)->rx_buf.rb_credits, 1);
334 dprintk("RPC: %s: %sconnected\n",
335 __func__, connstate > 0 ? "" : "dis");
336 ep->rep_connected = connstate;
338 wake_up_all(&ep->rep_connect_wait);
341 ia->ri_async_rc = -EINVAL;
342 dprintk("RPC: %s: unexpected CM event %X\n",
343 __func__, event->event);
344 complete(&ia->ri_done);
351 static struct rdma_cm_id *
352 rpcrdma_create_id(struct rpcrdma_xprt *xprt,
353 struct rpcrdma_ia *ia, struct sockaddr *addr)
355 struct rdma_cm_id *id;
358 id = rdma_create_id(rpcrdma_conn_upcall, xprt, RDMA_PS_TCP);
361 dprintk("RPC: %s: rdma_create_id() failed %i\n",
367 rc = rdma_resolve_addr(id, NULL, addr, RDMA_RESOLVE_TIMEOUT);
369 dprintk("RPC: %s: rdma_resolve_addr() failed %i\n",
373 wait_for_completion(&ia->ri_done);
374 rc = ia->ri_async_rc;
379 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
381 dprintk("RPC: %s: rdma_resolve_route() failed %i\n",
385 wait_for_completion(&ia->ri_done);
386 rc = ia->ri_async_rc;
398 * Drain any cq, prior to teardown.
401 rpcrdma_clean_cq(struct ib_cq *cq)
406 while (1 == ib_poll_cq(cq, 1, &wc))
410 dprintk("RPC: %s: flushed %d events (last 0x%x)\n",
411 __func__, count, wc.opcode);
415 * Exported functions.
419 * Open and initialize an Interface Adapter.
420 * o initializes fields of struct rpcrdma_ia, including
421 * interface and provider attributes and protection zone.
424 rpcrdma_ia_open(struct rpcrdma_xprt *xprt, struct sockaddr *addr, int memreg)
427 struct rpcrdma_ia *ia = &xprt->rx_ia;
429 init_completion(&ia->ri_done);
431 ia->ri_id = rpcrdma_create_id(xprt, ia, addr);
432 if (IS_ERR(ia->ri_id)) {
433 rc = PTR_ERR(ia->ri_id);
437 ia->ri_pd = ib_alloc_pd(ia->ri_id->device);
438 if (IS_ERR(ia->ri_pd)) {
439 rc = PTR_ERR(ia->ri_pd);
440 dprintk("RPC: %s: ib_alloc_pd() failed %i\n",
446 * Optionally obtain an underlying physical identity mapping in
447 * order to do a memory window-based bind. This base registration
448 * is protected from remote access - that is enabled only by binding
449 * for the specific bytes targeted during each RPC operation, and
450 * revoked after the corresponding completion similar to a storage
453 if (memreg > RPCRDMA_REGISTER) {
454 int mem_priv = IB_ACCESS_LOCAL_WRITE;
456 #if RPCRDMA_PERSISTENT_REGISTRATION
457 case RPCRDMA_ALLPHYSICAL:
458 mem_priv |= IB_ACCESS_REMOTE_WRITE;
459 mem_priv |= IB_ACCESS_REMOTE_READ;
462 case RPCRDMA_MEMWINDOWS_ASYNC:
463 case RPCRDMA_MEMWINDOWS:
464 mem_priv |= IB_ACCESS_MW_BIND;
469 ia->ri_bind_mem = ib_get_dma_mr(ia->ri_pd, mem_priv);
470 if (IS_ERR(ia->ri_bind_mem)) {
471 printk(KERN_ALERT "%s: ib_get_dma_mr for "
472 "phys register failed with %lX\n\t"
473 "Will continue with degraded performance\n",
474 __func__, PTR_ERR(ia->ri_bind_mem));
475 memreg = RPCRDMA_REGISTER;
476 ia->ri_bind_mem = NULL;
480 /* Else will do memory reg/dereg for each chunk */
481 ia->ri_memreg_strategy = memreg;
485 rdma_destroy_id(ia->ri_id);
491 * Clean up/close an IA.
492 * o if event handles and PD have been initialized, free them.
496 rpcrdma_ia_close(struct rpcrdma_ia *ia)
500 dprintk("RPC: %s: entering\n", __func__);
501 if (ia->ri_bind_mem != NULL) {
502 rc = ib_dereg_mr(ia->ri_bind_mem);
503 dprintk("RPC: %s: ib_dereg_mr returned %i\n",
506 if (ia->ri_id != NULL && !IS_ERR(ia->ri_id) && ia->ri_id->qp)
507 rdma_destroy_qp(ia->ri_id);
508 if (ia->ri_pd != NULL && !IS_ERR(ia->ri_pd)) {
509 rc = ib_dealloc_pd(ia->ri_pd);
510 dprintk("RPC: %s: ib_dealloc_pd returned %i\n",
513 if (ia->ri_id != NULL && !IS_ERR(ia->ri_id))
514 rdma_destroy_id(ia->ri_id);
518 * Create unconnected endpoint.
521 rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia,
522 struct rpcrdma_create_data_internal *cdata)
524 struct ib_device_attr devattr;
527 rc = ib_query_device(ia->ri_id->device, &devattr);
529 dprintk("RPC: %s: ib_query_device failed %d\n",
534 /* check provider's send/recv wr limits */
535 if (cdata->max_requests > devattr.max_qp_wr)
536 cdata->max_requests = devattr.max_qp_wr;
538 ep->rep_attr.event_handler = rpcrdma_qp_async_error_upcall;
539 ep->rep_attr.qp_context = ep;
540 /* send_cq and recv_cq initialized below */
541 ep->rep_attr.srq = NULL;
542 ep->rep_attr.cap.max_send_wr = cdata->max_requests;
543 switch (ia->ri_memreg_strategy) {
544 case RPCRDMA_MEMWINDOWS_ASYNC:
545 case RPCRDMA_MEMWINDOWS:
546 /* Add room for mw_binds+unbinds - overkill! */
547 ep->rep_attr.cap.max_send_wr++;
548 ep->rep_attr.cap.max_send_wr *= (2 * RPCRDMA_MAX_SEGS);
549 if (ep->rep_attr.cap.max_send_wr > devattr.max_qp_wr)
555 ep->rep_attr.cap.max_recv_wr = cdata->max_requests;
556 ep->rep_attr.cap.max_send_sge = (cdata->padding ? 4 : 2);
557 ep->rep_attr.cap.max_recv_sge = 1;
558 ep->rep_attr.cap.max_inline_data = 0;
559 ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
560 ep->rep_attr.qp_type = IB_QPT_RC;
561 ep->rep_attr.port_num = ~0;
563 dprintk("RPC: %s: requested max: dtos: send %d recv %d; "
564 "iovs: send %d recv %d\n",
566 ep->rep_attr.cap.max_send_wr,
567 ep->rep_attr.cap.max_recv_wr,
568 ep->rep_attr.cap.max_send_sge,
569 ep->rep_attr.cap.max_recv_sge);
571 /* set trigger for requesting send completion */
572 ep->rep_cqinit = ep->rep_attr.cap.max_send_wr/2 /* - 1*/;
573 switch (ia->ri_memreg_strategy) {
574 case RPCRDMA_MEMWINDOWS_ASYNC:
575 case RPCRDMA_MEMWINDOWS:
576 ep->rep_cqinit -= RPCRDMA_MAX_SEGS;
581 if (ep->rep_cqinit <= 2)
585 init_waitqueue_head(&ep->rep_connect_wait);
588 * Create a single cq for receive dto and mw_bind (only ever
589 * care about unbind, really). Send completions are suppressed.
590 * Use single threaded tasklet upcalls to maintain ordering.
592 ep->rep_cq = ib_create_cq(ia->ri_id->device, rpcrdma_cq_event_upcall,
593 rpcrdma_cq_async_error_upcall, NULL,
594 ep->rep_attr.cap.max_recv_wr +
595 ep->rep_attr.cap.max_send_wr + 1, 0);
596 if (IS_ERR(ep->rep_cq)) {
597 rc = PTR_ERR(ep->rep_cq);
598 dprintk("RPC: %s: ib_create_cq failed: %i\n",
603 rc = ib_req_notify_cq(ep->rep_cq, IB_CQ_NEXT_COMP);
605 dprintk("RPC: %s: ib_req_notify_cq failed: %i\n",
610 ep->rep_attr.send_cq = ep->rep_cq;
611 ep->rep_attr.recv_cq = ep->rep_cq;
613 /* Initialize cma parameters */
615 /* RPC/RDMA does not use private data */
616 ep->rep_remote_cma.private_data = NULL;
617 ep->rep_remote_cma.private_data_len = 0;
619 /* Client offers RDMA Read but does not initiate */
620 switch (ia->ri_memreg_strategy) {
621 case RPCRDMA_BOUNCEBUFFERS:
622 ep->rep_remote_cma.responder_resources = 0;
624 case RPCRDMA_MTHCAFMR:
625 case RPCRDMA_REGISTER:
626 ep->rep_remote_cma.responder_resources = cdata->max_requests *
627 (RPCRDMA_MAX_DATA_SEGS / 8);
629 case RPCRDMA_MEMWINDOWS:
630 case RPCRDMA_MEMWINDOWS_ASYNC:
631 #if RPCRDMA_PERSISTENT_REGISTRATION
632 case RPCRDMA_ALLPHYSICAL:
634 ep->rep_remote_cma.responder_resources = cdata->max_requests *
635 (RPCRDMA_MAX_DATA_SEGS / 2);
640 if (ep->rep_remote_cma.responder_resources > devattr.max_qp_rd_atom)
641 ep->rep_remote_cma.responder_resources = devattr.max_qp_rd_atom;
642 ep->rep_remote_cma.initiator_depth = 0;
644 ep->rep_remote_cma.retry_count = 7;
645 ep->rep_remote_cma.flow_control = 0;
646 ep->rep_remote_cma.rnr_retry_count = 0;
651 err = ib_destroy_cq(ep->rep_cq);
653 dprintk("RPC: %s: ib_destroy_cq returned %i\n",
662 * Disconnect and destroy endpoint. After this, the only
663 * valid operations on the ep are to free it (if dynamically
664 * allocated) or re-create it.
666 * The caller's error handling must be sure to not leak the endpoint
667 * if this function fails.
670 rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
674 dprintk("RPC: %s: entering, connected is %d\n",
675 __func__, ep->rep_connected);
678 rc = rpcrdma_ep_disconnect(ep, ia);
680 dprintk("RPC: %s: rpcrdma_ep_disconnect"
681 " returned %i\n", __func__, rc);
686 /* padding - could be done in rpcrdma_buffer_destroy... */
687 if (ep->rep_pad_mr) {
688 rpcrdma_deregister_internal(ia, ep->rep_pad_mr, &ep->rep_pad);
689 ep->rep_pad_mr = NULL;
693 rdma_destroy_qp(ia->ri_id);
694 ia->ri_id->qp = NULL;
697 rpcrdma_clean_cq(ep->rep_cq);
698 rc = ib_destroy_cq(ep->rep_cq);
700 dprintk("RPC: %s: ib_destroy_cq returned %i\n",
707 * Connect unconnected endpoint.
710 rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
712 struct rdma_cm_id *id;
715 int reconnect = (ep->rep_connected != 0);
718 struct rpcrdma_xprt *xprt;
720 rc = rpcrdma_ep_disconnect(ep, ia);
721 if (rc && rc != -ENOTCONN)
722 dprintk("RPC: %s: rpcrdma_ep_disconnect"
723 " status %i\n", __func__, rc);
724 rpcrdma_clean_cq(ep->rep_cq);
726 xprt = container_of(ia, struct rpcrdma_xprt, rx_ia);
727 id = rpcrdma_create_id(xprt, ia,
728 (struct sockaddr *)&xprt->rx_data.addr);
733 /* TEMP TEMP TEMP - fail if new device:
734 * Deregister/remarshal *all* requests!
735 * Close and recreate adapter, pd, etc!
736 * Re-determine all attributes still sane!
737 * More stuff I haven't thought of!
740 if (ia->ri_id->device != id->device) {
741 printk("RPC: %s: can't reconnect on "
742 "different device!\n", __func__);
748 rdma_destroy_id(ia->ri_id);
752 rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr);
754 dprintk("RPC: %s: rdma_create_qp failed %i\n",
759 /* XXX Tavor device performs badly with 2K MTU! */
760 if (strnicmp(ia->ri_id->device->dma_device->bus->name, "pci", 3) == 0) {
761 struct pci_dev *pcid = to_pci_dev(ia->ri_id->device->dma_device);
762 if (pcid->device == PCI_DEVICE_ID_MELLANOX_TAVOR &&
763 (pcid->vendor == PCI_VENDOR_ID_MELLANOX ||
764 pcid->vendor == PCI_VENDOR_ID_TOPSPIN)) {
765 struct ib_qp_attr attr = {
766 .path_mtu = IB_MTU_1024
768 rc = ib_modify_qp(ia->ri_id->qp, &attr, IB_QP_PATH_MTU);
772 /* Theoretically a client initiator_depth > 0 is not needed,
773 * but many peers fail to complete the connection unless they
774 * == responder_resources! */
775 if (ep->rep_remote_cma.initiator_depth !=
776 ep->rep_remote_cma.responder_resources)
777 ep->rep_remote_cma.initiator_depth =
778 ep->rep_remote_cma.responder_resources;
780 ep->rep_connected = 0;
782 rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma);
784 dprintk("RPC: %s: rdma_connect() failed with %i\n",
792 wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0);
795 * Check state. A non-peer reject indicates no listener
796 * (ECONNREFUSED), which may be a transient state. All
797 * others indicate a transport condition which has already
798 * undergone a best-effort.
800 if (ep->rep_connected == -ECONNREFUSED
801 && ++retry_count <= RDMA_CONNECT_RETRY_MAX) {
802 dprintk("RPC: %s: non-peer_reject, retry\n", __func__);
805 if (ep->rep_connected <= 0) {
806 /* Sometimes, the only way to reliably connect to remote
807 * CMs is to use same nonzero values for ORD and IRD. */
808 ep->rep_remote_cma.initiator_depth =
809 ep->rep_remote_cma.responder_resources;
810 if (ep->rep_remote_cma.initiator_depth == 0)
811 ++ep->rep_remote_cma.initiator_depth;
812 if (ep->rep_remote_cma.responder_resources == 0)
813 ++ep->rep_remote_cma.responder_resources;
814 if (retry_count++ == 0)
816 rc = ep->rep_connected;
818 dprintk("RPC: %s: connected\n", __func__);
823 ep->rep_connected = rc;
828 * rpcrdma_ep_disconnect
830 * This is separate from destroy to facilitate the ability
831 * to reconnect without recreating the endpoint.
833 * This call is not reentrant, and must not be made in parallel
834 * on the same endpoint.
837 rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
841 rpcrdma_clean_cq(ep->rep_cq);
842 rc = rdma_disconnect(ia->ri_id);
844 /* returns without wait if not connected */
845 wait_event_interruptible(ep->rep_connect_wait,
846 ep->rep_connected != 1);
847 dprintk("RPC: %s: after wait, %sconnected\n", __func__,
848 (ep->rep_connected == 1) ? "still " : "dis");
850 dprintk("RPC: %s: rdma_disconnect %i\n", __func__, rc);
851 ep->rep_connected = rc;
857 * Initialize buffer memory
860 rpcrdma_buffer_create(struct rpcrdma_buffer *buf, struct rpcrdma_ep *ep,
861 struct rpcrdma_ia *ia, struct rpcrdma_create_data_internal *cdata)
867 buf->rb_max_requests = cdata->max_requests;
868 spin_lock_init(&buf->rb_lock);
869 atomic_set(&buf->rb_credits, 1);
872 * 1. arrays for send and recv pointers
873 * 2. arrays of struct rpcrdma_req to fill in pointers
874 * 3. array of struct rpcrdma_rep for replies
877 * Send/recv buffers in req/rep need to be registered
880 len = buf->rb_max_requests *
881 (sizeof(struct rpcrdma_req *) + sizeof(struct rpcrdma_rep *));
882 len += cdata->padding;
883 switch (ia->ri_memreg_strategy) {
884 case RPCRDMA_MTHCAFMR:
885 /* TBD we are perhaps overallocating here */
886 len += (buf->rb_max_requests + 1) * RPCRDMA_MAX_SEGS *
887 sizeof(struct rpcrdma_mw);
889 case RPCRDMA_MEMWINDOWS_ASYNC:
890 case RPCRDMA_MEMWINDOWS:
891 len += (buf->rb_max_requests + 1) * RPCRDMA_MAX_SEGS *
892 sizeof(struct rpcrdma_mw);
898 /* allocate 1, 4 and 5 in one shot */
899 p = kzalloc(len, GFP_KERNEL);
901 dprintk("RPC: %s: req_t/rep_t/pad kzalloc(%zd) failed\n",
906 buf->rb_pool = p; /* for freeing it later */
908 buf->rb_send_bufs = (struct rpcrdma_req **) p;
909 p = (char *) &buf->rb_send_bufs[buf->rb_max_requests];
910 buf->rb_recv_bufs = (struct rpcrdma_rep **) p;
911 p = (char *) &buf->rb_recv_bufs[buf->rb_max_requests];
914 * Register the zeroed pad buffer, if any.
916 if (cdata->padding) {
917 rc = rpcrdma_register_internal(ia, p, cdata->padding,
918 &ep->rep_pad_mr, &ep->rep_pad);
925 * Allocate the fmr's, or mw's for mw_bind chunk registration.
926 * We "cycle" the mw's in order to minimize rkey reuse,
927 * and also reduce unbind-to-bind collision.
929 INIT_LIST_HEAD(&buf->rb_mws);
930 switch (ia->ri_memreg_strategy) {
931 case RPCRDMA_MTHCAFMR:
933 struct rpcrdma_mw *r = (struct rpcrdma_mw *)p;
934 struct ib_fmr_attr fa = {
935 RPCRDMA_MAX_DATA_SEGS, 1, PAGE_SHIFT
937 /* TBD we are perhaps overallocating here */
938 for (i = (buf->rb_max_requests+1) * RPCRDMA_MAX_SEGS; i; i--) {
939 r->r.fmr = ib_alloc_fmr(ia->ri_pd,
940 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_READ,
942 if (IS_ERR(r->r.fmr)) {
943 rc = PTR_ERR(r->r.fmr);
944 dprintk("RPC: %s: ib_alloc_fmr"
945 " failed %i\n", __func__, rc);
948 list_add(&r->mw_list, &buf->rb_mws);
953 case RPCRDMA_MEMWINDOWS_ASYNC:
954 case RPCRDMA_MEMWINDOWS:
956 struct rpcrdma_mw *r = (struct rpcrdma_mw *)p;
957 /* Allocate one extra request's worth, for full cycling */
958 for (i = (buf->rb_max_requests+1) * RPCRDMA_MAX_SEGS; i; i--) {
959 r->r.mw = ib_alloc_mw(ia->ri_pd);
960 if (IS_ERR(r->r.mw)) {
961 rc = PTR_ERR(r->r.mw);
962 dprintk("RPC: %s: ib_alloc_mw"
963 " failed %i\n", __func__, rc);
966 list_add(&r->mw_list, &buf->rb_mws);
976 * Allocate/init the request/reply buffers. Doing this
977 * using kmalloc for now -- one for each buf.
979 for (i = 0; i < buf->rb_max_requests; i++) {
980 struct rpcrdma_req *req;
981 struct rpcrdma_rep *rep;
983 len = cdata->inline_wsize + sizeof(struct rpcrdma_req);
984 /* RPC layer requests *double* size + 1K RPC_SLACK_SPACE! */
985 /* Typical ~2400b, so rounding up saves work later */
988 req = kmalloc(len, GFP_KERNEL);
990 dprintk("RPC: %s: request buffer %d alloc"
991 " failed\n", __func__, i);
995 memset(req, 0, sizeof(struct rpcrdma_req));
996 buf->rb_send_bufs[i] = req;
997 buf->rb_send_bufs[i]->rl_buffer = buf;
999 rc = rpcrdma_register_internal(ia, req->rl_base,
1000 len - offsetof(struct rpcrdma_req, rl_base),
1001 &buf->rb_send_bufs[i]->rl_handle,
1002 &buf->rb_send_bufs[i]->rl_iov);
1006 buf->rb_send_bufs[i]->rl_size = len-sizeof(struct rpcrdma_req);
1008 len = cdata->inline_rsize + sizeof(struct rpcrdma_rep);
1009 rep = kmalloc(len, GFP_KERNEL);
1011 dprintk("RPC: %s: reply buffer %d alloc failed\n",
1016 memset(rep, 0, sizeof(struct rpcrdma_rep));
1017 buf->rb_recv_bufs[i] = rep;
1018 buf->rb_recv_bufs[i]->rr_buffer = buf;
1019 init_waitqueue_head(&rep->rr_unbind);
1021 rc = rpcrdma_register_internal(ia, rep->rr_base,
1022 len - offsetof(struct rpcrdma_rep, rr_base),
1023 &buf->rb_recv_bufs[i]->rr_handle,
1024 &buf->rb_recv_bufs[i]->rr_iov);
1029 dprintk("RPC: %s: max_requests %d\n",
1030 __func__, buf->rb_max_requests);
1034 rpcrdma_buffer_destroy(buf);
1039 * Unregister and destroy buffer memory. Need to deal with
1040 * partial initialization, so it's callable from failed create.
1041 * Must be called before destroying endpoint, as registrations
1045 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1048 struct rpcrdma_ia *ia = rdmab_to_ia(buf);
1050 /* clean up in reverse order from create
1051 * 1. recv mr memory (mr free, then kfree)
1052 * 1a. bind mw memory
1053 * 2. send mr memory (mr free, then kfree)
1054 * 3. padding (if any) [moved to rpcrdma_ep_destroy]
1057 dprintk("RPC: %s: entering\n", __func__);
1059 for (i = 0; i < buf->rb_max_requests; i++) {
1060 if (buf->rb_recv_bufs && buf->rb_recv_bufs[i]) {
1061 rpcrdma_deregister_internal(ia,
1062 buf->rb_recv_bufs[i]->rr_handle,
1063 &buf->rb_recv_bufs[i]->rr_iov);
1064 kfree(buf->rb_recv_bufs[i]);
1066 if (buf->rb_send_bufs && buf->rb_send_bufs[i]) {
1067 while (!list_empty(&buf->rb_mws)) {
1068 struct rpcrdma_mw *r;
1069 r = list_entry(buf->rb_mws.next,
1070 struct rpcrdma_mw, mw_list);
1071 list_del(&r->mw_list);
1072 switch (ia->ri_memreg_strategy) {
1073 case RPCRDMA_MTHCAFMR:
1074 rc = ib_dealloc_fmr(r->r.fmr);
1081 case RPCRDMA_MEMWINDOWS_ASYNC:
1082 case RPCRDMA_MEMWINDOWS:
1083 rc = ib_dealloc_mw(r->r.mw);
1094 rpcrdma_deregister_internal(ia,
1095 buf->rb_send_bufs[i]->rl_handle,
1096 &buf->rb_send_bufs[i]->rl_iov);
1097 kfree(buf->rb_send_bufs[i]);
1101 kfree(buf->rb_pool);
1105 * Get a set of request/reply buffers.
1107 * Reply buffer (if needed) is attached to send buffer upon return.
1109 * rb_send_index and rb_recv_index MUST always be pointing to the
1110 * *next* available buffer (non-NULL). They are incremented after
1111 * removing buffers, and decremented *before* returning them.
1113 struct rpcrdma_req *
1114 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1116 struct rpcrdma_req *req;
1117 unsigned long flags;
1119 spin_lock_irqsave(&buffers->rb_lock, flags);
1120 if (buffers->rb_send_index == buffers->rb_max_requests) {
1121 spin_unlock_irqrestore(&buffers->rb_lock, flags);
1122 dprintk("RPC: %s: out of request buffers\n", __func__);
1123 return ((struct rpcrdma_req *)NULL);
1126 req = buffers->rb_send_bufs[buffers->rb_send_index];
1127 if (buffers->rb_send_index < buffers->rb_recv_index) {
1128 dprintk("RPC: %s: %d extra receives outstanding (ok)\n",
1130 buffers->rb_recv_index - buffers->rb_send_index);
1131 req->rl_reply = NULL;
1133 req->rl_reply = buffers->rb_recv_bufs[buffers->rb_recv_index];
1134 buffers->rb_recv_bufs[buffers->rb_recv_index++] = NULL;
1136 buffers->rb_send_bufs[buffers->rb_send_index++] = NULL;
1137 if (!list_empty(&buffers->rb_mws)) {
1138 int i = RPCRDMA_MAX_SEGS - 1;
1140 struct rpcrdma_mw *r;
1141 r = list_entry(buffers->rb_mws.next,
1142 struct rpcrdma_mw, mw_list);
1143 list_del(&r->mw_list);
1144 req->rl_segments[i].mr_chunk.rl_mw = r;
1147 spin_unlock_irqrestore(&buffers->rb_lock, flags);
1152 * Put request/reply buffers back into pool.
1153 * Pre-decrement counter/array index.
1156 rpcrdma_buffer_put(struct rpcrdma_req *req)
1158 struct rpcrdma_buffer *buffers = req->rl_buffer;
1159 struct rpcrdma_ia *ia = rdmab_to_ia(buffers);
1161 unsigned long flags;
1163 BUG_ON(req->rl_nchunks != 0);
1164 spin_lock_irqsave(&buffers->rb_lock, flags);
1165 buffers->rb_send_bufs[--buffers->rb_send_index] = req;
1167 if (req->rl_reply) {
1168 buffers->rb_recv_bufs[--buffers->rb_recv_index] = req->rl_reply;
1169 init_waitqueue_head(&req->rl_reply->rr_unbind);
1170 req->rl_reply->rr_func = NULL;
1171 req->rl_reply = NULL;
1173 switch (ia->ri_memreg_strategy) {
1174 case RPCRDMA_MTHCAFMR:
1175 case RPCRDMA_MEMWINDOWS_ASYNC:
1176 case RPCRDMA_MEMWINDOWS:
1178 * Cycle mw's back in reverse order, and "spin" them.
1179 * This delays and scrambles reuse as much as possible.
1183 struct rpcrdma_mw **mw;
1184 mw = &req->rl_segments[i].mr_chunk.rl_mw;
1185 list_add_tail(&(*mw)->mw_list, &buffers->rb_mws);
1187 } while (++i < RPCRDMA_MAX_SEGS);
1188 list_add_tail(&req->rl_segments[0].mr_chunk.rl_mw->mw_list,
1190 req->rl_segments[0].mr_chunk.rl_mw = NULL;
1195 spin_unlock_irqrestore(&buffers->rb_lock, flags);
1199 * Recover reply buffers from pool.
1200 * This happens when recovering from error conditions.
1201 * Post-increment counter/array index.
1204 rpcrdma_recv_buffer_get(struct rpcrdma_req *req)
1206 struct rpcrdma_buffer *buffers = req->rl_buffer;
1207 unsigned long flags;
1209 if (req->rl_iov.length == 0) /* special case xprt_rdma_allocate() */
1210 buffers = ((struct rpcrdma_req *) buffers)->rl_buffer;
1211 spin_lock_irqsave(&buffers->rb_lock, flags);
1212 if (buffers->rb_recv_index < buffers->rb_max_requests) {
1213 req->rl_reply = buffers->rb_recv_bufs[buffers->rb_recv_index];
1214 buffers->rb_recv_bufs[buffers->rb_recv_index++] = NULL;
1216 spin_unlock_irqrestore(&buffers->rb_lock, flags);
1220 * Put reply buffers back into pool when not attached to
1221 * request. This happens in error conditions, and when
1222 * aborting unbinds. Pre-decrement counter/array index.
1225 rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
1227 struct rpcrdma_buffer *buffers = rep->rr_buffer;
1228 unsigned long flags;
1230 rep->rr_func = NULL;
1231 spin_lock_irqsave(&buffers->rb_lock, flags);
1232 buffers->rb_recv_bufs[--buffers->rb_recv_index] = rep;
1233 spin_unlock_irqrestore(&buffers->rb_lock, flags);
1237 * Wrappers for internal-use kmalloc memory registration, used by buffer code.
1241 rpcrdma_register_internal(struct rpcrdma_ia *ia, void *va, int len,
1242 struct ib_mr **mrp, struct ib_sge *iov)
1244 struct ib_phys_buf ipb;
1249 * All memory passed here was kmalloc'ed, therefore phys-contiguous.
1251 iov->addr = ib_dma_map_single(ia->ri_id->device,
1252 va, len, DMA_BIDIRECTIONAL);
1255 if (ia->ri_bind_mem != NULL) {
1257 iov->lkey = ia->ri_bind_mem->lkey;
1261 ipb.addr = iov->addr;
1262 ipb.size = iov->length;
1263 mr = ib_reg_phys_mr(ia->ri_pd, &ipb, 1,
1264 IB_ACCESS_LOCAL_WRITE, &iov->addr);
1266 dprintk("RPC: %s: phys convert: 0x%llx "
1267 "registered 0x%llx length %d\n",
1268 __func__, (unsigned long long)ipb.addr,
1269 (unsigned long long)iov->addr, len);
1274 dprintk("RPC: %s: failed with %i\n", __func__, rc);
1277 iov->lkey = mr->lkey;
1285 rpcrdma_deregister_internal(struct rpcrdma_ia *ia,
1286 struct ib_mr *mr, struct ib_sge *iov)
1290 ib_dma_unmap_single(ia->ri_id->device,
1291 iov->addr, iov->length, DMA_BIDIRECTIONAL);
1296 rc = ib_dereg_mr(mr);
1298 dprintk("RPC: %s: ib_dereg_mr failed %i\n", __func__, rc);
1303 * Wrappers for chunk registration, shared by read/write chunk code.
1307 rpcrdma_map_one(struct rpcrdma_ia *ia, struct rpcrdma_mr_seg *seg, int writing)
1309 seg->mr_dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1310 seg->mr_dmalen = seg->mr_len;
1312 seg->mr_dma = ib_dma_map_page(ia->ri_id->device,
1313 seg->mr_page, offset_in_page(seg->mr_offset),
1314 seg->mr_dmalen, seg->mr_dir);
1316 seg->mr_dma = ib_dma_map_single(ia->ri_id->device,
1318 seg->mr_dmalen, seg->mr_dir);
1322 rpcrdma_unmap_one(struct rpcrdma_ia *ia, struct rpcrdma_mr_seg *seg)
1325 ib_dma_unmap_page(ia->ri_id->device,
1326 seg->mr_dma, seg->mr_dmalen, seg->mr_dir);
1328 ib_dma_unmap_single(ia->ri_id->device,
1329 seg->mr_dma, seg->mr_dmalen, seg->mr_dir);
1333 rpcrdma_register_external(struct rpcrdma_mr_seg *seg,
1334 int nsegs, int writing, struct rpcrdma_xprt *r_xprt)
1336 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
1337 int mem_priv = (writing ? IB_ACCESS_REMOTE_WRITE :
1338 IB_ACCESS_REMOTE_READ);
1339 struct rpcrdma_mr_seg *seg1 = seg;
1343 switch (ia->ri_memreg_strategy) {
1345 #if RPCRDMA_PERSISTENT_REGISTRATION
1346 case RPCRDMA_ALLPHYSICAL:
1347 rpcrdma_map_one(ia, seg, writing);
1348 seg->mr_rkey = ia->ri_bind_mem->rkey;
1349 seg->mr_base = seg->mr_dma;
1355 /* Registration using fast memory registration */
1356 case RPCRDMA_MTHCAFMR:
1358 u64 physaddrs[RPCRDMA_MAX_DATA_SEGS];
1359 int len, pageoff = offset_in_page(seg->mr_offset);
1360 seg1->mr_offset -= pageoff; /* start of page */
1361 seg1->mr_len += pageoff;
1363 if (nsegs > RPCRDMA_MAX_DATA_SEGS)
1364 nsegs = RPCRDMA_MAX_DATA_SEGS;
1365 for (i = 0; i < nsegs;) {
1366 rpcrdma_map_one(ia, seg, writing);
1367 physaddrs[i] = seg->mr_dma;
1371 /* Check for holes */
1372 if ((i < nsegs && offset_in_page(seg->mr_offset)) ||
1373 offset_in_page((seg-1)->mr_offset+(seg-1)->mr_len))
1377 rc = ib_map_phys_fmr(seg1->mr_chunk.rl_mw->r.fmr,
1378 physaddrs, nsegs, seg1->mr_dma);
1380 dprintk("RPC: %s: failed ib_map_phys_fmr "
1381 "%u@0x%llx+%i (%d)... status %i\n", __func__,
1382 len, (unsigned long long)seg1->mr_dma,
1383 pageoff, nsegs, rc);
1385 rpcrdma_unmap_one(ia, --seg);
1387 seg1->mr_rkey = seg1->mr_chunk.rl_mw->r.fmr->rkey;
1388 seg1->mr_base = seg1->mr_dma + pageoff;
1389 seg1->mr_nsegs = nsegs;
1395 /* Registration using memory windows */
1396 case RPCRDMA_MEMWINDOWS_ASYNC:
1397 case RPCRDMA_MEMWINDOWS:
1399 struct ib_mw_bind param;
1400 rpcrdma_map_one(ia, seg, writing);
1401 param.mr = ia->ri_bind_mem;
1402 param.wr_id = 0ULL; /* no send cookie */
1403 param.addr = seg->mr_dma;
1404 param.length = seg->mr_len;
1405 param.send_flags = 0;
1406 param.mw_access_flags = mem_priv;
1408 DECR_CQCOUNT(&r_xprt->rx_ep);
1409 rc = ib_bind_mw(ia->ri_id->qp,
1410 seg->mr_chunk.rl_mw->r.mw, ¶m);
1412 dprintk("RPC: %s: failed ib_bind_mw "
1413 "%u@0x%llx status %i\n",
1414 __func__, seg->mr_len,
1415 (unsigned long long)seg->mr_dma, rc);
1416 rpcrdma_unmap_one(ia, seg);
1418 seg->mr_rkey = seg->mr_chunk.rl_mw->r.mw->rkey;
1419 seg->mr_base = param.addr;
1426 /* Default registration each time */
1429 struct ib_phys_buf ipb[RPCRDMA_MAX_DATA_SEGS];
1431 if (nsegs > RPCRDMA_MAX_DATA_SEGS)
1432 nsegs = RPCRDMA_MAX_DATA_SEGS;
1433 for (i = 0; i < nsegs;) {
1434 rpcrdma_map_one(ia, seg, writing);
1435 ipb[i].addr = seg->mr_dma;
1436 ipb[i].size = seg->mr_len;
1440 /* Check for holes */
1441 if ((i < nsegs && offset_in_page(seg->mr_offset)) ||
1442 offset_in_page((seg-1)->mr_offset+(seg-1)->mr_len))
1446 seg1->mr_base = seg1->mr_dma;
1447 seg1->mr_chunk.rl_mr = ib_reg_phys_mr(ia->ri_pd,
1448 ipb, nsegs, mem_priv, &seg1->mr_base);
1449 if (IS_ERR(seg1->mr_chunk.rl_mr)) {
1450 rc = PTR_ERR(seg1->mr_chunk.rl_mr);
1451 dprintk("RPC: %s: failed ib_reg_phys_mr "
1452 "%u@0x%llx (%d)... status %i\n",
1454 (unsigned long long)seg1->mr_dma, nsegs, rc);
1456 rpcrdma_unmap_one(ia, --seg);
1458 seg1->mr_rkey = seg1->mr_chunk.rl_mr->rkey;
1459 seg1->mr_nsegs = nsegs;
1472 rpcrdma_deregister_external(struct rpcrdma_mr_seg *seg,
1473 struct rpcrdma_xprt *r_xprt, void *r)
1475 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
1476 struct rpcrdma_mr_seg *seg1 = seg;
1477 int nsegs = seg->mr_nsegs, rc;
1479 switch (ia->ri_memreg_strategy) {
1481 #if RPCRDMA_PERSISTENT_REGISTRATION
1482 case RPCRDMA_ALLPHYSICAL:
1484 rpcrdma_unmap_one(ia, seg);
1489 case RPCRDMA_MTHCAFMR:
1492 list_add(&seg->mr_chunk.rl_mw->r.fmr->list, &l);
1493 rc = ib_unmap_fmr(&l);
1494 while (seg1->mr_nsegs--)
1495 rpcrdma_unmap_one(ia, seg++);
1498 dprintk("RPC: %s: failed ib_unmap_fmr,"
1499 " status %i\n", __func__, rc);
1502 case RPCRDMA_MEMWINDOWS_ASYNC:
1503 case RPCRDMA_MEMWINDOWS:
1505 struct ib_mw_bind param;
1507 param.mr = ia->ri_bind_mem;
1508 param.addr = 0ULL; /* unbind */
1510 param.mw_access_flags = 0;
1512 param.wr_id = (u64) (unsigned long) r;
1513 param.send_flags = IB_SEND_SIGNALED;
1514 INIT_CQCOUNT(&r_xprt->rx_ep);
1517 param.send_flags = 0;
1518 DECR_CQCOUNT(&r_xprt->rx_ep);
1520 rc = ib_bind_mw(ia->ri_id->qp,
1521 seg->mr_chunk.rl_mw->r.mw, ¶m);
1522 rpcrdma_unmap_one(ia, seg);
1525 dprintk("RPC: %s: failed ib_(un)bind_mw,"
1526 " status %i\n", __func__, rc);
1528 r = NULL; /* will upcall on completion */
1532 rc = ib_dereg_mr(seg1->mr_chunk.rl_mr);
1533 seg1->mr_chunk.rl_mr = NULL;
1534 while (seg1->mr_nsegs--)
1535 rpcrdma_unmap_one(ia, seg++);
1537 dprintk("RPC: %s: failed ib_dereg_mr,"
1538 " status %i\n", __func__, rc);
1542 struct rpcrdma_rep *rep = r;
1543 void (*func)(struct rpcrdma_rep *) = rep->rr_func;
1544 rep->rr_func = NULL;
1545 func(rep); /* dereg done, callback now */
1551 * Prepost any receive buffer, then post send.
1553 * Receive buffer is donated to hardware, reclaimed upon recv completion.
1556 rpcrdma_ep_post(struct rpcrdma_ia *ia,
1557 struct rpcrdma_ep *ep,
1558 struct rpcrdma_req *req)
1560 struct ib_send_wr send_wr, *send_wr_fail;
1561 struct rpcrdma_rep *rep = req->rl_reply;
1565 rc = rpcrdma_ep_post_recv(ia, ep, rep);
1568 req->rl_reply = NULL;
1571 send_wr.next = NULL;
1572 send_wr.wr_id = 0ULL; /* no send cookie */
1573 send_wr.sg_list = req->rl_send_iov;
1574 send_wr.num_sge = req->rl_niovs;
1575 send_wr.opcode = IB_WR_SEND;
1576 if (send_wr.num_sge == 4) /* no need to sync any pad (constant) */
1577 ib_dma_sync_single_for_device(ia->ri_id->device,
1578 req->rl_send_iov[3].addr, req->rl_send_iov[3].length,
1580 ib_dma_sync_single_for_device(ia->ri_id->device,
1581 req->rl_send_iov[1].addr, req->rl_send_iov[1].length,
1583 ib_dma_sync_single_for_device(ia->ri_id->device,
1584 req->rl_send_iov[0].addr, req->rl_send_iov[0].length,
1587 if (DECR_CQCOUNT(ep) > 0)
1588 send_wr.send_flags = 0;
1589 else { /* Provider must take a send completion every now and then */
1591 send_wr.send_flags = IB_SEND_SIGNALED;
1594 rc = ib_post_send(ia->ri_id->qp, &send_wr, &send_wr_fail);
1596 dprintk("RPC: %s: ib_post_send returned %i\n", __func__,
1603 * (Re)post a receive buffer.
1606 rpcrdma_ep_post_recv(struct rpcrdma_ia *ia,
1607 struct rpcrdma_ep *ep,
1608 struct rpcrdma_rep *rep)
1610 struct ib_recv_wr recv_wr, *recv_wr_fail;
1613 recv_wr.next = NULL;
1614 recv_wr.wr_id = (u64) (unsigned long) rep;
1615 recv_wr.sg_list = &rep->rr_iov;
1616 recv_wr.num_sge = 1;
1618 ib_dma_sync_single_for_cpu(ia->ri_id->device,
1619 rep->rr_iov.addr, rep->rr_iov.length, DMA_BIDIRECTIONAL);
1622 rc = ib_post_recv(ia->ri_id->qp, &recv_wr, &recv_wr_fail);
1625 dprintk("RPC: %s: ib_post_recv returned %i\n", __func__,