3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
9 * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
11 * Derived from "arch/i386/mm/init.c"
12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
29 #include <linux/stddef.h>
30 #include <linux/init.h>
31 #include <linux/bootmem.h>
32 #include <linux/highmem.h>
33 #include <linux/initrd.h>
34 #include <linux/pagemap.h>
36 #include <asm/pgalloc.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
43 #include <asm/machdep.h>
44 #include <asm/btext.h>
48 #include <asm/sections.h>
55 #ifndef CPU_FTR_COHERENT_ICACHE
56 #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */
57 #define CPU_FTR_NOEXECUTE 0
60 int init_bootmem_done;
62 unsigned long memory_limit;
64 extern void hash_preload(struct mm_struct *mm, unsigned long ea,
65 unsigned long access, unsigned long trap);
68 * This is called by /dev/mem to know if a given address has to
69 * be mapped non-cacheable or not
71 int page_is_ram(unsigned long pfn)
73 unsigned long paddr = (pfn << PAGE_SHIFT);
75 #ifndef CONFIG_PPC64 /* XXX for now */
76 return paddr < __pa(high_memory);
79 for (i=0; i < lmb.memory.cnt; i++) {
82 base = lmb.memory.region[i].base;
84 if ((paddr >= base) &&
85 (paddr < (base + lmb.memory.region[i].size))) {
93 EXPORT_SYMBOL(page_is_ram);
95 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
96 unsigned long size, pgprot_t vma_prot)
98 if (ppc_md.phys_mem_access_prot)
99 return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
101 if (!page_is_ram(pfn))
102 vma_prot = __pgprot(pgprot_val(vma_prot)
103 | _PAGE_GUARDED | _PAGE_NO_CACHE);
106 EXPORT_SYMBOL(phys_mem_access_prot);
108 #ifdef CONFIG_MEMORY_HOTPLUG
110 void online_page(struct page *page)
112 ClearPageReserved(page);
113 set_page_count(page, 0);
114 free_cold_page(page);
120 * This works only for the non-NUMA case. Later, we'll need a lookup
121 * to convert from real physical addresses to nid, that doesn't use
124 int __devinit add_memory(u64 start, u64 size)
126 struct pglist_data *pgdata = NODE_DATA(0);
128 unsigned long start_pfn = start >> PAGE_SHIFT;
129 unsigned long nr_pages = size >> PAGE_SHIFT;
132 create_section_mapping(start, start + size);
134 /* this should work for most non-highmem platforms */
135 zone = pgdata->node_zones;
137 return __add_pages(zone, start_pfn, nr_pages);
143 * First pass at this code will check to determine if the remove
144 * request is within the RMO. Do not allow removal within the RMO.
146 int __devinit remove_memory(u64 start, u64 size)
149 unsigned long start_pfn, end_pfn, nr_pages;
151 start_pfn = start >> PAGE_SHIFT;
152 nr_pages = size >> PAGE_SHIFT;
153 end_pfn = start_pfn + nr_pages;
155 printk("%s(): Attempting to remove memoy in range "
156 "%lx to %lx\n", __func__, start, start+size);
158 * check for range within RMO
160 zone = page_zone(pfn_to_page(start_pfn));
162 printk("%s(): memory will be removed from "
163 "the %s zone\n", __func__, zone->name);
166 * not handling removing memory ranges that
167 * overlap multiple zones yet
169 if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages))
172 /* make sure it is NOT in RMO */
173 if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) {
174 printk("%s(): range to be removed must NOT be in RMO!\n",
179 return __remove_pages(zone, start_pfn, nr_pages);
182 printk("%s(): memory range to be removed overlaps "
183 "multiple zones!!!\n", __func__);
187 #endif /* CONFIG_MEMORY_HOTPLUG */
191 unsigned long total = 0, reserved = 0;
192 unsigned long shared = 0, cached = 0;
193 unsigned long highmem = 0;
198 printk("Mem-info:\n");
200 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
201 for_each_pgdat(pgdat) {
203 pgdat_resize_lock(pgdat, &flags);
204 for (i = 0; i < pgdat->node_spanned_pages; i++) {
205 page = pgdat_page_nr(pgdat, i);
207 if (PageHighMem(page))
209 if (PageReserved(page))
211 else if (PageSwapCache(page))
213 else if (page_count(page))
214 shared += page_count(page) - 1;
216 pgdat_resize_unlock(pgdat, &flags);
218 printk("%ld pages of RAM\n", total);
219 #ifdef CONFIG_HIGHMEM
220 printk("%ld pages of HIGHMEM\n", highmem);
222 printk("%ld reserved pages\n", reserved);
223 printk("%ld pages shared\n", shared);
224 printk("%ld pages swap cached\n", cached);
228 * Initialize the bootmem system and give it all the memory we
229 * have available. If we are using highmem, we only put the
230 * lowmem into the bootmem system.
232 #ifndef CONFIG_NEED_MULTIPLE_NODES
233 void __init do_init_bootmem(void)
236 unsigned long start, bootmap_pages;
237 unsigned long total_pages;
240 max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
241 #ifdef CONFIG_HIGHMEM
242 total_pages = total_lowmem >> PAGE_SHIFT;
246 * Find an area to use for the bootmem bitmap. Calculate the size of
247 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
248 * Add 1 additional page in case the address isn't page-aligned.
250 bootmap_pages = bootmem_bootmap_pages(total_pages);
252 start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
255 boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
257 /* Add all physical memory to the bootmem map, mark each area
260 for (i = 0; i < lmb.memory.cnt; i++) {
261 unsigned long base = lmb.memory.region[i].base;
262 unsigned long size = lmb_size_bytes(&lmb.memory, i);
263 #ifdef CONFIG_HIGHMEM
264 if (base >= total_lowmem)
266 if (base + size > total_lowmem)
267 size = total_lowmem - base;
269 free_bootmem(base, size);
272 /* reserve the sections we're already using */
273 for (i = 0; i < lmb.reserved.cnt; i++)
274 reserve_bootmem(lmb.reserved.region[i].base,
275 lmb_size_bytes(&lmb.reserved, i));
277 /* XXX need to clip this if using highmem? */
278 for (i = 0; i < lmb.memory.cnt; i++)
279 memory_present(0, lmb_start_pfn(&lmb.memory, i),
280 lmb_end_pfn(&lmb.memory, i));
281 init_bootmem_done = 1;
285 * paging_init() sets up the page tables - in fact we've already done this.
287 void __init paging_init(void)
289 unsigned long zones_size[MAX_NR_ZONES];
290 unsigned long zholes_size[MAX_NR_ZONES];
291 unsigned long total_ram = lmb_phys_mem_size();
292 unsigned long top_of_ram = lmb_end_of_DRAM();
294 #ifdef CONFIG_HIGHMEM
295 map_page(PKMAP_BASE, 0, 0); /* XXX gross */
296 pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k
297 (PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
298 map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */
299 kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k
300 (KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);
301 kmap_prot = PAGE_KERNEL;
302 #endif /* CONFIG_HIGHMEM */
304 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
305 top_of_ram, total_ram);
306 printk(KERN_INFO "Memory hole size: %ldMB\n",
307 (top_of_ram - total_ram) >> 20);
309 * All pages are DMA-able so we put them all in the DMA zone.
311 memset(zones_size, 0, sizeof(zones_size));
312 memset(zholes_size, 0, sizeof(zholes_size));
314 zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
315 zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
317 #ifdef CONFIG_HIGHMEM
318 zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
319 zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT;
320 zholes_size[ZONE_HIGHMEM] = (top_of_ram - total_ram) >> PAGE_SHIFT;
322 zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
323 zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
324 #endif /* CONFIG_HIGHMEM */
326 free_area_init_node(0, NODE_DATA(0), zones_size,
327 __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
329 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
331 void __init mem_init(void)
333 #ifdef CONFIG_NEED_MULTIPLE_NODES
339 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
341 num_physpages = max_pfn; /* RAM is assumed contiguous */
342 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
344 #ifdef CONFIG_NEED_MULTIPLE_NODES
345 for_each_online_node(nid) {
346 if (NODE_DATA(nid)->node_spanned_pages != 0) {
347 printk("freeing bootmem node %x\n", nid);
349 free_all_bootmem_node(NODE_DATA(nid));
353 max_mapnr = num_physpages;
354 totalram_pages += free_all_bootmem();
356 for_each_pgdat(pgdat) {
357 for (i = 0; i < pgdat->node_spanned_pages; i++) {
358 page = pgdat_page_nr(pgdat, i);
359 if (PageReserved(page))
364 codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
365 datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
366 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
367 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
369 #ifdef CONFIG_HIGHMEM
371 unsigned long pfn, highmem_mapnr;
373 highmem_mapnr = total_lowmem >> PAGE_SHIFT;
374 for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
375 struct page *page = pfn_to_page(pfn);
377 ClearPageReserved(page);
378 set_page_count(page, 1);
382 totalram_pages += totalhigh_pages;
383 printk(KERN_INFO "High memory: %luk\n",
384 totalhigh_pages << (PAGE_SHIFT-10));
386 #endif /* CONFIG_HIGHMEM */
388 printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
389 "%luk reserved, %luk data, %luk bss, %luk init)\n",
390 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
391 num_physpages << (PAGE_SHIFT-10),
393 reservedpages << (PAGE_SHIFT-10),
401 /* Initialize the vDSO */
407 * This is called when a page has been modified by the kernel.
408 * It just marks the page as not i-cache clean. We do the i-cache
409 * flush later when the page is given to a user process, if necessary.
411 void flush_dcache_page(struct page *page)
413 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
415 /* avoid an atomic op if possible */
416 if (test_bit(PG_arch_1, &page->flags))
417 clear_bit(PG_arch_1, &page->flags);
419 EXPORT_SYMBOL(flush_dcache_page);
421 void flush_dcache_icache_page(struct page *page)
424 void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
425 __flush_dcache_icache(start);
426 kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
427 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
428 /* On 8xx there is no need to kmap since highmem is not supported */
429 __flush_dcache_icache(page_address(page));
431 __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
435 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
439 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
442 * We shouldnt have to do this, but some versions of glibc
443 * require it (ld.so assumes zero filled pages are icache clean)
447 /* avoid an atomic op if possible */
448 if (test_bit(PG_arch_1, &pg->flags))
449 clear_bit(PG_arch_1, &pg->flags);
451 EXPORT_SYMBOL(clear_user_page);
453 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
456 copy_page(vto, vfrom);
459 * We should be able to use the following optimisation, however
460 * there are two problems.
461 * Firstly a bug in some versions of binutils meant PLT sections
462 * were not marked executable.
463 * Secondly the first word in the GOT section is blrl, used
464 * to establish the GOT address. Until recently the GOT was
465 * not marked executable.
469 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
473 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
476 /* avoid an atomic op if possible */
477 if (test_bit(PG_arch_1, &pg->flags))
478 clear_bit(PG_arch_1, &pg->flags);
481 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
482 unsigned long addr, int len)
486 maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
487 flush_icache_range(maddr, maddr + len);
490 EXPORT_SYMBOL(flush_icache_user_range);
493 * This is called at the end of handling a user page fault, when the
494 * fault has been handled by updating a PTE in the linux page tables.
495 * We use it to preload an HPTE into the hash table corresponding to
496 * the updated linux PTE.
498 * This must always be called with the mm->page_table_lock held
500 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
503 #ifdef CONFIG_PPC_STD_MMU
504 unsigned long access = 0, trap;
506 unsigned long pfn = pte_pfn(pte);
508 /* handle i-cache coherency */
509 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
510 !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
512 struct page *page = pfn_to_page(pfn);
513 if (!PageReserved(page)
514 && !test_bit(PG_arch_1, &page->flags)) {
515 if (vma->vm_mm == current->active_mm) {
517 /* On 8xx, cache control instructions (particularly
518 * "dcbst" from flush_dcache_icache) fault as write
519 * operation if there is an unpopulated TLB entry
520 * for the address in question. To workaround that,
521 * we invalidate the TLB here, thus avoiding dcbst
526 __flush_dcache_icache((void *) address);
528 flush_dcache_icache_page(page);
529 set_bit(PG_arch_1, &page->flags);
533 #ifdef CONFIG_PPC_STD_MMU
534 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
535 if (!pte_young(pte) || address >= TASK_SIZE)
538 /* We try to figure out if we are coming from an instruction
539 * access fault and pass that down to __hash_page so we avoid
540 * double-faulting on execution of fresh text. We have to test
541 * for regs NULL since init will get here first thing at boot
543 * We also avoid filling the hash if not coming from a fault
545 if (current->thread.regs == NULL)
547 trap = TRAP(current->thread.regs);
549 access |= _PAGE_EXEC;
550 else if (trap != 0x300)
552 hash_preload(vma->vm_mm, address, access, trap);
553 #endif /* CONFIG_PPC_STD_MMU */