1 #ifndef _I386_PGTABLE_H
2 #define _I386_PGTABLE_H
6 * The Linux memory management assumes a three-level page table setup. On
7 * the i386, we use that, but "fold" the mid level into the top-level page
8 * table, so that we physically have the same two-level page table as the
11 * This file contains the functions and defines necessary to modify and use
12 * the i386 page table tree.
15 #include <asm/processor.h>
16 #include <asm/fixmap.h>
17 #include <linux/threads.h>
18 #include <asm/paravirt.h>
20 #include <linux/bitops.h>
21 #include <linux/slab.h>
22 #include <linux/list.h>
23 #include <linux/spinlock.h>
26 struct vm_area_struct;
28 extern pgd_t swapper_pg_dir[1024];
30 static inline void pgtable_cache_init(void) { }
31 static inline void check_pgt_cache(void) { }
32 void paging_init(void);
36 * The Linux x86 paging architecture is 'compile-time dual-mode', it
37 * implements both the traditional 2-level x86 page tables and the
38 * newer 3-level PAE-mode page tables.
41 # include <asm/pgtable-3level-defs.h>
42 # define PMD_SIZE (1UL << PMD_SHIFT)
43 # define PMD_MASK (~(PMD_SIZE - 1))
45 # include <asm/pgtable-2level-defs.h>
48 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
49 #define PGDIR_MASK (~(PGDIR_SIZE - 1))
51 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
52 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
54 /* Just any arbitrary offset to the start of the vmalloc VM area: the
55 * current 8MB value just means that there will be a 8MB "hole" after the
56 * physical memory until the kernel virtual memory starts. That means that
57 * any out-of-bounds memory accesses will hopefully be caught.
58 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
59 * area for the same reason. ;)
61 #define VMALLOC_OFFSET (8 * 1024 * 1024)
62 #define VMALLOC_START (((unsigned long)high_memory + 2 * VMALLOC_OFFSET - 1) \
63 & ~(VMALLOC_OFFSET - 1))
65 #define LAST_PKMAP 512
67 #define LAST_PKMAP 1024
70 #define PKMAP_BASE ((FIXADDR_BOOT_START - PAGE_SIZE * (LAST_PKMAP + 1)) \
74 # define VMALLOC_END (PKMAP_BASE - 2 * PAGE_SIZE)
76 # define VMALLOC_END (FIXADDR_START - 2 * PAGE_SIZE)
80 * Define this if things work differently on an i386 and an i486:
81 * it will (on an i486) warn about kernel memory accesses that are
82 * done without a 'access_ok(VERIFY_WRITE,..)'
86 /* The boot page tables (all created as a single array) */
87 extern unsigned long pg0[];
89 #define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
91 /* To avoid harmful races, pmd_none(x) should check only the lower when PAE */
92 #define pmd_none(x) (!(unsigned long)pmd_val((x)))
93 #define pmd_present(x) (pmd_val((x)) & _PAGE_PRESENT)
95 extern int pmd_bad(pmd_t pmd);
97 #define pmd_bad_v1(x) \
98 (_KERNPG_TABLE != (pmd_val((x)) & ~(PAGE_MASK | _PAGE_USER)))
99 #define pmd_bad_v2(x) \
100 (_KERNPG_TABLE != (pmd_val((x)) & ~(PAGE_MASK | _PAGE_USER | \
101 _PAGE_PSE | _PAGE_NX)))
103 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
105 #ifdef CONFIG_X86_PAE
106 # include <asm/pgtable-3level.h>
108 # include <asm/pgtable-2level.h>
112 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
114 * dst - pointer to pgd range anwhere on a pgd page
116 * count - the number of pgds to copy.
118 * dst and src can be on the same page, but the range must not overlap,
119 * and must not cross a page boundary.
121 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
123 memcpy(dst, src, count * sizeof(pgd_t));
127 * Macro to mark a page protection value as "uncacheable".
128 * On processors which do not support it, this is a no-op.
130 #define pgprot_noncached(prot) \
131 ((boot_cpu_data.x86 > 3) \
132 ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) \
136 * Conversion functions: convert a page and protection to a page entry,
137 * and a page entry and page directory to the page they refer to.
139 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
142 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
144 * this macro returns the index of the entry in the pgd page which would
145 * control the given virtual address
147 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
148 #define pgd_index_k(addr) pgd_index((addr))
151 * pgd_offset() returns a (pgd_t *)
152 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
154 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address)))
157 * a shortcut which implies the use of the kernel's pgd, instead
160 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
162 static inline int pud_large(pud_t pud) { return 0; }
165 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
167 * this macro returns the index of the entry in the pmd page which would
168 * control the given virtual address
170 #define pmd_index(address) \
171 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
174 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
176 * this macro returns the index of the entry in the pte page which would
177 * control the given virtual address
179 #define pte_index(address) \
180 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
181 #define pte_offset_kernel(dir, address) \
182 ((pte_t *)pmd_page_vaddr(*(dir)) + pte_index((address)))
184 #define pmd_page(pmd) (pfn_to_page(pmd_val((pmd)) >> PAGE_SHIFT))
186 #define pmd_page_vaddr(pmd) \
187 ((unsigned long)__va(pmd_val((pmd)) & PAGE_MASK))
189 #if defined(CONFIG_HIGHPTE)
190 #define pte_offset_map(dir, address) \
191 ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)), KM_PTE0) + \
192 pte_index((address)))
193 #define pte_offset_map_nested(dir, address) \
194 ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)), KM_PTE1) + \
195 pte_index((address)))
196 #define pte_unmap(pte) kunmap_atomic((pte), KM_PTE0)
197 #define pte_unmap_nested(pte) kunmap_atomic((pte), KM_PTE1)
199 #define pte_offset_map(dir, address) \
200 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index((address)))
201 #define pte_offset_map_nested(dir, address) pte_offset_map((dir), (address))
202 #define pte_unmap(pte) do { } while (0)
203 #define pte_unmap_nested(pte) do { } while (0)
206 /* Clear a kernel PTE and flush it from the TLB */
207 #define kpte_clear_flush(ptep, vaddr) \
209 pte_clear(&init_mm, (vaddr), (ptep)); \
210 __flush_tlb_one((vaddr)); \
214 * The i386 doesn't have any external MMU info: the kernel page
215 * tables contain all the necessary information.
217 #define update_mmu_cache(vma, address, pte) do { } while (0)
219 void native_pagetable_setup_start(pgd_t *base);
220 void native_pagetable_setup_done(pgd_t *base);
222 #ifndef CONFIG_PARAVIRT
223 static inline void paravirt_pagetable_setup_start(pgd_t *base)
225 native_pagetable_setup_start(base);
228 static inline void paravirt_pagetable_setup_done(pgd_t *base)
230 native_pagetable_setup_done(base);
232 #endif /* !CONFIG_PARAVIRT */
234 #endif /* !__ASSEMBLY__ */
237 * kern_addr_valid() is (1) for FLATMEM and (0) for
238 * SPARSEMEM and DISCONTIGMEM
240 #ifdef CONFIG_FLATMEM
241 #define kern_addr_valid(addr) (1)
243 #define kern_addr_valid(kaddr) (0)
246 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
247 remap_pfn_range(vma, vaddr, pfn, size, prot)
249 #endif /* _I386_PGTABLE_H */