2 * linux/drivers/char/mem.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
7 * Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
8 * Shared /dev/zero mmaping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
12 #include <linux/miscdevice.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/mman.h>
16 #include <linux/random.h>
17 #include <linux/init.h>
18 #include <linux/raw.h>
19 #include <linux/tty.h>
20 #include <linux/capability.h>
21 #include <linux/ptrace.h>
22 #include <linux/device.h>
23 #include <linux/highmem.h>
24 #include <linux/crash_dump.h>
25 #include <linux/backing-dev.h>
26 #include <linux/bootmem.h>
27 #include <linux/splice.h>
28 #include <linux/pfn.h>
30 #include <asm/uaccess.h>
34 # include <linux/efi.h>
38 * Architectures vary in how they handle caching for addresses
39 * outside of main memory.
42 static inline int uncached_access(struct file *file, unsigned long addr)
44 #if defined(__i386__) && !defined(__arch_um__)
46 * On the PPro and successors, the MTRRs are used to set
47 * memory types for physical addresses outside main memory,
48 * so blindly setting PCD or PWT on those pages is wrong.
49 * For Pentiums and earlier, the surround logic should disable
50 * caching for the high addresses through the KEN pin, but
51 * we maintain the tradition of paranoia in this code.
53 if (file->f_flags & O_SYNC)
55 return !( test_bit(X86_FEATURE_MTRR, boot_cpu_data.x86_capability) ||
56 test_bit(X86_FEATURE_K6_MTRR, boot_cpu_data.x86_capability) ||
57 test_bit(X86_FEATURE_CYRIX_ARR, boot_cpu_data.x86_capability) ||
58 test_bit(X86_FEATURE_CENTAUR_MCR, boot_cpu_data.x86_capability) )
59 && addr >= __pa(high_memory);
60 #elif defined(__x86_64__) && !defined(__arch_um__)
62 * This is broken because it can generate memory type aliases,
63 * which can cause cache corruptions
64 * But it is only available for root and we have to be bug-to-bug
65 * compatible with i386.
67 if (file->f_flags & O_SYNC)
69 /* same behaviour as i386. PAT always set to cached and MTRRs control the
71 Hopefully a full PAT implementation will fix that soon. */
73 #elif defined(CONFIG_IA64)
75 * On ia64, we ignore O_SYNC because we cannot tolerate memory attribute aliases.
77 return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
78 #elif defined(CONFIG_MIPS)
80 extern int __uncached_access(struct file *file,
83 return __uncached_access(file, addr);
87 * Accessing memory above the top the kernel knows about or through a file pointer
88 * that was marked O_SYNC will be done non-cached.
90 if (file->f_flags & O_SYNC)
92 return addr >= __pa(high_memory);
96 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
97 static inline int valid_phys_addr_range(unsigned long addr, size_t count)
99 if (addr + count > __pa(high_memory))
105 static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
112 * This funcion reads the *physical* memory. The f_pos points directly to the
115 static ssize_t read_mem(struct file * file, char __user * buf,
116 size_t count, loff_t *ppos)
118 unsigned long p = *ppos;
122 if (!valid_phys_addr_range(p, count))
125 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
126 /* we don't have page 0 mapped on sparc and m68k.. */
132 if (clear_user(buf, sz))
144 * Handle first page in case it's not aligned
146 if (-p & (PAGE_SIZE - 1))
147 sz = -p & (PAGE_SIZE - 1);
151 sz = min_t(unsigned long, sz, count);
154 * On ia64 if a page has been mapped somewhere as
155 * uncached, then it must also be accessed uncached
156 * by the kernel or data corruption may occur
158 ptr = xlate_dev_mem_ptr(p);
160 if (copy_to_user(buf, ptr, sz))
172 static ssize_t write_mem(struct file * file, const char __user * buf,
173 size_t count, loff_t *ppos)
175 unsigned long p = *ppos;
177 unsigned long copied;
180 if (!valid_phys_addr_range(p, count))
185 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
186 /* we don't have page 0 mapped on sparc and m68k.. */
188 unsigned long sz = PAGE_SIZE - p;
191 /* Hmm. Do something? */
201 * Handle first page in case it's not aligned
203 if (-p & (PAGE_SIZE - 1))
204 sz = -p & (PAGE_SIZE - 1);
208 sz = min_t(unsigned long, sz, count);
211 * On ia64 if a page has been mapped somewhere as
212 * uncached, then it must also be accessed uncached
213 * by the kernel or data corruption may occur
215 ptr = xlate_dev_mem_ptr(p);
217 copied = copy_from_user(ptr, buf, sz);
219 written += sz - copied;
234 #ifndef __HAVE_PHYS_MEM_ACCESS_PROT
235 static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
236 unsigned long size, pgprot_t vma_prot)
238 #ifdef pgprot_noncached
239 unsigned long offset = pfn << PAGE_SHIFT;
241 if (uncached_access(file, offset))
242 return pgprot_noncached(vma_prot);
249 static unsigned long get_unmapped_area_mem(struct file *file,
255 if (!valid_mmap_phys_addr_range(pgoff, len))
256 return (unsigned long) -EINVAL;
257 return pgoff << PAGE_SHIFT;
260 /* can't do an in-place private mapping if there's no MMU */
261 static inline int private_mapping_ok(struct vm_area_struct *vma)
263 return vma->vm_flags & VM_MAYSHARE;
266 #define get_unmapped_area_mem NULL
268 static inline int private_mapping_ok(struct vm_area_struct *vma)
274 static int mmap_mem(struct file * file, struct vm_area_struct * vma)
276 size_t size = vma->vm_end - vma->vm_start;
278 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
281 if (!private_mapping_ok(vma))
284 vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
288 /* Remap-pfn-range will mark the range VM_IO and VM_RESERVED */
289 if (remap_pfn_range(vma,
298 static int mmap_kmem(struct file * file, struct vm_area_struct * vma)
302 /* Turn a kernel-virtual address into a physical page frame */
303 pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT;
306 * RED-PEN: on some architectures there is more mapped memory
307 * than available in mem_map which pfn_valid checks
308 * for. Perhaps should add a new macro here.
310 * RED-PEN: vmalloc is not supported right now.
316 return mmap_mem(file, vma);
319 #ifdef CONFIG_CRASH_DUMP
321 * Read memory corresponding to the old kernel.
323 static ssize_t read_oldmem(struct file *file, char __user *buf,
324 size_t count, loff_t *ppos)
326 unsigned long pfn, offset;
327 size_t read = 0, csize;
331 pfn = *ppos / PAGE_SIZE;
332 if (pfn > saved_max_pfn)
335 offset = (unsigned long)(*ppos % PAGE_SIZE);
336 if (count > PAGE_SIZE - offset)
337 csize = PAGE_SIZE - offset;
341 rc = copy_oldmem_page(pfn, buf, csize, offset, 1);
353 extern long vread(char *buf, char *addr, unsigned long count);
354 extern long vwrite(char *buf, char *addr, unsigned long count);
357 * This function reads the *virtual* memory as seen by the kernel.
359 static ssize_t read_kmem(struct file *file, char __user *buf,
360 size_t count, loff_t *ppos)
362 unsigned long p = *ppos;
363 ssize_t low_count, read, sz;
364 char * kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
367 if (p < (unsigned long) high_memory) {
369 if (count > (unsigned long) high_memory - p)
370 low_count = (unsigned long) high_memory - p;
372 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
373 /* we don't have page 0 mapped on sparc and m68k.. */
374 if (p < PAGE_SIZE && low_count > 0) {
375 size_t tmp = PAGE_SIZE - p;
376 if (tmp > low_count) tmp = low_count;
377 if (clear_user(buf, tmp))
386 while (low_count > 0) {
388 * Handle first page in case it's not aligned
390 if (-p & (PAGE_SIZE - 1))
391 sz = -p & (PAGE_SIZE - 1);
395 sz = min_t(unsigned long, sz, low_count);
398 * On ia64 if a page has been mapped somewhere as
399 * uncached, then it must also be accessed uncached
400 * by the kernel or data corruption may occur
402 kbuf = xlate_dev_kmem_ptr((char *)p);
404 if (copy_to_user(buf, kbuf, sz))
415 kbuf = (char *)__get_free_page(GFP_KERNEL);
423 len = vread(kbuf, (char *)p, len);
426 if (copy_to_user(buf, kbuf, len)) {
427 free_page((unsigned long)kbuf);
435 free_page((unsigned long)kbuf);
442 static inline ssize_t
443 do_write_kmem(void *p, unsigned long realp, const char __user * buf,
444 size_t count, loff_t *ppos)
447 unsigned long copied;
450 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
451 /* we don't have page 0 mapped on sparc and m68k.. */
452 if (realp < PAGE_SIZE) {
453 unsigned long sz = PAGE_SIZE - realp;
456 /* Hmm. Do something? */
468 * Handle first page in case it's not aligned
470 if (-realp & (PAGE_SIZE - 1))
471 sz = -realp & (PAGE_SIZE - 1);
475 sz = min_t(unsigned long, sz, count);
478 * On ia64 if a page has been mapped somewhere as
479 * uncached, then it must also be accessed uncached
480 * by the kernel or data corruption may occur
482 ptr = xlate_dev_kmem_ptr(p);
484 copied = copy_from_user(ptr, buf, sz);
486 written += sz - copied;
504 * This function writes to the *virtual* memory as seen by the kernel.
506 static ssize_t write_kmem(struct file * file, const char __user * buf,
507 size_t count, loff_t *ppos)
509 unsigned long p = *ppos;
513 char * kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
515 if (p < (unsigned long) high_memory) {
518 if (count > (unsigned long) high_memory - p)
519 wrote = (unsigned long) high_memory - p;
521 written = do_write_kmem((void*)p, p, buf, wrote, ppos);
522 if (written != wrote)
531 kbuf = (char *)__get_free_page(GFP_KERNEL);
533 return wrote ? wrote : -ENOMEM;
540 written = copy_from_user(kbuf, buf, len);
544 free_page((unsigned long)kbuf);
548 len = vwrite(kbuf, (char *)p, len);
554 free_page((unsigned long)kbuf);
558 return virtr + wrote;
561 #ifdef CONFIG_DEVPORT
562 static ssize_t read_port(struct file * file, char __user * buf,
563 size_t count, loff_t *ppos)
565 unsigned long i = *ppos;
566 char __user *tmp = buf;
568 if (!access_ok(VERIFY_WRITE, buf, count))
570 while (count-- > 0 && i < 65536) {
571 if (__put_user(inb(i),tmp) < 0)
580 static ssize_t write_port(struct file * file, const char __user * buf,
581 size_t count, loff_t *ppos)
583 unsigned long i = *ppos;
584 const char __user * tmp = buf;
586 if (!access_ok(VERIFY_READ,buf,count))
588 while (count-- > 0 && i < 65536) {
590 if (__get_user(c, tmp)) {
604 static ssize_t read_null(struct file * file, char __user * buf,
605 size_t count, loff_t *ppos)
610 static ssize_t write_null(struct file * file, const char __user * buf,
611 size_t count, loff_t *ppos)
616 static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
617 struct splice_desc *sd)
622 static ssize_t splice_write_null(struct pipe_inode_info *pipe,struct file *out,
623 loff_t *ppos, size_t len, unsigned int flags)
625 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
628 static ssize_t read_zero(struct file * file, char __user * buf,
629 size_t count, loff_t *ppos)
636 if (!access_ok(VERIFY_WRITE, buf, count))
641 unsigned long unwritten;
642 size_t chunk = count;
644 if (chunk > PAGE_SIZE)
645 chunk = PAGE_SIZE; /* Just for latency reasons */
646 unwritten = clear_user(buf, chunk);
647 written += chunk - unwritten;
654 return written ? written : -EFAULT;
657 static int mmap_zero(struct file * file, struct vm_area_struct * vma)
662 if (vma->vm_flags & VM_SHARED)
663 return shmem_zero_setup(vma);
667 static ssize_t write_full(struct file * file, const char __user * buf,
668 size_t count, loff_t *ppos)
674 * Special lseek() function for /dev/null and /dev/zero. Most notably, you
675 * can fopen() both devices with "a" now. This was previously impossible.
679 static loff_t null_lseek(struct file * file, loff_t offset, int orig)
681 return file->f_pos = 0;
685 * The memory devices use the full 32/64 bits of the offset, and so we cannot
686 * check against negative addresses: they are ok. The return value is weird,
687 * though, in that case (0).
689 * also note that seeking relative to the "end of file" isn't supported:
690 * it has no meaning, so it returns -EINVAL.
692 static loff_t memory_lseek(struct file * file, loff_t offset, int orig)
696 mutex_lock(&file->f_path.dentry->d_inode->i_mutex);
699 file->f_pos = offset;
701 force_successful_syscall_return();
704 file->f_pos += offset;
706 force_successful_syscall_return();
711 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
715 static int open_port(struct inode * inode, struct file * filp)
717 return capable(CAP_SYS_RAWIO) ? 0 : -EPERM;
720 #define zero_lseek null_lseek
721 #define full_lseek null_lseek
722 #define write_zero write_null
723 #define read_full read_zero
724 #define open_mem open_port
725 #define open_kmem open_mem
726 #define open_oldmem open_mem
728 static const struct file_operations mem_fops = {
729 .llseek = memory_lseek,
734 .get_unmapped_area = get_unmapped_area_mem,
737 static const struct file_operations kmem_fops = {
738 .llseek = memory_lseek,
743 .get_unmapped_area = get_unmapped_area_mem,
746 static const struct file_operations null_fops = {
747 .llseek = null_lseek,
750 .splice_write = splice_write_null,
753 #ifdef CONFIG_DEVPORT
754 static const struct file_operations port_fops = {
755 .llseek = memory_lseek,
762 static const struct file_operations zero_fops = {
763 .llseek = zero_lseek,
770 * capabilities for /dev/zero
771 * - permits private mappings, "copies" are taken of the source of zeros
773 static struct backing_dev_info zero_bdi = {
774 .capabilities = BDI_CAP_MAP_COPY,
777 static const struct file_operations full_fops = {
778 .llseek = full_lseek,
783 #ifdef CONFIG_CRASH_DUMP
784 static const struct file_operations oldmem_fops = {
790 static ssize_t kmsg_write(struct file * file, const char __user * buf,
791 size_t count, loff_t *ppos)
796 tmp = kmalloc(count + 1, GFP_KERNEL);
800 if (!copy_from_user(tmp, buf, count)) {
802 ret = printk("%s", tmp);
804 /* printk can add a prefix */
811 static const struct file_operations kmsg_fops = {
815 static int memory_open(struct inode * inode, struct file * filp)
817 switch (iminor(inode)) {
819 filp->f_op = &mem_fops;
820 filp->f_mapping->backing_dev_info =
821 &directly_mappable_cdev_bdi;
824 filp->f_op = &kmem_fops;
825 filp->f_mapping->backing_dev_info =
826 &directly_mappable_cdev_bdi;
829 filp->f_op = &null_fops;
831 #ifdef CONFIG_DEVPORT
833 filp->f_op = &port_fops;
837 filp->f_mapping->backing_dev_info = &zero_bdi;
838 filp->f_op = &zero_fops;
841 filp->f_op = &full_fops;
844 filp->f_op = &random_fops;
847 filp->f_op = &urandom_fops;
850 filp->f_op = &kmsg_fops;
852 #ifdef CONFIG_CRASH_DUMP
854 filp->f_op = &oldmem_fops;
860 if (filp->f_op && filp->f_op->open)
861 return filp->f_op->open(inode,filp);
865 static const struct file_operations memory_fops = {
866 .open = memory_open, /* just a selector for the real open */
869 static const struct {
873 const struct file_operations *fops;
874 } devlist[] = { /* list of minor devices */
875 {1, "mem", S_IRUSR | S_IWUSR | S_IRGRP, &mem_fops},
876 {2, "kmem", S_IRUSR | S_IWUSR | S_IRGRP, &kmem_fops},
877 {3, "null", S_IRUGO | S_IWUGO, &null_fops},
878 #ifdef CONFIG_DEVPORT
879 {4, "port", S_IRUSR | S_IWUSR | S_IRGRP, &port_fops},
881 {5, "zero", S_IRUGO | S_IWUGO, &zero_fops},
882 {7, "full", S_IRUGO | S_IWUGO, &full_fops},
883 {8, "random", S_IRUGO | S_IWUSR, &random_fops},
884 {9, "urandom", S_IRUGO | S_IWUSR, &urandom_fops},
885 {11,"kmsg", S_IRUGO | S_IWUSR, &kmsg_fops},
886 #ifdef CONFIG_CRASH_DUMP
887 {12,"oldmem", S_IRUSR | S_IWUSR | S_IRGRP, &oldmem_fops},
891 static struct class *mem_class;
893 static int __init chr_dev_init(void)
898 err = bdi_init(&zero_bdi);
902 if (register_chrdev(MEM_MAJOR,"mem",&memory_fops))
903 printk("unable to get major %d for memory devs\n", MEM_MAJOR);
905 mem_class = class_create(THIS_MODULE, "mem");
906 for (i = 0; i < ARRAY_SIZE(devlist); i++)
907 device_create(mem_class, NULL,
908 MKDEV(MEM_MAJOR, devlist[i].minor),
914 fs_initcall(chr_dev_init);