2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright © 2001-2007 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
15 #include <linux/time.h>
16 #include <linux/pagemap.h>
17 #include <linux/highmem.h>
18 #include <linux/crc32.h>
19 #include <linux/jffs2.h>
22 static int jffs2_commit_write (struct file *filp, struct page *pg,
23 unsigned start, unsigned end);
24 static int jffs2_prepare_write (struct file *filp, struct page *pg,
25 unsigned start, unsigned end);
26 static int jffs2_readpage (struct file *filp, struct page *pg);
28 int jffs2_fsync(struct file *filp, struct dentry *dentry, int datasync)
30 struct inode *inode = dentry->d_inode;
31 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
33 /* Trigger GC to flush any pending writes for this inode */
34 jffs2_flush_wbuf_gc(c, inode->i_ino);
39 const struct file_operations jffs2_file_operations =
41 .llseek = generic_file_llseek,
42 .open = generic_file_open,
44 .aio_read = generic_file_aio_read,
45 .write = do_sync_write,
46 .aio_write = generic_file_aio_write,
48 .mmap = generic_file_readonly_mmap,
50 .splice_read = generic_file_splice_read,
53 /* jffs2_file_inode_operations */
55 const struct inode_operations jffs2_file_inode_operations =
57 .permission = jffs2_permission,
58 .setattr = jffs2_setattr,
59 .setxattr = jffs2_setxattr,
60 .getxattr = jffs2_getxattr,
61 .listxattr = jffs2_listxattr,
62 .removexattr = jffs2_removexattr
65 const struct address_space_operations jffs2_file_address_operations =
67 .readpage = jffs2_readpage,
68 .prepare_write =jffs2_prepare_write,
69 .commit_write = jffs2_commit_write
72 static int jffs2_do_readpage_nolock (struct inode *inode, struct page *pg)
74 struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
75 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
76 unsigned char *pg_buf;
79 D2(printk(KERN_DEBUG "jffs2_do_readpage_nolock(): ino #%lu, page at offset 0x%lx\n", inode->i_ino, pg->index << PAGE_CACHE_SHIFT));
81 BUG_ON(!PageLocked(pg));
84 /* FIXME: Can kmap fail? */
86 ret = jffs2_read_inode_range(c, f, pg_buf, pg->index << PAGE_CACHE_SHIFT, PAGE_CACHE_SIZE);
89 ClearPageUptodate(pg);
96 flush_dcache_page(pg);
99 D2(printk(KERN_DEBUG "readpage finished\n"));
103 int jffs2_do_readpage_unlock(struct inode *inode, struct page *pg)
105 int ret = jffs2_do_readpage_nolock(inode, pg);
111 static int jffs2_readpage (struct file *filp, struct page *pg)
113 struct jffs2_inode_info *f = JFFS2_INODE_INFO(pg->mapping->host);
117 ret = jffs2_do_readpage_unlock(pg->mapping->host, pg);
122 static int jffs2_prepare_write (struct file *filp, struct page *pg,
123 unsigned start, unsigned end)
125 struct inode *inode = pg->mapping->host;
126 struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
127 uint32_t pageofs = pg->index << PAGE_CACHE_SHIFT;
130 D1(printk(KERN_DEBUG "jffs2_prepare_write()\n"));
132 if (pageofs > inode->i_size) {
133 /* Make new hole frag from old EOF to new page */
134 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
135 struct jffs2_raw_inode ri;
136 struct jffs2_full_dnode *fn;
139 D1(printk(KERN_DEBUG "Writing new hole frag 0x%x-0x%x between current EOF and new page\n",
140 (unsigned int)inode->i_size, pageofs));
142 ret = jffs2_reserve_space(c, sizeof(ri), &alloc_len,
143 ALLOC_NORMAL, JFFS2_SUMMARY_INODE_SIZE);
148 memset(&ri, 0, sizeof(ri));
150 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
151 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
152 ri.totlen = cpu_to_je32(sizeof(ri));
153 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
155 ri.ino = cpu_to_je32(f->inocache->ino);
156 ri.version = cpu_to_je32(++f->highest_version);
157 ri.mode = cpu_to_jemode(inode->i_mode);
158 ri.uid = cpu_to_je16(inode->i_uid);
159 ri.gid = cpu_to_je16(inode->i_gid);
160 ri.isize = cpu_to_je32(max((uint32_t)inode->i_size, pageofs));
161 ri.atime = ri.ctime = ri.mtime = cpu_to_je32(get_seconds());
162 ri.offset = cpu_to_je32(inode->i_size);
163 ri.dsize = cpu_to_je32(pageofs - inode->i_size);
164 ri.csize = cpu_to_je32(0);
165 ri.compr = JFFS2_COMPR_ZERO;
166 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
167 ri.data_crc = cpu_to_je32(0);
169 fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_NORMAL);
173 jffs2_complete_reservation(c);
177 ret = jffs2_add_full_dnode_to_inode(c, f, fn);
179 jffs2_mark_node_obsolete(c, f->metadata->raw);
180 jffs2_free_full_dnode(f->metadata);
184 D1(printk(KERN_DEBUG "Eep. add_full_dnode_to_inode() failed in prepare_write, returned %d\n", ret));
185 jffs2_mark_node_obsolete(c, fn->raw);
186 jffs2_free_full_dnode(fn);
187 jffs2_complete_reservation(c);
191 jffs2_complete_reservation(c);
192 inode->i_size = pageofs;
196 /* Read in the page if it wasn't already present, unless it's a whole page */
197 if (!PageUptodate(pg) && (start || end < PAGE_CACHE_SIZE)) {
199 ret = jffs2_do_readpage_nolock(inode, pg);
202 D1(printk(KERN_DEBUG "end prepare_write(). pg->flags %lx\n", pg->flags));
206 static int jffs2_commit_write (struct file *filp, struct page *pg,
207 unsigned start, unsigned end)
209 /* Actually commit the write from the page cache page we're looking at.
210 * For now, we write the full page out each time. It sucks, but it's simple
212 struct inode *inode = pg->mapping->host;
213 struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
214 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
215 struct jffs2_raw_inode *ri;
216 unsigned aligned_start = start & ~3;
218 uint32_t writtenlen = 0;
220 D1(printk(KERN_DEBUG "jffs2_commit_write(): ino #%lu, page at 0x%lx, range %d-%d, flags %lx\n",
221 inode->i_ino, pg->index << PAGE_CACHE_SHIFT, start, end, pg->flags));
223 if (end == PAGE_CACHE_SIZE) {
225 /* We need to avoid deadlock with page_cache_read() in
226 jffs2_garbage_collect_pass(). So we have to mark the
227 page up to date, to prevent page_cache_read() from
228 trying to re-lock it. */
231 /* When writing out the end of a page, write out the
232 _whole_ page. This helps to reduce the number of
233 nodes in files which have many short writes, like
235 start = aligned_start = 0;
239 ri = jffs2_alloc_raw_inode();
242 D1(printk(KERN_DEBUG "jffs2_commit_write(): Allocation of raw inode failed\n"));
246 /* Set the fields that the generic jffs2_write_inode_range() code can't find */
247 ri->ino = cpu_to_je32(inode->i_ino);
248 ri->mode = cpu_to_jemode(inode->i_mode);
249 ri->uid = cpu_to_je16(inode->i_uid);
250 ri->gid = cpu_to_je16(inode->i_gid);
251 ri->isize = cpu_to_je32((uint32_t)inode->i_size);
252 ri->atime = ri->ctime = ri->mtime = cpu_to_je32(get_seconds());
254 /* In 2.4, it was already kmapped by generic_file_write(). Doesn't
255 hurt to do it again. The alternative is ifdefs, which are ugly. */
258 ret = jffs2_write_inode_range(c, f, ri, page_address(pg) + aligned_start,
259 (pg->index << PAGE_CACHE_SHIFT) + aligned_start,
260 end - aligned_start, &writtenlen);
265 /* There was an error writing. */
269 /* Adjust writtenlen for the padding we did, so we don't confuse our caller */
270 if (writtenlen < (start&3))
273 writtenlen -= (start&3);
276 if (inode->i_size < (pg->index << PAGE_CACHE_SHIFT) + start + writtenlen) {
277 inode->i_size = (pg->index << PAGE_CACHE_SHIFT) + start + writtenlen;
278 inode->i_blocks = (inode->i_size + 511) >> 9;
280 inode->i_ctime = inode->i_mtime = ITIME(je32_to_cpu(ri->ctime));
284 jffs2_free_raw_inode(ri);
286 if (start+writtenlen < end) {
287 /* generic_file_write has written more to the page cache than we've
288 actually written to the medium. Mark the page !Uptodate so that
290 D1(printk(KERN_DEBUG "jffs2_commit_write(): Not all bytes written. Marking page !uptodate\n"));
292 ClearPageUptodate(pg);
295 D1(printk(KERN_DEBUG "jffs2_commit_write() returning %d\n",start+writtenlen==end?0:ret));
296 return start+writtenlen==end?0:ret;