Pull cpuidle into release branch
[linux-2.6] / arch / powerpc / platforms / cell / spufs / file.c
1 /*
2  * SPU file system -- file contents
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  *
6  * Author: Arnd Bergmann <arndb@de.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #undef DEBUG
24
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32
33 #include <asm/io.h>
34 #include <asm/semaphore.h>
35 #include <asm/spu.h>
36 #include <asm/spu_info.h>
37 #include <asm/uaccess.h>
38
39 #include "spufs.h"
40
41 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
42
43
44 static int
45 spufs_mem_open(struct inode *inode, struct file *file)
46 {
47         struct spufs_inode_info *i = SPUFS_I(inode);
48         struct spu_context *ctx = i->i_ctx;
49
50         mutex_lock(&ctx->mapping_lock);
51         file->private_data = ctx;
52         if (!i->i_openers++)
53                 ctx->local_store = inode->i_mapping;
54         mutex_unlock(&ctx->mapping_lock);
55         return 0;
56 }
57
58 static int
59 spufs_mem_release(struct inode *inode, struct file *file)
60 {
61         struct spufs_inode_info *i = SPUFS_I(inode);
62         struct spu_context *ctx = i->i_ctx;
63
64         mutex_lock(&ctx->mapping_lock);
65         if (!--i->i_openers)
66                 ctx->local_store = NULL;
67         mutex_unlock(&ctx->mapping_lock);
68         return 0;
69 }
70
71 static ssize_t
72 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
73                         size_t size, loff_t *pos)
74 {
75         char *local_store = ctx->ops->get_ls(ctx);
76         return simple_read_from_buffer(buffer, size, pos, local_store,
77                                         LS_SIZE);
78 }
79
80 static ssize_t
81 spufs_mem_read(struct file *file, char __user *buffer,
82                                 size_t size, loff_t *pos)
83 {
84         struct spu_context *ctx = file->private_data;
85         ssize_t ret;
86
87         spu_acquire(ctx);
88         ret = __spufs_mem_read(ctx, buffer, size, pos);
89         spu_release(ctx);
90         return ret;
91 }
92
93 static ssize_t
94 spufs_mem_write(struct file *file, const char __user *buffer,
95                                         size_t size, loff_t *ppos)
96 {
97         struct spu_context *ctx = file->private_data;
98         char *local_store;
99         loff_t pos = *ppos;
100         int ret;
101
102         if (pos < 0)
103                 return -EINVAL;
104         if (pos > LS_SIZE)
105                 return -EFBIG;
106         if (size > LS_SIZE - pos)
107                 size = LS_SIZE - pos;
108
109         spu_acquire(ctx);
110         local_store = ctx->ops->get_ls(ctx);
111         ret = copy_from_user(local_store + pos, buffer, size);
112         spu_release(ctx);
113
114         if (ret)
115                 return -EFAULT;
116         *ppos = pos + size;
117         return size;
118 }
119
120 static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma,
121                                           unsigned long address)
122 {
123         struct spu_context *ctx = vma->vm_file->private_data;
124         unsigned long pfn, offset, addr0 = address;
125 #ifdef CONFIG_SPU_FS_64K_LS
126         struct spu_state *csa = &ctx->csa;
127         int psize;
128
129         /* Check what page size we are using */
130         psize = get_slice_psize(vma->vm_mm, address);
131
132         /* Some sanity checking */
133         BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
134
135         /* Wow, 64K, cool, we need to align the address though */
136         if (csa->use_big_pages) {
137                 BUG_ON(vma->vm_start & 0xffff);
138                 address &= ~0xfffful;
139         }
140 #endif /* CONFIG_SPU_FS_64K_LS */
141
142         offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
143         if (offset >= LS_SIZE)
144                 return NOPFN_SIGBUS;
145
146         pr_debug("spufs_mem_mmap_nopfn address=0x%lx -> 0x%lx, offset=0x%lx\n",
147                  addr0, address, offset);
148
149         spu_acquire(ctx);
150
151         if (ctx->state == SPU_STATE_SAVED) {
152                 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
153                                                         & ~_PAGE_NO_CACHE);
154                 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
155         } else {
156                 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
157                                              | _PAGE_NO_CACHE);
158                 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
159         }
160         vm_insert_pfn(vma, address, pfn);
161
162         spu_release(ctx);
163
164         return NOPFN_REFAULT;
165 }
166
167
168 static struct vm_operations_struct spufs_mem_mmap_vmops = {
169         .nopfn = spufs_mem_mmap_nopfn,
170 };
171
172 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
173 {
174 #ifdef CONFIG_SPU_FS_64K_LS
175         struct spu_context      *ctx = file->private_data;
176         struct spu_state        *csa = &ctx->csa;
177
178         /* Sanity check VMA alignment */
179         if (csa->use_big_pages) {
180                 pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
181                          " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
182                          vma->vm_pgoff);
183                 if (vma->vm_start & 0xffff)
184                         return -EINVAL;
185                 if (vma->vm_pgoff & 0xf)
186                         return -EINVAL;
187         }
188 #endif /* CONFIG_SPU_FS_64K_LS */
189
190         if (!(vma->vm_flags & VM_SHARED))
191                 return -EINVAL;
192
193         vma->vm_flags |= VM_IO | VM_PFNMAP;
194         vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
195                                      | _PAGE_NO_CACHE);
196
197         vma->vm_ops = &spufs_mem_mmap_vmops;
198         return 0;
199 }
200
201 #ifdef CONFIG_SPU_FS_64K_LS
202 static unsigned long spufs_get_unmapped_area(struct file *file,
203                 unsigned long addr, unsigned long len, unsigned long pgoff,
204                 unsigned long flags)
205 {
206         struct spu_context      *ctx = file->private_data;
207         struct spu_state        *csa = &ctx->csa;
208
209         /* If not using big pages, fallback to normal MM g_u_a */
210         if (!csa->use_big_pages)
211                 return current->mm->get_unmapped_area(file, addr, len,
212                                                       pgoff, flags);
213
214         /* Else, try to obtain a 64K pages slice */
215         return slice_get_unmapped_area(addr, len, flags,
216                                        MMU_PAGE_64K, 1, 0);
217 }
218 #endif /* CONFIG_SPU_FS_64K_LS */
219
220 static const struct file_operations spufs_mem_fops = {
221         .open                   = spufs_mem_open,
222         .release                = spufs_mem_release,
223         .read                   = spufs_mem_read,
224         .write                  = spufs_mem_write,
225         .llseek                 = generic_file_llseek,
226         .mmap                   = spufs_mem_mmap,
227 #ifdef CONFIG_SPU_FS_64K_LS
228         .get_unmapped_area      = spufs_get_unmapped_area,
229 #endif
230 };
231
232 static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma,
233                                     unsigned long address,
234                                     unsigned long ps_offs,
235                                     unsigned long ps_size)
236 {
237         struct spu_context *ctx = vma->vm_file->private_data;
238         unsigned long area, offset = address - vma->vm_start;
239         int ret;
240
241         offset += vma->vm_pgoff << PAGE_SHIFT;
242         if (offset >= ps_size)
243                 return NOPFN_SIGBUS;
244
245         /* error here usually means a signal.. we might want to test
246          * the error code more precisely though
247          */
248         ret = spu_acquire_runnable(ctx, 0);
249         if (ret)
250                 return NOPFN_REFAULT;
251
252         area = ctx->spu->problem_phys + ps_offs;
253         vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
254         spu_release(ctx);
255
256         return NOPFN_REFAULT;
257 }
258
259 #if SPUFS_MMAP_4K
260 static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma,
261                                            unsigned long address)
262 {
263         return spufs_ps_nopfn(vma, address, 0x4000, 0x1000);
264 }
265
266 static struct vm_operations_struct spufs_cntl_mmap_vmops = {
267         .nopfn = spufs_cntl_mmap_nopfn,
268 };
269
270 /*
271  * mmap support for problem state control area [0x4000 - 0x4fff].
272  */
273 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
274 {
275         if (!(vma->vm_flags & VM_SHARED))
276                 return -EINVAL;
277
278         vma->vm_flags |= VM_IO | VM_PFNMAP;
279         vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
280                                      | _PAGE_NO_CACHE | _PAGE_GUARDED);
281
282         vma->vm_ops = &spufs_cntl_mmap_vmops;
283         return 0;
284 }
285 #else /* SPUFS_MMAP_4K */
286 #define spufs_cntl_mmap NULL
287 #endif /* !SPUFS_MMAP_4K */
288
289 static u64 spufs_cntl_get(void *data)
290 {
291         struct spu_context *ctx = data;
292         u64 val;
293
294         spu_acquire(ctx);
295         val = ctx->ops->status_read(ctx);
296         spu_release(ctx);
297
298         return val;
299 }
300
301 static void spufs_cntl_set(void *data, u64 val)
302 {
303         struct spu_context *ctx = data;
304
305         spu_acquire(ctx);
306         ctx->ops->runcntl_write(ctx, val);
307         spu_release(ctx);
308 }
309
310 static int spufs_cntl_open(struct inode *inode, struct file *file)
311 {
312         struct spufs_inode_info *i = SPUFS_I(inode);
313         struct spu_context *ctx = i->i_ctx;
314
315         mutex_lock(&ctx->mapping_lock);
316         file->private_data = ctx;
317         if (!i->i_openers++)
318                 ctx->cntl = inode->i_mapping;
319         mutex_unlock(&ctx->mapping_lock);
320         return simple_attr_open(inode, file, spufs_cntl_get,
321                                         spufs_cntl_set, "0x%08lx");
322 }
323
324 static int
325 spufs_cntl_release(struct inode *inode, struct file *file)
326 {
327         struct spufs_inode_info *i = SPUFS_I(inode);
328         struct spu_context *ctx = i->i_ctx;
329
330         simple_attr_close(inode, file);
331
332         mutex_lock(&ctx->mapping_lock);
333         if (!--i->i_openers)
334                 ctx->cntl = NULL;
335         mutex_unlock(&ctx->mapping_lock);
336         return 0;
337 }
338
339 static const struct file_operations spufs_cntl_fops = {
340         .open = spufs_cntl_open,
341         .release = spufs_cntl_release,
342         .read = simple_attr_read,
343         .write = simple_attr_write,
344         .mmap = spufs_cntl_mmap,
345 };
346
347 static int
348 spufs_regs_open(struct inode *inode, struct file *file)
349 {
350         struct spufs_inode_info *i = SPUFS_I(inode);
351         file->private_data = i->i_ctx;
352         return 0;
353 }
354
355 static ssize_t
356 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
357                         size_t size, loff_t *pos)
358 {
359         struct spu_lscsa *lscsa = ctx->csa.lscsa;
360         return simple_read_from_buffer(buffer, size, pos,
361                                       lscsa->gprs, sizeof lscsa->gprs);
362 }
363
364 static ssize_t
365 spufs_regs_read(struct file *file, char __user *buffer,
366                 size_t size, loff_t *pos)
367 {
368         int ret;
369         struct spu_context *ctx = file->private_data;
370
371         spu_acquire_saved(ctx);
372         ret = __spufs_regs_read(ctx, buffer, size, pos);
373         spu_release_saved(ctx);
374         return ret;
375 }
376
377 static ssize_t
378 spufs_regs_write(struct file *file, const char __user *buffer,
379                  size_t size, loff_t *pos)
380 {
381         struct spu_context *ctx = file->private_data;
382         struct spu_lscsa *lscsa = ctx->csa.lscsa;
383         int ret;
384
385         size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
386         if (size <= 0)
387                 return -EFBIG;
388         *pos += size;
389
390         spu_acquire_saved(ctx);
391
392         ret = copy_from_user(lscsa->gprs + *pos - size,
393                              buffer, size) ? -EFAULT : size;
394
395         spu_release_saved(ctx);
396         return ret;
397 }
398
399 static const struct file_operations spufs_regs_fops = {
400         .open    = spufs_regs_open,
401         .read    = spufs_regs_read,
402         .write   = spufs_regs_write,
403         .llseek  = generic_file_llseek,
404 };
405
406 static ssize_t
407 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
408                         size_t size, loff_t * pos)
409 {
410         struct spu_lscsa *lscsa = ctx->csa.lscsa;
411         return simple_read_from_buffer(buffer, size, pos,
412                                       &lscsa->fpcr, sizeof(lscsa->fpcr));
413 }
414
415 static ssize_t
416 spufs_fpcr_read(struct file *file, char __user * buffer,
417                 size_t size, loff_t * pos)
418 {
419         int ret;
420         struct spu_context *ctx = file->private_data;
421
422         spu_acquire_saved(ctx);
423         ret = __spufs_fpcr_read(ctx, buffer, size, pos);
424         spu_release_saved(ctx);
425         return ret;
426 }
427
428 static ssize_t
429 spufs_fpcr_write(struct file *file, const char __user * buffer,
430                  size_t size, loff_t * pos)
431 {
432         struct spu_context *ctx = file->private_data;
433         struct spu_lscsa *lscsa = ctx->csa.lscsa;
434         int ret;
435
436         size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
437         if (size <= 0)
438                 return -EFBIG;
439         *pos += size;
440
441         spu_acquire_saved(ctx);
442
443         ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
444                              buffer, size) ? -EFAULT : size;
445
446         spu_release_saved(ctx);
447         return ret;
448 }
449
450 static const struct file_operations spufs_fpcr_fops = {
451         .open = spufs_regs_open,
452         .read = spufs_fpcr_read,
453         .write = spufs_fpcr_write,
454         .llseek = generic_file_llseek,
455 };
456
457 /* generic open function for all pipe-like files */
458 static int spufs_pipe_open(struct inode *inode, struct file *file)
459 {
460         struct spufs_inode_info *i = SPUFS_I(inode);
461         file->private_data = i->i_ctx;
462
463         return nonseekable_open(inode, file);
464 }
465
466 /*
467  * Read as many bytes from the mailbox as possible, until
468  * one of the conditions becomes true:
469  *
470  * - no more data available in the mailbox
471  * - end of the user provided buffer
472  * - end of the mapped area
473  */
474 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
475                         size_t len, loff_t *pos)
476 {
477         struct spu_context *ctx = file->private_data;
478         u32 mbox_data, __user *udata;
479         ssize_t count;
480
481         if (len < 4)
482                 return -EINVAL;
483
484         if (!access_ok(VERIFY_WRITE, buf, len))
485                 return -EFAULT;
486
487         udata = (void __user *)buf;
488
489         spu_acquire(ctx);
490         for (count = 0; (count + 4) <= len; count += 4, udata++) {
491                 int ret;
492                 ret = ctx->ops->mbox_read(ctx, &mbox_data);
493                 if (ret == 0)
494                         break;
495
496                 /*
497                  * at the end of the mapped area, we can fault
498                  * but still need to return the data we have
499                  * read successfully so far.
500                  */
501                 ret = __put_user(mbox_data, udata);
502                 if (ret) {
503                         if (!count)
504                                 count = -EFAULT;
505                         break;
506                 }
507         }
508         spu_release(ctx);
509
510         if (!count)
511                 count = -EAGAIN;
512
513         return count;
514 }
515
516 static const struct file_operations spufs_mbox_fops = {
517         .open   = spufs_pipe_open,
518         .read   = spufs_mbox_read,
519 };
520
521 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
522                         size_t len, loff_t *pos)
523 {
524         struct spu_context *ctx = file->private_data;
525         u32 mbox_stat;
526
527         if (len < 4)
528                 return -EINVAL;
529
530         spu_acquire(ctx);
531
532         mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
533
534         spu_release(ctx);
535
536         if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
537                 return -EFAULT;
538
539         return 4;
540 }
541
542 static const struct file_operations spufs_mbox_stat_fops = {
543         .open   = spufs_pipe_open,
544         .read   = spufs_mbox_stat_read,
545 };
546
547 /* low-level ibox access function */
548 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
549 {
550         return ctx->ops->ibox_read(ctx, data);
551 }
552
553 static int spufs_ibox_fasync(int fd, struct file *file, int on)
554 {
555         struct spu_context *ctx = file->private_data;
556
557         return fasync_helper(fd, file, on, &ctx->ibox_fasync);
558 }
559
560 /* interrupt-level ibox callback function. */
561 void spufs_ibox_callback(struct spu *spu)
562 {
563         struct spu_context *ctx = spu->ctx;
564
565         wake_up_all(&ctx->ibox_wq);
566         kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
567 }
568
569 /*
570  * Read as many bytes from the interrupt mailbox as possible, until
571  * one of the conditions becomes true:
572  *
573  * - no more data available in the mailbox
574  * - end of the user provided buffer
575  * - end of the mapped area
576  *
577  * If the file is opened without O_NONBLOCK, we wait here until
578  * any data is available, but return when we have been able to
579  * read something.
580  */
581 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
582                         size_t len, loff_t *pos)
583 {
584         struct spu_context *ctx = file->private_data;
585         u32 ibox_data, __user *udata;
586         ssize_t count;
587
588         if (len < 4)
589                 return -EINVAL;
590
591         if (!access_ok(VERIFY_WRITE, buf, len))
592                 return -EFAULT;
593
594         udata = (void __user *)buf;
595
596         spu_acquire(ctx);
597
598         /* wait only for the first element */
599         count = 0;
600         if (file->f_flags & O_NONBLOCK) {
601                 if (!spu_ibox_read(ctx, &ibox_data))
602                         count = -EAGAIN;
603         } else {
604                 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
605         }
606         if (count)
607                 goto out;
608
609         /* if we can't write at all, return -EFAULT */
610         count = __put_user(ibox_data, udata);
611         if (count)
612                 goto out;
613
614         for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
615                 int ret;
616                 ret = ctx->ops->ibox_read(ctx, &ibox_data);
617                 if (ret == 0)
618                         break;
619                 /*
620                  * at the end of the mapped area, we can fault
621                  * but still need to return the data we have
622                  * read successfully so far.
623                  */
624                 ret = __put_user(ibox_data, udata);
625                 if (ret)
626                         break;
627         }
628
629 out:
630         spu_release(ctx);
631
632         return count;
633 }
634
635 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
636 {
637         struct spu_context *ctx = file->private_data;
638         unsigned int mask;
639
640         poll_wait(file, &ctx->ibox_wq, wait);
641
642         spu_acquire(ctx);
643         mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
644         spu_release(ctx);
645
646         return mask;
647 }
648
649 static const struct file_operations spufs_ibox_fops = {
650         .open   = spufs_pipe_open,
651         .read   = spufs_ibox_read,
652         .poll   = spufs_ibox_poll,
653         .fasync = spufs_ibox_fasync,
654 };
655
656 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
657                         size_t len, loff_t *pos)
658 {
659         struct spu_context *ctx = file->private_data;
660         u32 ibox_stat;
661
662         if (len < 4)
663                 return -EINVAL;
664
665         spu_acquire(ctx);
666         ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
667         spu_release(ctx);
668
669         if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
670                 return -EFAULT;
671
672         return 4;
673 }
674
675 static const struct file_operations spufs_ibox_stat_fops = {
676         .open   = spufs_pipe_open,
677         .read   = spufs_ibox_stat_read,
678 };
679
680 /* low-level mailbox write */
681 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
682 {
683         return ctx->ops->wbox_write(ctx, data);
684 }
685
686 static int spufs_wbox_fasync(int fd, struct file *file, int on)
687 {
688         struct spu_context *ctx = file->private_data;
689         int ret;
690
691         ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
692
693         return ret;
694 }
695
696 /* interrupt-level wbox callback function. */
697 void spufs_wbox_callback(struct spu *spu)
698 {
699         struct spu_context *ctx = spu->ctx;
700
701         wake_up_all(&ctx->wbox_wq);
702         kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
703 }
704
705 /*
706  * Write as many bytes to the interrupt mailbox as possible, until
707  * one of the conditions becomes true:
708  *
709  * - the mailbox is full
710  * - end of the user provided buffer
711  * - end of the mapped area
712  *
713  * If the file is opened without O_NONBLOCK, we wait here until
714  * space is availabyl, but return when we have been able to
715  * write something.
716  */
717 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
718                         size_t len, loff_t *pos)
719 {
720         struct spu_context *ctx = file->private_data;
721         u32 wbox_data, __user *udata;
722         ssize_t count;
723
724         if (len < 4)
725                 return -EINVAL;
726
727         udata = (void __user *)buf;
728         if (!access_ok(VERIFY_READ, buf, len))
729                 return -EFAULT;
730
731         if (__get_user(wbox_data, udata))
732                 return -EFAULT;
733
734         spu_acquire(ctx);
735
736         /*
737          * make sure we can at least write one element, by waiting
738          * in case of !O_NONBLOCK
739          */
740         count = 0;
741         if (file->f_flags & O_NONBLOCK) {
742                 if (!spu_wbox_write(ctx, wbox_data))
743                         count = -EAGAIN;
744         } else {
745                 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
746         }
747
748         if (count)
749                 goto out;
750
751         /* write as much as possible */
752         for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
753                 int ret;
754                 ret = __get_user(wbox_data, udata);
755                 if (ret)
756                         break;
757
758                 ret = spu_wbox_write(ctx, wbox_data);
759                 if (ret == 0)
760                         break;
761         }
762
763 out:
764         spu_release(ctx);
765         return count;
766 }
767
768 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
769 {
770         struct spu_context *ctx = file->private_data;
771         unsigned int mask;
772
773         poll_wait(file, &ctx->wbox_wq, wait);
774
775         spu_acquire(ctx);
776         mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
777         spu_release(ctx);
778
779         return mask;
780 }
781
782 static const struct file_operations spufs_wbox_fops = {
783         .open   = spufs_pipe_open,
784         .write  = spufs_wbox_write,
785         .poll   = spufs_wbox_poll,
786         .fasync = spufs_wbox_fasync,
787 };
788
789 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
790                         size_t len, loff_t *pos)
791 {
792         struct spu_context *ctx = file->private_data;
793         u32 wbox_stat;
794
795         if (len < 4)
796                 return -EINVAL;
797
798         spu_acquire(ctx);
799         wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
800         spu_release(ctx);
801
802         if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
803                 return -EFAULT;
804
805         return 4;
806 }
807
808 static const struct file_operations spufs_wbox_stat_fops = {
809         .open   = spufs_pipe_open,
810         .read   = spufs_wbox_stat_read,
811 };
812
813 static int spufs_signal1_open(struct inode *inode, struct file *file)
814 {
815         struct spufs_inode_info *i = SPUFS_I(inode);
816         struct spu_context *ctx = i->i_ctx;
817
818         mutex_lock(&ctx->mapping_lock);
819         file->private_data = ctx;
820         if (!i->i_openers++)
821                 ctx->signal1 = inode->i_mapping;
822         mutex_unlock(&ctx->mapping_lock);
823         return nonseekable_open(inode, file);
824 }
825
826 static int
827 spufs_signal1_release(struct inode *inode, struct file *file)
828 {
829         struct spufs_inode_info *i = SPUFS_I(inode);
830         struct spu_context *ctx = i->i_ctx;
831
832         mutex_lock(&ctx->mapping_lock);
833         if (!--i->i_openers)
834                 ctx->signal1 = NULL;
835         mutex_unlock(&ctx->mapping_lock);
836         return 0;
837 }
838
839 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
840                         size_t len, loff_t *pos)
841 {
842         int ret = 0;
843         u32 data;
844
845         if (len < 4)
846                 return -EINVAL;
847
848         if (ctx->csa.spu_chnlcnt_RW[3]) {
849                 data = ctx->csa.spu_chnldata_RW[3];
850                 ret = 4;
851         }
852
853         if (!ret)
854                 goto out;
855
856         if (copy_to_user(buf, &data, 4))
857                 return -EFAULT;
858
859 out:
860         return ret;
861 }
862
863 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
864                         size_t len, loff_t *pos)
865 {
866         int ret;
867         struct spu_context *ctx = file->private_data;
868
869         spu_acquire_saved(ctx);
870         ret = __spufs_signal1_read(ctx, buf, len, pos);
871         spu_release_saved(ctx);
872
873         return ret;
874 }
875
876 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
877                         size_t len, loff_t *pos)
878 {
879         struct spu_context *ctx;
880         u32 data;
881
882         ctx = file->private_data;
883
884         if (len < 4)
885                 return -EINVAL;
886
887         if (copy_from_user(&data, buf, 4))
888                 return -EFAULT;
889
890         spu_acquire(ctx);
891         ctx->ops->signal1_write(ctx, data);
892         spu_release(ctx);
893
894         return 4;
895 }
896
897 static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma,
898                                               unsigned long address)
899 {
900 #if PAGE_SIZE == 0x1000
901         return spufs_ps_nopfn(vma, address, 0x14000, 0x1000);
902 #elif PAGE_SIZE == 0x10000
903         /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
904          * signal 1 and 2 area
905          */
906         return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
907 #else
908 #error unsupported page size
909 #endif
910 }
911
912 static struct vm_operations_struct spufs_signal1_mmap_vmops = {
913         .nopfn = spufs_signal1_mmap_nopfn,
914 };
915
916 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
917 {
918         if (!(vma->vm_flags & VM_SHARED))
919                 return -EINVAL;
920
921         vma->vm_flags |= VM_IO | VM_PFNMAP;
922         vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
923                                      | _PAGE_NO_CACHE | _PAGE_GUARDED);
924
925         vma->vm_ops = &spufs_signal1_mmap_vmops;
926         return 0;
927 }
928
929 static const struct file_operations spufs_signal1_fops = {
930         .open = spufs_signal1_open,
931         .release = spufs_signal1_release,
932         .read = spufs_signal1_read,
933         .write = spufs_signal1_write,
934         .mmap = spufs_signal1_mmap,
935 };
936
937 static const struct file_operations spufs_signal1_nosched_fops = {
938         .open = spufs_signal1_open,
939         .release = spufs_signal1_release,
940         .write = spufs_signal1_write,
941         .mmap = spufs_signal1_mmap,
942 };
943
944 static int spufs_signal2_open(struct inode *inode, struct file *file)
945 {
946         struct spufs_inode_info *i = SPUFS_I(inode);
947         struct spu_context *ctx = i->i_ctx;
948
949         mutex_lock(&ctx->mapping_lock);
950         file->private_data = ctx;
951         if (!i->i_openers++)
952                 ctx->signal2 = inode->i_mapping;
953         mutex_unlock(&ctx->mapping_lock);
954         return nonseekable_open(inode, file);
955 }
956
957 static int
958 spufs_signal2_release(struct inode *inode, struct file *file)
959 {
960         struct spufs_inode_info *i = SPUFS_I(inode);
961         struct spu_context *ctx = i->i_ctx;
962
963         mutex_lock(&ctx->mapping_lock);
964         if (!--i->i_openers)
965                 ctx->signal2 = NULL;
966         mutex_unlock(&ctx->mapping_lock);
967         return 0;
968 }
969
970 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
971                         size_t len, loff_t *pos)
972 {
973         int ret = 0;
974         u32 data;
975
976         if (len < 4)
977                 return -EINVAL;
978
979         if (ctx->csa.spu_chnlcnt_RW[4]) {
980                 data =  ctx->csa.spu_chnldata_RW[4];
981                 ret = 4;
982         }
983
984         if (!ret)
985                 goto out;
986
987         if (copy_to_user(buf, &data, 4))
988                 return -EFAULT;
989
990 out:
991         return ret;
992 }
993
994 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
995                         size_t len, loff_t *pos)
996 {
997         struct spu_context *ctx = file->private_data;
998         int ret;
999
1000         spu_acquire_saved(ctx);
1001         ret = __spufs_signal2_read(ctx, buf, len, pos);
1002         spu_release_saved(ctx);
1003
1004         return ret;
1005 }
1006
1007 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1008                         size_t len, loff_t *pos)
1009 {
1010         struct spu_context *ctx;
1011         u32 data;
1012
1013         ctx = file->private_data;
1014
1015         if (len < 4)
1016                 return -EINVAL;
1017
1018         if (copy_from_user(&data, buf, 4))
1019                 return -EFAULT;
1020
1021         spu_acquire(ctx);
1022         ctx->ops->signal2_write(ctx, data);
1023         spu_release(ctx);
1024
1025         return 4;
1026 }
1027
1028 #if SPUFS_MMAP_4K
1029 static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma,
1030                                               unsigned long address)
1031 {
1032 #if PAGE_SIZE == 0x1000
1033         return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000);
1034 #elif PAGE_SIZE == 0x10000
1035         /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1036          * signal 1 and 2 area
1037          */
1038         return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1039 #else
1040 #error unsupported page size
1041 #endif
1042 }
1043
1044 static struct vm_operations_struct spufs_signal2_mmap_vmops = {
1045         .nopfn = spufs_signal2_mmap_nopfn,
1046 };
1047
1048 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1049 {
1050         if (!(vma->vm_flags & VM_SHARED))
1051                 return -EINVAL;
1052
1053         vma->vm_flags |= VM_IO | VM_PFNMAP;
1054         vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1055                                      | _PAGE_NO_CACHE | _PAGE_GUARDED);
1056
1057         vma->vm_ops = &spufs_signal2_mmap_vmops;
1058         return 0;
1059 }
1060 #else /* SPUFS_MMAP_4K */
1061 #define spufs_signal2_mmap NULL
1062 #endif /* !SPUFS_MMAP_4K */
1063
1064 static const struct file_operations spufs_signal2_fops = {
1065         .open = spufs_signal2_open,
1066         .release = spufs_signal2_release,
1067         .read = spufs_signal2_read,
1068         .write = spufs_signal2_write,
1069         .mmap = spufs_signal2_mmap,
1070 };
1071
1072 static const struct file_operations spufs_signal2_nosched_fops = {
1073         .open = spufs_signal2_open,
1074         .release = spufs_signal2_release,
1075         .write = spufs_signal2_write,
1076         .mmap = spufs_signal2_mmap,
1077 };
1078
1079 /*
1080  * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1081  * work of acquiring (or not) the SPU context before calling through
1082  * to the actual get routine. The set routine is called directly.
1083  */
1084 #define SPU_ATTR_NOACQUIRE      0
1085 #define SPU_ATTR_ACQUIRE        1
1086 #define SPU_ATTR_ACQUIRE_SAVED  2
1087
1088 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)  \
1089 static u64 __##__get(void *data)                                        \
1090 {                                                                       \
1091         struct spu_context *ctx = data;                                 \
1092         u64 ret;                                                        \
1093                                                                         \
1094         if (__acquire == SPU_ATTR_ACQUIRE) {                            \
1095                 spu_acquire(ctx);                                       \
1096                 ret = __get(ctx);                                       \
1097                 spu_release(ctx);                                       \
1098         } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) {               \
1099                 spu_acquire_saved(ctx);                                 \
1100                 ret = __get(ctx);                                       \
1101                 spu_release_saved(ctx);                                 \
1102         } else                                                          \
1103                 ret = __get(ctx);                                       \
1104                                                                         \
1105         return ret;                                                     \
1106 }                                                                       \
1107 DEFINE_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1108
1109 static void spufs_signal1_type_set(void *data, u64 val)
1110 {
1111         struct spu_context *ctx = data;
1112
1113         spu_acquire(ctx);
1114         ctx->ops->signal1_type_set(ctx, val);
1115         spu_release(ctx);
1116 }
1117
1118 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1119 {
1120         return ctx->ops->signal1_type_get(ctx);
1121 }
1122 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1123                        spufs_signal1_type_set, "%llu", SPU_ATTR_ACQUIRE);
1124
1125
1126 static void spufs_signal2_type_set(void *data, u64 val)
1127 {
1128         struct spu_context *ctx = data;
1129
1130         spu_acquire(ctx);
1131         ctx->ops->signal2_type_set(ctx, val);
1132         spu_release(ctx);
1133 }
1134
1135 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1136 {
1137         return ctx->ops->signal2_type_get(ctx);
1138 }
1139 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1140                        spufs_signal2_type_set, "%llu", SPU_ATTR_ACQUIRE);
1141
1142 #if SPUFS_MMAP_4K
1143 static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma,
1144                                           unsigned long address)
1145 {
1146         return spufs_ps_nopfn(vma, address, 0x0000, 0x1000);
1147 }
1148
1149 static struct vm_operations_struct spufs_mss_mmap_vmops = {
1150         .nopfn = spufs_mss_mmap_nopfn,
1151 };
1152
1153 /*
1154  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1155  */
1156 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1157 {
1158         if (!(vma->vm_flags & VM_SHARED))
1159                 return -EINVAL;
1160
1161         vma->vm_flags |= VM_IO | VM_PFNMAP;
1162         vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1163                                      | _PAGE_NO_CACHE | _PAGE_GUARDED);
1164
1165         vma->vm_ops = &spufs_mss_mmap_vmops;
1166         return 0;
1167 }
1168 #else /* SPUFS_MMAP_4K */
1169 #define spufs_mss_mmap NULL
1170 #endif /* !SPUFS_MMAP_4K */
1171
1172 static int spufs_mss_open(struct inode *inode, struct file *file)
1173 {
1174         struct spufs_inode_info *i = SPUFS_I(inode);
1175         struct spu_context *ctx = i->i_ctx;
1176
1177         file->private_data = i->i_ctx;
1178
1179         mutex_lock(&ctx->mapping_lock);
1180         if (!i->i_openers++)
1181                 ctx->mss = inode->i_mapping;
1182         mutex_unlock(&ctx->mapping_lock);
1183         return nonseekable_open(inode, file);
1184 }
1185
1186 static int
1187 spufs_mss_release(struct inode *inode, struct file *file)
1188 {
1189         struct spufs_inode_info *i = SPUFS_I(inode);
1190         struct spu_context *ctx = i->i_ctx;
1191
1192         mutex_lock(&ctx->mapping_lock);
1193         if (!--i->i_openers)
1194                 ctx->mss = NULL;
1195         mutex_unlock(&ctx->mapping_lock);
1196         return 0;
1197 }
1198
1199 static const struct file_operations spufs_mss_fops = {
1200         .open    = spufs_mss_open,
1201         .release = spufs_mss_release,
1202         .mmap    = spufs_mss_mmap,
1203 };
1204
1205 static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma,
1206                                             unsigned long address)
1207 {
1208         return spufs_ps_nopfn(vma, address, 0x0000, 0x20000);
1209 }
1210
1211 static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1212         .nopfn = spufs_psmap_mmap_nopfn,
1213 };
1214
1215 /*
1216  * mmap support for full problem state area [0x00000 - 0x1ffff].
1217  */
1218 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1219 {
1220         if (!(vma->vm_flags & VM_SHARED))
1221                 return -EINVAL;
1222
1223         vma->vm_flags |= VM_IO | VM_PFNMAP;
1224         vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1225                                      | _PAGE_NO_CACHE | _PAGE_GUARDED);
1226
1227         vma->vm_ops = &spufs_psmap_mmap_vmops;
1228         return 0;
1229 }
1230
1231 static int spufs_psmap_open(struct inode *inode, struct file *file)
1232 {
1233         struct spufs_inode_info *i = SPUFS_I(inode);
1234         struct spu_context *ctx = i->i_ctx;
1235
1236         mutex_lock(&ctx->mapping_lock);
1237         file->private_data = i->i_ctx;
1238         if (!i->i_openers++)
1239                 ctx->psmap = inode->i_mapping;
1240         mutex_unlock(&ctx->mapping_lock);
1241         return nonseekable_open(inode, file);
1242 }
1243
1244 static int
1245 spufs_psmap_release(struct inode *inode, struct file *file)
1246 {
1247         struct spufs_inode_info *i = SPUFS_I(inode);
1248         struct spu_context *ctx = i->i_ctx;
1249
1250         mutex_lock(&ctx->mapping_lock);
1251         if (!--i->i_openers)
1252                 ctx->psmap = NULL;
1253         mutex_unlock(&ctx->mapping_lock);
1254         return 0;
1255 }
1256
1257 static const struct file_operations spufs_psmap_fops = {
1258         .open    = spufs_psmap_open,
1259         .release = spufs_psmap_release,
1260         .mmap    = spufs_psmap_mmap,
1261 };
1262
1263
1264 #if SPUFS_MMAP_4K
1265 static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma,
1266                                           unsigned long address)
1267 {
1268         return spufs_ps_nopfn(vma, address, 0x3000, 0x1000);
1269 }
1270
1271 static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1272         .nopfn = spufs_mfc_mmap_nopfn,
1273 };
1274
1275 /*
1276  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1277  */
1278 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1279 {
1280         if (!(vma->vm_flags & VM_SHARED))
1281                 return -EINVAL;
1282
1283         vma->vm_flags |= VM_IO | VM_PFNMAP;
1284         vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1285                                      | _PAGE_NO_CACHE | _PAGE_GUARDED);
1286
1287         vma->vm_ops = &spufs_mfc_mmap_vmops;
1288         return 0;
1289 }
1290 #else /* SPUFS_MMAP_4K */
1291 #define spufs_mfc_mmap NULL
1292 #endif /* !SPUFS_MMAP_4K */
1293
1294 static int spufs_mfc_open(struct inode *inode, struct file *file)
1295 {
1296         struct spufs_inode_info *i = SPUFS_I(inode);
1297         struct spu_context *ctx = i->i_ctx;
1298
1299         /* we don't want to deal with DMA into other processes */
1300         if (ctx->owner != current->mm)
1301                 return -EINVAL;
1302
1303         if (atomic_read(&inode->i_count) != 1)
1304                 return -EBUSY;
1305
1306         mutex_lock(&ctx->mapping_lock);
1307         file->private_data = ctx;
1308         if (!i->i_openers++)
1309                 ctx->mfc = inode->i_mapping;
1310         mutex_unlock(&ctx->mapping_lock);
1311         return nonseekable_open(inode, file);
1312 }
1313
1314 static int
1315 spufs_mfc_release(struct inode *inode, struct file *file)
1316 {
1317         struct spufs_inode_info *i = SPUFS_I(inode);
1318         struct spu_context *ctx = i->i_ctx;
1319
1320         mutex_lock(&ctx->mapping_lock);
1321         if (!--i->i_openers)
1322                 ctx->mfc = NULL;
1323         mutex_unlock(&ctx->mapping_lock);
1324         return 0;
1325 }
1326
1327 /* interrupt-level mfc callback function. */
1328 void spufs_mfc_callback(struct spu *spu)
1329 {
1330         struct spu_context *ctx = spu->ctx;
1331
1332         wake_up_all(&ctx->mfc_wq);
1333
1334         pr_debug("%s %s\n", __FUNCTION__, spu->name);
1335         if (ctx->mfc_fasync) {
1336                 u32 free_elements, tagstatus;
1337                 unsigned int mask;
1338
1339                 /* no need for spu_acquire in interrupt context */
1340                 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1341                 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1342
1343                 mask = 0;
1344                 if (free_elements & 0xffff)
1345                         mask |= POLLOUT;
1346                 if (tagstatus & ctx->tagwait)
1347                         mask |= POLLIN;
1348
1349                 kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1350         }
1351 }
1352
1353 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1354 {
1355         /* See if there is one tag group is complete */
1356         /* FIXME we need locking around tagwait */
1357         *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1358         ctx->tagwait &= ~*status;
1359         if (*status)
1360                 return 1;
1361
1362         /* enable interrupt waiting for any tag group,
1363            may silently fail if interrupts are already enabled */
1364         ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1365         return 0;
1366 }
1367
1368 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1369                         size_t size, loff_t *pos)
1370 {
1371         struct spu_context *ctx = file->private_data;
1372         int ret = -EINVAL;
1373         u32 status;
1374
1375         if (size != 4)
1376                 goto out;
1377
1378         spu_acquire(ctx);
1379         if (file->f_flags & O_NONBLOCK) {
1380                 status = ctx->ops->read_mfc_tagstatus(ctx);
1381                 if (!(status & ctx->tagwait))
1382                         ret = -EAGAIN;
1383                 else
1384                         ctx->tagwait &= ~status;
1385         } else {
1386                 ret = spufs_wait(ctx->mfc_wq,
1387                            spufs_read_mfc_tagstatus(ctx, &status));
1388         }
1389         spu_release(ctx);
1390
1391         if (ret)
1392                 goto out;
1393
1394         ret = 4;
1395         if (copy_to_user(buffer, &status, 4))
1396                 ret = -EFAULT;
1397
1398 out:
1399         return ret;
1400 }
1401
1402 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1403 {
1404         pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
1405                  cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1406
1407         switch (cmd->cmd) {
1408         case MFC_PUT_CMD:
1409         case MFC_PUTF_CMD:
1410         case MFC_PUTB_CMD:
1411         case MFC_GET_CMD:
1412         case MFC_GETF_CMD:
1413         case MFC_GETB_CMD:
1414                 break;
1415         default:
1416                 pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1417                 return -EIO;
1418         }
1419
1420         if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1421                 pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
1422                                 cmd->ea, cmd->lsa);
1423                 return -EIO;
1424         }
1425
1426         switch (cmd->size & 0xf) {
1427         case 1:
1428                 break;
1429         case 2:
1430                 if (cmd->lsa & 1)
1431                         goto error;
1432                 break;
1433         case 4:
1434                 if (cmd->lsa & 3)
1435                         goto error;
1436                 break;
1437         case 8:
1438                 if (cmd->lsa & 7)
1439                         goto error;
1440                 break;
1441         case 0:
1442                 if (cmd->lsa & 15)
1443                         goto error;
1444                 break;
1445         error:
1446         default:
1447                 pr_debug("invalid DMA alignment %x for size %x\n",
1448                         cmd->lsa & 0xf, cmd->size);
1449                 return -EIO;
1450         }
1451
1452         if (cmd->size > 16 * 1024) {
1453                 pr_debug("invalid DMA size %x\n", cmd->size);
1454                 return -EIO;
1455         }
1456
1457         if (cmd->tag & 0xfff0) {
1458                 /* we reserve the higher tag numbers for kernel use */
1459                 pr_debug("invalid DMA tag\n");
1460                 return -EIO;
1461         }
1462
1463         if (cmd->class) {
1464                 /* not supported in this version */
1465                 pr_debug("invalid DMA class\n");
1466                 return -EIO;
1467         }
1468
1469         return 0;
1470 }
1471
1472 static int spu_send_mfc_command(struct spu_context *ctx,
1473                                 struct mfc_dma_command cmd,
1474                                 int *error)
1475 {
1476         *error = ctx->ops->send_mfc_command(ctx, &cmd);
1477         if (*error == -EAGAIN) {
1478                 /* wait for any tag group to complete
1479                    so we have space for the new command */
1480                 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1481                 /* try again, because the queue might be
1482                    empty again */
1483                 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1484                 if (*error == -EAGAIN)
1485                         return 0;
1486         }
1487         return 1;
1488 }
1489
1490 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1491                         size_t size, loff_t *pos)
1492 {
1493         struct spu_context *ctx = file->private_data;
1494         struct mfc_dma_command cmd;
1495         int ret = -EINVAL;
1496
1497         if (size != sizeof cmd)
1498                 goto out;
1499
1500         ret = -EFAULT;
1501         if (copy_from_user(&cmd, buffer, sizeof cmd))
1502                 goto out;
1503
1504         ret = spufs_check_valid_dma(&cmd);
1505         if (ret)
1506                 goto out;
1507
1508         ret = spu_acquire_runnable(ctx, 0);
1509         if (ret)
1510                 goto out;
1511
1512         if (file->f_flags & O_NONBLOCK) {
1513                 ret = ctx->ops->send_mfc_command(ctx, &cmd);
1514         } else {
1515                 int status;
1516                 ret = spufs_wait(ctx->mfc_wq,
1517                                  spu_send_mfc_command(ctx, cmd, &status));
1518                 if (status)
1519                         ret = status;
1520         }
1521
1522         if (ret)
1523                 goto out_unlock;
1524
1525         ctx->tagwait |= 1 << cmd.tag;
1526         ret = size;
1527
1528 out_unlock:
1529         spu_release(ctx);
1530 out:
1531         return ret;
1532 }
1533
1534 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1535 {
1536         struct spu_context *ctx = file->private_data;
1537         u32 free_elements, tagstatus;
1538         unsigned int mask;
1539
1540         poll_wait(file, &ctx->mfc_wq, wait);
1541
1542         spu_acquire(ctx);
1543         ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1544         free_elements = ctx->ops->get_mfc_free_elements(ctx);
1545         tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1546         spu_release(ctx);
1547
1548         mask = 0;
1549         if (free_elements & 0xffff)
1550                 mask |= POLLOUT | POLLWRNORM;
1551         if (tagstatus & ctx->tagwait)
1552                 mask |= POLLIN | POLLRDNORM;
1553
1554         pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
1555                 free_elements, tagstatus, ctx->tagwait);
1556
1557         return mask;
1558 }
1559
1560 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1561 {
1562         struct spu_context *ctx = file->private_data;
1563         int ret;
1564
1565         spu_acquire(ctx);
1566 #if 0
1567 /* this currently hangs */
1568         ret = spufs_wait(ctx->mfc_wq,
1569                          ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1570         if (ret)
1571                 goto out;
1572         ret = spufs_wait(ctx->mfc_wq,
1573                          ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1574 out:
1575 #else
1576         ret = 0;
1577 #endif
1578         spu_release(ctx);
1579
1580         return ret;
1581 }
1582
1583 static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
1584                            int datasync)
1585 {
1586         return spufs_mfc_flush(file, NULL);
1587 }
1588
1589 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1590 {
1591         struct spu_context *ctx = file->private_data;
1592
1593         return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1594 }
1595
1596 static const struct file_operations spufs_mfc_fops = {
1597         .open    = spufs_mfc_open,
1598         .release = spufs_mfc_release,
1599         .read    = spufs_mfc_read,
1600         .write   = spufs_mfc_write,
1601         .poll    = spufs_mfc_poll,
1602         .flush   = spufs_mfc_flush,
1603         .fsync   = spufs_mfc_fsync,
1604         .fasync  = spufs_mfc_fasync,
1605         .mmap    = spufs_mfc_mmap,
1606 };
1607
1608 static void spufs_npc_set(void *data, u64 val)
1609 {
1610         struct spu_context *ctx = data;
1611         spu_acquire(ctx);
1612         ctx->ops->npc_write(ctx, val);
1613         spu_release(ctx);
1614 }
1615
1616 static u64 spufs_npc_get(struct spu_context *ctx)
1617 {
1618         return ctx->ops->npc_read(ctx);
1619 }
1620 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1621                        "0x%llx\n", SPU_ATTR_ACQUIRE);
1622
1623 static void spufs_decr_set(void *data, u64 val)
1624 {
1625         struct spu_context *ctx = data;
1626         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1627         spu_acquire_saved(ctx);
1628         lscsa->decr.slot[0] = (u32) val;
1629         spu_release_saved(ctx);
1630 }
1631
1632 static u64 spufs_decr_get(struct spu_context *ctx)
1633 {
1634         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1635         return lscsa->decr.slot[0];
1636 }
1637 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1638                        "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1639
1640 static void spufs_decr_status_set(void *data, u64 val)
1641 {
1642         struct spu_context *ctx = data;
1643         spu_acquire_saved(ctx);
1644         if (val)
1645                 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1646         else
1647                 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1648         spu_release_saved(ctx);
1649 }
1650
1651 static u64 spufs_decr_status_get(struct spu_context *ctx)
1652 {
1653         if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1654                 return SPU_DECR_STATUS_RUNNING;
1655         else
1656                 return 0;
1657 }
1658 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1659                        spufs_decr_status_set, "0x%llx\n",
1660                        SPU_ATTR_ACQUIRE_SAVED);
1661
1662 static void spufs_event_mask_set(void *data, u64 val)
1663 {
1664         struct spu_context *ctx = data;
1665         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1666         spu_acquire_saved(ctx);
1667         lscsa->event_mask.slot[0] = (u32) val;
1668         spu_release_saved(ctx);
1669 }
1670
1671 static u64 spufs_event_mask_get(struct spu_context *ctx)
1672 {
1673         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1674         return lscsa->event_mask.slot[0];
1675 }
1676
1677 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1678                        spufs_event_mask_set, "0x%llx\n",
1679                        SPU_ATTR_ACQUIRE_SAVED);
1680
1681 static u64 spufs_event_status_get(struct spu_context *ctx)
1682 {
1683         struct spu_state *state = &ctx->csa;
1684         u64 stat;
1685         stat = state->spu_chnlcnt_RW[0];
1686         if (stat)
1687                 return state->spu_chnldata_RW[0];
1688         return 0;
1689 }
1690 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1691                        NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1692
1693 static void spufs_srr0_set(void *data, u64 val)
1694 {
1695         struct spu_context *ctx = data;
1696         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1697         spu_acquire_saved(ctx);
1698         lscsa->srr0.slot[0] = (u32) val;
1699         spu_release_saved(ctx);
1700 }
1701
1702 static u64 spufs_srr0_get(struct spu_context *ctx)
1703 {
1704         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1705         return lscsa->srr0.slot[0];
1706 }
1707 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1708                        "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1709
1710 static u64 spufs_id_get(struct spu_context *ctx)
1711 {
1712         u64 num;
1713
1714         if (ctx->state == SPU_STATE_RUNNABLE)
1715                 num = ctx->spu->number;
1716         else
1717                 num = (unsigned int)-1;
1718
1719         return num;
1720 }
1721 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
1722                        SPU_ATTR_ACQUIRE)
1723
1724 static u64 spufs_object_id_get(struct spu_context *ctx)
1725 {
1726         /* FIXME: Should there really be no locking here? */
1727         return ctx->object_id;
1728 }
1729
1730 static void spufs_object_id_set(void *data, u64 id)
1731 {
1732         struct spu_context *ctx = data;
1733         ctx->object_id = id;
1734 }
1735
1736 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
1737                        spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
1738
1739 static u64 spufs_lslr_get(struct spu_context *ctx)
1740 {
1741         return ctx->csa.priv2.spu_lslr_RW;
1742 }
1743 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
1744                        SPU_ATTR_ACQUIRE_SAVED);
1745
1746 static int spufs_info_open(struct inode *inode, struct file *file)
1747 {
1748         struct spufs_inode_info *i = SPUFS_I(inode);
1749         struct spu_context *ctx = i->i_ctx;
1750         file->private_data = ctx;
1751         return 0;
1752 }
1753
1754 static int spufs_caps_show(struct seq_file *s, void *private)
1755 {
1756         struct spu_context *ctx = s->private;
1757
1758         if (!(ctx->flags & SPU_CREATE_NOSCHED))
1759                 seq_puts(s, "sched\n");
1760         if (!(ctx->flags & SPU_CREATE_ISOLATE))
1761                 seq_puts(s, "step\n");
1762         return 0;
1763 }
1764
1765 static int spufs_caps_open(struct inode *inode, struct file *file)
1766 {
1767         return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
1768 }
1769
1770 static const struct file_operations spufs_caps_fops = {
1771         .open           = spufs_caps_open,
1772         .read           = seq_read,
1773         .llseek         = seq_lseek,
1774         .release        = single_release,
1775 };
1776
1777 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
1778                         char __user *buf, size_t len, loff_t *pos)
1779 {
1780         u32 mbox_stat;
1781         u32 data;
1782
1783         mbox_stat = ctx->csa.prob.mb_stat_R;
1784         if (mbox_stat & 0x0000ff) {
1785                 data = ctx->csa.prob.pu_mb_R;
1786         }
1787
1788         return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
1789 }
1790
1791 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
1792                                    size_t len, loff_t *pos)
1793 {
1794         int ret;
1795         struct spu_context *ctx = file->private_data;
1796
1797         if (!access_ok(VERIFY_WRITE, buf, len))
1798                 return -EFAULT;
1799
1800         spu_acquire_saved(ctx);
1801         spin_lock(&ctx->csa.register_lock);
1802         ret = __spufs_mbox_info_read(ctx, buf, len, pos);
1803         spin_unlock(&ctx->csa.register_lock);
1804         spu_release_saved(ctx);
1805
1806         return ret;
1807 }
1808
1809 static const struct file_operations spufs_mbox_info_fops = {
1810         .open = spufs_info_open,
1811         .read = spufs_mbox_info_read,
1812         .llseek  = generic_file_llseek,
1813 };
1814
1815 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
1816                                 char __user *buf, size_t len, loff_t *pos)
1817 {
1818         u32 ibox_stat;
1819         u32 data;
1820
1821         ibox_stat = ctx->csa.prob.mb_stat_R;
1822         if (ibox_stat & 0xff0000) {
1823                 data = ctx->csa.priv2.puint_mb_R;
1824         }
1825
1826         return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
1827 }
1828
1829 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
1830                                    size_t len, loff_t *pos)
1831 {
1832         struct spu_context *ctx = file->private_data;
1833         int ret;
1834
1835         if (!access_ok(VERIFY_WRITE, buf, len))
1836                 return -EFAULT;
1837
1838         spu_acquire_saved(ctx);
1839         spin_lock(&ctx->csa.register_lock);
1840         ret = __spufs_ibox_info_read(ctx, buf, len, pos);
1841         spin_unlock(&ctx->csa.register_lock);
1842         spu_release_saved(ctx);
1843
1844         return ret;
1845 }
1846
1847 static const struct file_operations spufs_ibox_info_fops = {
1848         .open = spufs_info_open,
1849         .read = spufs_ibox_info_read,
1850         .llseek  = generic_file_llseek,
1851 };
1852
1853 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
1854                         char __user *buf, size_t len, loff_t *pos)
1855 {
1856         int i, cnt;
1857         u32 data[4];
1858         u32 wbox_stat;
1859
1860         wbox_stat = ctx->csa.prob.mb_stat_R;
1861         cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
1862         for (i = 0; i < cnt; i++) {
1863                 data[i] = ctx->csa.spu_mailbox_data[i];
1864         }
1865
1866         return simple_read_from_buffer(buf, len, pos, &data,
1867                                 cnt * sizeof(u32));
1868 }
1869
1870 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
1871                                    size_t len, loff_t *pos)
1872 {
1873         struct spu_context *ctx = file->private_data;
1874         int ret;
1875
1876         if (!access_ok(VERIFY_WRITE, buf, len))
1877                 return -EFAULT;
1878
1879         spu_acquire_saved(ctx);
1880         spin_lock(&ctx->csa.register_lock);
1881         ret = __spufs_wbox_info_read(ctx, buf, len, pos);
1882         spin_unlock(&ctx->csa.register_lock);
1883         spu_release_saved(ctx);
1884
1885         return ret;
1886 }
1887
1888 static const struct file_operations spufs_wbox_info_fops = {
1889         .open = spufs_info_open,
1890         .read = spufs_wbox_info_read,
1891         .llseek  = generic_file_llseek,
1892 };
1893
1894 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
1895                         char __user *buf, size_t len, loff_t *pos)
1896 {
1897         struct spu_dma_info info;
1898         struct mfc_cq_sr *qp, *spuqp;
1899         int i;
1900
1901         info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
1902         info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
1903         info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
1904         info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
1905         info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
1906         for (i = 0; i < 16; i++) {
1907                 qp = &info.dma_info_command_data[i];
1908                 spuqp = &ctx->csa.priv2.spuq[i];
1909
1910                 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
1911                 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
1912                 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
1913                 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
1914         }
1915
1916         return simple_read_from_buffer(buf, len, pos, &info,
1917                                 sizeof info);
1918 }
1919
1920 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
1921                               size_t len, loff_t *pos)
1922 {
1923         struct spu_context *ctx = file->private_data;
1924         int ret;
1925
1926         if (!access_ok(VERIFY_WRITE, buf, len))
1927                 return -EFAULT;
1928
1929         spu_acquire_saved(ctx);
1930         spin_lock(&ctx->csa.register_lock);
1931         ret = __spufs_dma_info_read(ctx, buf, len, pos);
1932         spin_unlock(&ctx->csa.register_lock);
1933         spu_release_saved(ctx);
1934
1935         return ret;
1936 }
1937
1938 static const struct file_operations spufs_dma_info_fops = {
1939         .open = spufs_info_open,
1940         .read = spufs_dma_info_read,
1941 };
1942
1943 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
1944                         char __user *buf, size_t len, loff_t *pos)
1945 {
1946         struct spu_proxydma_info info;
1947         struct mfc_cq_sr *qp, *puqp;
1948         int ret = sizeof info;
1949         int i;
1950
1951         if (len < ret)
1952                 return -EINVAL;
1953
1954         if (!access_ok(VERIFY_WRITE, buf, len))
1955                 return -EFAULT;
1956
1957         info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
1958         info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
1959         info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
1960         for (i = 0; i < 8; i++) {
1961                 qp = &info.proxydma_info_command_data[i];
1962                 puqp = &ctx->csa.priv2.puq[i];
1963
1964                 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
1965                 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
1966                 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
1967                 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
1968         }
1969
1970         return simple_read_from_buffer(buf, len, pos, &info,
1971                                 sizeof info);
1972 }
1973
1974 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
1975                                    size_t len, loff_t *pos)
1976 {
1977         struct spu_context *ctx = file->private_data;
1978         int ret;
1979
1980         spu_acquire_saved(ctx);
1981         spin_lock(&ctx->csa.register_lock);
1982         ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
1983         spin_unlock(&ctx->csa.register_lock);
1984         spu_release_saved(ctx);
1985
1986         return ret;
1987 }
1988
1989 static const struct file_operations spufs_proxydma_info_fops = {
1990         .open = spufs_info_open,
1991         .read = spufs_proxydma_info_read,
1992 };
1993
1994 static int spufs_show_tid(struct seq_file *s, void *private)
1995 {
1996         struct spu_context *ctx = s->private;
1997
1998         seq_printf(s, "%d\n", ctx->tid);
1999         return 0;
2000 }
2001
2002 static int spufs_tid_open(struct inode *inode, struct file *file)
2003 {
2004         return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2005 }
2006
2007 static const struct file_operations spufs_tid_fops = {
2008         .open           = spufs_tid_open,
2009         .read           = seq_read,
2010         .llseek         = seq_lseek,
2011         .release        = single_release,
2012 };
2013
2014 static const char *ctx_state_names[] = {
2015         "user", "system", "iowait", "loaded"
2016 };
2017
2018 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2019                 enum spu_utilization_state state)
2020 {
2021         struct timespec ts;
2022         unsigned long long time = ctx->stats.times[state];
2023
2024         /*
2025          * In general, utilization statistics are updated by the controlling
2026          * thread as the spu context moves through various well defined
2027          * state transitions, but if the context is lazily loaded its
2028          * utilization statistics are not updated as the controlling thread
2029          * is not tightly coupled with the execution of the spu context.  We
2030          * calculate and apply the time delta from the last recorded state
2031          * of the spu context.
2032          */
2033         if (ctx->spu && ctx->stats.util_state == state) {
2034                 ktime_get_ts(&ts);
2035                 time += timespec_to_ns(&ts) - ctx->stats.tstamp;
2036         }
2037
2038         return time / NSEC_PER_MSEC;
2039 }
2040
2041 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2042 {
2043         unsigned long long slb_flts = ctx->stats.slb_flt;
2044
2045         if (ctx->state == SPU_STATE_RUNNABLE) {
2046                 slb_flts += (ctx->spu->stats.slb_flt -
2047                              ctx->stats.slb_flt_base);
2048         }
2049
2050         return slb_flts;
2051 }
2052
2053 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2054 {
2055         unsigned long long class2_intrs = ctx->stats.class2_intr;
2056
2057         if (ctx->state == SPU_STATE_RUNNABLE) {
2058                 class2_intrs += (ctx->spu->stats.class2_intr -
2059                                  ctx->stats.class2_intr_base);
2060         }
2061
2062         return class2_intrs;
2063 }
2064
2065
2066 static int spufs_show_stat(struct seq_file *s, void *private)
2067 {
2068         struct spu_context *ctx = s->private;
2069
2070         spu_acquire(ctx);
2071         seq_printf(s, "%s %llu %llu %llu %llu "
2072                       "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2073                 ctx_state_names[ctx->stats.util_state],
2074                 spufs_acct_time(ctx, SPU_UTIL_USER),
2075                 spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2076                 spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2077                 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2078                 ctx->stats.vol_ctx_switch,
2079                 ctx->stats.invol_ctx_switch,
2080                 spufs_slb_flts(ctx),
2081                 ctx->stats.hash_flt,
2082                 ctx->stats.min_flt,
2083                 ctx->stats.maj_flt,
2084                 spufs_class2_intrs(ctx),
2085                 ctx->stats.libassist);
2086         spu_release(ctx);
2087         return 0;
2088 }
2089
2090 static int spufs_stat_open(struct inode *inode, struct file *file)
2091 {
2092         return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2093 }
2094
2095 static const struct file_operations spufs_stat_fops = {
2096         .open           = spufs_stat_open,
2097         .read           = seq_read,
2098         .llseek         = seq_lseek,
2099         .release        = single_release,
2100 };
2101
2102
2103 struct tree_descr spufs_dir_contents[] = {
2104         { "capabilities", &spufs_caps_fops, 0444, },
2105         { "mem",  &spufs_mem_fops,  0666, },
2106         { "regs", &spufs_regs_fops,  0666, },
2107         { "mbox", &spufs_mbox_fops, 0444, },
2108         { "ibox", &spufs_ibox_fops, 0444, },
2109         { "wbox", &spufs_wbox_fops, 0222, },
2110         { "mbox_stat", &spufs_mbox_stat_fops, 0444, },
2111         { "ibox_stat", &spufs_ibox_stat_fops, 0444, },
2112         { "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2113         { "signal1", &spufs_signal1_fops, 0666, },
2114         { "signal2", &spufs_signal2_fops, 0666, },
2115         { "signal1_type", &spufs_signal1_type, 0666, },
2116         { "signal2_type", &spufs_signal2_type, 0666, },
2117         { "cntl", &spufs_cntl_fops,  0666, },
2118         { "fpcr", &spufs_fpcr_fops, 0666, },
2119         { "lslr", &spufs_lslr_ops, 0444, },
2120         { "mfc", &spufs_mfc_fops, 0666, },
2121         { "mss", &spufs_mss_fops, 0666, },
2122         { "npc", &spufs_npc_ops, 0666, },
2123         { "srr0", &spufs_srr0_ops, 0666, },
2124         { "decr", &spufs_decr_ops, 0666, },
2125         { "decr_status", &spufs_decr_status_ops, 0666, },
2126         { "event_mask", &spufs_event_mask_ops, 0666, },
2127         { "event_status", &spufs_event_status_ops, 0444, },
2128         { "psmap", &spufs_psmap_fops, 0666, },
2129         { "phys-id", &spufs_id_ops, 0666, },
2130         { "object-id", &spufs_object_id_ops, 0666, },
2131         { "mbox_info", &spufs_mbox_info_fops, 0444, },
2132         { "ibox_info", &spufs_ibox_info_fops, 0444, },
2133         { "wbox_info", &spufs_wbox_info_fops, 0444, },
2134         { "dma_info", &spufs_dma_info_fops, 0444, },
2135         { "proxydma_info", &spufs_proxydma_info_fops, 0444, },
2136         { "tid", &spufs_tid_fops, 0444, },
2137         { "stat", &spufs_stat_fops, 0444, },
2138         {},
2139 };
2140
2141 struct tree_descr spufs_dir_nosched_contents[] = {
2142         { "capabilities", &spufs_caps_fops, 0444, },
2143         { "mem",  &spufs_mem_fops,  0666, },
2144         { "mbox", &spufs_mbox_fops, 0444, },
2145         { "ibox", &spufs_ibox_fops, 0444, },
2146         { "wbox", &spufs_wbox_fops, 0222, },
2147         { "mbox_stat", &spufs_mbox_stat_fops, 0444, },
2148         { "ibox_stat", &spufs_ibox_stat_fops, 0444, },
2149         { "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2150         { "signal1", &spufs_signal1_nosched_fops, 0222, },
2151         { "signal2", &spufs_signal2_nosched_fops, 0222, },
2152         { "signal1_type", &spufs_signal1_type, 0666, },
2153         { "signal2_type", &spufs_signal2_type, 0666, },
2154         { "mss", &spufs_mss_fops, 0666, },
2155         { "mfc", &spufs_mfc_fops, 0666, },
2156         { "cntl", &spufs_cntl_fops,  0666, },
2157         { "npc", &spufs_npc_ops, 0666, },
2158         { "psmap", &spufs_psmap_fops, 0666, },
2159         { "phys-id", &spufs_id_ops, 0666, },
2160         { "object-id", &spufs_object_id_ops, 0666, },
2161         { "tid", &spufs_tid_fops, 0444, },
2162         { "stat", &spufs_stat_fops, 0444, },
2163         {},
2164 };
2165
2166 struct spufs_coredump_reader spufs_coredump_read[] = {
2167         { "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2168         { "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2169         { "lslr", NULL, spufs_lslr_get, 19 },
2170         { "decr", NULL, spufs_decr_get, 19 },
2171         { "decr_status", NULL, spufs_decr_status_get, 19 },
2172         { "mem", __spufs_mem_read, NULL, LS_SIZE, },
2173         { "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2174         { "signal1_type", NULL, spufs_signal1_type_get, 19 },
2175         { "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2176         { "signal2_type", NULL, spufs_signal2_type_get, 19 },
2177         { "event_mask", NULL, spufs_event_mask_get, 19 },
2178         { "event_status", NULL, spufs_event_status_get, 19 },
2179         { "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2180         { "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2181         { "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2182         { "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2183         { "proxydma_info", __spufs_proxydma_info_read,
2184                            NULL, sizeof(struct spu_proxydma_info)},
2185         { "object-id", NULL, spufs_object_id_get, 19 },
2186         { "npc", NULL, spufs_npc_get, 19 },
2187         { NULL },
2188 };