Pull cpuidle into release branch
[linux-2.6] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2007 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  * napi: This parameter used to enable/disable NAPI (polling Rx)
46  *     Possible values '1' for enable and '0' for disable. Default is '1'
47  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48  *      Possible values '1' for enable and '0' for disable. Default is '0'
49  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50  *                 Possible values '1' for enable , '0' for disable.
51  *                 Default is '2' - which means disable in promisc mode
52  *                 and enable in non-promiscuous mode.
53  ************************************************************************/
54
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <net/tcp.h>
76
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
79 #include <asm/io.h>
80 #include <asm/div64.h>
81 #include <asm/irq.h>
82
83 /* local include */
84 #include "s2io.h"
85 #include "s2io-regs.h"
86
87 #define DRV_VERSION "2.0.26.6"
88
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
92
93 static int rxd_size[2] = {32,48};
94 static int rxd_count[2] = {127,85};
95
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
97 {
98         int ret;
99
100         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103         return ret;
104 }
105
106 /*
107  * Cards with following subsystem_id have a link state indication
108  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109  * macro below identifies these cards given the subsystem_id.
110  */
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112         (dev_type == XFRAME_I_DEVICE) ?                 \
113                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
115
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119 #define PANIC   1
120 #define LOW     2
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
122 {
123         struct mac_info *mac_control;
124
125         mac_control = &sp->mac_control;
126         if (rxb_size <= rxd_count[sp->rxd_mode])
127                 return PANIC;
128         else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129                 return  LOW;
130         return 0;
131 }
132
133 static inline int is_s2io_card_up(const struct s2io_nic * sp)
134 {
135         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
136 }
137
138 /* Ethtool related variables and Macros. */
139 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
140         "Register test\t(offline)",
141         "Eeprom test\t(offline)",
142         "Link test\t(online)",
143         "RLDRAM test\t(offline)",
144         "BIST Test\t(offline)"
145 };
146
147 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
148         {"tmac_frms"},
149         {"tmac_data_octets"},
150         {"tmac_drop_frms"},
151         {"tmac_mcst_frms"},
152         {"tmac_bcst_frms"},
153         {"tmac_pause_ctrl_frms"},
154         {"tmac_ttl_octets"},
155         {"tmac_ucst_frms"},
156         {"tmac_nucst_frms"},
157         {"tmac_any_err_frms"},
158         {"tmac_ttl_less_fb_octets"},
159         {"tmac_vld_ip_octets"},
160         {"tmac_vld_ip"},
161         {"tmac_drop_ip"},
162         {"tmac_icmp"},
163         {"tmac_rst_tcp"},
164         {"tmac_tcp"},
165         {"tmac_udp"},
166         {"rmac_vld_frms"},
167         {"rmac_data_octets"},
168         {"rmac_fcs_err_frms"},
169         {"rmac_drop_frms"},
170         {"rmac_vld_mcst_frms"},
171         {"rmac_vld_bcst_frms"},
172         {"rmac_in_rng_len_err_frms"},
173         {"rmac_out_rng_len_err_frms"},
174         {"rmac_long_frms"},
175         {"rmac_pause_ctrl_frms"},
176         {"rmac_unsup_ctrl_frms"},
177         {"rmac_ttl_octets"},
178         {"rmac_accepted_ucst_frms"},
179         {"rmac_accepted_nucst_frms"},
180         {"rmac_discarded_frms"},
181         {"rmac_drop_events"},
182         {"rmac_ttl_less_fb_octets"},
183         {"rmac_ttl_frms"},
184         {"rmac_usized_frms"},
185         {"rmac_osized_frms"},
186         {"rmac_frag_frms"},
187         {"rmac_jabber_frms"},
188         {"rmac_ttl_64_frms"},
189         {"rmac_ttl_65_127_frms"},
190         {"rmac_ttl_128_255_frms"},
191         {"rmac_ttl_256_511_frms"},
192         {"rmac_ttl_512_1023_frms"},
193         {"rmac_ttl_1024_1518_frms"},
194         {"rmac_ip"},
195         {"rmac_ip_octets"},
196         {"rmac_hdr_err_ip"},
197         {"rmac_drop_ip"},
198         {"rmac_icmp"},
199         {"rmac_tcp"},
200         {"rmac_udp"},
201         {"rmac_err_drp_udp"},
202         {"rmac_xgmii_err_sym"},
203         {"rmac_frms_q0"},
204         {"rmac_frms_q1"},
205         {"rmac_frms_q2"},
206         {"rmac_frms_q3"},
207         {"rmac_frms_q4"},
208         {"rmac_frms_q5"},
209         {"rmac_frms_q6"},
210         {"rmac_frms_q7"},
211         {"rmac_full_q0"},
212         {"rmac_full_q1"},
213         {"rmac_full_q2"},
214         {"rmac_full_q3"},
215         {"rmac_full_q4"},
216         {"rmac_full_q5"},
217         {"rmac_full_q6"},
218         {"rmac_full_q7"},
219         {"rmac_pause_cnt"},
220         {"rmac_xgmii_data_err_cnt"},
221         {"rmac_xgmii_ctrl_err_cnt"},
222         {"rmac_accepted_ip"},
223         {"rmac_err_tcp"},
224         {"rd_req_cnt"},
225         {"new_rd_req_cnt"},
226         {"new_rd_req_rtry_cnt"},
227         {"rd_rtry_cnt"},
228         {"wr_rtry_rd_ack_cnt"},
229         {"wr_req_cnt"},
230         {"new_wr_req_cnt"},
231         {"new_wr_req_rtry_cnt"},
232         {"wr_rtry_cnt"},
233         {"wr_disc_cnt"},
234         {"rd_rtry_wr_ack_cnt"},
235         {"txp_wr_cnt"},
236         {"txd_rd_cnt"},
237         {"txd_wr_cnt"},
238         {"rxd_rd_cnt"},
239         {"rxd_wr_cnt"},
240         {"txf_rd_cnt"},
241         {"rxf_wr_cnt"}
242 };
243
244 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
245         {"rmac_ttl_1519_4095_frms"},
246         {"rmac_ttl_4096_8191_frms"},
247         {"rmac_ttl_8192_max_frms"},
248         {"rmac_ttl_gt_max_frms"},
249         {"rmac_osized_alt_frms"},
250         {"rmac_jabber_alt_frms"},
251         {"rmac_gt_max_alt_frms"},
252         {"rmac_vlan_frms"},
253         {"rmac_len_discard"},
254         {"rmac_fcs_discard"},
255         {"rmac_pf_discard"},
256         {"rmac_da_discard"},
257         {"rmac_red_discard"},
258         {"rmac_rts_discard"},
259         {"rmac_ingm_full_discard"},
260         {"link_fault_cnt"}
261 };
262
263 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
264         {"\n DRIVER STATISTICS"},
265         {"single_bit_ecc_errs"},
266         {"double_bit_ecc_errs"},
267         {"parity_err_cnt"},
268         {"serious_err_cnt"},
269         {"soft_reset_cnt"},
270         {"fifo_full_cnt"},
271         {"ring_0_full_cnt"},
272         {"ring_1_full_cnt"},
273         {"ring_2_full_cnt"},
274         {"ring_3_full_cnt"},
275         {"ring_4_full_cnt"},
276         {"ring_5_full_cnt"},
277         {"ring_6_full_cnt"},
278         {"ring_7_full_cnt"},
279         {"alarm_transceiver_temp_high"},
280         {"alarm_transceiver_temp_low"},
281         {"alarm_laser_bias_current_high"},
282         {"alarm_laser_bias_current_low"},
283         {"alarm_laser_output_power_high"},
284         {"alarm_laser_output_power_low"},
285         {"warn_transceiver_temp_high"},
286         {"warn_transceiver_temp_low"},
287         {"warn_laser_bias_current_high"},
288         {"warn_laser_bias_current_low"},
289         {"warn_laser_output_power_high"},
290         {"warn_laser_output_power_low"},
291         {"lro_aggregated_pkts"},
292         {"lro_flush_both_count"},
293         {"lro_out_of_sequence_pkts"},
294         {"lro_flush_due_to_max_pkts"},
295         {"lro_avg_aggr_pkts"},
296         {"mem_alloc_fail_cnt"},
297         {"pci_map_fail_cnt"},
298         {"watchdog_timer_cnt"},
299         {"mem_allocated"},
300         {"mem_freed"},
301         {"link_up_cnt"},
302         {"link_down_cnt"},
303         {"link_up_time"},
304         {"link_down_time"},
305         {"tx_tcode_buf_abort_cnt"},
306         {"tx_tcode_desc_abort_cnt"},
307         {"tx_tcode_parity_err_cnt"},
308         {"tx_tcode_link_loss_cnt"},
309         {"tx_tcode_list_proc_err_cnt"},
310         {"rx_tcode_parity_err_cnt"},
311         {"rx_tcode_abort_cnt"},
312         {"rx_tcode_parity_abort_cnt"},
313         {"rx_tcode_rda_fail_cnt"},
314         {"rx_tcode_unkn_prot_cnt"},
315         {"rx_tcode_fcs_err_cnt"},
316         {"rx_tcode_buf_size_err_cnt"},
317         {"rx_tcode_rxd_corrupt_cnt"},
318         {"rx_tcode_unkn_err_cnt"},
319         {"tda_err_cnt"},
320         {"pfc_err_cnt"},
321         {"pcc_err_cnt"},
322         {"tti_err_cnt"},
323         {"tpa_err_cnt"},
324         {"sm_err_cnt"},
325         {"lso_err_cnt"},
326         {"mac_tmac_err_cnt"},
327         {"mac_rmac_err_cnt"},
328         {"xgxs_txgxs_err_cnt"},
329         {"xgxs_rxgxs_err_cnt"},
330         {"rc_err_cnt"},
331         {"prc_pcix_err_cnt"},
332         {"rpa_err_cnt"},
333         {"rda_err_cnt"},
334         {"rti_err_cnt"},
335         {"mc_err_cnt"}
336 };
337
338 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
339 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
340                                         ETH_GSTRING_LEN
341 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
342
343 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
344 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
345
346 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
347 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
348
349 #define S2IO_TEST_LEN   sizeof(s2io_gstrings) / ETH_GSTRING_LEN
350 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
351
352 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
353                         init_timer(&timer);                     \
354                         timer.function = handle;                \
355                         timer.data = (unsigned long) arg;       \
356                         mod_timer(&timer, (jiffies + exp))      \
357
358 /* copy mac addr to def_mac_addr array */
359 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
360 {
361         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
362         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
363         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
364         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
365         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
366         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
367 }
368 /* Add the vlan */
369 static void s2io_vlan_rx_register(struct net_device *dev,
370                                         struct vlan_group *grp)
371 {
372         struct s2io_nic *nic = dev->priv;
373         unsigned long flags;
374
375         spin_lock_irqsave(&nic->tx_lock, flags);
376         nic->vlgrp = grp;
377         spin_unlock_irqrestore(&nic->tx_lock, flags);
378 }
379
380 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
381 static int vlan_strip_flag;
382
383 /*
384  * Constants to be programmed into the Xena's registers, to configure
385  * the XAUI.
386  */
387
388 #define END_SIGN        0x0
389 static const u64 herc_act_dtx_cfg[] = {
390         /* Set address */
391         0x8000051536750000ULL, 0x80000515367500E0ULL,
392         /* Write data */
393         0x8000051536750004ULL, 0x80000515367500E4ULL,
394         /* Set address */
395         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
396         /* Write data */
397         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
398         /* Set address */
399         0x801205150D440000ULL, 0x801205150D4400E0ULL,
400         /* Write data */
401         0x801205150D440004ULL, 0x801205150D4400E4ULL,
402         /* Set address */
403         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
404         /* Write data */
405         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
406         /* Done */
407         END_SIGN
408 };
409
410 static const u64 xena_dtx_cfg[] = {
411         /* Set address */
412         0x8000051500000000ULL, 0x80000515000000E0ULL,
413         /* Write data */
414         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
415         /* Set address */
416         0x8001051500000000ULL, 0x80010515000000E0ULL,
417         /* Write data */
418         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
419         /* Set address */
420         0x8002051500000000ULL, 0x80020515000000E0ULL,
421         /* Write data */
422         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
423         END_SIGN
424 };
425
426 /*
427  * Constants for Fixing the MacAddress problem seen mostly on
428  * Alpha machines.
429  */
430 static const u64 fix_mac[] = {
431         0x0060000000000000ULL, 0x0060600000000000ULL,
432         0x0040600000000000ULL, 0x0000600000000000ULL,
433         0x0020600000000000ULL, 0x0060600000000000ULL,
434         0x0020600000000000ULL, 0x0060600000000000ULL,
435         0x0020600000000000ULL, 0x0060600000000000ULL,
436         0x0020600000000000ULL, 0x0060600000000000ULL,
437         0x0020600000000000ULL, 0x0060600000000000ULL,
438         0x0020600000000000ULL, 0x0060600000000000ULL,
439         0x0020600000000000ULL, 0x0060600000000000ULL,
440         0x0020600000000000ULL, 0x0060600000000000ULL,
441         0x0020600000000000ULL, 0x0060600000000000ULL,
442         0x0020600000000000ULL, 0x0060600000000000ULL,
443         0x0020600000000000ULL, 0x0000600000000000ULL,
444         0x0040600000000000ULL, 0x0060600000000000ULL,
445         END_SIGN
446 };
447
448 MODULE_LICENSE("GPL");
449 MODULE_VERSION(DRV_VERSION);
450
451
452 /* Module Loadable parameters. */
453 S2IO_PARM_INT(tx_fifo_num, 1);
454 S2IO_PARM_INT(rx_ring_num, 1);
455
456
457 S2IO_PARM_INT(rx_ring_mode, 1);
458 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
459 S2IO_PARM_INT(rmac_pause_time, 0x100);
460 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
461 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
462 S2IO_PARM_INT(shared_splits, 0);
463 S2IO_PARM_INT(tmac_util_period, 5);
464 S2IO_PARM_INT(rmac_util_period, 5);
465 S2IO_PARM_INT(l3l4hdr_size, 128);
466 /* Frequency of Rx desc syncs expressed as power of 2 */
467 S2IO_PARM_INT(rxsync_frequency, 3);
468 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
469 S2IO_PARM_INT(intr_type, 2);
470 /* Large receive offload feature */
471 static unsigned int lro_enable;
472 module_param_named(lro, lro_enable, uint, 0);
473
474 /* Max pkts to be aggregated by LRO at one time. If not specified,
475  * aggregation happens until we hit max IP pkt size(64K)
476  */
477 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
478 S2IO_PARM_INT(indicate_max_pkts, 0);
479
480 S2IO_PARM_INT(napi, 1);
481 S2IO_PARM_INT(ufo, 0);
482 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
483
484 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
485     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
486 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
487     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
488 static unsigned int rts_frm_len[MAX_RX_RINGS] =
489     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
490
491 module_param_array(tx_fifo_len, uint, NULL, 0);
492 module_param_array(rx_ring_sz, uint, NULL, 0);
493 module_param_array(rts_frm_len, uint, NULL, 0);
494
495 /*
496  * S2IO device table.
497  * This table lists all the devices that this driver supports.
498  */
499 static struct pci_device_id s2io_tbl[] __devinitdata = {
500         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
501          PCI_ANY_ID, PCI_ANY_ID},
502         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
503          PCI_ANY_ID, PCI_ANY_ID},
504         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
505          PCI_ANY_ID, PCI_ANY_ID},
506         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
507          PCI_ANY_ID, PCI_ANY_ID},
508         {0,}
509 };
510
511 MODULE_DEVICE_TABLE(pci, s2io_tbl);
512
513 static struct pci_error_handlers s2io_err_handler = {
514         .error_detected = s2io_io_error_detected,
515         .slot_reset = s2io_io_slot_reset,
516         .resume = s2io_io_resume,
517 };
518
519 static struct pci_driver s2io_driver = {
520       .name = "S2IO",
521       .id_table = s2io_tbl,
522       .probe = s2io_init_nic,
523       .remove = __devexit_p(s2io_rem_nic),
524       .err_handler = &s2io_err_handler,
525 };
526
527 /* A simplifier macro used both by init and free shared_mem Fns(). */
528 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
529
530 /**
531  * init_shared_mem - Allocation and Initialization of Memory
532  * @nic: Device private variable.
533  * Description: The function allocates all the memory areas shared
534  * between the NIC and the driver. This includes Tx descriptors,
535  * Rx descriptors and the statistics block.
536  */
537
538 static int init_shared_mem(struct s2io_nic *nic)
539 {
540         u32 size;
541         void *tmp_v_addr, *tmp_v_addr_next;
542         dma_addr_t tmp_p_addr, tmp_p_addr_next;
543         struct RxD_block *pre_rxd_blk = NULL;
544         int i, j, blk_cnt;
545         int lst_size, lst_per_page;
546         struct net_device *dev = nic->dev;
547         unsigned long tmp;
548         struct buffAdd *ba;
549
550         struct mac_info *mac_control;
551         struct config_param *config;
552         unsigned long long mem_allocated = 0;
553
554         mac_control = &nic->mac_control;
555         config = &nic->config;
556
557
558         /* Allocation and initialization of TXDLs in FIOFs */
559         size = 0;
560         for (i = 0; i < config->tx_fifo_num; i++) {
561                 size += config->tx_cfg[i].fifo_len;
562         }
563         if (size > MAX_AVAILABLE_TXDS) {
564                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
565                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
566                 return -EINVAL;
567         }
568
569         lst_size = (sizeof(struct TxD) * config->max_txds);
570         lst_per_page = PAGE_SIZE / lst_size;
571
572         for (i = 0; i < config->tx_fifo_num; i++) {
573                 int fifo_len = config->tx_cfg[i].fifo_len;
574                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
575                 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
576                                                           GFP_KERNEL);
577                 if (!mac_control->fifos[i].list_info) {
578                         DBG_PRINT(INFO_DBG,
579                                   "Malloc failed for list_info\n");
580                         return -ENOMEM;
581                 }
582                 mem_allocated += list_holder_size;
583         }
584         for (i = 0; i < config->tx_fifo_num; i++) {
585                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
586                                                 lst_per_page);
587                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
588                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
589                     config->tx_cfg[i].fifo_len - 1;
590                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
591                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
592                     config->tx_cfg[i].fifo_len - 1;
593                 mac_control->fifos[i].fifo_no = i;
594                 mac_control->fifos[i].nic = nic;
595                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
596
597                 for (j = 0; j < page_num; j++) {
598                         int k = 0;
599                         dma_addr_t tmp_p;
600                         void *tmp_v;
601                         tmp_v = pci_alloc_consistent(nic->pdev,
602                                                      PAGE_SIZE, &tmp_p);
603                         if (!tmp_v) {
604                                 DBG_PRINT(INFO_DBG,
605                                           "pci_alloc_consistent ");
606                                 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
607                                 return -ENOMEM;
608                         }
609                         /* If we got a zero DMA address(can happen on
610                          * certain platforms like PPC), reallocate.
611                          * Store virtual address of page we don't want,
612                          * to be freed later.
613                          */
614                         if (!tmp_p) {
615                                 mac_control->zerodma_virt_addr = tmp_v;
616                                 DBG_PRINT(INIT_DBG,
617                                 "%s: Zero DMA address for TxDL. ", dev->name);
618                                 DBG_PRINT(INIT_DBG,
619                                 "Virtual address %p\n", tmp_v);
620                                 tmp_v = pci_alloc_consistent(nic->pdev,
621                                                      PAGE_SIZE, &tmp_p);
622                                 if (!tmp_v) {
623                                         DBG_PRINT(INFO_DBG,
624                                           "pci_alloc_consistent ");
625                                         DBG_PRINT(INFO_DBG, "failed for TxDL\n");
626                                         return -ENOMEM;
627                                 }
628                                 mem_allocated += PAGE_SIZE;
629                         }
630                         while (k < lst_per_page) {
631                                 int l = (j * lst_per_page) + k;
632                                 if (l == config->tx_cfg[i].fifo_len)
633                                         break;
634                                 mac_control->fifos[i].list_info[l].list_virt_addr =
635                                     tmp_v + (k * lst_size);
636                                 mac_control->fifos[i].list_info[l].list_phy_addr =
637                                     tmp_p + (k * lst_size);
638                                 k++;
639                         }
640                 }
641         }
642
643         nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
644         if (!nic->ufo_in_band_v)
645                 return -ENOMEM;
646          mem_allocated += (size * sizeof(u64));
647
648         /* Allocation and initialization of RXDs in Rings */
649         size = 0;
650         for (i = 0; i < config->rx_ring_num; i++) {
651                 if (config->rx_cfg[i].num_rxd %
652                     (rxd_count[nic->rxd_mode] + 1)) {
653                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
654                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
655                                   i);
656                         DBG_PRINT(ERR_DBG, "RxDs per Block");
657                         return FAILURE;
658                 }
659                 size += config->rx_cfg[i].num_rxd;
660                 mac_control->rings[i].block_count =
661                         config->rx_cfg[i].num_rxd /
662                         (rxd_count[nic->rxd_mode] + 1 );
663                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
664                         mac_control->rings[i].block_count;
665         }
666         if (nic->rxd_mode == RXD_MODE_1)
667                 size = (size * (sizeof(struct RxD1)));
668         else
669                 size = (size * (sizeof(struct RxD3)));
670
671         for (i = 0; i < config->rx_ring_num; i++) {
672                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
673                 mac_control->rings[i].rx_curr_get_info.offset = 0;
674                 mac_control->rings[i].rx_curr_get_info.ring_len =
675                     config->rx_cfg[i].num_rxd - 1;
676                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
677                 mac_control->rings[i].rx_curr_put_info.offset = 0;
678                 mac_control->rings[i].rx_curr_put_info.ring_len =
679                     config->rx_cfg[i].num_rxd - 1;
680                 mac_control->rings[i].nic = nic;
681                 mac_control->rings[i].ring_no = i;
682
683                 blk_cnt = config->rx_cfg[i].num_rxd /
684                                 (rxd_count[nic->rxd_mode] + 1);
685                 /*  Allocating all the Rx blocks */
686                 for (j = 0; j < blk_cnt; j++) {
687                         struct rx_block_info *rx_blocks;
688                         int l;
689
690                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
691                         size = SIZE_OF_BLOCK; //size is always page size
692                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
693                                                           &tmp_p_addr);
694                         if (tmp_v_addr == NULL) {
695                                 /*
696                                  * In case of failure, free_shared_mem()
697                                  * is called, which should free any
698                                  * memory that was alloced till the
699                                  * failure happened.
700                                  */
701                                 rx_blocks->block_virt_addr = tmp_v_addr;
702                                 return -ENOMEM;
703                         }
704                         mem_allocated += size;
705                         memset(tmp_v_addr, 0, size);
706                         rx_blocks->block_virt_addr = tmp_v_addr;
707                         rx_blocks->block_dma_addr = tmp_p_addr;
708                         rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
709                                                   rxd_count[nic->rxd_mode],
710                                                   GFP_KERNEL);
711                         if (!rx_blocks->rxds)
712                                 return -ENOMEM;
713                         mem_allocated +=
714                         (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
715                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
716                                 rx_blocks->rxds[l].virt_addr =
717                                         rx_blocks->block_virt_addr +
718                                         (rxd_size[nic->rxd_mode] * l);
719                                 rx_blocks->rxds[l].dma_addr =
720                                         rx_blocks->block_dma_addr +
721                                         (rxd_size[nic->rxd_mode] * l);
722                         }
723                 }
724                 /* Interlinking all Rx Blocks */
725                 for (j = 0; j < blk_cnt; j++) {
726                         tmp_v_addr =
727                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
728                         tmp_v_addr_next =
729                                 mac_control->rings[i].rx_blocks[(j + 1) %
730                                               blk_cnt].block_virt_addr;
731                         tmp_p_addr =
732                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
733                         tmp_p_addr_next =
734                                 mac_control->rings[i].rx_blocks[(j + 1) %
735                                               blk_cnt].block_dma_addr;
736
737                         pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
738                         pre_rxd_blk->reserved_2_pNext_RxD_block =
739                             (unsigned long) tmp_v_addr_next;
740                         pre_rxd_blk->pNext_RxD_Blk_physical =
741                             (u64) tmp_p_addr_next;
742                 }
743         }
744         if (nic->rxd_mode == RXD_MODE_3B) {
745                 /*
746                  * Allocation of Storages for buffer addresses in 2BUFF mode
747                  * and the buffers as well.
748                  */
749                 for (i = 0; i < config->rx_ring_num; i++) {
750                         blk_cnt = config->rx_cfg[i].num_rxd /
751                            (rxd_count[nic->rxd_mode]+ 1);
752                         mac_control->rings[i].ba =
753                                 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
754                                      GFP_KERNEL);
755                         if (!mac_control->rings[i].ba)
756                                 return -ENOMEM;
757                         mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
758                         for (j = 0; j < blk_cnt; j++) {
759                                 int k = 0;
760                                 mac_control->rings[i].ba[j] =
761                                         kmalloc((sizeof(struct buffAdd) *
762                                                 (rxd_count[nic->rxd_mode] + 1)),
763                                                 GFP_KERNEL);
764                                 if (!mac_control->rings[i].ba[j])
765                                         return -ENOMEM;
766                                 mem_allocated += (sizeof(struct buffAdd) *  \
767                                         (rxd_count[nic->rxd_mode] + 1));
768                                 while (k != rxd_count[nic->rxd_mode]) {
769                                         ba = &mac_control->rings[i].ba[j][k];
770
771                                         ba->ba_0_org = (void *) kmalloc
772                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
773                                         if (!ba->ba_0_org)
774                                                 return -ENOMEM;
775                                         mem_allocated +=
776                                                 (BUF0_LEN + ALIGN_SIZE);
777                                         tmp = (unsigned long)ba->ba_0_org;
778                                         tmp += ALIGN_SIZE;
779                                         tmp &= ~((unsigned long) ALIGN_SIZE);
780                                         ba->ba_0 = (void *) tmp;
781
782                                         ba->ba_1_org = (void *) kmalloc
783                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
784                                         if (!ba->ba_1_org)
785                                                 return -ENOMEM;
786                                         mem_allocated
787                                                 += (BUF1_LEN + ALIGN_SIZE);
788                                         tmp = (unsigned long) ba->ba_1_org;
789                                         tmp += ALIGN_SIZE;
790                                         tmp &= ~((unsigned long) ALIGN_SIZE);
791                                         ba->ba_1 = (void *) tmp;
792                                         k++;
793                                 }
794                         }
795                 }
796         }
797
798         /* Allocation and initialization of Statistics block */
799         size = sizeof(struct stat_block);
800         mac_control->stats_mem = pci_alloc_consistent
801             (nic->pdev, size, &mac_control->stats_mem_phy);
802
803         if (!mac_control->stats_mem) {
804                 /*
805                  * In case of failure, free_shared_mem() is called, which
806                  * should free any memory that was alloced till the
807                  * failure happened.
808                  */
809                 return -ENOMEM;
810         }
811         mem_allocated += size;
812         mac_control->stats_mem_sz = size;
813
814         tmp_v_addr = mac_control->stats_mem;
815         mac_control->stats_info = (struct stat_block *) tmp_v_addr;
816         memset(tmp_v_addr, 0, size);
817         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
818                   (unsigned long long) tmp_p_addr);
819         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
820         return SUCCESS;
821 }
822
823 /**
824  * free_shared_mem - Free the allocated Memory
825  * @nic:  Device private variable.
826  * Description: This function is to free all memory locations allocated by
827  * the init_shared_mem() function and return it to the kernel.
828  */
829
830 static void free_shared_mem(struct s2io_nic *nic)
831 {
832         int i, j, blk_cnt, size;
833         u32 ufo_size = 0;
834         void *tmp_v_addr;
835         dma_addr_t tmp_p_addr;
836         struct mac_info *mac_control;
837         struct config_param *config;
838         int lst_size, lst_per_page;
839         struct net_device *dev;
840         int page_num = 0;
841
842         if (!nic)
843                 return;
844
845         dev = nic->dev;
846
847         mac_control = &nic->mac_control;
848         config = &nic->config;
849
850         lst_size = (sizeof(struct TxD) * config->max_txds);
851         lst_per_page = PAGE_SIZE / lst_size;
852
853         for (i = 0; i < config->tx_fifo_num; i++) {
854                 ufo_size += config->tx_cfg[i].fifo_len;
855                 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
856                                                         lst_per_page);
857                 for (j = 0; j < page_num; j++) {
858                         int mem_blks = (j * lst_per_page);
859                         if (!mac_control->fifos[i].list_info)
860                                 return;
861                         if (!mac_control->fifos[i].list_info[mem_blks].
862                                  list_virt_addr)
863                                 break;
864                         pci_free_consistent(nic->pdev, PAGE_SIZE,
865                                             mac_control->fifos[i].
866                                             list_info[mem_blks].
867                                             list_virt_addr,
868                                             mac_control->fifos[i].
869                                             list_info[mem_blks].
870                                             list_phy_addr);
871                         nic->mac_control.stats_info->sw_stat.mem_freed
872                                                 += PAGE_SIZE;
873                 }
874                 /* If we got a zero DMA address during allocation,
875                  * free the page now
876                  */
877                 if (mac_control->zerodma_virt_addr) {
878                         pci_free_consistent(nic->pdev, PAGE_SIZE,
879                                             mac_control->zerodma_virt_addr,
880                                             (dma_addr_t)0);
881                         DBG_PRINT(INIT_DBG,
882                                 "%s: Freeing TxDL with zero DMA addr. ",
883                                 dev->name);
884                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
885                                 mac_control->zerodma_virt_addr);
886                         nic->mac_control.stats_info->sw_stat.mem_freed
887                                                 += PAGE_SIZE;
888                 }
889                 kfree(mac_control->fifos[i].list_info);
890                 nic->mac_control.stats_info->sw_stat.mem_freed +=
891                 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
892         }
893
894         size = SIZE_OF_BLOCK;
895         for (i = 0; i < config->rx_ring_num; i++) {
896                 blk_cnt = mac_control->rings[i].block_count;
897                 for (j = 0; j < blk_cnt; j++) {
898                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
899                                 block_virt_addr;
900                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
901                                 block_dma_addr;
902                         if (tmp_v_addr == NULL)
903                                 break;
904                         pci_free_consistent(nic->pdev, size,
905                                             tmp_v_addr, tmp_p_addr);
906                         nic->mac_control.stats_info->sw_stat.mem_freed += size;
907                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
908                         nic->mac_control.stats_info->sw_stat.mem_freed +=
909                         ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
910                 }
911         }
912
913         if (nic->rxd_mode == RXD_MODE_3B) {
914                 /* Freeing buffer storage addresses in 2BUFF mode. */
915                 for (i = 0; i < config->rx_ring_num; i++) {
916                         blk_cnt = config->rx_cfg[i].num_rxd /
917                             (rxd_count[nic->rxd_mode] + 1);
918                         for (j = 0; j < blk_cnt; j++) {
919                                 int k = 0;
920                                 if (!mac_control->rings[i].ba[j])
921                                         continue;
922                                 while (k != rxd_count[nic->rxd_mode]) {
923                                         struct buffAdd *ba =
924                                                 &mac_control->rings[i].ba[j][k];
925                                         kfree(ba->ba_0_org);
926                                         nic->mac_control.stats_info->sw_stat.\
927                                         mem_freed += (BUF0_LEN + ALIGN_SIZE);
928                                         kfree(ba->ba_1_org);
929                                         nic->mac_control.stats_info->sw_stat.\
930                                         mem_freed += (BUF1_LEN + ALIGN_SIZE);
931                                         k++;
932                                 }
933                                 kfree(mac_control->rings[i].ba[j]);
934                                 nic->mac_control.stats_info->sw_stat.mem_freed +=
935                                         (sizeof(struct buffAdd) *
936                                         (rxd_count[nic->rxd_mode] + 1));
937                         }
938                         kfree(mac_control->rings[i].ba);
939                         nic->mac_control.stats_info->sw_stat.mem_freed +=
940                         (sizeof(struct buffAdd *) * blk_cnt);
941                 }
942         }
943
944         if (mac_control->stats_mem) {
945                 pci_free_consistent(nic->pdev,
946                                     mac_control->stats_mem_sz,
947                                     mac_control->stats_mem,
948                                     mac_control->stats_mem_phy);
949                 nic->mac_control.stats_info->sw_stat.mem_freed +=
950                         mac_control->stats_mem_sz;
951         }
952         if (nic->ufo_in_band_v) {
953                 kfree(nic->ufo_in_band_v);
954                 nic->mac_control.stats_info->sw_stat.mem_freed
955                         += (ufo_size * sizeof(u64));
956         }
957 }
958
959 /**
960  * s2io_verify_pci_mode -
961  */
962
963 static int s2io_verify_pci_mode(struct s2io_nic *nic)
964 {
965         struct XENA_dev_config __iomem *bar0 = nic->bar0;
966         register u64 val64 = 0;
967         int     mode;
968
969         val64 = readq(&bar0->pci_mode);
970         mode = (u8)GET_PCI_MODE(val64);
971
972         if ( val64 & PCI_MODE_UNKNOWN_MODE)
973                 return -1;      /* Unknown PCI mode */
974         return mode;
975 }
976
977 #define NEC_VENID   0x1033
978 #define NEC_DEVID   0x0125
979 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
980 {
981         struct pci_dev *tdev = NULL;
982         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
983                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
984                         if (tdev->bus == s2io_pdev->bus->parent)
985                                 pci_dev_put(tdev);
986                                 return 1;
987                 }
988         }
989         return 0;
990 }
991
992 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
993 /**
994  * s2io_print_pci_mode -
995  */
996 static int s2io_print_pci_mode(struct s2io_nic *nic)
997 {
998         struct XENA_dev_config __iomem *bar0 = nic->bar0;
999         register u64 val64 = 0;
1000         int     mode;
1001         struct config_param *config = &nic->config;
1002
1003         val64 = readq(&bar0->pci_mode);
1004         mode = (u8)GET_PCI_MODE(val64);
1005
1006         if ( val64 & PCI_MODE_UNKNOWN_MODE)
1007                 return -1;      /* Unknown PCI mode */
1008
1009         config->bus_speed = bus_speed[mode];
1010
1011         if (s2io_on_nec_bridge(nic->pdev)) {
1012                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1013                                                         nic->dev->name);
1014                 return mode;
1015         }
1016
1017         if (val64 & PCI_MODE_32_BITS) {
1018                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1019         } else {
1020                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1021         }
1022
1023         switch(mode) {
1024                 case PCI_MODE_PCI_33:
1025                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1026                         break;
1027                 case PCI_MODE_PCI_66:
1028                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1029                         break;
1030                 case PCI_MODE_PCIX_M1_66:
1031                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1032                         break;
1033                 case PCI_MODE_PCIX_M1_100:
1034                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1035                         break;
1036                 case PCI_MODE_PCIX_M1_133:
1037                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1038                         break;
1039                 case PCI_MODE_PCIX_M2_66:
1040                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1041                         break;
1042                 case PCI_MODE_PCIX_M2_100:
1043                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1044                         break;
1045                 case PCI_MODE_PCIX_M2_133:
1046                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1047                         break;
1048                 default:
1049                         return -1;      /* Unsupported bus speed */
1050         }
1051
1052         return mode;
1053 }
1054
1055 /**
1056  *  init_nic - Initialization of hardware
1057  *  @nic: device peivate variable
1058  *  Description: The function sequentially configures every block
1059  *  of the H/W from their reset values.
1060  *  Return Value:  SUCCESS on success and
1061  *  '-1' on failure (endian settings incorrect).
1062  */
1063
1064 static int init_nic(struct s2io_nic *nic)
1065 {
1066         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1067         struct net_device *dev = nic->dev;
1068         register u64 val64 = 0;
1069         void __iomem *add;
1070         u32 time;
1071         int i, j;
1072         struct mac_info *mac_control;
1073         struct config_param *config;
1074         int dtx_cnt = 0;
1075         unsigned long long mem_share;
1076         int mem_size;
1077
1078         mac_control = &nic->mac_control;
1079         config = &nic->config;
1080
1081         /* to set the swapper controle on the card */
1082         if(s2io_set_swapper(nic)) {
1083                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1084                 return -1;
1085         }
1086
1087         /*
1088          * Herc requires EOI to be removed from reset before XGXS, so..
1089          */
1090         if (nic->device_type & XFRAME_II_DEVICE) {
1091                 val64 = 0xA500000000ULL;
1092                 writeq(val64, &bar0->sw_reset);
1093                 msleep(500);
1094                 val64 = readq(&bar0->sw_reset);
1095         }
1096
1097         /* Remove XGXS from reset state */
1098         val64 = 0;
1099         writeq(val64, &bar0->sw_reset);
1100         msleep(500);
1101         val64 = readq(&bar0->sw_reset);
1102
1103         /*  Enable Receiving broadcasts */
1104         add = &bar0->mac_cfg;
1105         val64 = readq(&bar0->mac_cfg);
1106         val64 |= MAC_RMAC_BCAST_ENABLE;
1107         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1108         writel((u32) val64, add);
1109         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1110         writel((u32) (val64 >> 32), (add + 4));
1111
1112         /* Read registers in all blocks */
1113         val64 = readq(&bar0->mac_int_mask);
1114         val64 = readq(&bar0->mc_int_mask);
1115         val64 = readq(&bar0->xgxs_int_mask);
1116
1117         /*  Set MTU */
1118         val64 = dev->mtu;
1119         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1120
1121         if (nic->device_type & XFRAME_II_DEVICE) {
1122                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1123                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1124                                           &bar0->dtx_control, UF);
1125                         if (dtx_cnt & 0x1)
1126                                 msleep(1); /* Necessary!! */
1127                         dtx_cnt++;
1128                 }
1129         } else {
1130                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1131                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1132                                           &bar0->dtx_control, UF);
1133                         val64 = readq(&bar0->dtx_control);
1134                         dtx_cnt++;
1135                 }
1136         }
1137
1138         /*  Tx DMA Initialization */
1139         val64 = 0;
1140         writeq(val64, &bar0->tx_fifo_partition_0);
1141         writeq(val64, &bar0->tx_fifo_partition_1);
1142         writeq(val64, &bar0->tx_fifo_partition_2);
1143         writeq(val64, &bar0->tx_fifo_partition_3);
1144
1145
1146         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1147                 val64 |=
1148                     vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1149                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1150                                     ((i * 32) + 5), 3);
1151
1152                 if (i == (config->tx_fifo_num - 1)) {
1153                         if (i % 2 == 0)
1154                                 i++;
1155                 }
1156
1157                 switch (i) {
1158                 case 1:
1159                         writeq(val64, &bar0->tx_fifo_partition_0);
1160                         val64 = 0;
1161                         break;
1162                 case 3:
1163                         writeq(val64, &bar0->tx_fifo_partition_1);
1164                         val64 = 0;
1165                         break;
1166                 case 5:
1167                         writeq(val64, &bar0->tx_fifo_partition_2);
1168                         val64 = 0;
1169                         break;
1170                 case 7:
1171                         writeq(val64, &bar0->tx_fifo_partition_3);
1172                         break;
1173                 }
1174         }
1175
1176         /*
1177          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1178          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1179          */
1180         if ((nic->device_type == XFRAME_I_DEVICE) &&
1181                 (nic->pdev->revision < 4))
1182                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1183
1184         val64 = readq(&bar0->tx_fifo_partition_0);
1185         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1186                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1187
1188         /*
1189          * Initialization of Tx_PA_CONFIG register to ignore packet
1190          * integrity checking.
1191          */
1192         val64 = readq(&bar0->tx_pa_cfg);
1193         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1194             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1195         writeq(val64, &bar0->tx_pa_cfg);
1196
1197         /* Rx DMA intialization. */
1198         val64 = 0;
1199         for (i = 0; i < config->rx_ring_num; i++) {
1200                 val64 |=
1201                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1202                          3);
1203         }
1204         writeq(val64, &bar0->rx_queue_priority);
1205
1206         /*
1207          * Allocating equal share of memory to all the
1208          * configured Rings.
1209          */
1210         val64 = 0;
1211         if (nic->device_type & XFRAME_II_DEVICE)
1212                 mem_size = 32;
1213         else
1214                 mem_size = 64;
1215
1216         for (i = 0; i < config->rx_ring_num; i++) {
1217                 switch (i) {
1218                 case 0:
1219                         mem_share = (mem_size / config->rx_ring_num +
1220                                      mem_size % config->rx_ring_num);
1221                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1222                         continue;
1223                 case 1:
1224                         mem_share = (mem_size / config->rx_ring_num);
1225                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1226                         continue;
1227                 case 2:
1228                         mem_share = (mem_size / config->rx_ring_num);
1229                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1230                         continue;
1231                 case 3:
1232                         mem_share = (mem_size / config->rx_ring_num);
1233                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1234                         continue;
1235                 case 4:
1236                         mem_share = (mem_size / config->rx_ring_num);
1237                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1238                         continue;
1239                 case 5:
1240                         mem_share = (mem_size / config->rx_ring_num);
1241                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1242                         continue;
1243                 case 6:
1244                         mem_share = (mem_size / config->rx_ring_num);
1245                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1246                         continue;
1247                 case 7:
1248                         mem_share = (mem_size / config->rx_ring_num);
1249                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1250                         continue;
1251                 }
1252         }
1253         writeq(val64, &bar0->rx_queue_cfg);
1254
1255         /*
1256          * Filling Tx round robin registers
1257          * as per the number of FIFOs
1258          */
1259         switch (config->tx_fifo_num) {
1260         case 1:
1261                 val64 = 0x0000000000000000ULL;
1262                 writeq(val64, &bar0->tx_w_round_robin_0);
1263                 writeq(val64, &bar0->tx_w_round_robin_1);
1264                 writeq(val64, &bar0->tx_w_round_robin_2);
1265                 writeq(val64, &bar0->tx_w_round_robin_3);
1266                 writeq(val64, &bar0->tx_w_round_robin_4);
1267                 break;
1268         case 2:
1269                 val64 = 0x0000010000010000ULL;
1270                 writeq(val64, &bar0->tx_w_round_robin_0);
1271                 val64 = 0x0100000100000100ULL;
1272                 writeq(val64, &bar0->tx_w_round_robin_1);
1273                 val64 = 0x0001000001000001ULL;
1274                 writeq(val64, &bar0->tx_w_round_robin_2);
1275                 val64 = 0x0000010000010000ULL;
1276                 writeq(val64, &bar0->tx_w_round_robin_3);
1277                 val64 = 0x0100000000000000ULL;
1278                 writeq(val64, &bar0->tx_w_round_robin_4);
1279                 break;
1280         case 3:
1281                 val64 = 0x0001000102000001ULL;
1282                 writeq(val64, &bar0->tx_w_round_robin_0);
1283                 val64 = 0x0001020000010001ULL;
1284                 writeq(val64, &bar0->tx_w_round_robin_1);
1285                 val64 = 0x0200000100010200ULL;
1286                 writeq(val64, &bar0->tx_w_round_robin_2);
1287                 val64 = 0x0001000102000001ULL;
1288                 writeq(val64, &bar0->tx_w_round_robin_3);
1289                 val64 = 0x0001020000000000ULL;
1290                 writeq(val64, &bar0->tx_w_round_robin_4);
1291                 break;
1292         case 4:
1293                 val64 = 0x0001020300010200ULL;
1294                 writeq(val64, &bar0->tx_w_round_robin_0);
1295                 val64 = 0x0100000102030001ULL;
1296                 writeq(val64, &bar0->tx_w_round_robin_1);
1297                 val64 = 0x0200010000010203ULL;
1298                 writeq(val64, &bar0->tx_w_round_robin_2);
1299                 val64 = 0x0001020001000001ULL;
1300                 writeq(val64, &bar0->tx_w_round_robin_3);
1301                 val64 = 0x0203000100000000ULL;
1302                 writeq(val64, &bar0->tx_w_round_robin_4);
1303                 break;
1304         case 5:
1305                 val64 = 0x0001000203000102ULL;
1306                 writeq(val64, &bar0->tx_w_round_robin_0);
1307                 val64 = 0x0001020001030004ULL;
1308                 writeq(val64, &bar0->tx_w_round_robin_1);
1309                 val64 = 0x0001000203000102ULL;
1310                 writeq(val64, &bar0->tx_w_round_robin_2);
1311                 val64 = 0x0001020001030004ULL;
1312                 writeq(val64, &bar0->tx_w_round_robin_3);
1313                 val64 = 0x0001000000000000ULL;
1314                 writeq(val64, &bar0->tx_w_round_robin_4);
1315                 break;
1316         case 6:
1317                 val64 = 0x0001020304000102ULL;
1318                 writeq(val64, &bar0->tx_w_round_robin_0);
1319                 val64 = 0x0304050001020001ULL;
1320                 writeq(val64, &bar0->tx_w_round_robin_1);
1321                 val64 = 0x0203000100000102ULL;
1322                 writeq(val64, &bar0->tx_w_round_robin_2);
1323                 val64 = 0x0304000102030405ULL;
1324                 writeq(val64, &bar0->tx_w_round_robin_3);
1325                 val64 = 0x0001000200000000ULL;
1326                 writeq(val64, &bar0->tx_w_round_robin_4);
1327                 break;
1328         case 7:
1329                 val64 = 0x0001020001020300ULL;
1330                 writeq(val64, &bar0->tx_w_round_robin_0);
1331                 val64 = 0x0102030400010203ULL;
1332                 writeq(val64, &bar0->tx_w_round_robin_1);
1333                 val64 = 0x0405060001020001ULL;
1334                 writeq(val64, &bar0->tx_w_round_robin_2);
1335                 val64 = 0x0304050000010200ULL;
1336                 writeq(val64, &bar0->tx_w_round_robin_3);
1337                 val64 = 0x0102030000000000ULL;
1338                 writeq(val64, &bar0->tx_w_round_robin_4);
1339                 break;
1340         case 8:
1341                 val64 = 0x0001020300040105ULL;
1342                 writeq(val64, &bar0->tx_w_round_robin_0);
1343                 val64 = 0x0200030106000204ULL;
1344                 writeq(val64, &bar0->tx_w_round_robin_1);
1345                 val64 = 0x0103000502010007ULL;
1346                 writeq(val64, &bar0->tx_w_round_robin_2);
1347                 val64 = 0x0304010002060500ULL;
1348                 writeq(val64, &bar0->tx_w_round_robin_3);
1349                 val64 = 0x0103020400000000ULL;
1350                 writeq(val64, &bar0->tx_w_round_robin_4);
1351                 break;
1352         }
1353
1354         /* Enable all configured Tx FIFO partitions */
1355         val64 = readq(&bar0->tx_fifo_partition_0);
1356         val64 |= (TX_FIFO_PARTITION_EN);
1357         writeq(val64, &bar0->tx_fifo_partition_0);
1358
1359         /* Filling the Rx round robin registers as per the
1360          * number of Rings and steering based on QoS.
1361          */
1362         switch (config->rx_ring_num) {
1363         case 1:
1364                 val64 = 0x8080808080808080ULL;
1365                 writeq(val64, &bar0->rts_qos_steering);
1366                 break;
1367         case 2:
1368                 val64 = 0x0000010000010000ULL;
1369                 writeq(val64, &bar0->rx_w_round_robin_0);
1370                 val64 = 0x0100000100000100ULL;
1371                 writeq(val64, &bar0->rx_w_round_robin_1);
1372                 val64 = 0x0001000001000001ULL;
1373                 writeq(val64, &bar0->rx_w_round_robin_2);
1374                 val64 = 0x0000010000010000ULL;
1375                 writeq(val64, &bar0->rx_w_round_robin_3);
1376                 val64 = 0x0100000000000000ULL;
1377                 writeq(val64, &bar0->rx_w_round_robin_4);
1378
1379                 val64 = 0x8080808040404040ULL;
1380                 writeq(val64, &bar0->rts_qos_steering);
1381                 break;
1382         case 3:
1383                 val64 = 0x0001000102000001ULL;
1384                 writeq(val64, &bar0->rx_w_round_robin_0);
1385                 val64 = 0x0001020000010001ULL;
1386                 writeq(val64, &bar0->rx_w_round_robin_1);
1387                 val64 = 0x0200000100010200ULL;
1388                 writeq(val64, &bar0->rx_w_round_robin_2);
1389                 val64 = 0x0001000102000001ULL;
1390                 writeq(val64, &bar0->rx_w_round_robin_3);
1391                 val64 = 0x0001020000000000ULL;
1392                 writeq(val64, &bar0->rx_w_round_robin_4);
1393
1394                 val64 = 0x8080804040402020ULL;
1395                 writeq(val64, &bar0->rts_qos_steering);
1396                 break;
1397         case 4:
1398                 val64 = 0x0001020300010200ULL;
1399                 writeq(val64, &bar0->rx_w_round_robin_0);
1400                 val64 = 0x0100000102030001ULL;
1401                 writeq(val64, &bar0->rx_w_round_robin_1);
1402                 val64 = 0x0200010000010203ULL;
1403                 writeq(val64, &bar0->rx_w_round_robin_2);
1404                 val64 = 0x0001020001000001ULL;
1405                 writeq(val64, &bar0->rx_w_round_robin_3);
1406                 val64 = 0x0203000100000000ULL;
1407                 writeq(val64, &bar0->rx_w_round_robin_4);
1408
1409                 val64 = 0x8080404020201010ULL;
1410                 writeq(val64, &bar0->rts_qos_steering);
1411                 break;
1412         case 5:
1413                 val64 = 0x0001000203000102ULL;
1414                 writeq(val64, &bar0->rx_w_round_robin_0);
1415                 val64 = 0x0001020001030004ULL;
1416                 writeq(val64, &bar0->rx_w_round_robin_1);
1417                 val64 = 0x0001000203000102ULL;
1418                 writeq(val64, &bar0->rx_w_round_robin_2);
1419                 val64 = 0x0001020001030004ULL;
1420                 writeq(val64, &bar0->rx_w_round_robin_3);
1421                 val64 = 0x0001000000000000ULL;
1422                 writeq(val64, &bar0->rx_w_round_robin_4);
1423
1424                 val64 = 0x8080404020201008ULL;
1425                 writeq(val64, &bar0->rts_qos_steering);
1426                 break;
1427         case 6:
1428                 val64 = 0x0001020304000102ULL;
1429                 writeq(val64, &bar0->rx_w_round_robin_0);
1430                 val64 = 0x0304050001020001ULL;
1431                 writeq(val64, &bar0->rx_w_round_robin_1);
1432                 val64 = 0x0203000100000102ULL;
1433                 writeq(val64, &bar0->rx_w_round_robin_2);
1434                 val64 = 0x0304000102030405ULL;
1435                 writeq(val64, &bar0->rx_w_round_robin_3);
1436                 val64 = 0x0001000200000000ULL;
1437                 writeq(val64, &bar0->rx_w_round_robin_4);
1438
1439                 val64 = 0x8080404020100804ULL;
1440                 writeq(val64, &bar0->rts_qos_steering);
1441                 break;
1442         case 7:
1443                 val64 = 0x0001020001020300ULL;
1444                 writeq(val64, &bar0->rx_w_round_robin_0);
1445                 val64 = 0x0102030400010203ULL;
1446                 writeq(val64, &bar0->rx_w_round_robin_1);
1447                 val64 = 0x0405060001020001ULL;
1448                 writeq(val64, &bar0->rx_w_round_robin_2);
1449                 val64 = 0x0304050000010200ULL;
1450                 writeq(val64, &bar0->rx_w_round_robin_3);
1451                 val64 = 0x0102030000000000ULL;
1452                 writeq(val64, &bar0->rx_w_round_robin_4);
1453
1454                 val64 = 0x8080402010080402ULL;
1455                 writeq(val64, &bar0->rts_qos_steering);
1456                 break;
1457         case 8:
1458                 val64 = 0x0001020300040105ULL;
1459                 writeq(val64, &bar0->rx_w_round_robin_0);
1460                 val64 = 0x0200030106000204ULL;
1461                 writeq(val64, &bar0->rx_w_round_robin_1);
1462                 val64 = 0x0103000502010007ULL;
1463                 writeq(val64, &bar0->rx_w_round_robin_2);
1464                 val64 = 0x0304010002060500ULL;
1465                 writeq(val64, &bar0->rx_w_round_robin_3);
1466                 val64 = 0x0103020400000000ULL;
1467                 writeq(val64, &bar0->rx_w_round_robin_4);
1468
1469                 val64 = 0x8040201008040201ULL;
1470                 writeq(val64, &bar0->rts_qos_steering);
1471                 break;
1472         }
1473
1474         /* UDP Fix */
1475         val64 = 0;
1476         for (i = 0; i < 8; i++)
1477                 writeq(val64, &bar0->rts_frm_len_n[i]);
1478
1479         /* Set the default rts frame length for the rings configured */
1480         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1481         for (i = 0 ; i < config->rx_ring_num ; i++)
1482                 writeq(val64, &bar0->rts_frm_len_n[i]);
1483
1484         /* Set the frame length for the configured rings
1485          * desired by the user
1486          */
1487         for (i = 0; i < config->rx_ring_num; i++) {
1488                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1489                  * specified frame length steering.
1490                  * If the user provides the frame length then program
1491                  * the rts_frm_len register for those values or else
1492                  * leave it as it is.
1493                  */
1494                 if (rts_frm_len[i] != 0) {
1495                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1496                                 &bar0->rts_frm_len_n[i]);
1497                 }
1498         }
1499
1500         /* Disable differentiated services steering logic */
1501         for (i = 0; i < 64; i++) {
1502                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1503                         DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1504                                 dev->name);
1505                         DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1506                         return FAILURE;
1507                 }
1508         }
1509
1510         /* Program statistics memory */
1511         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1512
1513         if (nic->device_type == XFRAME_II_DEVICE) {
1514                 val64 = STAT_BC(0x320);
1515                 writeq(val64, &bar0->stat_byte_cnt);
1516         }
1517
1518         /*
1519          * Initializing the sampling rate for the device to calculate the
1520          * bandwidth utilization.
1521          */
1522         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1523             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1524         writeq(val64, &bar0->mac_link_util);
1525
1526
1527         /*
1528          * Initializing the Transmit and Receive Traffic Interrupt
1529          * Scheme.
1530          */
1531         /*
1532          * TTI Initialization. Default Tx timer gets us about
1533          * 250 interrupts per sec. Continuous interrupts are enabled
1534          * by default.
1535          */
1536         if (nic->device_type == XFRAME_II_DEVICE) {
1537                 int count = (nic->config.bus_speed * 125)/2;
1538                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1539         } else {
1540
1541                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1542         }
1543         val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1544             TTI_DATA1_MEM_TX_URNG_B(0x10) |
1545             TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1546                 if (use_continuous_tx_intrs)
1547                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1548         writeq(val64, &bar0->tti_data1_mem);
1549
1550         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1551             TTI_DATA2_MEM_TX_UFC_B(0x20) |
1552             TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1553         writeq(val64, &bar0->tti_data2_mem);
1554
1555         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1556         writeq(val64, &bar0->tti_command_mem);
1557
1558         /*
1559          * Once the operation completes, the Strobe bit of the command
1560          * register will be reset. We poll for this particular condition
1561          * We wait for a maximum of 500ms for the operation to complete,
1562          * if it's not complete by then we return error.
1563          */
1564         time = 0;
1565         while (TRUE) {
1566                 val64 = readq(&bar0->tti_command_mem);
1567                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1568                         break;
1569                 }
1570                 if (time > 10) {
1571                         DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1572                                   dev->name);
1573                         return -1;
1574                 }
1575                 msleep(50);
1576                 time++;
1577         }
1578
1579         /* RTI Initialization */
1580         if (nic->device_type == XFRAME_II_DEVICE) {
1581                 /*
1582                  * Programmed to generate Apprx 500 Intrs per
1583                  * second
1584                  */
1585                 int count = (nic->config.bus_speed * 125)/4;
1586                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1587         } else
1588                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1589         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1590                  RTI_DATA1_MEM_RX_URNG_B(0x10) |
1591                  RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1592
1593         writeq(val64, &bar0->rti_data1_mem);
1594
1595         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1596                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1597         if (nic->config.intr_type == MSI_X)
1598             val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1599                         RTI_DATA2_MEM_RX_UFC_D(0x40));
1600         else
1601             val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1602                         RTI_DATA2_MEM_RX_UFC_D(0x80));
1603         writeq(val64, &bar0->rti_data2_mem);
1604
1605         for (i = 0; i < config->rx_ring_num; i++) {
1606                 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1607                                 | RTI_CMD_MEM_OFFSET(i);
1608                 writeq(val64, &bar0->rti_command_mem);
1609
1610                 /*
1611                  * Once the operation completes, the Strobe bit of the
1612                  * command register will be reset. We poll for this
1613                  * particular condition. We wait for a maximum of 500ms
1614                  * for the operation to complete, if it's not complete
1615                  * by then we return error.
1616                  */
1617                 time = 0;
1618                 while (TRUE) {
1619                         val64 = readq(&bar0->rti_command_mem);
1620                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1621                                 break;
1622
1623                         if (time > 10) {
1624                                 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1625                                           dev->name);
1626                                 return -1;
1627                         }
1628                         time++;
1629                         msleep(50);
1630                 }
1631         }
1632
1633         /*
1634          * Initializing proper values as Pause threshold into all
1635          * the 8 Queues on Rx side.
1636          */
1637         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1638         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1639
1640         /* Disable RMAC PAD STRIPPING */
1641         add = &bar0->mac_cfg;
1642         val64 = readq(&bar0->mac_cfg);
1643         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1644         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1645         writel((u32) (val64), add);
1646         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1647         writel((u32) (val64 >> 32), (add + 4));
1648         val64 = readq(&bar0->mac_cfg);
1649
1650         /* Enable FCS stripping by adapter */
1651         add = &bar0->mac_cfg;
1652         val64 = readq(&bar0->mac_cfg);
1653         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1654         if (nic->device_type == XFRAME_II_DEVICE)
1655                 writeq(val64, &bar0->mac_cfg);
1656         else {
1657                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1658                 writel((u32) (val64), add);
1659                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1660                 writel((u32) (val64 >> 32), (add + 4));
1661         }
1662
1663         /*
1664          * Set the time value to be inserted in the pause frame
1665          * generated by xena.
1666          */
1667         val64 = readq(&bar0->rmac_pause_cfg);
1668         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1669         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1670         writeq(val64, &bar0->rmac_pause_cfg);
1671
1672         /*
1673          * Set the Threshold Limit for Generating the pause frame
1674          * If the amount of data in any Queue exceeds ratio of
1675          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1676          * pause frame is generated
1677          */
1678         val64 = 0;
1679         for (i = 0; i < 4; i++) {
1680                 val64 |=
1681                     (((u64) 0xFF00 | nic->mac_control.
1682                       mc_pause_threshold_q0q3)
1683                      << (i * 2 * 8));
1684         }
1685         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1686
1687         val64 = 0;
1688         for (i = 0; i < 4; i++) {
1689                 val64 |=
1690                     (((u64) 0xFF00 | nic->mac_control.
1691                       mc_pause_threshold_q4q7)
1692                      << (i * 2 * 8));
1693         }
1694         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1695
1696         /*
1697          * TxDMA will stop Read request if the number of read split has
1698          * exceeded the limit pointed by shared_splits
1699          */
1700         val64 = readq(&bar0->pic_control);
1701         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1702         writeq(val64, &bar0->pic_control);
1703
1704         if (nic->config.bus_speed == 266) {
1705                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1706                 writeq(0x0, &bar0->read_retry_delay);
1707                 writeq(0x0, &bar0->write_retry_delay);
1708         }
1709
1710         /*
1711          * Programming the Herc to split every write transaction
1712          * that does not start on an ADB to reduce disconnects.
1713          */
1714         if (nic->device_type == XFRAME_II_DEVICE) {
1715                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1716                         MISC_LINK_STABILITY_PRD(3);
1717                 writeq(val64, &bar0->misc_control);
1718                 val64 = readq(&bar0->pic_control2);
1719                 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1720                 writeq(val64, &bar0->pic_control2);
1721         }
1722         if (strstr(nic->product_name, "CX4")) {
1723                 val64 = TMAC_AVG_IPG(0x17);
1724                 writeq(val64, &bar0->tmac_avg_ipg);
1725         }
1726
1727         return SUCCESS;
1728 }
1729 #define LINK_UP_DOWN_INTERRUPT          1
1730 #define MAC_RMAC_ERR_TIMER              2
1731
1732 static int s2io_link_fault_indication(struct s2io_nic *nic)
1733 {
1734         if (nic->config.intr_type != INTA)
1735                 return MAC_RMAC_ERR_TIMER;
1736         if (nic->device_type == XFRAME_II_DEVICE)
1737                 return LINK_UP_DOWN_INTERRUPT;
1738         else
1739                 return MAC_RMAC_ERR_TIMER;
1740 }
1741
1742 /**
1743  *  do_s2io_write_bits -  update alarm bits in alarm register
1744  *  @value: alarm bits
1745  *  @flag: interrupt status
1746  *  @addr: address value
1747  *  Description: update alarm bits in alarm register
1748  *  Return Value:
1749  *  NONE.
1750  */
1751 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1752 {
1753         u64 temp64;
1754
1755         temp64 = readq(addr);
1756
1757         if(flag == ENABLE_INTRS)
1758                 temp64 &= ~((u64) value);
1759         else
1760                 temp64 |= ((u64) value);
1761         writeq(temp64, addr);
1762 }
1763
1764 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1765 {
1766         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1767         register u64 gen_int_mask = 0;
1768
1769         if (mask & TX_DMA_INTR) {
1770
1771                 gen_int_mask |= TXDMA_INT_M;
1772
1773                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1774                                 TXDMA_PCC_INT | TXDMA_TTI_INT |
1775                                 TXDMA_LSO_INT | TXDMA_TPA_INT |
1776                                 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1777
1778                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1779                                 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1780                                 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1781                                 &bar0->pfc_err_mask);
1782
1783                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1784                                 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1785                                 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1786
1787                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1788                                 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1789                                 PCC_N_SERR | PCC_6_COF_OV_ERR |
1790                                 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1791                                 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1792                                 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1793
1794                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1795                                 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1796
1797                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1798                                 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1799                                 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1800                                 flag, &bar0->lso_err_mask);
1801
1802                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1803                                 flag, &bar0->tpa_err_mask);
1804
1805                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1806
1807         }
1808
1809         if (mask & TX_MAC_INTR) {
1810                 gen_int_mask |= TXMAC_INT_M;
1811                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1812                                 &bar0->mac_int_mask);
1813                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1814                                 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1815                                 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1816                                 flag, &bar0->mac_tmac_err_mask);
1817         }
1818
1819         if (mask & TX_XGXS_INTR) {
1820                 gen_int_mask |= TXXGXS_INT_M;
1821                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1822                                 &bar0->xgxs_int_mask);
1823                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1824                                 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1825                                 flag, &bar0->xgxs_txgxs_err_mask);
1826         }
1827
1828         if (mask & RX_DMA_INTR) {
1829                 gen_int_mask |= RXDMA_INT_M;
1830                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1831                                 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1832                                 flag, &bar0->rxdma_int_mask);
1833                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1834                                 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1835                                 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1836                                 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1837                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1838                                 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1839                                 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1840                                 &bar0->prc_pcix_err_mask);
1841                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1842                                 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1843                                 &bar0->rpa_err_mask);
1844                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1845                                 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1846                                 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1847                                 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1848                                 flag, &bar0->rda_err_mask);
1849                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1850                                 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1851                                 flag, &bar0->rti_err_mask);
1852         }
1853
1854         if (mask & RX_MAC_INTR) {
1855                 gen_int_mask |= RXMAC_INT_M;
1856                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1857                                 &bar0->mac_int_mask);
1858                 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1859                                 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1860                                 RMAC_DOUBLE_ECC_ERR |
1861                                 RMAC_LINK_STATE_CHANGE_INT,
1862                                 flag, &bar0->mac_rmac_err_mask);
1863         }
1864
1865         if (mask & RX_XGXS_INTR)
1866         {
1867                 gen_int_mask |= RXXGXS_INT_M;
1868                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1869                                 &bar0->xgxs_int_mask);
1870                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1871                                 &bar0->xgxs_rxgxs_err_mask);
1872         }
1873
1874         if (mask & MC_INTR) {
1875                 gen_int_mask |= MC_INT_M;
1876                 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
1877                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1878                                 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1879                                 &bar0->mc_err_mask);
1880         }
1881         nic->general_int_mask = gen_int_mask;
1882
1883         /* Remove this line when alarm interrupts are enabled */
1884         nic->general_int_mask = 0;
1885 }
1886 /**
1887  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1888  *  @nic: device private variable,
1889  *  @mask: A mask indicating which Intr block must be modified and,
1890  *  @flag: A flag indicating whether to enable or disable the Intrs.
1891  *  Description: This function will either disable or enable the interrupts
1892  *  depending on the flag argument. The mask argument can be used to
1893  *  enable/disable any Intr block.
1894  *  Return Value: NONE.
1895  */
1896
1897 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1898 {
1899         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1900         register u64 temp64 = 0, intr_mask = 0;
1901
1902         intr_mask = nic->general_int_mask;
1903
1904         /*  Top level interrupt classification */
1905         /*  PIC Interrupts */
1906         if (mask & TX_PIC_INTR) {
1907                 /*  Enable PIC Intrs in the general intr mask register */
1908                 intr_mask |= TXPIC_INT_M;
1909                 if (flag == ENABLE_INTRS) {
1910                         /*
1911                          * If Hercules adapter enable GPIO otherwise
1912                          * disable all PCIX, Flash, MDIO, IIC and GPIO
1913                          * interrupts for now.
1914                          * TODO
1915                          */
1916                         if (s2io_link_fault_indication(nic) ==
1917                                         LINK_UP_DOWN_INTERRUPT ) {
1918                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
1919                                                 &bar0->pic_int_mask);
1920                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
1921                                                 &bar0->gpio_int_mask);
1922                         } else
1923                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1924                 } else if (flag == DISABLE_INTRS) {
1925                         /*
1926                          * Disable PIC Intrs in the general
1927                          * intr mask register
1928                          */
1929                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1930                 }
1931         }
1932
1933         /*  Tx traffic interrupts */
1934         if (mask & TX_TRAFFIC_INTR) {
1935                 intr_mask |= TXTRAFFIC_INT_M;
1936                 if (flag == ENABLE_INTRS) {
1937                         /*
1938                          * Enable all the Tx side interrupts
1939                          * writing 0 Enables all 64 TX interrupt levels
1940                          */
1941                         writeq(0x0, &bar0->tx_traffic_mask);
1942                 } else if (flag == DISABLE_INTRS) {
1943                         /*
1944                          * Disable Tx Traffic Intrs in the general intr mask
1945                          * register.
1946                          */
1947                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1948                 }
1949         }
1950
1951         /*  Rx traffic interrupts */
1952         if (mask & RX_TRAFFIC_INTR) {
1953                 intr_mask |= RXTRAFFIC_INT_M;
1954                 if (flag == ENABLE_INTRS) {
1955                         /* writing 0 Enables all 8 RX interrupt levels */
1956                         writeq(0x0, &bar0->rx_traffic_mask);
1957                 } else if (flag == DISABLE_INTRS) {
1958                         /*
1959                          * Disable Rx Traffic Intrs in the general intr mask
1960                          * register.
1961                          */
1962                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1963                 }
1964         }
1965
1966         temp64 = readq(&bar0->general_int_mask);
1967         if (flag == ENABLE_INTRS)
1968                 temp64 &= ~((u64) intr_mask);
1969         else
1970                 temp64 = DISABLE_ALL_INTRS;
1971         writeq(temp64, &bar0->general_int_mask);
1972
1973         nic->general_int_mask = readq(&bar0->general_int_mask);
1974 }
1975
1976 /**
1977  *  verify_pcc_quiescent- Checks for PCC quiescent state
1978  *  Return: 1 If PCC is quiescence
1979  *          0 If PCC is not quiescence
1980  */
1981 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1982 {
1983         int ret = 0, herc;
1984         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1985         u64 val64 = readq(&bar0->adapter_status);
1986
1987         herc = (sp->device_type == XFRAME_II_DEVICE);
1988
1989         if (flag == FALSE) {
1990                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1991                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1992                                 ret = 1;
1993                 } else {
1994                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1995                                 ret = 1;
1996                 }
1997         } else {
1998                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1999                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2000                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2001                                 ret = 1;
2002                 } else {
2003                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2004                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2005                                 ret = 1;
2006                 }
2007         }
2008
2009         return ret;
2010 }
2011 /**
2012  *  verify_xena_quiescence - Checks whether the H/W is ready
2013  *  Description: Returns whether the H/W is ready to go or not. Depending
2014  *  on whether adapter enable bit was written or not the comparison
2015  *  differs and the calling function passes the input argument flag to
2016  *  indicate this.
2017  *  Return: 1 If xena is quiescence
2018  *          0 If Xena is not quiescence
2019  */
2020
2021 static int verify_xena_quiescence(struct s2io_nic *sp)
2022 {
2023         int  mode;
2024         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2025         u64 val64 = readq(&bar0->adapter_status);
2026         mode = s2io_verify_pci_mode(sp);
2027
2028         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2029                 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2030                 return 0;
2031         }
2032         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2033         DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2034                 return 0;
2035         }
2036         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2037                 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2038                 return 0;
2039         }
2040         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2041                 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2042                 return 0;
2043         }
2044         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2045                 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2046                 return 0;
2047         }
2048         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2049                 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2050                 return 0;
2051         }
2052         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2053                 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2054                 return 0;
2055         }
2056         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2057                 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2058                 return 0;
2059         }
2060
2061         /*
2062          * In PCI 33 mode, the P_PLL is not used, and therefore,
2063          * the the P_PLL_LOCK bit in the adapter_status register will
2064          * not be asserted.
2065          */
2066         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2067                 sp->device_type == XFRAME_II_DEVICE && mode !=
2068                 PCI_MODE_PCI_33) {
2069                 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2070                 return 0;
2071         }
2072         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2073                         ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2074                 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2075                 return 0;
2076         }
2077         return 1;
2078 }
2079
2080 /**
2081  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2082  * @sp: Pointer to device specifc structure
2083  * Description :
2084  * New procedure to clear mac address reading  problems on Alpha platforms
2085  *
2086  */
2087
2088 static void fix_mac_address(struct s2io_nic * sp)
2089 {
2090         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2091         u64 val64;
2092         int i = 0;
2093
2094         while (fix_mac[i] != END_SIGN) {
2095                 writeq(fix_mac[i++], &bar0->gpio_control);
2096                 udelay(10);
2097                 val64 = readq(&bar0->gpio_control);
2098         }
2099 }
2100
2101 /**
2102  *  start_nic - Turns the device on
2103  *  @nic : device private variable.
2104  *  Description:
2105  *  This function actually turns the device on. Before this  function is
2106  *  called,all Registers are configured from their reset states
2107  *  and shared memory is allocated but the NIC is still quiescent. On
2108  *  calling this function, the device interrupts are cleared and the NIC is
2109  *  literally switched on by writing into the adapter control register.
2110  *  Return Value:
2111  *  SUCCESS on success and -1 on failure.
2112  */
2113
2114 static int start_nic(struct s2io_nic *nic)
2115 {
2116         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2117         struct net_device *dev = nic->dev;
2118         register u64 val64 = 0;
2119         u16 subid, i;
2120         struct mac_info *mac_control;
2121         struct config_param *config;
2122
2123         mac_control = &nic->mac_control;
2124         config = &nic->config;
2125
2126         /*  PRC Initialization and configuration */
2127         for (i = 0; i < config->rx_ring_num; i++) {
2128                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2129                        &bar0->prc_rxd0_n[i]);
2130
2131                 val64 = readq(&bar0->prc_ctrl_n[i]);
2132                 if (nic->rxd_mode == RXD_MODE_1)
2133                         val64 |= PRC_CTRL_RC_ENABLED;
2134                 else
2135                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2136                 if (nic->device_type == XFRAME_II_DEVICE)
2137                         val64 |= PRC_CTRL_GROUP_READS;
2138                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2139                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2140                 writeq(val64, &bar0->prc_ctrl_n[i]);
2141         }
2142
2143         if (nic->rxd_mode == RXD_MODE_3B) {
2144                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2145                 val64 = readq(&bar0->rx_pa_cfg);
2146                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2147                 writeq(val64, &bar0->rx_pa_cfg);
2148         }
2149
2150         if (vlan_tag_strip == 0) {
2151                 val64 = readq(&bar0->rx_pa_cfg);
2152                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2153                 writeq(val64, &bar0->rx_pa_cfg);
2154                 vlan_strip_flag = 0;
2155         }
2156
2157         /*
2158          * Enabling MC-RLDRAM. After enabling the device, we timeout
2159          * for around 100ms, which is approximately the time required
2160          * for the device to be ready for operation.
2161          */
2162         val64 = readq(&bar0->mc_rldram_mrs);
2163         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2164         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2165         val64 = readq(&bar0->mc_rldram_mrs);
2166
2167         msleep(100);    /* Delay by around 100 ms. */
2168
2169         /* Enabling ECC Protection. */
2170         val64 = readq(&bar0->adapter_control);
2171         val64 &= ~ADAPTER_ECC_EN;
2172         writeq(val64, &bar0->adapter_control);
2173
2174         /*
2175          * Verify if the device is ready to be enabled, if so enable
2176          * it.
2177          */
2178         val64 = readq(&bar0->adapter_status);
2179         if (!verify_xena_quiescence(nic)) {
2180                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2181                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2182                           (unsigned long long) val64);
2183                 return FAILURE;
2184         }
2185
2186         /*
2187          * With some switches, link might be already up at this point.
2188          * Because of this weird behavior, when we enable laser,
2189          * we may not get link. We need to handle this. We cannot
2190          * figure out which switch is misbehaving. So we are forced to
2191          * make a global change.
2192          */
2193
2194         /* Enabling Laser. */
2195         val64 = readq(&bar0->adapter_control);
2196         val64 |= ADAPTER_EOI_TX_ON;
2197         writeq(val64, &bar0->adapter_control);
2198
2199         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2200                 /*
2201                  * Dont see link state interrupts initally on some switches,
2202                  * so directly scheduling the link state task here.
2203                  */
2204                 schedule_work(&nic->set_link_task);
2205         }
2206         /* SXE-002: Initialize link and activity LED */
2207         subid = nic->pdev->subsystem_device;
2208         if (((subid & 0xFF) >= 0x07) &&
2209             (nic->device_type == XFRAME_I_DEVICE)) {
2210                 val64 = readq(&bar0->gpio_control);
2211                 val64 |= 0x0000800000000000ULL;
2212                 writeq(val64, &bar0->gpio_control);
2213                 val64 = 0x0411040400000000ULL;
2214                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2215         }
2216
2217         return SUCCESS;
2218 }
2219 /**
2220  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2221  */
2222 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2223                                         TxD *txdlp, int get_off)
2224 {
2225         struct s2io_nic *nic = fifo_data->nic;
2226         struct sk_buff *skb;
2227         struct TxD *txds;
2228         u16 j, frg_cnt;
2229
2230         txds = txdlp;
2231         if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2232                 pci_unmap_single(nic->pdev, (dma_addr_t)
2233                         txds->Buffer_Pointer, sizeof(u64),
2234                         PCI_DMA_TODEVICE);
2235                 txds++;
2236         }
2237
2238         skb = (struct sk_buff *) ((unsigned long)
2239                         txds->Host_Control);
2240         if (!skb) {
2241                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2242                 return NULL;
2243         }
2244         pci_unmap_single(nic->pdev, (dma_addr_t)
2245                          txds->Buffer_Pointer,
2246                          skb->len - skb->data_len,
2247                          PCI_DMA_TODEVICE);
2248         frg_cnt = skb_shinfo(skb)->nr_frags;
2249         if (frg_cnt) {
2250                 txds++;
2251                 for (j = 0; j < frg_cnt; j++, txds++) {
2252                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2253                         if (!txds->Buffer_Pointer)
2254                                 break;
2255                         pci_unmap_page(nic->pdev, (dma_addr_t)
2256                                         txds->Buffer_Pointer,
2257                                        frag->size, PCI_DMA_TODEVICE);
2258                 }
2259         }
2260         memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2261         return(skb);
2262 }
2263
2264 /**
2265  *  free_tx_buffers - Free all queued Tx buffers
2266  *  @nic : device private variable.
2267  *  Description:
2268  *  Free all queued Tx buffers.
2269  *  Return Value: void
2270 */
2271
2272 static void free_tx_buffers(struct s2io_nic *nic)
2273 {
2274         struct net_device *dev = nic->dev;
2275         struct sk_buff *skb;
2276         struct TxD *txdp;
2277         int i, j;
2278         struct mac_info *mac_control;
2279         struct config_param *config;
2280         int cnt = 0;
2281
2282         mac_control = &nic->mac_control;
2283         config = &nic->config;
2284
2285         for (i = 0; i < config->tx_fifo_num; i++) {
2286                 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2287                         txdp = (struct TxD *) \
2288                         mac_control->fifos[i].list_info[j].list_virt_addr;
2289                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2290                         if (skb) {
2291                                 nic->mac_control.stats_info->sw_stat.mem_freed
2292                                         += skb->truesize;
2293                                 dev_kfree_skb(skb);
2294                                 cnt++;
2295                         }
2296                 }
2297                 DBG_PRINT(INTR_DBG,
2298                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2299                           dev->name, cnt, i);
2300                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2301                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2302         }
2303 }
2304
2305 /**
2306  *   stop_nic -  To stop the nic
2307  *   @nic ; device private variable.
2308  *   Description:
2309  *   This function does exactly the opposite of what the start_nic()
2310  *   function does. This function is called to stop the device.
2311  *   Return Value:
2312  *   void.
2313  */
2314
2315 static void stop_nic(struct s2io_nic *nic)
2316 {
2317         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2318         register u64 val64 = 0;
2319         u16 interruptible;
2320         struct mac_info *mac_control;
2321         struct config_param *config;
2322
2323         mac_control = &nic->mac_control;
2324         config = &nic->config;
2325
2326         /*  Disable all interrupts */
2327         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2328         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2329         interruptible |= TX_PIC_INTR;
2330         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2331
2332         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2333         val64 = readq(&bar0->adapter_control);
2334         val64 &= ~(ADAPTER_CNTL_EN);
2335         writeq(val64, &bar0->adapter_control);
2336 }
2337
2338 /**
2339  *  fill_rx_buffers - Allocates the Rx side skbs
2340  *  @nic:  device private variable
2341  *  @ring_no: ring number
2342  *  Description:
2343  *  The function allocates Rx side skbs and puts the physical
2344  *  address of these buffers into the RxD buffer pointers, so that the NIC
2345  *  can DMA the received frame into these locations.
2346  *  The NIC supports 3 receive modes, viz
2347  *  1. single buffer,
2348  *  2. three buffer and
2349  *  3. Five buffer modes.
2350  *  Each mode defines how many fragments the received frame will be split
2351  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2352  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2353  *  is split into 3 fragments. As of now only single buffer mode is
2354  *  supported.
2355  *   Return Value:
2356  *  SUCCESS on success or an appropriate -ve value on failure.
2357  */
2358
2359 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2360 {
2361         struct net_device *dev = nic->dev;
2362         struct sk_buff *skb;
2363         struct RxD_t *rxdp;
2364         int off, off1, size, block_no, block_no1;
2365         u32 alloc_tab = 0;
2366         u32 alloc_cnt;
2367         struct mac_info *mac_control;
2368         struct config_param *config;
2369         u64 tmp;
2370         struct buffAdd *ba;
2371         unsigned long flags;
2372         struct RxD_t *first_rxdp = NULL;
2373         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2374         struct RxD1 *rxdp1;
2375         struct RxD3 *rxdp3;
2376         struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2377
2378         mac_control = &nic->mac_control;
2379         config = &nic->config;
2380         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2381             atomic_read(&nic->rx_bufs_left[ring_no]);
2382
2383         block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2384         off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2385         while (alloc_tab < alloc_cnt) {
2386                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2387                     block_index;
2388                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2389
2390                 rxdp = mac_control->rings[ring_no].
2391                                 rx_blocks[block_no].rxds[off].virt_addr;
2392
2393                 if ((block_no == block_no1) && (off == off1) &&
2394                                         (rxdp->Host_Control)) {
2395                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2396                                   dev->name);
2397                         DBG_PRINT(INTR_DBG, " info equated\n");
2398                         goto end;
2399                 }
2400                 if (off && (off == rxd_count[nic->rxd_mode])) {
2401                         mac_control->rings[ring_no].rx_curr_put_info.
2402                             block_index++;
2403                         if (mac_control->rings[ring_no].rx_curr_put_info.
2404                             block_index == mac_control->rings[ring_no].
2405                                         block_count)
2406                                 mac_control->rings[ring_no].rx_curr_put_info.
2407                                         block_index = 0;
2408                         block_no = mac_control->rings[ring_no].
2409                                         rx_curr_put_info.block_index;
2410                         if (off == rxd_count[nic->rxd_mode])
2411                                 off = 0;
2412                         mac_control->rings[ring_no].rx_curr_put_info.
2413                                 offset = off;
2414                         rxdp = mac_control->rings[ring_no].
2415                                 rx_blocks[block_no].block_virt_addr;
2416                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2417                                   dev->name, rxdp);
2418                 }
2419                 if(!napi) {
2420                         spin_lock_irqsave(&nic->put_lock, flags);
2421                         mac_control->rings[ring_no].put_pos =
2422                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2423                         spin_unlock_irqrestore(&nic->put_lock, flags);
2424                 } else {
2425                         mac_control->rings[ring_no].put_pos =
2426                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2427                 }
2428                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2429                         ((nic->rxd_mode == RXD_MODE_3B) &&
2430                                 (rxdp->Control_2 & s2BIT(0)))) {
2431                         mac_control->rings[ring_no].rx_curr_put_info.
2432                                         offset = off;
2433                         goto end;
2434                 }
2435                 /* calculate size of skb based on ring mode */
2436                 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2437                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2438                 if (nic->rxd_mode == RXD_MODE_1)
2439                         size += NET_IP_ALIGN;
2440                 else
2441                         size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2442
2443                 /* allocate skb */
2444                 skb = dev_alloc_skb(size);
2445                 if(!skb) {
2446                         DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2447                         DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2448                         if (first_rxdp) {
2449                                 wmb();
2450                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2451                         }
2452                         nic->mac_control.stats_info->sw_stat. \
2453                                 mem_alloc_fail_cnt++;
2454                         return -ENOMEM ;
2455                 }
2456                 nic->mac_control.stats_info->sw_stat.mem_allocated
2457                         += skb->truesize;
2458                 if (nic->rxd_mode == RXD_MODE_1) {
2459                         /* 1 buffer mode - normal operation mode */
2460                         rxdp1 = (struct RxD1*)rxdp;
2461                         memset(rxdp, 0, sizeof(struct RxD1));
2462                         skb_reserve(skb, NET_IP_ALIGN);
2463                         rxdp1->Buffer0_ptr = pci_map_single
2464                             (nic->pdev, skb->data, size - NET_IP_ALIGN,
2465                                 PCI_DMA_FROMDEVICE);
2466                         if( (rxdp1->Buffer0_ptr == 0) ||
2467                                 (rxdp1->Buffer0_ptr ==
2468                                 DMA_ERROR_CODE))
2469                                 goto pci_map_failed;
2470
2471                         rxdp->Control_2 =
2472                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2473
2474                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2475                         /*
2476                          * 2 buffer mode -
2477                          * 2 buffer mode provides 128
2478                          * byte aligned receive buffers.
2479                          */
2480
2481                         rxdp3 = (struct RxD3*)rxdp;
2482                         /* save buffer pointers to avoid frequent dma mapping */
2483                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2484                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2485                         memset(rxdp, 0, sizeof(struct RxD3));
2486                         /* restore the buffer pointers for dma sync*/
2487                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2488                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2489
2490                         ba = &mac_control->rings[ring_no].ba[block_no][off];
2491                         skb_reserve(skb, BUF0_LEN);
2492                         tmp = (u64)(unsigned long) skb->data;
2493                         tmp += ALIGN_SIZE;
2494                         tmp &= ~ALIGN_SIZE;
2495                         skb->data = (void *) (unsigned long)tmp;
2496                         skb_reset_tail_pointer(skb);
2497
2498                         if (!(rxdp3->Buffer0_ptr))
2499                                 rxdp3->Buffer0_ptr =
2500                                    pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2501                                            PCI_DMA_FROMDEVICE);
2502                         else
2503                                 pci_dma_sync_single_for_device(nic->pdev,
2504                                 (dma_addr_t) rxdp3->Buffer0_ptr,
2505                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2506                         if( (rxdp3->Buffer0_ptr == 0) ||
2507                                 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2508                                 goto pci_map_failed;
2509
2510                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2511                         if (nic->rxd_mode == RXD_MODE_3B) {
2512                                 /* Two buffer mode */
2513
2514                                 /*
2515                                  * Buffer2 will have L3/L4 header plus
2516                                  * L4 payload
2517                                  */
2518                                 rxdp3->Buffer2_ptr = pci_map_single
2519                                 (nic->pdev, skb->data, dev->mtu + 4,
2520                                                 PCI_DMA_FROMDEVICE);
2521
2522                                 if( (rxdp3->Buffer2_ptr == 0) ||
2523                                         (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2524                                         goto pci_map_failed;
2525
2526                                 rxdp3->Buffer1_ptr =
2527                                                 pci_map_single(nic->pdev,
2528                                                 ba->ba_1, BUF1_LEN,
2529                                                 PCI_DMA_FROMDEVICE);
2530                                 if( (rxdp3->Buffer1_ptr == 0) ||
2531                                         (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2532                                         pci_unmap_single
2533                                                 (nic->pdev,
2534                                                 (dma_addr_t)rxdp3->Buffer2_ptr,
2535                                                 dev->mtu + 4,
2536                                                 PCI_DMA_FROMDEVICE);
2537                                         goto pci_map_failed;
2538                                 }
2539                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2540                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2541                                                                 (dev->mtu + 4);
2542                         }
2543                         rxdp->Control_2 |= s2BIT(0);
2544                 }
2545                 rxdp->Host_Control = (unsigned long) (skb);
2546                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2547                         rxdp->Control_1 |= RXD_OWN_XENA;
2548                 off++;
2549                 if (off == (rxd_count[nic->rxd_mode] + 1))
2550                         off = 0;
2551                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2552
2553                 rxdp->Control_2 |= SET_RXD_MARKER;
2554                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2555                         if (first_rxdp) {
2556                                 wmb();
2557                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2558                         }
2559                         first_rxdp = rxdp;
2560                 }
2561                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2562                 alloc_tab++;
2563         }
2564
2565       end:
2566         /* Transfer ownership of first descriptor to adapter just before
2567          * exiting. Before that, use memory barrier so that ownership
2568          * and other fields are seen by adapter correctly.
2569          */
2570         if (first_rxdp) {
2571                 wmb();
2572                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2573         }
2574
2575         return SUCCESS;
2576 pci_map_failed:
2577         stats->pci_map_fail_cnt++;
2578         stats->mem_freed += skb->truesize;
2579         dev_kfree_skb_irq(skb);
2580         return -ENOMEM;
2581 }
2582
2583 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2584 {
2585         struct net_device *dev = sp->dev;
2586         int j;
2587         struct sk_buff *skb;
2588         struct RxD_t *rxdp;
2589         struct mac_info *mac_control;
2590         struct buffAdd *ba;
2591         struct RxD1 *rxdp1;
2592         struct RxD3 *rxdp3;
2593
2594         mac_control = &sp->mac_control;
2595         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2596                 rxdp = mac_control->rings[ring_no].
2597                                 rx_blocks[blk].rxds[j].virt_addr;
2598                 skb = (struct sk_buff *)
2599                         ((unsigned long) rxdp->Host_Control);
2600                 if (!skb) {
2601                         continue;
2602                 }
2603                 if (sp->rxd_mode == RXD_MODE_1) {
2604                         rxdp1 = (struct RxD1*)rxdp;
2605                         pci_unmap_single(sp->pdev, (dma_addr_t)
2606                                 rxdp1->Buffer0_ptr,
2607                                 dev->mtu +
2608                                 HEADER_ETHERNET_II_802_3_SIZE
2609                                 + HEADER_802_2_SIZE +
2610                                 HEADER_SNAP_SIZE,
2611                                 PCI_DMA_FROMDEVICE);
2612                         memset(rxdp, 0, sizeof(struct RxD1));
2613                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2614                         rxdp3 = (struct RxD3*)rxdp;
2615                         ba = &mac_control->rings[ring_no].
2616                                 ba[blk][j];
2617                         pci_unmap_single(sp->pdev, (dma_addr_t)
2618                                 rxdp3->Buffer0_ptr,
2619                                 BUF0_LEN,
2620                                 PCI_DMA_FROMDEVICE);
2621                         pci_unmap_single(sp->pdev, (dma_addr_t)
2622                                 rxdp3->Buffer1_ptr,
2623                                 BUF1_LEN,
2624                                 PCI_DMA_FROMDEVICE);
2625                         pci_unmap_single(sp->pdev, (dma_addr_t)
2626                                 rxdp3->Buffer2_ptr,
2627                                 dev->mtu + 4,
2628                                 PCI_DMA_FROMDEVICE);
2629                         memset(rxdp, 0, sizeof(struct RxD3));
2630                 }
2631                 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2632                 dev_kfree_skb(skb);
2633                 atomic_dec(&sp->rx_bufs_left[ring_no]);
2634         }
2635 }
2636
2637 /**
2638  *  free_rx_buffers - Frees all Rx buffers
2639  *  @sp: device private variable.
2640  *  Description:
2641  *  This function will free all Rx buffers allocated by host.
2642  *  Return Value:
2643  *  NONE.
2644  */
2645
2646 static void free_rx_buffers(struct s2io_nic *sp)
2647 {
2648         struct net_device *dev = sp->dev;
2649         int i, blk = 0, buf_cnt = 0;
2650         struct mac_info *mac_control;
2651         struct config_param *config;
2652
2653         mac_control = &sp->mac_control;
2654         config = &sp->config;
2655
2656         for (i = 0; i < config->rx_ring_num; i++) {
2657                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2658                         free_rxd_blk(sp,i,blk);
2659
2660                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2661                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2662                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2663                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2664                 atomic_set(&sp->rx_bufs_left[i], 0);
2665                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2666                           dev->name, buf_cnt, i);
2667         }
2668 }
2669
2670 /**
2671  * s2io_poll - Rx interrupt handler for NAPI support
2672  * @napi : pointer to the napi structure.
2673  * @budget : The number of packets that were budgeted to be processed
2674  * during  one pass through the 'Poll" function.
2675  * Description:
2676  * Comes into picture only if NAPI support has been incorporated. It does
2677  * the same thing that rx_intr_handler does, but not in a interrupt context
2678  * also It will process only a given number of packets.
2679  * Return value:
2680  * 0 on success and 1 if there are No Rx packets to be processed.
2681  */
2682
2683 static int s2io_poll(struct napi_struct *napi, int budget)
2684 {
2685         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2686         struct net_device *dev = nic->dev;
2687         int pkt_cnt = 0, org_pkts_to_process;
2688         struct mac_info *mac_control;
2689         struct config_param *config;
2690         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2691         int i;
2692
2693         if (!is_s2io_card_up(nic))
2694                 return 0;
2695
2696         mac_control = &nic->mac_control;
2697         config = &nic->config;
2698
2699         nic->pkts_to_process = budget;
2700         org_pkts_to_process = nic->pkts_to_process;
2701
2702         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2703         readl(&bar0->rx_traffic_int);
2704
2705         for (i = 0; i < config->rx_ring_num; i++) {
2706                 rx_intr_handler(&mac_control->rings[i]);
2707                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2708                 if (!nic->pkts_to_process) {
2709                         /* Quota for the current iteration has been met */
2710                         goto no_rx;
2711                 }
2712         }
2713
2714         netif_rx_complete(dev, napi);
2715
2716         for (i = 0; i < config->rx_ring_num; i++) {
2717                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2718                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2719                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2720                         break;
2721                 }
2722         }
2723         /* Re enable the Rx interrupts. */
2724         writeq(0x0, &bar0->rx_traffic_mask);
2725         readl(&bar0->rx_traffic_mask);
2726         return pkt_cnt;
2727
2728 no_rx:
2729         for (i = 0; i < config->rx_ring_num; i++) {
2730                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2731                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2732                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2733                         break;
2734                 }
2735         }
2736         return pkt_cnt;
2737 }
2738
2739 #ifdef CONFIG_NET_POLL_CONTROLLER
2740 /**
2741  * s2io_netpoll - netpoll event handler entry point
2742  * @dev : pointer to the device structure.
2743  * Description:
2744  *      This function will be called by upper layer to check for events on the
2745  * interface in situations where interrupts are disabled. It is used for
2746  * specific in-kernel networking tasks, such as remote consoles and kernel
2747  * debugging over the network (example netdump in RedHat).
2748  */
2749 static void s2io_netpoll(struct net_device *dev)
2750 {
2751         struct s2io_nic *nic = dev->priv;
2752         struct mac_info *mac_control;
2753         struct config_param *config;
2754         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2755         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2756         int i;
2757
2758         if (pci_channel_offline(nic->pdev))
2759                 return;
2760
2761         disable_irq(dev->irq);
2762
2763         mac_control = &nic->mac_control;
2764         config = &nic->config;
2765
2766         writeq(val64, &bar0->rx_traffic_int);
2767         writeq(val64, &bar0->tx_traffic_int);
2768
2769         /* we need to free up the transmitted skbufs or else netpoll will
2770          * run out of skbs and will fail and eventually netpoll application such
2771          * as netdump will fail.
2772          */
2773         for (i = 0; i < config->tx_fifo_num; i++)
2774                 tx_intr_handler(&mac_control->fifos[i]);
2775
2776         /* check for received packet and indicate up to network */
2777         for (i = 0; i < config->rx_ring_num; i++)
2778                 rx_intr_handler(&mac_control->rings[i]);
2779
2780         for (i = 0; i < config->rx_ring_num; i++) {
2781                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2782                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2783                         DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2784                         break;
2785                 }
2786         }
2787         enable_irq(dev->irq);
2788         return;
2789 }
2790 #endif
2791
2792 /**
2793  *  rx_intr_handler - Rx interrupt handler
2794  *  @nic: device private variable.
2795  *  Description:
2796  *  If the interrupt is because of a received frame or if the
2797  *  receive ring contains fresh as yet un-processed frames,this function is
2798  *  called. It picks out the RxD at which place the last Rx processing had
2799  *  stopped and sends the skb to the OSM's Rx handler and then increments
2800  *  the offset.
2801  *  Return Value:
2802  *  NONE.
2803  */
2804 static void rx_intr_handler(struct ring_info *ring_data)
2805 {
2806         struct s2io_nic *nic = ring_data->nic;
2807         struct net_device *dev = (struct net_device *) nic->dev;
2808         int get_block, put_block, put_offset;
2809         struct rx_curr_get_info get_info, put_info;
2810         struct RxD_t *rxdp;
2811         struct sk_buff *skb;
2812         int pkt_cnt = 0;
2813         int i;
2814         struct RxD1* rxdp1;
2815         struct RxD3* rxdp3;
2816
2817         spin_lock(&nic->rx_lock);
2818
2819         get_info = ring_data->rx_curr_get_info;
2820         get_block = get_info.block_index;
2821         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2822         put_block = put_info.block_index;
2823         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2824         if (!napi) {
2825                 spin_lock(&nic->put_lock);
2826                 put_offset = ring_data->put_pos;
2827                 spin_unlock(&nic->put_lock);
2828         } else
2829                 put_offset = ring_data->put_pos;
2830
2831         while (RXD_IS_UP2DT(rxdp)) {
2832                 /*
2833                  * If your are next to put index then it's
2834                  * FIFO full condition
2835                  */
2836                 if ((get_block == put_block) &&
2837                     (get_info.offset + 1) == put_info.offset) {
2838                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2839                         break;
2840                 }
2841                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2842                 if (skb == NULL) {
2843                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2844                                   dev->name);
2845                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2846                         spin_unlock(&nic->rx_lock);
2847                         return;
2848                 }
2849                 if (nic->rxd_mode == RXD_MODE_1) {
2850                         rxdp1 = (struct RxD1*)rxdp;
2851                         pci_unmap_single(nic->pdev, (dma_addr_t)
2852                                 rxdp1->Buffer0_ptr,
2853                                 dev->mtu +
2854                                 HEADER_ETHERNET_II_802_3_SIZE +
2855                                 HEADER_802_2_SIZE +
2856                                 HEADER_SNAP_SIZE,
2857                                 PCI_DMA_FROMDEVICE);
2858                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2859                         rxdp3 = (struct RxD3*)rxdp;
2860                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2861                                 rxdp3->Buffer0_ptr,
2862                                 BUF0_LEN, PCI_DMA_FROMDEVICE);
2863                         pci_unmap_single(nic->pdev, (dma_addr_t)
2864                                 rxdp3->Buffer2_ptr,
2865                                 dev->mtu + 4,
2866                                 PCI_DMA_FROMDEVICE);
2867                 }
2868                 prefetch(skb->data);
2869                 rx_osm_handler(ring_data, rxdp);
2870                 get_info.offset++;
2871                 ring_data->rx_curr_get_info.offset = get_info.offset;
2872                 rxdp = ring_data->rx_blocks[get_block].
2873                                 rxds[get_info.offset].virt_addr;
2874                 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2875                         get_info.offset = 0;
2876                         ring_data->rx_curr_get_info.offset = get_info.offset;
2877                         get_block++;
2878                         if (get_block == ring_data->block_count)
2879                                 get_block = 0;
2880                         ring_data->rx_curr_get_info.block_index = get_block;
2881                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2882                 }
2883
2884                 nic->pkts_to_process -= 1;
2885                 if ((napi) && (!nic->pkts_to_process))
2886                         break;
2887                 pkt_cnt++;
2888                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2889                         break;
2890         }
2891         if (nic->lro) {
2892                 /* Clear all LRO sessions before exiting */
2893                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2894                         struct lro *lro = &nic->lro0_n[i];
2895                         if (lro->in_use) {
2896                                 update_L3L4_header(nic, lro);
2897                                 queue_rx_frame(lro->parent);
2898                                 clear_lro_session(lro);
2899                         }
2900                 }
2901         }
2902
2903         spin_unlock(&nic->rx_lock);
2904 }
2905
2906 /**
2907  *  tx_intr_handler - Transmit interrupt handler
2908  *  @nic : device private variable
2909  *  Description:
2910  *  If an interrupt was raised to indicate DMA complete of the
2911  *  Tx packet, this function is called. It identifies the last TxD
2912  *  whose buffer was freed and frees all skbs whose data have already
2913  *  DMA'ed into the NICs internal memory.
2914  *  Return Value:
2915  *  NONE
2916  */
2917
2918 static void tx_intr_handler(struct fifo_info *fifo_data)
2919 {
2920         struct s2io_nic *nic = fifo_data->nic;
2921         struct net_device *dev = (struct net_device *) nic->dev;
2922         struct tx_curr_get_info get_info, put_info;
2923         struct sk_buff *skb;
2924         struct TxD *txdlp;
2925         u8 err_mask;
2926
2927         get_info = fifo_data->tx_curr_get_info;
2928         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2929         txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2930             list_virt_addr;
2931         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2932                (get_info.offset != put_info.offset) &&
2933                (txdlp->Host_Control)) {
2934                 /* Check for TxD errors */
2935                 if (txdlp->Control_1 & TXD_T_CODE) {
2936                         unsigned long long err;
2937                         err = txdlp->Control_1 & TXD_T_CODE;
2938                         if (err & 0x1) {
2939                                 nic->mac_control.stats_info->sw_stat.
2940                                                 parity_err_cnt++;
2941                         }
2942
2943                         /* update t_code statistics */
2944                         err_mask = err >> 48;
2945                         switch(err_mask) {
2946                                 case 2:
2947                                         nic->mac_control.stats_info->sw_stat.
2948                                                         tx_buf_abort_cnt++;
2949                                 break;
2950
2951                                 case 3:
2952                                         nic->mac_control.stats_info->sw_stat.
2953                                                         tx_desc_abort_cnt++;
2954                                 break;
2955
2956                                 case 7:
2957                                         nic->mac_control.stats_info->sw_stat.
2958                                                         tx_parity_err_cnt++;
2959                                 break;
2960
2961                                 case 10:
2962                                         nic->mac_control.stats_info->sw_stat.
2963                                                         tx_link_loss_cnt++;
2964                                 break;
2965
2966                                 case 15:
2967                                         nic->mac_control.stats_info->sw_stat.
2968                                                         tx_list_proc_err_cnt++;
2969                                 break;
2970                         }
2971                 }
2972
2973                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2974                 if (skb == NULL) {
2975                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
2976                         __FUNCTION__);
2977                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2978                         return;
2979                 }
2980
2981                 /* Updating the statistics block */
2982                 nic->stats.tx_bytes += skb->len;
2983                 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2984                 dev_kfree_skb_irq(skb);
2985
2986                 get_info.offset++;
2987                 if (get_info.offset == get_info.fifo_len + 1)
2988                         get_info.offset = 0;
2989                 txdlp = (struct TxD *) fifo_data->list_info
2990                     [get_info.offset].list_virt_addr;
2991                 fifo_data->tx_curr_get_info.offset =
2992                     get_info.offset;
2993         }
2994
2995         spin_lock(&nic->tx_lock);
2996         if (netif_queue_stopped(dev))
2997                 netif_wake_queue(dev);
2998         spin_unlock(&nic->tx_lock);
2999 }
3000
3001 /**
3002  *  s2io_mdio_write - Function to write in to MDIO registers
3003  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3004  *  @addr     : address value
3005  *  @value    : data value
3006  *  @dev      : pointer to net_device structure
3007  *  Description:
3008  *  This function is used to write values to the MDIO registers
3009  *  NONE
3010  */
3011 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3012 {
3013         u64 val64 = 0x0;
3014         struct s2io_nic *sp = dev->priv;
3015         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3016
3017         //address transaction
3018         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3019                         | MDIO_MMD_DEV_ADDR(mmd_type)
3020                         | MDIO_MMS_PRT_ADDR(0x0);
3021         writeq(val64, &bar0->mdio_control);
3022         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3023         writeq(val64, &bar0->mdio_control);
3024         udelay(100);
3025
3026         //Data transaction
3027         val64 = 0x0;
3028         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3029                         | MDIO_MMD_DEV_ADDR(mmd_type)
3030                         | MDIO_MMS_PRT_ADDR(0x0)
3031                         | MDIO_MDIO_DATA(value)
3032                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
3033         writeq(val64, &bar0->mdio_control);
3034         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3035         writeq(val64, &bar0->mdio_control);
3036         udelay(100);
3037
3038         val64 = 0x0;
3039         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3040         | MDIO_MMD_DEV_ADDR(mmd_type)
3041         | MDIO_MMS_PRT_ADDR(0x0)
3042         | MDIO_OP(MDIO_OP_READ_TRANS);
3043         writeq(val64, &bar0->mdio_control);
3044         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3045         writeq(val64, &bar0->mdio_control);
3046         udelay(100);
3047
3048 }
3049
3050 /**
3051  *  s2io_mdio_read - Function to write in to MDIO registers
3052  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3053  *  @addr     : address value
3054  *  @dev      : pointer to net_device structure
3055  *  Description:
3056  *  This function is used to read values to the MDIO registers
3057  *  NONE
3058  */
3059 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3060 {
3061         u64 val64 = 0x0;
3062         u64 rval64 = 0x0;
3063         struct s2io_nic *sp = dev->priv;
3064         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3065
3066         /* address transaction */
3067         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3068                         | MDIO_MMD_DEV_ADDR(mmd_type)
3069                         | MDIO_MMS_PRT_ADDR(0x0);
3070         writeq(val64, &bar0->mdio_control);
3071         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3072         writeq(val64, &bar0->mdio_control);
3073         udelay(100);
3074
3075         /* Data transaction */
3076         val64 = 0x0;
3077         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3078                         | MDIO_MMD_DEV_ADDR(mmd_type)
3079                         | MDIO_MMS_PRT_ADDR(0x0)
3080                         | MDIO_OP(MDIO_OP_READ_TRANS);
3081         writeq(val64, &bar0->mdio_control);
3082         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3083         writeq(val64, &bar0->mdio_control);
3084         udelay(100);
3085
3086         /* Read the value from regs */
3087         rval64 = readq(&bar0->mdio_control);
3088         rval64 = rval64 & 0xFFFF0000;
3089         rval64 = rval64 >> 16;
3090         return rval64;
3091 }
3092 /**
3093  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3094  *  @counter      : couter value to be updated
3095  *  @flag         : flag to indicate the status
3096  *  @type         : counter type
3097  *  Description:
3098  *  This function is to check the status of the xpak counters value
3099  *  NONE
3100  */
3101
3102 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3103 {
3104         u64 mask = 0x3;
3105         u64 val64;
3106         int i;
3107         for(i = 0; i <index; i++)
3108                 mask = mask << 0x2;
3109
3110         if(flag > 0)
3111         {
3112                 *counter = *counter + 1;
3113                 val64 = *regs_stat & mask;
3114                 val64 = val64 >> (index * 0x2);
3115                 val64 = val64 + 1;
3116                 if(val64 == 3)
3117                 {
3118                         switch(type)
3119                         {
3120                         case 1:
3121                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3122                                           "service. Excessive temperatures may "
3123                                           "result in premature transceiver "
3124                                           "failure \n");
3125                         break;
3126                         case 2:
3127                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3128                                           "service Excessive bias currents may "
3129                                           "indicate imminent laser diode "
3130                                           "failure \n");
3131                         break;
3132                         case 3:
3133                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3134                                           "service Excessive laser output "
3135                                           "power may saturate far-end "
3136                                           "receiver\n");
3137                         break;
3138                         default:
3139                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3140                                           "type \n");
3141                         }
3142                         val64 = 0x0;
3143                 }
3144                 val64 = val64 << (index * 0x2);
3145                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3146
3147         } else {
3148                 *regs_stat = *regs_stat & (~mask);
3149         }
3150 }
3151
3152 /**
3153  *  s2io_updt_xpak_counter - Function to update the xpak counters
3154  *  @dev         : pointer to net_device struct
3155  *  Description:
3156  *  This function is to upate the status of the xpak counters value
3157  *  NONE
3158  */
3159 static void s2io_updt_xpak_counter(struct net_device *dev)
3160 {
3161         u16 flag  = 0x0;
3162         u16 type  = 0x0;
3163         u16 val16 = 0x0;
3164         u64 val64 = 0x0;
3165         u64 addr  = 0x0;
3166
3167         struct s2io_nic *sp = dev->priv;
3168         struct stat_block *stat_info = sp->mac_control.stats_info;
3169
3170         /* Check the communication with the MDIO slave */
3171         addr = 0x0000;
3172         val64 = 0x0;
3173         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3174         if((val64 == 0xFFFF) || (val64 == 0x0000))
3175         {
3176                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3177                           "Returned %llx\n", (unsigned long long)val64);
3178                 return;
3179         }
3180
3181         /* Check for the expecte value of 2040 at PMA address 0x0000 */
3182         if(val64 != 0x2040)
3183         {
3184                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3185                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3186                           (unsigned long long)val64);
3187                 return;
3188         }
3189
3190         /* Loading the DOM register to MDIO register */
3191         addr = 0xA100;
3192         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3193         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3194
3195         /* Reading the Alarm flags */
3196         addr = 0xA070;
3197         val64 = 0x0;
3198         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3199
3200         flag = CHECKBIT(val64, 0x7);
3201         type = 1;
3202         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3203                                 &stat_info->xpak_stat.xpak_regs_stat,
3204                                 0x0, flag, type);
3205
3206         if(CHECKBIT(val64, 0x6))
3207                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3208
3209         flag = CHECKBIT(val64, 0x3);
3210         type = 2;
3211         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3212                                 &stat_info->xpak_stat.xpak_regs_stat,
3213                                 0x2, flag, type);
3214
3215         if(CHECKBIT(val64, 0x2))
3216                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3217
3218         flag = CHECKBIT(val64, 0x1);
3219         type = 3;
3220         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3221                                 &stat_info->xpak_stat.xpak_regs_stat,
3222                                 0x4, flag, type);
3223
3224         if(CHECKBIT(val64, 0x0))
3225                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3226
3227         /* Reading the Warning flags */
3228         addr = 0xA074;
3229         val64 = 0x0;
3230         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3231
3232         if(CHECKBIT(val64, 0x7))
3233                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3234
3235         if(CHECKBIT(val64, 0x6))
3236                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3237
3238         if(CHECKBIT(val64, 0x3))
3239                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3240
3241         if(CHECKBIT(val64, 0x2))
3242                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3243
3244         if(CHECKBIT(val64, 0x1))
3245                 stat_info->xpak_stat.warn_laser_output_power_high++;
3246
3247         if(CHECKBIT(val64, 0x0))
3248                 stat_info->xpak_stat.warn_laser_output_power_low++;
3249 }
3250
3251 /**
3252  *  wait_for_cmd_complete - waits for a command to complete.
3253  *  @sp : private member of the device structure, which is a pointer to the
3254  *  s2io_nic structure.
3255  *  Description: Function that waits for a command to Write into RMAC
3256  *  ADDR DATA registers to be completed and returns either success or
3257  *  error depending on whether the command was complete or not.
3258  *  Return value:
3259  *   SUCCESS on success and FAILURE on failure.
3260  */
3261
3262 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3263                                 int bit_state)
3264 {
3265         int ret = FAILURE, cnt = 0, delay = 1;
3266         u64 val64;
3267
3268         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3269                 return FAILURE;
3270
3271         do {
3272                 val64 = readq(addr);
3273                 if (bit_state == S2IO_BIT_RESET) {
3274                         if (!(val64 & busy_bit)) {
3275                                 ret = SUCCESS;
3276                                 break;
3277                         }
3278                 } else {
3279                         if (!(val64 & busy_bit)) {
3280                                 ret = SUCCESS;
3281                                 break;
3282                         }
3283                 }
3284
3285                 if(in_interrupt())
3286                         mdelay(delay);
3287                 else
3288                         msleep(delay);
3289
3290                 if (++cnt >= 10)
3291                         delay = 50;
3292         } while (cnt < 20);
3293         return ret;
3294 }
3295 /*
3296  * check_pci_device_id - Checks if the device id is supported
3297  * @id : device id
3298  * Description: Function to check if the pci device id is supported by driver.
3299  * Return value: Actual device id if supported else PCI_ANY_ID
3300  */
3301 static u16 check_pci_device_id(u16 id)
3302 {
3303         switch (id) {
3304         case PCI_DEVICE_ID_HERC_WIN:
3305         case PCI_DEVICE_ID_HERC_UNI:
3306                 return XFRAME_II_DEVICE;
3307         case PCI_DEVICE_ID_S2IO_UNI:
3308         case PCI_DEVICE_ID_S2IO_WIN:
3309                 return XFRAME_I_DEVICE;
3310         default:
3311                 return PCI_ANY_ID;
3312         }
3313 }
3314
3315 /**
3316  *  s2io_reset - Resets the card.
3317  *  @sp : private member of the device structure.
3318  *  Description: Function to Reset the card. This function then also
3319  *  restores the previously saved PCI configuration space registers as
3320  *  the card reset also resets the configuration space.
3321  *  Return value:
3322  *  void.
3323  */
3324
3325 static void s2io_reset(struct s2io_nic * sp)
3326 {
3327         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3328         u64 val64;
3329         u16 subid, pci_cmd;
3330         int i;
3331         u16 val16;
3332         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3333         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3334
3335         DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3336                         __FUNCTION__, sp->dev->name);
3337
3338         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3339         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3340
3341         val64 = SW_RESET_ALL;
3342         writeq(val64, &bar0->sw_reset);
3343         if (strstr(sp->product_name, "CX4")) {
3344                 msleep(750);
3345         }
3346         msleep(250);
3347         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3348
3349                 /* Restore the PCI state saved during initialization. */
3350                 pci_restore_state(sp->pdev);
3351                 pci_read_config_word(sp->pdev, 0x2, &val16);
3352                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3353                         break;
3354                 msleep(200);
3355         }
3356
3357         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3358                 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3359         }
3360
3361         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3362
3363         s2io_init_pci(sp);
3364
3365         /* Set swapper to enable I/O register access */
3366         s2io_set_swapper(sp);
3367
3368         /* Restore the MSIX table entries from local variables */
3369         restore_xmsi_data(sp);
3370
3371         /* Clear certain PCI/PCI-X fields after reset */
3372         if (sp->device_type == XFRAME_II_DEVICE) {
3373                 /* Clear "detected parity error" bit */
3374                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3375
3376                 /* Clearing PCIX Ecc status register */
3377                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3378
3379                 /* Clearing PCI_STATUS error reflected here */
3380                 writeq(s2BIT(62), &bar0->txpic_int_reg);
3381         }
3382
3383         /* Reset device statistics maintained by OS */
3384         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3385
3386         up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3387         down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3388         up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3389         down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3390         reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3391         mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3392         mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3393         watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3394         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3395         memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3396         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3397         sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3398         sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3399         sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3400         sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3401         sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3402         sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3403         sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3404         sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3405
3406         /* SXE-002: Configure link and activity LED to turn it off */
3407         subid = sp->pdev->subsystem_device;
3408         if (((subid & 0xFF) >= 0x07) &&
3409             (sp->device_type == XFRAME_I_DEVICE)) {
3410                 val64 = readq(&bar0->gpio_control);
3411                 val64 |= 0x0000800000000000ULL;
3412                 writeq(val64, &bar0->gpio_control);
3413                 val64 = 0x0411040400000000ULL;
3414                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3415         }
3416
3417         /*
3418          * Clear spurious ECC interrupts that would have occured on
3419          * XFRAME II cards after reset.
3420          */
3421         if (sp->device_type == XFRAME_II_DEVICE) {
3422                 val64 = readq(&bar0->pcc_err_reg);
3423                 writeq(val64, &bar0->pcc_err_reg);
3424         }
3425
3426         /* restore the previously assigned mac address */
3427         do_s2io_prog_unicast(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3428
3429         sp->device_enabled_once = FALSE;
3430 }
3431
3432 /**
3433  *  s2io_set_swapper - to set the swapper controle on the card
3434  *  @sp : private member of the device structure,
3435  *  pointer to the s2io_nic structure.
3436  *  Description: Function to set the swapper control on the card
3437  *  correctly depending on the 'endianness' of the system.
3438  *  Return value:
3439  *  SUCCESS on success and FAILURE on failure.
3440  */
3441
3442 static int s2io_set_swapper(struct s2io_nic * sp)
3443 {
3444         struct net_device *dev = sp->dev;
3445         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3446         u64 val64, valt, valr;
3447
3448         /*
3449          * Set proper endian settings and verify the same by reading
3450          * the PIF Feed-back register.
3451          */
3452
3453         val64 = readq(&bar0->pif_rd_swapper_fb);
3454         if (val64 != 0x0123456789ABCDEFULL) {
3455                 int i = 0;
3456                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3457                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3458                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3459                                 0};                     /* FE=0, SE=0 */
3460
3461                 while(i<4) {
3462                         writeq(value[i], &bar0->swapper_ctrl);
3463                         val64 = readq(&bar0->pif_rd_swapper_fb);
3464                         if (val64 == 0x0123456789ABCDEFULL)
3465                                 break;
3466                         i++;
3467                 }
3468                 if (i == 4) {
3469                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3470                                 dev->name);
3471                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3472                                 (unsigned long long) val64);
3473                         return FAILURE;
3474                 }
3475                 valr = value[i];
3476         } else {
3477                 valr = readq(&bar0->swapper_ctrl);
3478         }
3479
3480         valt = 0x0123456789ABCDEFULL;
3481         writeq(valt, &bar0->xmsi_address);
3482         val64 = readq(&bar0->xmsi_address);
3483
3484         if(val64 != valt) {
3485                 int i = 0;
3486                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3487                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3488                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3489                                 0};                     /* FE=0, SE=0 */
3490
3491                 while(i<4) {
3492                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3493                         writeq(valt, &bar0->xmsi_address);
3494                         val64 = readq(&bar0->xmsi_address);
3495                         if(val64 == valt)
3496                                 break;
3497                         i++;
3498                 }
3499                 if(i == 4) {
3500                         unsigned long long x = val64;
3501                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3502                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3503                         return FAILURE;
3504                 }
3505         }
3506         val64 = readq(&bar0->swapper_ctrl);
3507         val64 &= 0xFFFF000000000000ULL;
3508
3509 #ifdef  __BIG_ENDIAN
3510         /*
3511          * The device by default set to a big endian format, so a
3512          * big endian driver need not set anything.
3513          */
3514         val64 |= (SWAPPER_CTRL_TXP_FE |
3515                  SWAPPER_CTRL_TXP_SE |
3516                  SWAPPER_CTRL_TXD_R_FE |
3517                  SWAPPER_CTRL_TXD_W_FE |
3518                  SWAPPER_CTRL_TXF_R_FE |
3519                  SWAPPER_CTRL_RXD_R_FE |
3520                  SWAPPER_CTRL_RXD_W_FE |
3521                  SWAPPER_CTRL_RXF_W_FE |
3522                  SWAPPER_CTRL_XMSI_FE |
3523                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3524         if (sp->config.intr_type == INTA)
3525                 val64 |= SWAPPER_CTRL_XMSI_SE;
3526         writeq(val64, &bar0->swapper_ctrl);
3527 #else
3528         /*
3529          * Initially we enable all bits to make it accessible by the
3530          * driver, then we selectively enable only those bits that
3531          * we want to set.
3532          */
3533         val64 |= (SWAPPER_CTRL_TXP_FE |
3534                  SWAPPER_CTRL_TXP_SE |
3535                  SWAPPER_CTRL_TXD_R_FE |
3536                  SWAPPER_CTRL_TXD_R_SE |
3537                  SWAPPER_CTRL_TXD_W_FE |
3538                  SWAPPER_CTRL_TXD_W_SE |
3539                  SWAPPER_CTRL_TXF_R_FE |
3540                  SWAPPER_CTRL_RXD_R_FE |
3541                  SWAPPER_CTRL_RXD_R_SE |
3542                  SWAPPER_CTRL_RXD_W_FE |
3543                  SWAPPER_CTRL_RXD_W_SE |
3544                  SWAPPER_CTRL_RXF_W_FE |
3545                  SWAPPER_CTRL_XMSI_FE |
3546                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3547         if (sp->config.intr_type == INTA)
3548                 val64 |= SWAPPER_CTRL_XMSI_SE;
3549         writeq(val64, &bar0->swapper_ctrl);
3550 #endif
3551         val64 = readq(&bar0->swapper_ctrl);
3552
3553         /*
3554          * Verifying if endian settings are accurate by reading a
3555          * feedback register.
3556          */
3557         val64 = readq(&bar0->pif_rd_swapper_fb);
3558         if (val64 != 0x0123456789ABCDEFULL) {
3559                 /* Endian settings are incorrect, calls for another dekko. */
3560                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3561                           dev->name);
3562                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3563                           (unsigned long long) val64);
3564                 return FAILURE;
3565         }
3566
3567         return SUCCESS;
3568 }
3569
3570 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3571 {
3572         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3573         u64 val64;
3574         int ret = 0, cnt = 0;
3575
3576         do {
3577                 val64 = readq(&bar0->xmsi_access);
3578                 if (!(val64 & s2BIT(15)))
3579                         break;
3580                 mdelay(1);
3581                 cnt++;
3582         } while(cnt < 5);
3583         if (cnt == 5) {
3584                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3585                 ret = 1;
3586         }
3587
3588         return ret;
3589 }
3590
3591 static void restore_xmsi_data(struct s2io_nic *nic)
3592 {
3593         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3594         u64 val64;
3595         int i;
3596
3597         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3598                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3599                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3600                 val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
3601                 writeq(val64, &bar0->xmsi_access);
3602                 if (wait_for_msix_trans(nic, i)) {
3603                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3604                         continue;
3605                 }
3606         }
3607 }
3608
3609 static void store_xmsi_data(struct s2io_nic *nic)
3610 {
3611         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3612         u64 val64, addr, data;
3613         int i;
3614
3615         /* Store and display */
3616         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3617                 val64 = (s2BIT(15) | vBIT(i, 26, 6));
3618                 writeq(val64, &bar0->xmsi_access);
3619                 if (wait_for_msix_trans(nic, i)) {
3620                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3621                         continue;
3622                 }
3623                 addr = readq(&bar0->xmsi_address);
3624                 data = readq(&bar0->xmsi_data);
3625                 if (addr && data) {
3626                         nic->msix_info[i].addr = addr;
3627                         nic->msix_info[i].data = data;
3628                 }
3629         }
3630 }
3631
3632 static int s2io_enable_msi_x(struct s2io_nic *nic)
3633 {
3634         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3635         u64 tx_mat, rx_mat;
3636         u16 msi_control; /* Temp variable */
3637         int ret, i, j, msix_indx = 1;
3638
3639         nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
3640                                GFP_KERNEL);
3641         if (!nic->entries) {
3642                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3643                         __FUNCTION__);
3644                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3645                 return -ENOMEM;
3646         }
3647         nic->mac_control.stats_info->sw_stat.mem_allocated
3648                 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3649
3650         nic->s2io_entries =
3651                 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
3652                                    GFP_KERNEL);
3653         if (!nic->s2io_entries) {
3654                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3655                         __FUNCTION__);
3656                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3657                 kfree(nic->entries);
3658                 nic->mac_control.stats_info->sw_stat.mem_freed
3659                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3660                 return -ENOMEM;
3661         }
3662          nic->mac_control.stats_info->sw_stat.mem_allocated
3663                 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3664
3665         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3666                 nic->entries[i].entry = i;
3667                 nic->s2io_entries[i].entry = i;
3668                 nic->s2io_entries[i].arg = NULL;
3669                 nic->s2io_entries[i].in_use = 0;
3670         }
3671
3672         tx_mat = readq(&bar0->tx_mat0_n[0]);
3673         for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3674                 tx_mat |= TX_MAT_SET(i, msix_indx);
3675                 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3676                 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3677                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3678         }
3679         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3680
3681         rx_mat = readq(&bar0->rx_mat);
3682         for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3683                 rx_mat |= RX_MAT_SET(j, msix_indx);
3684                 nic->s2io_entries[msix_indx].arg
3685                         = &nic->mac_control.rings[j];
3686                 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3687                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3688         }
3689         writeq(rx_mat, &bar0->rx_mat);
3690
3691         nic->avail_msix_vectors = 0;
3692         ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3693         /* We fail init if error or we get less vectors than min required */
3694         if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3695                 nic->avail_msix_vectors = ret;
3696                 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3697         }
3698         if (ret) {
3699                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3700                 kfree(nic->entries);
3701                 nic->mac_control.stats_info->sw_stat.mem_freed
3702                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3703                 kfree(nic->s2io_entries);
3704                 nic->mac_control.stats_info->sw_stat.mem_freed
3705                 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3706                 nic->entries = NULL;
3707                 nic->s2io_entries = NULL;
3708                 nic->avail_msix_vectors = 0;
3709                 return -ENOMEM;
3710         }
3711         if (!nic->avail_msix_vectors)
3712                 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3713
3714         /*
3715          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3716          * in the herc NIC. (Temp change, needs to be removed later)
3717          */
3718         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3719         msi_control |= 0x1; /* Enable MSI */
3720         pci_write_config_word(nic->pdev, 0x42, msi_control);
3721
3722         return 0;
3723 }
3724
3725 /* Handle software interrupt used during MSI(X) test */
3726 static irqreturn_t __devinit s2io_test_intr(int irq, void *dev_id)
3727 {
3728         struct s2io_nic *sp = dev_id;
3729
3730         sp->msi_detected = 1;
3731         wake_up(&sp->msi_wait);
3732
3733         return IRQ_HANDLED;
3734 }
3735
3736 /* Test interrupt path by forcing a a software IRQ */
3737 static int __devinit s2io_test_msi(struct s2io_nic *sp)
3738 {
3739         struct pci_dev *pdev = sp->pdev;
3740         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3741         int err;
3742         u64 val64, saved64;
3743
3744         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3745                         sp->name, sp);
3746         if (err) {
3747                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3748                        sp->dev->name, pci_name(pdev), pdev->irq);
3749                 return err;
3750         }
3751
3752         init_waitqueue_head (&sp->msi_wait);
3753         sp->msi_detected = 0;
3754
3755         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3756         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3757         val64 |= SCHED_INT_CTRL_TIMER_EN;
3758         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3759         writeq(val64, &bar0->scheduled_int_ctrl);
3760
3761         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3762
3763         if (!sp->msi_detected) {
3764                 /* MSI(X) test failed, go back to INTx mode */
3765                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated"
3766                         "using MSI(X) during test\n", sp->dev->name,
3767                         pci_name(pdev));
3768
3769                 err = -EOPNOTSUPP;
3770         }
3771
3772         free_irq(sp->entries[1].vector, sp);
3773
3774         writeq(saved64, &bar0->scheduled_int_ctrl);
3775
3776         return err;
3777 }
3778
3779 static void remove_msix_isr(struct s2io_nic *sp)
3780 {
3781         int i;
3782         u16 msi_control;
3783
3784         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3785                 if (sp->s2io_entries[i].in_use ==
3786                         MSIX_REGISTERED_SUCCESS) {
3787                         int vector = sp->entries[i].vector;
3788                         void *arg = sp->s2io_entries[i].arg;
3789                         free_irq(vector, arg);
3790                 }
3791         }
3792
3793         kfree(sp->entries);
3794         kfree(sp->s2io_entries);
3795         sp->entries = NULL;
3796         sp->s2io_entries = NULL;
3797
3798         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3799         msi_control &= 0xFFFE; /* Disable MSI */
3800         pci_write_config_word(sp->pdev, 0x42, msi_control);
3801
3802         pci_disable_msix(sp->pdev);
3803 }
3804
3805 static void remove_inta_isr(struct s2io_nic *sp)
3806 {
3807         struct net_device *dev = sp->dev;
3808
3809         free_irq(sp->pdev->irq, dev);
3810 }
3811
3812 /* ********************************************************* *
3813  * Functions defined below concern the OS part of the driver *
3814  * ********************************************************* */
3815
3816 /**
3817  *  s2io_open - open entry point of the driver
3818  *  @dev : pointer to the device structure.
3819  *  Description:
3820  *  This function is the open entry point of the driver. It mainly calls a
3821  *  function to allocate Rx buffers and inserts them into the buffer
3822  *  descriptors and then enables the Rx part of the NIC.
3823  *  Return value:
3824  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3825  *   file on failure.
3826  */
3827
3828 static int s2io_open(struct net_device *dev)
3829 {
3830         struct s2io_nic *sp = dev->priv;
3831         int err = 0;
3832
3833         /*
3834          * Make sure you have link off by default every time
3835          * Nic is initialized
3836          */
3837         netif_carrier_off(dev);
3838         sp->last_link_state = 0;
3839
3840         napi_enable(&sp->napi);
3841
3842         if (sp->config.intr_type == MSI_X) {
3843                 int ret = s2io_enable_msi_x(sp);
3844
3845                 if (!ret) {
3846                         ret = s2io_test_msi(sp);
3847                         /* rollback MSI-X, will re-enable during add_isr() */
3848                         remove_msix_isr(sp);
3849                 }
3850                 if (ret) {
3851
3852                         DBG_PRINT(ERR_DBG,
3853                           "%s: MSI-X requested but failed to enable\n",
3854                           dev->name);
3855                         sp->config.intr_type = INTA;
3856                 }
3857         }
3858
3859         /* NAPI doesn't work well with MSI(X) */
3860          if (sp->config.intr_type != INTA) {
3861                 if(sp->config.napi)
3862                         sp->config.napi = 0;
3863         }
3864
3865         /* Initialize H/W and enable interrupts */
3866         err = s2io_card_up(sp);
3867         if (err) {
3868                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3869                           dev->name);
3870                 goto hw_init_failed;
3871         }
3872
3873         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3874                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3875                 s2io_card_down(sp);
3876                 err = -ENODEV;
3877                 goto hw_init_failed;
3878         }
3879
3880         netif_start_queue(dev);
3881         return 0;
3882
3883 hw_init_failed:
3884         napi_disable(&sp->napi);
3885         if (sp->config.intr_type == MSI_X) {
3886                 if (sp->entries) {
3887                         kfree(sp->entries);
3888                         sp->mac_control.stats_info->sw_stat.mem_freed
3889                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3890                 }
3891                 if (sp->s2io_entries) {
3892                         kfree(sp->s2io_entries);
3893                         sp->mac_control.stats_info->sw_stat.mem_freed
3894                         += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3895                 }
3896         }
3897         return err;
3898 }
3899
3900 /**
3901  *  s2io_close -close entry point of the driver
3902  *  @dev : device pointer.
3903  *  Description:
3904  *  This is the stop entry point of the driver. It needs to undo exactly
3905  *  whatever was done by the open entry point,thus it's usually referred to
3906  *  as the close function.Among other things this function mainly stops the
3907  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3908  *  Return value:
3909  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3910  *  file on failure.
3911  */
3912
3913 static int s2io_close(struct net_device *dev)
3914 {
3915         struct s2io_nic *sp = dev->priv;
3916
3917         netif_stop_queue(dev);
3918         napi_disable(&sp->napi);
3919         /* Reset card, kill tasklet and free Tx and Rx buffers. */
3920         s2io_card_down(sp);
3921
3922         return 0;
3923 }
3924
3925 /**
3926  *  s2io_xmit - Tx entry point of te driver
3927  *  @skb : the socket buffer containing the Tx data.
3928  *  @dev : device pointer.
3929  *  Description :
3930  *  This function is the Tx entry point of the driver. S2IO NIC supports
3931  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
3932  *  NOTE: when device cant queue the pkt,just the trans_start variable will
3933  *  not be upadted.
3934  *  Return value:
3935  *  0 on success & 1 on failure.
3936  */
3937
3938 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3939 {
3940         struct s2io_nic *sp = dev->priv;
3941         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3942         register u64 val64;
3943         struct TxD *txdp;
3944         struct TxFIFO_element __iomem *tx_fifo;
3945         unsigned long flags;
3946         u16 vlan_tag = 0;
3947         int vlan_priority = 0;
3948         struct mac_info *mac_control;
3949         struct config_param *config;
3950         int offload_type;
3951         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
3952
3953         mac_control = &sp->mac_control;
3954         config = &sp->config;
3955
3956         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3957
3958         if (unlikely(skb->len <= 0)) {
3959                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3960                 dev_kfree_skb_any(skb);
3961                 return 0;
3962 }
3963
3964         spin_lock_irqsave(&sp->tx_lock, flags);
3965         if (!is_s2io_card_up(sp)) {
3966                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3967                           dev->name);
3968                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3969                 dev_kfree_skb(skb);
3970                 return 0;
3971         }
3972
3973         queue = 0;
3974         /* Get Fifo number to Transmit based on vlan priority */
3975         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3976                 vlan_tag = vlan_tx_tag_get(skb);
3977                 vlan_priority = vlan_tag >> 13;
3978                 queue = config->fifo_mapping[vlan_priority];
3979         }
3980
3981         put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3982         get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3983         txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
3984                 list_virt_addr;
3985
3986         queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3987         /* Avoid "put" pointer going beyond "get" pointer */
3988         if (txdp->Host_Control ||
3989                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3990                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3991                 netif_stop_queue(dev);
3992                 dev_kfree_skb(skb);
3993                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3994                 return 0;
3995         }
3996
3997         offload_type = s2io_offload_type(skb);
3998         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3999                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4000                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4001         }
4002         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4003                 txdp->Control_2 |=
4004                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4005                      TXD_TX_CKO_UDP_EN);
4006         }
4007         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4008         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4009         txdp->Control_2 |= config->tx_intr_type;
4010
4011         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4012                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4013                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4014         }
4015
4016         frg_len = skb->len - skb->data_len;
4017         if (offload_type == SKB_GSO_UDP) {
4018                 int ufo_size;
4019
4020                 ufo_size = s2io_udp_mss(skb);
4021                 ufo_size &= ~7;
4022                 txdp->Control_1 |= TXD_UFO_EN;
4023                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4024                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4025 #ifdef __BIG_ENDIAN
4026                 sp->ufo_in_band_v[put_off] =
4027                                 (u64)skb_shinfo(skb)->ip6_frag_id;
4028 #else
4029                 sp->ufo_in_band_v[put_off] =
4030                                 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4031 #endif
4032                 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
4033                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4034                                         sp->ufo_in_band_v,
4035                                         sizeof(u64), PCI_DMA_TODEVICE);
4036                 if((txdp->Buffer_Pointer == 0) ||
4037                         (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4038                         goto pci_map_failed;
4039                 txdp++;
4040         }
4041
4042         txdp->Buffer_Pointer = pci_map_single
4043             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4044         if((txdp->Buffer_Pointer == 0) ||
4045                 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4046                 goto pci_map_failed;
4047
4048         txdp->Host_Control = (unsigned long) skb;
4049         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4050         if (offload_type == SKB_GSO_UDP)
4051                 txdp->Control_1 |= TXD_UFO_EN;
4052
4053         frg_cnt = skb_shinfo(skb)->nr_frags;
4054         /* For fragmented SKB. */
4055         for (i = 0; i < frg_cnt; i++) {
4056                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4057                 /* A '0' length fragment will be ignored */
4058                 if (!frag->size)
4059                         continue;
4060                 txdp++;
4061                 txdp->Buffer_Pointer = (u64) pci_map_page
4062                     (sp->pdev, frag->page, frag->page_offset,
4063                      frag->size, PCI_DMA_TODEVICE);
4064                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4065                 if (offload_type == SKB_GSO_UDP)
4066                         txdp->Control_1 |= TXD_UFO_EN;
4067         }
4068         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4069
4070         if (offload_type == SKB_GSO_UDP)
4071                 frg_cnt++; /* as Txd0 was used for inband header */
4072
4073         tx_fifo = mac_control->tx_FIFO_start[queue];
4074         val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4075         writeq(val64, &tx_fifo->TxDL_Pointer);
4076
4077         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4078                  TX_FIFO_LAST_LIST);
4079         if (offload_type)
4080                 val64 |= TX_FIFO_SPECIAL_FUNC;
4081
4082         writeq(val64, &tx_fifo->List_Control);
4083
4084         mmiowb();
4085
4086         put_off++;
4087         if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4088                 put_off = 0;
4089         mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4090
4091         /* Avoid "put" pointer going beyond "get" pointer */
4092         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4093                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4094                 DBG_PRINT(TX_DBG,
4095                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4096                           put_off, get_off);
4097                 netif_stop_queue(dev);
4098         }
4099         mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4100         dev->trans_start = jiffies;
4101         spin_unlock_irqrestore(&sp->tx_lock, flags);
4102
4103         return 0;
4104 pci_map_failed:
4105         stats->pci_map_fail_cnt++;
4106         netif_stop_queue(dev);
4107         stats->mem_freed += skb->truesize;
4108         dev_kfree_skb(skb);
4109         spin_unlock_irqrestore(&sp->tx_lock, flags);
4110         return 0;
4111 }
4112
4113 static void
4114 s2io_alarm_handle(unsigned long data)
4115 {
4116         struct s2io_nic *sp = (struct s2io_nic *)data;
4117         struct net_device *dev = sp->dev;
4118
4119         s2io_handle_errors(dev);
4120         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4121 }
4122
4123 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4124 {
4125         int rxb_size, level;
4126
4127         if (!sp->lro) {
4128                 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4129                 level = rx_buffer_level(sp, rxb_size, rng_n);
4130
4131                 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4132                         int ret;
4133                         DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4134                         DBG_PRINT(INTR_DBG, "PANIC levels\n");
4135                         if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4136                                 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4137                                           __FUNCTION__);
4138                                 clear_bit(0, (&sp->tasklet_status));
4139                                 return -1;
4140                         }
4141                         clear_bit(0, (&sp->tasklet_status));
4142                 } else if (level == LOW)
4143                         tasklet_schedule(&sp->task);
4144
4145         } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4146                         DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4147                         DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4148         }
4149         return 0;
4150 }
4151
4152 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4153 {
4154         struct ring_info *ring = (struct ring_info *)dev_id;
4155         struct s2io_nic *sp = ring->nic;
4156
4157         if (!is_s2io_card_up(sp))
4158                 return IRQ_HANDLED;
4159
4160         rx_intr_handler(ring);
4161         s2io_chk_rx_buffers(sp, ring->ring_no);
4162
4163         return IRQ_HANDLED;
4164 }
4165
4166 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4167 {
4168         struct fifo_info *fifo = (struct fifo_info *)dev_id;
4169         struct s2io_nic *sp = fifo->nic;
4170
4171         if (!is_s2io_card_up(sp))
4172                 return IRQ_HANDLED;
4173
4174         tx_intr_handler(fifo);
4175         return IRQ_HANDLED;
4176 }
4177 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4178 {
4179         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4180         u64 val64;
4181
4182         val64 = readq(&bar0->pic_int_status);
4183         if (val64 & PIC_INT_GPIO) {
4184                 val64 = readq(&bar0->gpio_int_reg);
4185                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4186                     (val64 & GPIO_INT_REG_LINK_UP)) {
4187                         /*
4188                          * This is unstable state so clear both up/down
4189                          * interrupt and adapter to re-evaluate the link state.
4190                          */
4191                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4192                         val64 |= GPIO_INT_REG_LINK_UP;
4193                         writeq(val64, &bar0->gpio_int_reg);
4194                         val64 = readq(&bar0->gpio_int_mask);
4195                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4196                                    GPIO_INT_MASK_LINK_DOWN);
4197                         writeq(val64, &bar0->gpio_int_mask);
4198                 }
4199                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4200                         val64 = readq(&bar0->adapter_status);
4201                                 /* Enable Adapter */
4202                         val64 = readq(&bar0->adapter_control);
4203                         val64 |= ADAPTER_CNTL_EN;
4204                         writeq(val64, &bar0->adapter_control);
4205                         val64 |= ADAPTER_LED_ON;
4206                         writeq(val64, &bar0->adapter_control);
4207                         if (!sp->device_enabled_once)
4208                                 sp->device_enabled_once = 1;
4209
4210                         s2io_link(sp, LINK_UP);
4211                         /*
4212                          * unmask link down interrupt and mask link-up
4213                          * intr
4214                          */
4215                         val64 = readq(&bar0->gpio_int_mask);
4216                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4217                         val64 |= GPIO_INT_MASK_LINK_UP;
4218                         writeq(val64, &bar0->gpio_int_mask);
4219
4220                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4221                         val64 = readq(&bar0->adapter_status);
4222                         s2io_link(sp, LINK_DOWN);
4223                         /* Link is down so unmaks link up interrupt */
4224                         val64 = readq(&bar0->gpio_int_mask);
4225                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4226                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4227                         writeq(val64, &bar0->gpio_int_mask);
4228
4229                         /* turn off LED */
4230                         val64 = readq(&bar0->adapter_control);
4231                         val64 = val64 &(~ADAPTER_LED_ON);
4232                         writeq(val64, &bar0->adapter_control);
4233                 }
4234         }
4235         val64 = readq(&bar0->gpio_int_mask);
4236 }
4237
4238 /**
4239  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4240  *  @value: alarm bits
4241  *  @addr: address value
4242  *  @cnt: counter variable
4243  *  Description: Check for alarm and increment the counter
4244  *  Return Value:
4245  *  1 - if alarm bit set
4246  *  0 - if alarm bit is not set
4247  */
4248 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4249                           unsigned long long *cnt)
4250 {
4251         u64 val64;
4252         val64 = readq(addr);
4253         if ( val64 & value ) {
4254                 writeq(val64, addr);
4255                 (*cnt)++;
4256                 return 1;
4257         }
4258         return 0;
4259
4260 }
4261
4262 /**
4263  *  s2io_handle_errors - Xframe error indication handler
4264  *  @nic: device private variable
4265  *  Description: Handle alarms such as loss of link, single or
4266  *  double ECC errors, critical and serious errors.
4267  *  Return Value:
4268  *  NONE
4269  */
4270 static void s2io_handle_errors(void * dev_id)
4271 {
4272         struct net_device *dev = (struct net_device *) dev_id;
4273         struct s2io_nic *sp = dev->priv;
4274         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4275         u64 temp64 = 0,val64=0;
4276         int i = 0;
4277
4278         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4279         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4280
4281         if (!is_s2io_card_up(sp))
4282                 return;
4283
4284         if (pci_channel_offline(sp->pdev))
4285                 return;
4286
4287         memset(&sw_stat->ring_full_cnt, 0,
4288                 sizeof(sw_stat->ring_full_cnt));
4289
4290         /* Handling the XPAK counters update */
4291         if(stats->xpak_timer_count < 72000) {
4292                 /* waiting for an hour */
4293                 stats->xpak_timer_count++;
4294         } else {
4295                 s2io_updt_xpak_counter(dev);
4296                 /* reset the count to zero */
4297                 stats->xpak_timer_count = 0;
4298         }
4299
4300         /* Handling link status change error Intr */
4301         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4302                 val64 = readq(&bar0->mac_rmac_err_reg);
4303                 writeq(val64, &bar0->mac_rmac_err_reg);
4304                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4305                         schedule_work(&sp->set_link_task);
4306         }
4307
4308         /* In case of a serious error, the device will be Reset. */
4309         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4310                                 &sw_stat->serious_err_cnt))
4311                 goto reset;
4312
4313         /* Check for data parity error */
4314         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4315                                 &sw_stat->parity_err_cnt))
4316                 goto reset;
4317
4318         /* Check for ring full counter */
4319         if (sp->device_type == XFRAME_II_DEVICE) {
4320                 val64 = readq(&bar0->ring_bump_counter1);
4321                 for (i=0; i<4; i++) {
4322                         temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4323                         temp64 >>= 64 - ((i+1)*16);
4324                         sw_stat->ring_full_cnt[i] += temp64;
4325                 }
4326
4327                 val64 = readq(&bar0->ring_bump_counter2);
4328                 for (i=0; i<4; i++) {
4329                         temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4330                         temp64 >>= 64 - ((i+1)*16);
4331                          sw_stat->ring_full_cnt[i+4] += temp64;
4332                 }
4333         }
4334
4335         val64 = readq(&bar0->txdma_int_status);
4336         /*check for pfc_err*/
4337         if (val64 & TXDMA_PFC_INT) {
4338                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4339                                 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4340                                 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4341                                 &sw_stat->pfc_err_cnt))
4342                         goto reset;
4343                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4344                                 &sw_stat->pfc_err_cnt);
4345         }
4346
4347         /*check for tda_err*/
4348         if (val64 & TXDMA_TDA_INT) {
4349                 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4350                                 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4351                                 &sw_stat->tda_err_cnt))
4352                         goto reset;
4353                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4354                                 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4355         }
4356         /*check for pcc_err*/
4357         if (val64 & TXDMA_PCC_INT) {
4358                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4359                                 | PCC_N_SERR | PCC_6_COF_OV_ERR
4360                                 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4361                                 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4362                                 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4363                                 &sw_stat->pcc_err_cnt))
4364                         goto reset;
4365                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4366                                 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4367         }
4368
4369         /*check for tti_err*/
4370         if (val64 & TXDMA_TTI_INT) {
4371                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4372                                 &sw_stat->tti_err_cnt))
4373                         goto reset;
4374                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4375                                 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4376         }
4377
4378         /*check for lso_err*/
4379         if (val64 & TXDMA_LSO_INT) {
4380                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4381                                 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4382                                 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4383                         goto reset;
4384                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4385                                 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4386         }
4387
4388         /*check for tpa_err*/
4389         if (val64 & TXDMA_TPA_INT) {
4390                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4391                         &sw_stat->tpa_err_cnt))
4392                         goto reset;
4393                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4394                         &sw_stat->tpa_err_cnt);
4395         }
4396
4397         /*check for sm_err*/
4398         if (val64 & TXDMA_SM_INT) {
4399                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4400                         &sw_stat->sm_err_cnt))
4401                         goto reset;
4402         }
4403
4404         val64 = readq(&bar0->mac_int_status);
4405         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4406                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4407                                 &bar0->mac_tmac_err_reg,
4408                                 &sw_stat->mac_tmac_err_cnt))
4409                         goto reset;
4410                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4411                                 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4412                                 &bar0->mac_tmac_err_reg,
4413                                 &sw_stat->mac_tmac_err_cnt);
4414         }
4415
4416         val64 = readq(&bar0->xgxs_int_status);
4417         if (val64 & XGXS_INT_STATUS_TXGXS) {
4418                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4419                                 &bar0->xgxs_txgxs_err_reg,
4420                                 &sw_stat->xgxs_txgxs_err_cnt))
4421                         goto reset;
4422                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4423                                 &bar0->xgxs_txgxs_err_reg,
4424                                 &sw_stat->xgxs_txgxs_err_cnt);
4425         }
4426
4427         val64 = readq(&bar0->rxdma_int_status);
4428         if (val64 & RXDMA_INT_RC_INT_M) {
4429                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4430                                 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4431                                 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4432                         goto reset;
4433                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4434                                 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4435                                 &sw_stat->rc_err_cnt);
4436                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4437                                 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4438                                 &sw_stat->prc_pcix_err_cnt))
4439                         goto reset;
4440                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4441                                 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4442                                 &sw_stat->prc_pcix_err_cnt);
4443         }
4444
4445         if (val64 & RXDMA_INT_RPA_INT_M) {
4446                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4447                                 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4448                         goto reset;
4449                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4450                                 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4451         }
4452
4453         if (val64 & RXDMA_INT_RDA_INT_M) {
4454                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4455                                 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4456                                 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4457                                 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4458                         goto reset;
4459                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4460                                 | RDA_MISC_ERR | RDA_PCIX_ERR,
4461                                 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4462         }
4463
4464         if (val64 & RXDMA_INT_RTI_INT_M) {
4465                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4466                                 &sw_stat->rti_err_cnt))
4467                         goto reset;
4468                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4469                                 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4470         }
4471
4472         val64 = readq(&bar0->mac_int_status);
4473         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4474                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4475                                 &bar0->mac_rmac_err_reg,
4476                                 &sw_stat->mac_rmac_err_cnt))
4477                         goto reset;
4478                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4479                                 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4480                                 &sw_stat->mac_rmac_err_cnt);
4481         }
4482
4483         val64 = readq(&bar0->xgxs_int_status);
4484         if (val64 & XGXS_INT_STATUS_RXGXS) {
4485                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4486                                 &bar0->xgxs_rxgxs_err_reg,
4487                                 &sw_stat->xgxs_rxgxs_err_cnt))
4488                         goto reset;
4489         }
4490
4491         val64 = readq(&bar0->mc_int_status);
4492         if(val64 & MC_INT_STATUS_MC_INT) {
4493                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4494                                 &sw_stat->mc_err_cnt))
4495                         goto reset;
4496
4497                 /* Handling Ecc errors */
4498                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4499                         writeq(val64, &bar0->mc_err_reg);
4500                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4501                                 sw_stat->double_ecc_errs++;
4502                                 if (sp->device_type != XFRAME_II_DEVICE) {
4503                                         /*
4504                                          * Reset XframeI only if critical error
4505                                          */
4506                                         if (val64 &
4507                                                 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4508                                                 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4509                                                                 goto reset;
4510                                         }
4511                         } else
4512                                 sw_stat->single_ecc_errs++;
4513                 }
4514         }
4515         return;
4516
4517 reset:
4518         netif_stop_queue(dev);
4519         schedule_work(&sp->rst_timer_task);
4520         sw_stat->soft_reset_cnt++;
4521         return;
4522 }
4523
4524 /**
4525  *  s2io_isr - ISR handler of the device .
4526  *  @irq: the irq of the device.
4527  *  @dev_id: a void pointer to the dev structure of the NIC.
4528  *  Description:  This function is the ISR handler of the device. It
4529  *  identifies the reason for the interrupt and calls the relevant
4530  *  service routines. As a contongency measure, this ISR allocates the
4531  *  recv buffers, if their numbers are below the panic value which is
4532  *  presently set to 25% of the original number of rcv buffers allocated.
4533  *  Return value:
4534  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4535  *   IRQ_NONE: will be returned if interrupt is not from our device
4536  */
4537 static irqreturn_t s2io_isr(int irq, void *dev_id)
4538 {
4539         struct net_device *dev = (struct net_device *) dev_id;
4540         struct s2io_nic *sp = dev->priv;
4541         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4542         int i;
4543         u64 reason = 0;
4544         struct mac_info *mac_control;
4545         struct config_param *config;
4546
4547         /* Pretend we handled any irq's from a disconnected card */
4548         if (pci_channel_offline(sp->pdev))
4549                 return IRQ_NONE;
4550
4551         if (!is_s2io_card_up(sp))
4552                 return IRQ_NONE;
4553
4554         mac_control = &sp->mac_control;
4555         config = &sp->config;
4556
4557         /*
4558          * Identify the cause for interrupt and call the appropriate
4559          * interrupt handler. Causes for the interrupt could be;
4560          * 1. Rx of packet.
4561          * 2. Tx complete.
4562          * 3. Link down.
4563          */
4564         reason = readq(&bar0->general_int_status);
4565
4566         if (unlikely(reason == S2IO_MINUS_ONE) ) {
4567                 /* Nothing much can be done. Get out */
4568                 return IRQ_HANDLED;
4569         }
4570
4571         if (reason & (GEN_INTR_RXTRAFFIC |
4572                 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4573         {
4574                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4575
4576                 if (config->napi) {
4577                         if (reason & GEN_INTR_RXTRAFFIC) {
4578                                 if (likely(netif_rx_schedule_prep(dev,
4579                                                         &sp->napi))) {
4580                                         __netif_rx_schedule(dev, &sp->napi);
4581                                         writeq(S2IO_MINUS_ONE,
4582                                                &bar0->rx_traffic_mask);
4583                                 } else
4584                                         writeq(S2IO_MINUS_ONE,
4585                                                &bar0->rx_traffic_int);
4586                         }
4587                 } else {
4588                         /*
4589                          * rx_traffic_int reg is an R1 register, writing all 1's
4590                          * will ensure that the actual interrupt causing bit
4591                          * get's cleared and hence a read can be avoided.
4592                          */
4593                         if (reason & GEN_INTR_RXTRAFFIC)
4594                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4595
4596                         for (i = 0; i < config->rx_ring_num; i++)
4597                                 rx_intr_handler(&mac_control->rings[i]);
4598                 }
4599
4600                 /*
4601                  * tx_traffic_int reg is an R1 register, writing all 1's
4602                  * will ensure that the actual interrupt causing bit get's
4603                  * cleared and hence a read can be avoided.
4604                  */
4605                 if (reason & GEN_INTR_TXTRAFFIC)
4606                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4607
4608                 for (i = 0; i < config->tx_fifo_num; i++)
4609                         tx_intr_handler(&mac_control->fifos[i]);
4610
4611                 if (reason & GEN_INTR_TXPIC)
4612                         s2io_txpic_intr_handle(sp);
4613
4614                 /*
4615                  * Reallocate the buffers from the interrupt handler itself.
4616                  */
4617                 if (!config->napi) {
4618                         for (i = 0; i < config->rx_ring_num; i++)
4619                                 s2io_chk_rx_buffers(sp, i);
4620                 }
4621                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4622                 readl(&bar0->general_int_status);
4623
4624                 return IRQ_HANDLED;
4625
4626         }
4627         else if (!reason) {
4628                 /* The interrupt was not raised by us */
4629                 return IRQ_NONE;
4630         }
4631
4632         return IRQ_HANDLED;
4633 }
4634
4635 /**
4636  * s2io_updt_stats -
4637  */
4638 static void s2io_updt_stats(struct s2io_nic *sp)
4639 {
4640         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4641         u64 val64;
4642         int cnt = 0;
4643
4644         if (is_s2io_card_up(sp)) {
4645                 /* Apprx 30us on a 133 MHz bus */
4646                 val64 = SET_UPDT_CLICKS(10) |
4647                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4648                 writeq(val64, &bar0->stat_cfg);
4649                 do {
4650                         udelay(100);
4651                         val64 = readq(&bar0->stat_cfg);
4652                         if (!(val64 & s2BIT(0)))
4653                                 break;
4654                         cnt++;
4655                         if (cnt == 5)
4656                                 break; /* Updt failed */
4657                 } while(1);
4658         }
4659 }
4660
4661 /**
4662  *  s2io_get_stats - Updates the device statistics structure.
4663  *  @dev : pointer to the device structure.
4664  *  Description:
4665  *  This function updates the device statistics structure in the s2io_nic
4666  *  structure and returns a pointer to the same.
4667  *  Return value:
4668  *  pointer to the updated net_device_stats structure.
4669  */
4670
4671 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4672 {
4673         struct s2io_nic *sp = dev->priv;
4674         struct mac_info *mac_control;
4675         struct config_param *config;
4676
4677
4678         mac_control = &sp->mac_control;
4679         config = &sp->config;
4680
4681         /* Configure Stats for immediate updt */
4682         s2io_updt_stats(sp);
4683
4684         sp->stats.tx_packets =
4685                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4686         sp->stats.tx_errors =
4687                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4688         sp->stats.rx_errors =
4689                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4690         sp->stats.multicast =
4691                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4692         sp->stats.rx_length_errors =
4693                 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4694
4695         return (&sp->stats);
4696 }
4697
4698 /**
4699  *  s2io_set_multicast - entry point for multicast address enable/disable.
4700  *  @dev : pointer to the device structure
4701  *  Description:
4702  *  This function is a driver entry point which gets called by the kernel
4703  *  whenever multicast addresses must be enabled/disabled. This also gets
4704  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4705  *  determine, if multicast address must be enabled or if promiscuous mode
4706  *  is to be disabled etc.
4707  *  Return value:
4708  *  void.
4709  */
4710
4711 static void s2io_set_multicast(struct net_device *dev)
4712 {
4713         int i, j, prev_cnt;
4714         struct dev_mc_list *mclist;
4715         struct s2io_nic *sp = dev->priv;
4716         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4717         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4718             0xfeffffffffffULL;
4719         u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4720         void __iomem *add;
4721
4722         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4723                 /*  Enable all Multicast addresses */
4724                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4725                        &bar0->rmac_addr_data0_mem);
4726                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4727                        &bar0->rmac_addr_data1_mem);
4728                 val64 = RMAC_ADDR_CMD_MEM_WE |
4729                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4730                     RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4731                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4732                 /* Wait till command completes */
4733                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4734                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4735                                         S2IO_BIT_RESET);
4736
4737                 sp->m_cast_flg = 1;
4738                 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4739         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4740                 /*  Disable all Multicast addresses */
4741                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4742                        &bar0->rmac_addr_data0_mem);
4743                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4744                        &bar0->rmac_addr_data1_mem);
4745                 val64 = RMAC_ADDR_CMD_MEM_WE |
4746                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4747                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4748                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4749                 /* Wait till command completes */
4750                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4751                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4752                                         S2IO_BIT_RESET);
4753
4754                 sp->m_cast_flg = 0;
4755                 sp->all_multi_pos = 0;
4756         }
4757
4758         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4759                 /*  Put the NIC into promiscuous mode */
4760                 add = &bar0->mac_cfg;
4761                 val64 = readq(&bar0->mac_cfg);
4762                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4763
4764                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4765                 writel((u32) val64, add);
4766                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4767                 writel((u32) (val64 >> 32), (add + 4));
4768
4769                 if (vlan_tag_strip != 1) {
4770                         val64 = readq(&bar0->rx_pa_cfg);
4771                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4772                         writeq(val64, &bar0->rx_pa_cfg);
4773                         vlan_strip_flag = 0;
4774                 }
4775
4776                 val64 = readq(&bar0->mac_cfg);
4777                 sp->promisc_flg = 1;
4778                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4779                           dev->name);
4780         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4781                 /*  Remove the NIC from promiscuous mode */
4782                 add = &bar0->mac_cfg;
4783                 val64 = readq(&bar0->mac_cfg);
4784                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4785
4786                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4787                 writel((u32) val64, add);
4788                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4789                 writel((u32) (val64 >> 32), (add + 4));
4790
4791                 if (vlan_tag_strip != 0) {
4792                         val64 = readq(&bar0->rx_pa_cfg);
4793                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4794                         writeq(val64, &bar0->rx_pa_cfg);
4795                         vlan_strip_flag = 1;
4796                 }
4797
4798                 val64 = readq(&bar0->mac_cfg);
4799                 sp->promisc_flg = 0;
4800                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4801                           dev->name);
4802         }
4803
4804         /*  Update individual M_CAST address list */
4805         if ((!sp->m_cast_flg) && dev->mc_count) {
4806                 if (dev->mc_count >
4807                     (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4808                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4809                                   dev->name);
4810                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
4811                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4812                         return;
4813                 }
4814
4815                 prev_cnt = sp->mc_addr_count;
4816                 sp->mc_addr_count = dev->mc_count;
4817
4818                 /* Clear out the previous list of Mc in the H/W. */
4819                 for (i = 0; i < prev_cnt; i++) {
4820                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4821                                &bar0->rmac_addr_data0_mem);
4822                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4823                                 &bar0->rmac_addr_data1_mem);
4824                         val64 = RMAC_ADDR_CMD_MEM_WE |
4825                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4826                             RMAC_ADDR_CMD_MEM_OFFSET
4827                             (MAC_MC_ADDR_START_OFFSET + i);
4828                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4829
4830                         /* Wait for command completes */
4831                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4832                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4833                                         S2IO_BIT_RESET)) {
4834                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4835                                           dev->name);
4836                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4837                                 return;
4838                         }
4839                 }
4840
4841                 /* Create the new Rx filter list and update the same in H/W. */
4842                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4843                      i++, mclist = mclist->next) {
4844                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4845                                ETH_ALEN);
4846                         mac_addr = 0;
4847                         for (j = 0; j < ETH_ALEN; j++) {
4848                                 mac_addr |= mclist->dmi_addr[j];
4849                                 mac_addr <<= 8;
4850                         }
4851                         mac_addr >>= 8;
4852                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4853                                &bar0->rmac_addr_data0_mem);
4854                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4855                                 &bar0->rmac_addr_data1_mem);
4856                         val64 = RMAC_ADDR_CMD_MEM_WE |
4857                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4858                             RMAC_ADDR_CMD_MEM_OFFSET
4859                             (i + MAC_MC_ADDR_START_OFFSET);
4860                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4861
4862                         /* Wait for command completes */
4863                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4864                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4865                                         S2IO_BIT_RESET)) {
4866                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4867                                           dev->name);
4868                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4869                                 return;
4870                         }
4871                 }
4872         }
4873 }
4874
4875 /* add unicast MAC address to CAM */
4876 static int do_s2io_add_unicast(struct s2io_nic *sp, u64 addr, int off)
4877 {
4878         u64 val64;
4879         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4880
4881         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
4882                 &bar0->rmac_addr_data0_mem);
4883
4884         val64 =
4885                 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4886                 RMAC_ADDR_CMD_MEM_OFFSET(off);
4887         writeq(val64, &bar0->rmac_addr_cmd_mem);
4888
4889         /* Wait till command completes */
4890         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4891                 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4892                 S2IO_BIT_RESET)) {
4893                 DBG_PRINT(INFO_DBG, "add_mac_addr failed\n");
4894                 return FAILURE;
4895         }
4896         return SUCCESS;
4897 }
4898
4899 /**
4900  * s2io_set_mac_addr driver entry point
4901  */
4902 static int s2io_set_mac_addr(struct net_device *dev, void *p)
4903 {
4904         struct sockaddr *addr = p;
4905
4906         if (!is_valid_ether_addr(addr->sa_data))
4907                 return -EINVAL;
4908
4909         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4910
4911         /* store the MAC address in CAM */
4912         return (do_s2io_prog_unicast(dev, dev->dev_addr));
4913 }
4914
4915 /**
4916  *  do_s2io_prog_unicast - Programs the Xframe mac address
4917  *  @dev : pointer to the device structure.
4918  *  @addr: a uchar pointer to the new mac address which is to be set.
4919  *  Description : This procedure will program the Xframe to receive
4920  *  frames with new Mac Address
4921  *  Return value: SUCCESS on success and an appropriate (-)ve integer
4922  *  as defined in errno.h file on failure.
4923  */
4924 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
4925 {
4926         struct s2io_nic *sp = dev->priv;
4927         register u64 mac_addr = 0, perm_addr = 0;
4928         int i;
4929
4930         /*
4931         * Set the new MAC address as the new unicast filter and reflect this
4932         * change on the device address registered with the OS. It will be
4933         * at offset 0.
4934         */
4935         for (i = 0; i < ETH_ALEN; i++) {
4936                 mac_addr <<= 8;
4937                 mac_addr |= addr[i];
4938                 perm_addr <<= 8;
4939                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
4940         }
4941
4942         /* check if the dev_addr is different than perm_addr */
4943         if (mac_addr == perm_addr)
4944                 return SUCCESS;
4945
4946         /* Update the internal structure with this new mac address */
4947         do_s2io_copy_mac_addr(sp, 0, mac_addr);
4948         return (do_s2io_add_unicast(sp, mac_addr, 0));
4949 }
4950
4951 /**
4952  * s2io_ethtool_sset - Sets different link parameters.
4953  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
4954  * @info: pointer to the structure with parameters given by ethtool to set
4955  * link information.
4956  * Description:
4957  * The function sets different link parameters provided by the user onto
4958  * the NIC.
4959  * Return value:
4960  * 0 on success.
4961 */
4962
4963 static int s2io_ethtool_sset(struct net_device *dev,
4964                              struct ethtool_cmd *info)
4965 {
4966         struct s2io_nic *sp = dev->priv;
4967         if ((info->autoneg == AUTONEG_ENABLE) ||
4968             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4969                 return -EINVAL;
4970         else {
4971                 s2io_close(sp->dev);
4972                 s2io_open(sp->dev);
4973         }
4974
4975         return 0;
4976 }
4977
4978 /**
4979  * s2io_ethtol_gset - Return link specific information.
4980  * @sp : private member of the device structure, pointer to the
4981  *      s2io_nic structure.
4982  * @info : pointer to the structure with parameters given by ethtool
4983  * to return link information.
4984  * Description:
4985  * Returns link specific information like speed, duplex etc.. to ethtool.
4986  * Return value :
4987  * return 0 on success.
4988  */
4989
4990 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4991 {
4992         struct s2io_nic *sp = dev->priv;
4993         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4994         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4995         info->port = PORT_FIBRE;
4996
4997         /* info->transceiver */
4998         info->transceiver = XCVR_EXTERNAL;
4999
5000         if (netif_carrier_ok(sp->dev)) {
5001                 info->speed = 10000;
5002                 info->duplex = DUPLEX_FULL;
5003         } else {
5004                 info->speed = -1;
5005                 info->duplex = -1;
5006         }
5007
5008         info->autoneg = AUTONEG_DISABLE;
5009         return 0;
5010 }
5011
5012 /**
5013  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5014  * @sp : private member of the device structure, which is a pointer to the
5015  * s2io_nic structure.
5016  * @info : pointer to the structure with parameters given by ethtool to
5017  * return driver information.
5018  * Description:
5019  * Returns driver specefic information like name, version etc.. to ethtool.
5020  * Return value:
5021  *  void
5022  */
5023
5024 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5025                                   struct ethtool_drvinfo *info)
5026 {
5027         struct s2io_nic *sp = dev->priv;
5028
5029         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5030         strncpy(info->version, s2io_driver_version, sizeof(info->version));
5031         strncpy(info->fw_version, "", sizeof(info->fw_version));
5032         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5033         info->regdump_len = XENA_REG_SPACE;
5034         info->eedump_len = XENA_EEPROM_SPACE;
5035 }
5036
5037 /**
5038  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5039  *  @sp: private member of the device structure, which is a pointer to the
5040  *  s2io_nic structure.
5041  *  @regs : pointer to the structure with parameters given by ethtool for
5042  *  dumping the registers.
5043  *  @reg_space: The input argumnet into which all the registers are dumped.
5044  *  Description:
5045  *  Dumps the entire register space of xFrame NIC into the user given
5046  *  buffer area.
5047  * Return value :
5048  * void .
5049 */
5050
5051 static void s2io_ethtool_gregs(struct net_device *dev,
5052                                struct ethtool_regs *regs, void *space)
5053 {
5054         int i;
5055         u64 reg;
5056         u8 *reg_space = (u8 *) space;
5057         struct s2io_nic *sp = dev->priv;
5058
5059         regs->len = XENA_REG_SPACE;
5060         regs->version = sp->pdev->subsystem_device;
5061
5062         for (i = 0; i < regs->len; i += 8) {
5063                 reg = readq(sp->bar0 + i);
5064                 memcpy((reg_space + i), &reg, 8);
5065         }
5066 }
5067
5068 /**
5069  *  s2io_phy_id  - timer function that alternates adapter LED.
5070  *  @data : address of the private member of the device structure, which
5071  *  is a pointer to the s2io_nic structure, provided as an u32.
5072  * Description: This is actually the timer function that alternates the
5073  * adapter LED bit of the adapter control bit to set/reset every time on
5074  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5075  *  once every second.
5076 */
5077 static void s2io_phy_id(unsigned long data)
5078 {
5079         struct s2io_nic *sp = (struct s2io_nic *) data;
5080         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5081         u64 val64 = 0;
5082         u16 subid;
5083
5084         subid = sp->pdev->subsystem_device;
5085         if ((sp->device_type == XFRAME_II_DEVICE) ||
5086                    ((subid & 0xFF) >= 0x07)) {
5087                 val64 = readq(&bar0->gpio_control);
5088                 val64 ^= GPIO_CTRL_GPIO_0;
5089                 writeq(val64, &bar0->gpio_control);
5090         } else {
5091                 val64 = readq(&bar0->adapter_control);
5092                 val64 ^= ADAPTER_LED_ON;
5093                 writeq(val64, &bar0->adapter_control);
5094         }
5095
5096         mod_timer(&sp->id_timer, jiffies + HZ / 2);
5097 }
5098
5099 /**
5100  * s2io_ethtool_idnic - To physically identify the nic on the system.
5101  * @sp : private member of the device structure, which is a pointer to the
5102  * s2io_nic structure.
5103  * @id : pointer to the structure with identification parameters given by
5104  * ethtool.
5105  * Description: Used to physically identify the NIC on the system.
5106  * The Link LED will blink for a time specified by the user for
5107  * identification.
5108  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5109  * identification is possible only if it's link is up.
5110  * Return value:
5111  * int , returns 0 on success
5112  */
5113
5114 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5115 {
5116         u64 val64 = 0, last_gpio_ctrl_val;
5117         struct s2io_nic *sp = dev->priv;
5118         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5119         u16 subid;
5120
5121         subid = sp->pdev->subsystem_device;
5122         last_gpio_ctrl_val = readq(&bar0->gpio_control);
5123         if ((sp->device_type == XFRAME_I_DEVICE) &&
5124                 ((subid & 0xFF) < 0x07)) {
5125                 val64 = readq(&bar0->adapter_control);
5126                 if (!(val64 & ADAPTER_CNTL_EN)) {
5127                         printk(KERN_ERR
5128                                "Adapter Link down, cannot blink LED\n");
5129                         return -EFAULT;
5130                 }
5131         }
5132         if (sp->id_timer.function == NULL) {
5133                 init_timer(&sp->id_timer);
5134                 sp->id_timer.function = s2io_phy_id;
5135                 sp->id_timer.data = (unsigned long) sp;
5136         }
5137         mod_timer(&sp->id_timer, jiffies);
5138         if (data)
5139                 msleep_interruptible(data * HZ);
5140         else
5141                 msleep_interruptible(MAX_FLICKER_TIME);
5142         del_timer_sync(&sp->id_timer);
5143
5144         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5145                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5146                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5147         }
5148
5149         return 0;
5150 }
5151
5152 static void s2io_ethtool_gringparam(struct net_device *dev,
5153                                     struct ethtool_ringparam *ering)
5154 {
5155         struct s2io_nic *sp = dev->priv;
5156         int i,tx_desc_count=0,rx_desc_count=0;
5157
5158         if (sp->rxd_mode == RXD_MODE_1)
5159                 ering->rx_max_pending = MAX_RX_DESC_1;
5160         else if (sp->rxd_mode == RXD_MODE_3B)
5161                 ering->rx_max_pending = MAX_RX_DESC_2;
5162
5163         ering->tx_max_pending = MAX_TX_DESC;
5164         for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5165                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5166
5167         DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5168         ering->tx_pending = tx_desc_count;
5169         rx_desc_count = 0;
5170         for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5171                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5172
5173         ering->rx_pending = rx_desc_count;
5174
5175         ering->rx_mini_max_pending = 0;
5176         ering->rx_mini_pending = 0;
5177         if(sp->rxd_mode == RXD_MODE_1)
5178                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5179         else if (sp->rxd_mode == RXD_MODE_3B)
5180                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5181         ering->rx_jumbo_pending = rx_desc_count;
5182 }
5183
5184 /**
5185  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5186  * @sp : private member of the device structure, which is a pointer to the
5187  *      s2io_nic structure.
5188  * @ep : pointer to the structure with pause parameters given by ethtool.
5189  * Description:
5190  * Returns the Pause frame generation and reception capability of the NIC.
5191  * Return value:
5192  *  void
5193  */
5194 static void s2io_ethtool_getpause_data(struct net_device *dev,
5195                                        struct ethtool_pauseparam *ep)
5196 {
5197         u64 val64;
5198         struct s2io_nic *sp = dev->priv;
5199         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5200
5201         val64 = readq(&bar0->rmac_pause_cfg);
5202         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5203                 ep->tx_pause = TRUE;
5204         if (val64 & RMAC_PAUSE_RX_ENABLE)
5205                 ep->rx_pause = TRUE;
5206         ep->autoneg = FALSE;
5207 }
5208
5209 /**
5210  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5211  * @sp : private member of the device structure, which is a pointer to the
5212  *      s2io_nic structure.
5213  * @ep : pointer to the structure with pause parameters given by ethtool.
5214  * Description:
5215  * It can be used to set or reset Pause frame generation or reception
5216  * support of the NIC.
5217  * Return value:
5218  * int, returns 0 on Success
5219  */
5220
5221 static int s2io_ethtool_setpause_data(struct net_device *dev,
5222                                struct ethtool_pauseparam *ep)
5223 {
5224         u64 val64;
5225         struct s2io_nic *sp = dev->priv;
5226         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5227
5228         val64 = readq(&bar0->rmac_pause_cfg);
5229         if (ep->tx_pause)
5230                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5231         else
5232                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5233         if (ep->rx_pause)
5234                 val64 |= RMAC_PAUSE_RX_ENABLE;
5235         else
5236                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5237         writeq(val64, &bar0->rmac_pause_cfg);
5238         return 0;
5239 }
5240
5241 /**
5242  * read_eeprom - reads 4 bytes of data from user given offset.
5243  * @sp : private member of the device structure, which is a pointer to the
5244  *      s2io_nic structure.
5245  * @off : offset at which the data must be written
5246  * @data : Its an output parameter where the data read at the given
5247  *      offset is stored.
5248  * Description:
5249  * Will read 4 bytes of data from the user given offset and return the
5250  * read data.
5251  * NOTE: Will allow to read only part of the EEPROM visible through the
5252  *   I2C bus.
5253  * Return value:
5254  *  -1 on failure and 0 on success.
5255  */
5256
5257 #define S2IO_DEV_ID             5
5258 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5259 {
5260         int ret = -1;
5261         u32 exit_cnt = 0;
5262         u64 val64;
5263         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5264
5265         if (sp->device_type == XFRAME_I_DEVICE) {
5266                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5267                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5268                     I2C_CONTROL_CNTL_START;
5269                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5270
5271                 while (exit_cnt < 5) {
5272                         val64 = readq(&bar0->i2c_control);
5273                         if (I2C_CONTROL_CNTL_END(val64)) {
5274                                 *data = I2C_CONTROL_GET_DATA(val64);
5275                                 ret = 0;
5276                                 break;
5277                         }
5278                         msleep(50);
5279                         exit_cnt++;
5280                 }
5281         }
5282
5283         if (sp->device_type == XFRAME_II_DEVICE) {
5284                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5285                         SPI_CONTROL_BYTECNT(0x3) |
5286                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5287                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5288                 val64 |= SPI_CONTROL_REQ;
5289                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5290                 while (exit_cnt < 5) {
5291                         val64 = readq(&bar0->spi_control);
5292                         if (val64 & SPI_CONTROL_NACK) {
5293                                 ret = 1;
5294                                 break;
5295                         } else if (val64 & SPI_CONTROL_DONE) {
5296                                 *data = readq(&bar0->spi_data);
5297                                 *data &= 0xffffff;
5298                                 ret = 0;
5299                                 break;
5300                         }
5301                         msleep(50);
5302                         exit_cnt++;
5303                 }
5304         }
5305         return ret;
5306 }
5307
5308 /**
5309  *  write_eeprom - actually writes the relevant part of the data value.
5310  *  @sp : private member of the device structure, which is a pointer to the
5311  *       s2io_nic structure.
5312  *  @off : offset at which the data must be written
5313  *  @data : The data that is to be written
5314  *  @cnt : Number of bytes of the data that are actually to be written into
5315  *  the Eeprom. (max of 3)
5316  * Description:
5317  *  Actually writes the relevant part of the data value into the Eeprom
5318  *  through the I2C bus.
5319  * Return value:
5320  *  0 on success, -1 on failure.
5321  */
5322
5323 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5324 {
5325         int exit_cnt = 0, ret = -1;
5326         u64 val64;
5327         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5328
5329         if (sp->device_type == XFRAME_I_DEVICE) {
5330                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5331                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5332                     I2C_CONTROL_CNTL_START;
5333                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5334
5335                 while (exit_cnt < 5) {
5336                         val64 = readq(&bar0->i2c_control);
5337                         if (I2C_CONTROL_CNTL_END(val64)) {
5338                                 if (!(val64 & I2C_CONTROL_NACK))
5339                                         ret = 0;
5340                                 break;
5341                         }
5342                         msleep(50);
5343                         exit_cnt++;
5344                 }
5345         }
5346
5347         if (sp->device_type == XFRAME_II_DEVICE) {
5348                 int write_cnt = (cnt == 8) ? 0 : cnt;
5349                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5350
5351                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5352                         SPI_CONTROL_BYTECNT(write_cnt) |
5353                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5354                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5355                 val64 |= SPI_CONTROL_REQ;
5356                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5357                 while (exit_cnt < 5) {
5358                         val64 = readq(&bar0->spi_control);
5359                         if (val64 & SPI_CONTROL_NACK) {
5360                                 ret = 1;
5361                                 break;
5362                         } else if (val64 & SPI_CONTROL_DONE) {
5363                                 ret = 0;
5364                                 break;
5365                         }
5366                         msleep(50);
5367                         exit_cnt++;
5368                 }
5369         }
5370         return ret;
5371 }
5372 static void s2io_vpd_read(struct s2io_nic *nic)
5373 {
5374         u8 *vpd_data;
5375         u8 data;
5376         int i=0, cnt, fail = 0;
5377         int vpd_addr = 0x80;
5378
5379         if (nic->device_type == XFRAME_II_DEVICE) {
5380                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5381                 vpd_addr = 0x80;
5382         }
5383         else {
5384                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5385                 vpd_addr = 0x50;
5386         }
5387         strcpy(nic->serial_num, "NOT AVAILABLE");
5388
5389         vpd_data = kmalloc(256, GFP_KERNEL);
5390         if (!vpd_data) {
5391                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5392                 return;
5393         }
5394         nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5395
5396         for (i = 0; i < 256; i +=4 ) {
5397                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5398                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5399                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5400                 for (cnt = 0; cnt <5; cnt++) {
5401                         msleep(2);
5402                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5403                         if (data == 0x80)
5404                                 break;
5405                 }
5406                 if (cnt >= 5) {
5407                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5408                         fail = 1;
5409                         break;
5410                 }
5411                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5412                                       (u32 *)&vpd_data[i]);
5413         }
5414
5415         if(!fail) {
5416                 /* read serial number of adapter */
5417                 for (cnt = 0; cnt < 256; cnt++) {
5418                 if ((vpd_data[cnt] == 'S') &&
5419                         (vpd_data[cnt+1] == 'N') &&
5420                         (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5421                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5422                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5423                                         vpd_data[cnt+2]);
5424                                 break;
5425                         }
5426                 }
5427         }
5428
5429         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5430                 memset(nic->product_name, 0, vpd_data[1]);
5431                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5432         }
5433         kfree(vpd_data);
5434         nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5435 }
5436
5437 /**
5438  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5439  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5440  *  @eeprom : pointer to the user level structure provided by ethtool,
5441  *  containing all relevant information.
5442  *  @data_buf : user defined value to be written into Eeprom.
5443  *  Description: Reads the values stored in the Eeprom at given offset
5444  *  for a given length. Stores these values int the input argument data
5445  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5446  *  Return value:
5447  *  int  0 on success
5448  */
5449
5450 static int s2io_ethtool_geeprom(struct net_device *dev,
5451                          struct ethtool_eeprom *eeprom, u8 * data_buf)
5452 {
5453         u32 i, valid;
5454         u64 data;
5455         struct s2io_nic *sp = dev->priv;
5456
5457         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5458
5459         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5460                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5461
5462         for (i = 0; i < eeprom->len; i += 4) {
5463                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5464                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5465                         return -EFAULT;
5466                 }
5467                 valid = INV(data);
5468                 memcpy((data_buf + i), &valid, 4);
5469         }
5470         return 0;
5471 }
5472
5473 /**
5474  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5475  *  @sp : private member of the device structure, which is a pointer to the
5476  *  s2io_nic structure.
5477  *  @eeprom : pointer to the user level structure provided by ethtool,
5478  *  containing all relevant information.
5479  *  @data_buf ; user defined value to be written into Eeprom.
5480  *  Description:
5481  *  Tries to write the user provided value in the Eeprom, at the offset
5482  *  given by the user.
5483  *  Return value:
5484  *  0 on success, -EFAULT on failure.
5485  */
5486
5487 static int s2io_ethtool_seeprom(struct net_device *dev,
5488                                 struct ethtool_eeprom *eeprom,
5489                                 u8 * data_buf)
5490 {
5491         int len = eeprom->len, cnt = 0;
5492         u64 valid = 0, data;
5493         struct s2io_nic *sp = dev->priv;
5494
5495         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5496                 DBG_PRINT(ERR_DBG,
5497                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5498                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5499                           eeprom->magic);
5500                 return -EFAULT;
5501         }
5502
5503         while (len) {
5504                 data = (u32) data_buf[cnt] & 0x000000FF;
5505                 if (data) {
5506                         valid = (u32) (data << 24);
5507                 } else
5508                         valid = data;
5509
5510                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5511                         DBG_PRINT(ERR_DBG,
5512                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5513                         DBG_PRINT(ERR_DBG,
5514                                   "write into the specified offset\n");
5515                         return -EFAULT;
5516                 }
5517                 cnt++;
5518                 len--;
5519         }
5520
5521         return 0;
5522 }
5523
5524 /**
5525  * s2io_register_test - reads and writes into all clock domains.
5526  * @sp : private member of the device structure, which is a pointer to the
5527  * s2io_nic structure.
5528  * @data : variable that returns the result of each of the test conducted b
5529  * by the driver.
5530  * Description:
5531  * Read and write into all clock domains. The NIC has 3 clock domains,
5532  * see that registers in all the three regions are accessible.
5533  * Return value:
5534  * 0 on success.
5535  */
5536
5537 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5538 {
5539         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5540         u64 val64 = 0, exp_val;
5541         int fail = 0;
5542
5543         val64 = readq(&bar0->pif_rd_swapper_fb);
5544         if (val64 != 0x123456789abcdefULL) {
5545                 fail = 1;
5546                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5547         }
5548
5549         val64 = readq(&bar0->rmac_pause_cfg);
5550         if (val64 != 0xc000ffff00000000ULL) {
5551                 fail = 1;
5552                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5553         }
5554
5555         val64 = readq(&bar0->rx_queue_cfg);
5556         if (sp->device_type == XFRAME_II_DEVICE)
5557                 exp_val = 0x0404040404040404ULL;
5558         else
5559                 exp_val = 0x0808080808080808ULL;
5560         if (val64 != exp_val) {
5561                 fail = 1;
5562                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5563         }
5564
5565         val64 = readq(&bar0->xgxs_efifo_cfg);
5566         if (val64 != 0x000000001923141EULL) {
5567                 fail = 1;
5568                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5569         }
5570
5571         val64 = 0x5A5A5A5A5A5A5A5AULL;
5572         writeq(val64, &bar0->xmsi_data);
5573         val64 = readq(&bar0->xmsi_data);
5574         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5575                 fail = 1;
5576                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5577         }
5578
5579         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5580         writeq(val64, &bar0->xmsi_data);
5581         val64 = readq(&bar0->xmsi_data);
5582         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5583                 fail = 1;
5584                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5585         }
5586
5587         *data = fail;
5588         return fail;
5589 }
5590
5591 /**
5592  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5593  * @sp : private member of the device structure, which is a pointer to the
5594  * s2io_nic structure.
5595  * @data:variable that returns the result of each of the test conducted by
5596  * the driver.
5597  * Description:
5598  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5599  * register.
5600  * Return value:
5601  * 0 on success.
5602  */
5603
5604 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5605 {
5606         int fail = 0;
5607         u64 ret_data, org_4F0, org_7F0;
5608         u8 saved_4F0 = 0, saved_7F0 = 0;
5609         struct net_device *dev = sp->dev;
5610
5611         /* Test Write Error at offset 0 */
5612         /* Note that SPI interface allows write access to all areas
5613          * of EEPROM. Hence doing all negative testing only for Xframe I.
5614          */
5615         if (sp->device_type == XFRAME_I_DEVICE)
5616                 if (!write_eeprom(sp, 0, 0, 3))
5617                         fail = 1;
5618
5619         /* Save current values at offsets 0x4F0 and 0x7F0 */
5620         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5621                 saved_4F0 = 1;
5622         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5623                 saved_7F0 = 1;
5624
5625         /* Test Write at offset 4f0 */
5626         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5627                 fail = 1;
5628         if (read_eeprom(sp, 0x4F0, &ret_data))
5629                 fail = 1;
5630
5631         if (ret_data != 0x012345) {
5632                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5633                         "Data written %llx Data read %llx\n",
5634                         dev->name, (unsigned long long)0x12345,
5635                         (unsigned long long)ret_data);
5636                 fail = 1;
5637         }
5638
5639         /* Reset the EEPROM data go FFFF */
5640         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5641
5642         /* Test Write Request Error at offset 0x7c */
5643         if (sp->device_type == XFRAME_I_DEVICE)
5644                 if (!write_eeprom(sp, 0x07C, 0, 3))
5645                         fail = 1;
5646
5647         /* Test Write Request at offset 0x7f0 */
5648         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5649                 fail = 1;
5650         if (read_eeprom(sp, 0x7F0, &ret_data))
5651                 fail = 1;
5652
5653         if (ret_data != 0x012345) {
5654                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5655                         "Data written %llx Data read %llx\n",
5656                         dev->name, (unsigned long long)0x12345,
5657                         (unsigned long long)ret_data);
5658                 fail = 1;
5659         }
5660
5661         /* Reset the EEPROM data go FFFF */
5662         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5663
5664         if (sp->device_type == XFRAME_I_DEVICE) {
5665                 /* Test Write Error at offset 0x80 */
5666                 if (!write_eeprom(sp, 0x080, 0, 3))
5667                         fail = 1;
5668
5669                 /* Test Write Error at offset 0xfc */
5670                 if (!write_eeprom(sp, 0x0FC, 0, 3))
5671                         fail = 1;
5672
5673                 /* Test Write Error at offset 0x100 */
5674                 if (!write_eeprom(sp, 0x100, 0, 3))
5675                         fail = 1;
5676
5677                 /* Test Write Error at offset 4ec */
5678                 if (!write_eeprom(sp, 0x4EC, 0, 3))
5679                         fail = 1;
5680         }
5681
5682         /* Restore values at offsets 0x4F0 and 0x7F0 */
5683         if (saved_4F0)
5684                 write_eeprom(sp, 0x4F0, org_4F0, 3);
5685         if (saved_7F0)
5686                 write_eeprom(sp, 0x7F0, org_7F0, 3);
5687
5688         *data = fail;
5689         return fail;
5690 }
5691
5692 /**
5693  * s2io_bist_test - invokes the MemBist test of the card .
5694  * @sp : private member of the device structure, which is a pointer to the
5695  * s2io_nic structure.
5696  * @data:variable that returns the result of each of the test conducted by
5697  * the driver.
5698  * Description:
5699  * This invokes the MemBist test of the card. We give around
5700  * 2 secs time for the Test to complete. If it's still not complete
5701  * within this peiod, we consider that the test failed.
5702  * Return value:
5703  * 0 on success and -1 on failure.
5704  */
5705
5706 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5707 {
5708         u8 bist = 0;
5709         int cnt = 0, ret = -1;
5710
5711         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5712         bist |= PCI_BIST_START;
5713         pci_write_config_word(sp->pdev, PCI_BIST, bist);
5714
5715         while (cnt < 20) {
5716                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5717                 if (!(bist & PCI_BIST_START)) {
5718                         *data = (bist & PCI_BIST_CODE_MASK);
5719                         ret = 0;
5720                         break;
5721                 }
5722                 msleep(100);
5723                 cnt++;
5724         }
5725
5726         return ret;
5727 }
5728
5729 /**
5730  * s2io-link_test - verifies the link state of the nic
5731  * @sp ; private member of the device structure, which is a pointer to the
5732  * s2io_nic structure.
5733  * @data: variable that returns the result of each of the test conducted by
5734  * the driver.
5735  * Description:
5736  * The function verifies the link state of the NIC and updates the input
5737  * argument 'data' appropriately.
5738  * Return value:
5739  * 0 on success.
5740  */
5741
5742 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5743 {
5744         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5745         u64 val64;
5746
5747         val64 = readq(&bar0->adapter_status);
5748         if(!(LINK_IS_UP(val64)))
5749                 *data = 1;
5750         else
5751                 *data = 0;
5752
5753         return *data;
5754 }
5755
5756 /**
5757  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5758  * @sp - private member of the device structure, which is a pointer to the
5759  * s2io_nic structure.
5760  * @data - variable that returns the result of each of the test
5761  * conducted by the driver.
5762  * Description:
5763  *  This is one of the offline test that tests the read and write
5764  *  access to the RldRam chip on the NIC.
5765  * Return value:
5766  *  0 on success.
5767  */
5768
5769 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5770 {
5771         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5772         u64 val64;
5773         int cnt, iteration = 0, test_fail = 0;
5774
5775         val64 = readq(&bar0->adapter_control);
5776         val64 &= ~ADAPTER_ECC_EN;
5777         writeq(val64, &bar0->adapter_control);
5778
5779         val64 = readq(&bar0->mc_rldram_test_ctrl);
5780         val64 |= MC_RLDRAM_TEST_MODE;
5781         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5782
5783         val64 = readq(&bar0->mc_rldram_mrs);
5784         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5785         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5786
5787         val64 |= MC_RLDRAM_MRS_ENABLE;
5788         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5789
5790         while (iteration < 2) {
5791                 val64 = 0x55555555aaaa0000ULL;
5792                 if (iteration == 1) {
5793                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5794                 }
5795                 writeq(val64, &bar0->mc_rldram_test_d0);
5796
5797                 val64 = 0xaaaa5a5555550000ULL;
5798                 if (iteration == 1) {
5799                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5800                 }
5801                 writeq(val64, &bar0->mc_rldram_test_d1);
5802
5803                 val64 = 0x55aaaaaaaa5a0000ULL;
5804                 if (iteration == 1) {
5805                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5806                 }
5807                 writeq(val64, &bar0->mc_rldram_test_d2);
5808
5809                 val64 = (u64) (0x0000003ffffe0100ULL);
5810                 writeq(val64, &bar0->mc_rldram_test_add);
5811
5812                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5813                         MC_RLDRAM_TEST_GO;
5814                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5815
5816                 for (cnt = 0; cnt < 5; cnt++) {
5817                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5818                         if (val64 & MC_RLDRAM_TEST_DONE)
5819                                 break;
5820                         msleep(200);
5821                 }
5822
5823                 if (cnt == 5)
5824                         break;
5825
5826                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5827                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5828
5829                 for (cnt = 0; cnt < 5; cnt++) {
5830                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5831                         if (val64 & MC_RLDRAM_TEST_DONE)
5832                                 break;
5833                         msleep(500);
5834                 }
5835
5836                 if (cnt == 5)
5837                         break;
5838
5839                 val64 = readq(&bar0->mc_rldram_test_ctrl);
5840                 if (!(val64 & MC_RLDRAM_TEST_PASS))
5841                         test_fail = 1;
5842
5843                 iteration++;
5844         }
5845
5846         *data = test_fail;
5847
5848         /* Bring the adapter out of test mode */
5849         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5850
5851         return test_fail;
5852 }
5853
5854 /**
5855  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5856  *  @sp : private member of the device structure, which is a pointer to the
5857  *  s2io_nic structure.
5858  *  @ethtest : pointer to a ethtool command specific structure that will be
5859  *  returned to the user.
5860  *  @data : variable that returns the result of each of the test
5861  * conducted by the driver.
5862  * Description:
5863  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
5864  *  the health of the card.
5865  * Return value:
5866  *  void
5867  */
5868
5869 static void s2io_ethtool_test(struct net_device *dev,
5870                               struct ethtool_test *ethtest,
5871                               uint64_t * data)
5872 {
5873         struct s2io_nic *sp = dev->priv;
5874         int orig_state = netif_running(sp->dev);
5875
5876         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5877                 /* Offline Tests. */
5878                 if (orig_state)
5879                         s2io_close(sp->dev);
5880
5881                 if (s2io_register_test(sp, &data[0]))
5882                         ethtest->flags |= ETH_TEST_FL_FAILED;
5883
5884                 s2io_reset(sp);
5885
5886                 if (s2io_rldram_test(sp, &data[3]))
5887                         ethtest->flags |= ETH_TEST_FL_FAILED;
5888
5889                 s2io_reset(sp);
5890
5891                 if (s2io_eeprom_test(sp, &data[1]))
5892                         ethtest->flags |= ETH_TEST_FL_FAILED;
5893
5894                 if (s2io_bist_test(sp, &data[4]))
5895                         ethtest->flags |= ETH_TEST_FL_FAILED;
5896
5897                 if (orig_state)
5898                         s2io_open(sp->dev);
5899
5900                 data[2] = 0;
5901         } else {
5902                 /* Online Tests. */
5903                 if (!orig_state) {
5904                         DBG_PRINT(ERR_DBG,
5905                                   "%s: is not up, cannot run test\n",
5906                                   dev->name);
5907                         data[0] = -1;
5908                         data[1] = -1;
5909                         data[2] = -1;
5910                         data[3] = -1;
5911                         data[4] = -1;
5912                 }
5913
5914                 if (s2io_link_test(sp, &data[2]))
5915                         ethtest->flags |= ETH_TEST_FL_FAILED;
5916
5917                 data[0] = 0;
5918                 data[1] = 0;
5919                 data[3] = 0;
5920                 data[4] = 0;
5921         }
5922 }
5923
5924 static void s2io_get_ethtool_stats(struct net_device *dev,
5925                                    struct ethtool_stats *estats,
5926                                    u64 * tmp_stats)
5927 {
5928         int i = 0, k;
5929         struct s2io_nic *sp = dev->priv;
5930         struct stat_block *stat_info = sp->mac_control.stats_info;
5931
5932         s2io_updt_stats(sp);
5933         tmp_stats[i++] =
5934                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
5935                 le32_to_cpu(stat_info->tmac_frms);
5936         tmp_stats[i++] =
5937                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5938                 le32_to_cpu(stat_info->tmac_data_octets);
5939         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5940         tmp_stats[i++] =
5941                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5942                 le32_to_cpu(stat_info->tmac_mcst_frms);
5943         tmp_stats[i++] =
5944                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5945                 le32_to_cpu(stat_info->tmac_bcst_frms);
5946         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5947         tmp_stats[i++] =
5948                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5949                 le32_to_cpu(stat_info->tmac_ttl_octets);
5950         tmp_stats[i++] =
5951                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5952                 le32_to_cpu(stat_info->tmac_ucst_frms);
5953         tmp_stats[i++] =
5954                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5955                 le32_to_cpu(stat_info->tmac_nucst_frms);
5956         tmp_stats[i++] =
5957                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5958                 le32_to_cpu(stat_info->tmac_any_err_frms);
5959         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5960         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5961         tmp_stats[i++] =
5962                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5963                 le32_to_cpu(stat_info->tmac_vld_ip);
5964         tmp_stats[i++] =
5965                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5966                 le32_to_cpu(stat_info->tmac_drop_ip);
5967         tmp_stats[i++] =
5968                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5969                 le32_to_cpu(stat_info->tmac_icmp);
5970         tmp_stats[i++] =
5971                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5972                 le32_to_cpu(stat_info->tmac_rst_tcp);
5973         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5974         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5975                 le32_to_cpu(stat_info->tmac_udp);
5976         tmp_stats[i++] =
5977                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5978                 le32_to_cpu(stat_info->rmac_vld_frms);
5979         tmp_stats[i++] =
5980                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5981                 le32_to_cpu(stat_info->rmac_data_octets);
5982         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5983         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5984         tmp_stats[i++] =
5985                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5986                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5987         tmp_stats[i++] =
5988                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5989                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5990         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5991         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5992         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5993         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5994         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5995         tmp_stats[i++] =
5996                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5997                 le32_to_cpu(stat_info->rmac_ttl_octets);
5998         tmp_stats[i++] =
5999                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6000                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6001         tmp_stats[i++] =
6002                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6003                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6004         tmp_stats[i++] =
6005                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6006                 le32_to_cpu(stat_info->rmac_discarded_frms);
6007         tmp_stats[i++] =
6008                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6009                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6010         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6011         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6012         tmp_stats[i++] =
6013                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6014                 le32_to_cpu(stat_info->rmac_usized_frms);
6015         tmp_stats[i++] =
6016                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6017                 le32_to_cpu(stat_info->rmac_osized_frms);
6018         tmp_stats[i++] =
6019                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6020                 le32_to_cpu(stat_info->rmac_frag_frms);
6021         tmp_stats[i++] =
6022                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6023                 le32_to_cpu(stat_info->rmac_jabber_frms);
6024         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6025         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6026         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6027         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6028         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6029         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6030         tmp_stats[i++] =
6031                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6032                 le32_to_cpu(stat_info->rmac_ip);
6033         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6034         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6035         tmp_stats[i++] =
6036                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6037                 le32_to_cpu(stat_info->rmac_drop_ip);
6038         tmp_stats[i++] =
6039                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6040                 le32_to_cpu(stat_info->rmac_icmp);
6041         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6042         tmp_stats[i++] =
6043                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6044                 le32_to_cpu(stat_info->rmac_udp);
6045         tmp_stats[i++] =
6046                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6047                 le32_to_cpu(stat_info->rmac_err_drp_udp);
6048         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6049         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6050         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6051         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6052         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6053         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6054         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6055         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6056         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6057         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6058         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6059         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6060         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6061         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6062         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6063         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6064         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6065         tmp_stats[i++] =
6066                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6067                 le32_to_cpu(stat_info->rmac_pause_cnt);
6068         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6069         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6070         tmp_stats[i++] =
6071                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6072                 le32_to_cpu(stat_info->rmac_accepted_ip);
6073         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6074         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6075         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6076         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6077         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6078         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6079         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6080         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6081         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6082         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6083         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6084         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6085         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6086         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6087         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6088         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6089         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6090         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6091         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6092
6093         /* Enhanced statistics exist only for Hercules */
6094         if(sp->device_type == XFRAME_II_DEVICE) {
6095                 tmp_stats[i++] =
6096                                 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6097                 tmp_stats[i++] =
6098                                 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6099                 tmp_stats[i++] =
6100                                 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6101                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6102                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6103                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6104                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6105                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6106                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6107                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6108                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6109                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6110                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6111                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6112                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6113                 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6114         }
6115
6116         tmp_stats[i++] = 0;
6117         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6118         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6119         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6120         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6121         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6122         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6123         for (k = 0; k < MAX_RX_RINGS; k++)
6124                 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6125         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6126         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6127         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6128         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6129         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6130         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6131         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6132         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6133         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6134         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6135         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6136         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6137         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6138         tmp_stats[i++] = stat_info->sw_stat.sending_both;
6139         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6140         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6141         if (stat_info->sw_stat.num_aggregations) {
6142                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6143                 int count = 0;
6144                 /*
6145                  * Since 64-bit divide does not work on all platforms,
6146                  * do repeated subtraction.
6147                  */
6148                 while (tmp >= stat_info->sw_stat.num_aggregations) {
6149                         tmp -= stat_info->sw_stat.num_aggregations;
6150                         count++;
6151                 }
6152                 tmp_stats[i++] = count;
6153         }
6154         else
6155                 tmp_stats[i++] = 0;
6156         tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6157         tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6158         tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6159         tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6160         tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6161         tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6162         tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6163         tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6164         tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6165
6166         tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6167         tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6168         tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6169         tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6170         tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6171
6172         tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6173         tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6174         tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6175         tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6176         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6177         tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6178         tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6179         tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6180         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6181         tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6182         tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6183         tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6184         tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6185         tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6186         tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6187         tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6188         tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6189         tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6190         tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6191         tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6192         tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6193         tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6194         tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6195         tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6196         tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6197         tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6198 }
6199
6200 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6201 {
6202         return (XENA_REG_SPACE);
6203 }
6204
6205
6206 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6207 {
6208         struct s2io_nic *sp = dev->priv;
6209
6210         return (sp->rx_csum);
6211 }
6212
6213 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6214 {
6215         struct s2io_nic *sp = dev->priv;
6216
6217         if (data)
6218                 sp->rx_csum = 1;
6219         else
6220                 sp->rx_csum = 0;
6221
6222         return 0;
6223 }
6224
6225 static int s2io_get_eeprom_len(struct net_device *dev)
6226 {
6227         return (XENA_EEPROM_SPACE);
6228 }
6229
6230 static int s2io_get_sset_count(struct net_device *dev, int sset)
6231 {
6232         struct s2io_nic *sp = dev->priv;
6233
6234         switch (sset) {
6235         case ETH_SS_TEST:
6236                 return S2IO_TEST_LEN;
6237         case ETH_SS_STATS:
6238                 switch(sp->device_type) {
6239                 case XFRAME_I_DEVICE:
6240                         return XFRAME_I_STAT_LEN;
6241                 case XFRAME_II_DEVICE:
6242                         return XFRAME_II_STAT_LEN;
6243                 default:
6244                         return 0;
6245                 }
6246         default:
6247                 return -EOPNOTSUPP;
6248         }
6249 }
6250
6251 static void s2io_ethtool_get_strings(struct net_device *dev,
6252                                      u32 stringset, u8 * data)
6253 {
6254         int stat_size = 0;
6255         struct s2io_nic *sp = dev->priv;
6256
6257         switch (stringset) {
6258         case ETH_SS_TEST:
6259                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6260                 break;
6261         case ETH_SS_STATS:
6262                 stat_size = sizeof(ethtool_xena_stats_keys);
6263                 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6264                 if(sp->device_type == XFRAME_II_DEVICE) {
6265                         memcpy(data + stat_size,
6266                                 &ethtool_enhanced_stats_keys,
6267                                 sizeof(ethtool_enhanced_stats_keys));
6268                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6269                 }
6270
6271                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6272                         sizeof(ethtool_driver_stats_keys));
6273         }
6274 }
6275
6276 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6277 {
6278         if (data)
6279                 dev->features |= NETIF_F_IP_CSUM;
6280         else
6281                 dev->features &= ~NETIF_F_IP_CSUM;
6282
6283         return 0;
6284 }
6285
6286 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6287 {
6288         return (dev->features & NETIF_F_TSO) != 0;
6289 }
6290 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6291 {
6292         if (data)
6293                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6294         else
6295                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6296
6297         return 0;
6298 }
6299
6300 static const struct ethtool_ops netdev_ethtool_ops = {
6301         .get_settings = s2io_ethtool_gset,
6302         .set_settings = s2io_ethtool_sset,
6303         .get_drvinfo = s2io_ethtool_gdrvinfo,
6304         .get_regs_len = s2io_ethtool_get_regs_len,
6305         .get_regs = s2io_ethtool_gregs,
6306         .get_link = ethtool_op_get_link,
6307         .get_eeprom_len = s2io_get_eeprom_len,
6308         .get_eeprom = s2io_ethtool_geeprom,
6309         .set_eeprom = s2io_ethtool_seeprom,
6310         .get_ringparam = s2io_ethtool_gringparam,
6311         .get_pauseparam = s2io_ethtool_getpause_data,
6312         .set_pauseparam = s2io_ethtool_setpause_data,
6313         .get_rx_csum = s2io_ethtool_get_rx_csum,
6314         .set_rx_csum = s2io_ethtool_set_rx_csum,
6315         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6316         .set_sg = ethtool_op_set_sg,
6317         .get_tso = s2io_ethtool_op_get_tso,
6318         .set_tso = s2io_ethtool_op_set_tso,
6319         .set_ufo = ethtool_op_set_ufo,
6320         .self_test = s2io_ethtool_test,
6321         .get_strings = s2io_ethtool_get_strings,
6322         .phys_id = s2io_ethtool_idnic,
6323         .get_ethtool_stats = s2io_get_ethtool_stats,
6324         .get_sset_count = s2io_get_sset_count,
6325 };
6326
6327 /**
6328  *  s2io_ioctl - Entry point for the Ioctl
6329  *  @dev :  Device pointer.
6330  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6331  *  a proprietary structure used to pass information to the driver.
6332  *  @cmd :  This is used to distinguish between the different commands that
6333  *  can be passed to the IOCTL functions.
6334  *  Description:
6335  *  Currently there are no special functionality supported in IOCTL, hence
6336  *  function always return EOPNOTSUPPORTED
6337  */
6338
6339 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6340 {
6341         return -EOPNOTSUPP;
6342 }
6343
6344 /**
6345  *  s2io_change_mtu - entry point to change MTU size for the device.
6346  *   @dev : device pointer.
6347  *   @new_mtu : the new MTU size for the device.
6348  *   Description: A driver entry point to change MTU size for the device.
6349  *   Before changing the MTU the device must be stopped.
6350  *  Return value:
6351  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6352  *   file on failure.
6353  */
6354
6355 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6356 {
6357         struct s2io_nic *sp = dev->priv;
6358
6359         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6360                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6361                           dev->name);
6362                 return -EPERM;
6363         }
6364
6365         dev->mtu = new_mtu;
6366         if (netif_running(dev)) {
6367                 s2io_card_down(sp);
6368                 netif_stop_queue(dev);
6369                 if (s2io_card_up(sp)) {
6370                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6371                                   __FUNCTION__);
6372                 }
6373                 if (netif_queue_stopped(dev))
6374                         netif_wake_queue(dev);
6375         } else { /* Device is down */
6376                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6377                 u64 val64 = new_mtu;
6378
6379                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6380         }
6381
6382         return 0;
6383 }
6384
6385 /**
6386  *  s2io_tasklet - Bottom half of the ISR.
6387  *  @dev_adr : address of the device structure in dma_addr_t format.
6388  *  Description:
6389  *  This is the tasklet or the bottom half of the ISR. This is
6390  *  an extension of the ISR which is scheduled by the scheduler to be run
6391  *  when the load on the CPU is low. All low priority tasks of the ISR can
6392  *  be pushed into the tasklet. For now the tasklet is used only to
6393  *  replenish the Rx buffers in the Rx buffer descriptors.
6394  *  Return value:
6395  *  void.
6396  */
6397
6398 static void s2io_tasklet(unsigned long dev_addr)
6399 {
6400         struct net_device *dev = (struct net_device *) dev_addr;
6401         struct s2io_nic *sp = dev->priv;
6402         int i, ret;
6403         struct mac_info *mac_control;
6404         struct config_param *config;
6405
6406         mac_control = &sp->mac_control;
6407         config = &sp->config;
6408
6409         if (!TASKLET_IN_USE) {
6410                 for (i = 0; i < config->rx_ring_num; i++) {
6411                         ret = fill_rx_buffers(sp, i);
6412                         if (ret == -ENOMEM) {
6413                                 DBG_PRINT(INFO_DBG, "%s: Out of ",
6414                                           dev->name);
6415                                 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6416                                 break;
6417                         } else if (ret == -EFILL) {
6418                                 DBG_PRINT(INFO_DBG,
6419                                           "%s: Rx Ring %d is full\n",
6420                                           dev->name, i);
6421                                 break;
6422                         }
6423                 }
6424                 clear_bit(0, (&sp->tasklet_status));
6425         }
6426 }
6427
6428 /**
6429  * s2io_set_link - Set the LInk status
6430  * @data: long pointer to device private structue
6431  * Description: Sets the link status for the adapter
6432  */
6433
6434 static void s2io_set_link(struct work_struct *work)
6435 {
6436         struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6437         struct net_device *dev = nic->dev;
6438         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6439         register u64 val64;
6440         u16 subid;
6441
6442         rtnl_lock();
6443
6444         if (!netif_running(dev))
6445                 goto out_unlock;
6446
6447         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6448                 /* The card is being reset, no point doing anything */
6449                 goto out_unlock;
6450         }
6451
6452         subid = nic->pdev->subsystem_device;
6453         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6454                 /*
6455                  * Allow a small delay for the NICs self initiated
6456                  * cleanup to complete.
6457                  */
6458                 msleep(100);
6459         }
6460
6461         val64 = readq(&bar0->adapter_status);
6462         if (LINK_IS_UP(val64)) {
6463                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6464                         if (verify_xena_quiescence(nic)) {
6465                                 val64 = readq(&bar0->adapter_control);
6466                                 val64 |= ADAPTER_CNTL_EN;
6467                                 writeq(val64, &bar0->adapter_control);
6468                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6469                                         nic->device_type, subid)) {
6470                                         val64 = readq(&bar0->gpio_control);
6471                                         val64 |= GPIO_CTRL_GPIO_0;
6472                                         writeq(val64, &bar0->gpio_control);
6473                                         val64 = readq(&bar0->gpio_control);
6474                                 } else {
6475                                         val64 |= ADAPTER_LED_ON;
6476                                         writeq(val64, &bar0->adapter_control);
6477                                 }
6478                                 nic->device_enabled_once = TRUE;
6479                         } else {
6480                                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6481                                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6482                                 netif_stop_queue(dev);
6483                         }
6484                 }
6485                 val64 = readq(&bar0->adapter_control);
6486                 val64 |= ADAPTER_LED_ON;
6487                 writeq(val64, &bar0->adapter_control);
6488                 s2io_link(nic, LINK_UP);
6489         } else {
6490                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6491                                                       subid)) {
6492                         val64 = readq(&bar0->gpio_control);
6493                         val64 &= ~GPIO_CTRL_GPIO_0;
6494                         writeq(val64, &bar0->gpio_control);
6495                         val64 = readq(&bar0->gpio_control);
6496                 }
6497                 /* turn off LED */
6498                 val64 = readq(&bar0->adapter_control);
6499                 val64 = val64 &(~ADAPTER_LED_ON);
6500                 writeq(val64, &bar0->adapter_control);
6501                 s2io_link(nic, LINK_DOWN);
6502         }
6503         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6504
6505 out_unlock:
6506         rtnl_unlock();
6507 }
6508
6509 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6510                                 struct buffAdd *ba,
6511                                 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6512                                 u64 *temp2, int size)
6513 {
6514         struct net_device *dev = sp->dev;
6515         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6516
6517         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6518                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6519                 /* allocate skb */
6520                 if (*skb) {
6521                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6522                         /*
6523                          * As Rx frame are not going to be processed,
6524                          * using same mapped address for the Rxd
6525                          * buffer pointer
6526                          */
6527                         rxdp1->Buffer0_ptr = *temp0;
6528                 } else {
6529                         *skb = dev_alloc_skb(size);
6530                         if (!(*skb)) {
6531                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6532                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6533                                 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6534                                 sp->mac_control.stats_info->sw_stat. \
6535                                         mem_alloc_fail_cnt++;
6536                                 return -ENOMEM ;
6537                         }
6538                         sp->mac_control.stats_info->sw_stat.mem_allocated
6539                                 += (*skb)->truesize;
6540                         /* storing the mapped addr in a temp variable
6541                          * such it will be used for next rxd whose
6542                          * Host Control is NULL
6543                          */
6544                         rxdp1->Buffer0_ptr = *temp0 =
6545                                 pci_map_single( sp->pdev, (*skb)->data,
6546                                         size - NET_IP_ALIGN,
6547                                         PCI_DMA_FROMDEVICE);
6548                         if( (rxdp1->Buffer0_ptr == 0) ||
6549                                 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6550                                 goto memalloc_failed;
6551                         }
6552                         rxdp->Host_Control = (unsigned long) (*skb);
6553                 }
6554         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6555                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6556                 /* Two buffer Mode */
6557                 if (*skb) {
6558                         rxdp3->Buffer2_ptr = *temp2;
6559                         rxdp3->Buffer0_ptr = *temp0;
6560                         rxdp3->Buffer1_ptr = *temp1;
6561                 } else {
6562                         *skb = dev_alloc_skb(size);
6563                         if (!(*skb)) {
6564                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6565                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6566                                 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6567                                 sp->mac_control.stats_info->sw_stat. \
6568                                         mem_alloc_fail_cnt++;
6569                                 return -ENOMEM;
6570                         }
6571                         sp->mac_control.stats_info->sw_stat.mem_allocated
6572                                 += (*skb)->truesize;
6573                         rxdp3->Buffer2_ptr = *temp2 =
6574                                 pci_map_single(sp->pdev, (*skb)->data,
6575                                                dev->mtu + 4,
6576                                                PCI_DMA_FROMDEVICE);
6577                         if( (rxdp3->Buffer2_ptr == 0) ||
6578                                 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6579                                 goto memalloc_failed;
6580                         }
6581                         rxdp3->Buffer0_ptr = *temp0 =
6582                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6583                                                 PCI_DMA_FROMDEVICE);
6584                         if( (rxdp3->Buffer0_ptr == 0) ||
6585                                 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6586                                 pci_unmap_single (sp->pdev,
6587                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6588                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6589                                 goto memalloc_failed;
6590                         }
6591                         rxdp->Host_Control = (unsigned long) (*skb);
6592
6593                         /* Buffer-1 will be dummy buffer not used */
6594                         rxdp3->Buffer1_ptr = *temp1 =
6595                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6596                                                 PCI_DMA_FROMDEVICE);
6597                         if( (rxdp3->Buffer1_ptr == 0) ||
6598                                 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6599                                 pci_unmap_single (sp->pdev,
6600                                         (dma_addr_t)rxdp3->Buffer0_ptr,
6601                                         BUF0_LEN, PCI_DMA_FROMDEVICE);
6602                                 pci_unmap_single (sp->pdev,
6603                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6604                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6605                                 goto memalloc_failed;
6606                         }
6607                 }
6608         }
6609         return 0;
6610         memalloc_failed:
6611                 stats->pci_map_fail_cnt++;
6612                 stats->mem_freed += (*skb)->truesize;
6613                 dev_kfree_skb(*skb);
6614                 return -ENOMEM;
6615 }
6616
6617 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6618                                 int size)
6619 {
6620         struct net_device *dev = sp->dev;
6621         if (sp->rxd_mode == RXD_MODE_1) {
6622                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6623         } else if (sp->rxd_mode == RXD_MODE_3B) {
6624                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6625                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6626                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6627         }
6628 }
6629
6630 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6631 {
6632         int i, j, k, blk_cnt = 0, size;
6633         struct mac_info * mac_control = &sp->mac_control;
6634         struct config_param *config = &sp->config;
6635         struct net_device *dev = sp->dev;
6636         struct RxD_t *rxdp = NULL;
6637         struct sk_buff *skb = NULL;
6638         struct buffAdd *ba = NULL;
6639         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6640
6641         /* Calculate the size based on ring mode */
6642         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6643                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6644         if (sp->rxd_mode == RXD_MODE_1)
6645                 size += NET_IP_ALIGN;
6646         else if (sp->rxd_mode == RXD_MODE_3B)
6647                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6648
6649         for (i = 0; i < config->rx_ring_num; i++) {
6650                 blk_cnt = config->rx_cfg[i].num_rxd /
6651                         (rxd_count[sp->rxd_mode] +1);
6652
6653                 for (j = 0; j < blk_cnt; j++) {
6654                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6655                                 rxdp = mac_control->rings[i].
6656                                         rx_blocks[j].rxds[k].virt_addr;
6657                                 if(sp->rxd_mode == RXD_MODE_3B)
6658                                         ba = &mac_control->rings[i].ba[j][k];
6659                                 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6660                                                        &skb,(u64 *)&temp0_64,
6661                                                        (u64 *)&temp1_64,
6662                                                        (u64 *)&temp2_64,
6663                                                         size) == ENOMEM) {
6664                                         return 0;
6665                                 }
6666
6667                                 set_rxd_buffer_size(sp, rxdp, size);
6668                                 wmb();
6669                                 /* flip the Ownership bit to Hardware */
6670                                 rxdp->Control_1 |= RXD_OWN_XENA;
6671                         }
6672                 }
6673         }
6674         return 0;
6675
6676 }
6677
6678 static int s2io_add_isr(struct s2io_nic * sp)
6679 {
6680         int ret = 0;
6681         struct net_device *dev = sp->dev;
6682         int err = 0;
6683
6684         if (sp->config.intr_type == MSI_X)
6685                 ret = s2io_enable_msi_x(sp);
6686         if (ret) {
6687                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6688                 sp->config.intr_type = INTA;
6689         }
6690
6691         /* Store the values of the MSIX table in the struct s2io_nic structure */
6692         store_xmsi_data(sp);
6693
6694         /* After proper initialization of H/W, register ISR */
6695         if (sp->config.intr_type == MSI_X) {
6696                 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6697
6698                 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6699                         if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6700                                 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6701                                         dev->name, i);
6702                                 err = request_irq(sp->entries[i].vector,
6703                                           s2io_msix_fifo_handle, 0, sp->desc[i],
6704                                                   sp->s2io_entries[i].arg);
6705                                 /* If either data or addr is zero print it */
6706                                 if(!(sp->msix_info[i].addr &&
6707                                         sp->msix_info[i].data)) {
6708                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6709                                                 "Data:0x%lx\n",sp->desc[i],
6710                                                 (unsigned long long)
6711                                                 sp->msix_info[i].addr,
6712                                                 (unsigned long)
6713                                                 ntohl(sp->msix_info[i].data));
6714                                 } else {
6715                                         msix_tx_cnt++;
6716                                 }
6717                         } else {
6718                                 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6719                                         dev->name, i);
6720                                 err = request_irq(sp->entries[i].vector,
6721                                           s2io_msix_ring_handle, 0, sp->desc[i],
6722                                                   sp->s2io_entries[i].arg);
6723                                 /* If either data or addr is zero print it */
6724                                 if(!(sp->msix_info[i].addr &&
6725                                         sp->msix_info[i].data)) {
6726                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6727                                                 "Data:0x%lx\n",sp->desc[i],
6728                                                 (unsigned long long)
6729                                                 sp->msix_info[i].addr,
6730                                                 (unsigned long)
6731                                                 ntohl(sp->msix_info[i].data));
6732                                 } else {
6733                                         msix_rx_cnt++;
6734                                 }
6735                         }
6736                         if (err) {
6737                                 remove_msix_isr(sp);
6738                                 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6739                                           "failed\n", dev->name, i);
6740                                 DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
6741                                                  dev->name);
6742                                 sp->config.intr_type = INTA;
6743                                 break;
6744                         }
6745                         sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6746                 }
6747                 if (!err) {
6748                         printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
6749                                 msix_tx_cnt);
6750                         printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
6751                                 msix_rx_cnt);
6752                 }
6753         }
6754         if (sp->config.intr_type == INTA) {
6755                 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6756                                 sp->name, dev);
6757                 if (err) {
6758                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6759                                   dev->name);
6760                         return -1;
6761                 }
6762         }
6763         return 0;
6764 }
6765 static void s2io_rem_isr(struct s2io_nic * sp)
6766 {
6767         if (sp->config.intr_type == MSI_X)
6768                 remove_msix_isr(sp);
6769         else
6770                 remove_inta_isr(sp);
6771 }
6772
6773 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
6774 {
6775         int cnt = 0;
6776         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6777         unsigned long flags;
6778         register u64 val64 = 0;
6779
6780         del_timer_sync(&sp->alarm_timer);
6781         /* If s2io_set_link task is executing, wait till it completes. */
6782         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
6783                 msleep(50);
6784         }
6785         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
6786
6787         /* disable Tx and Rx traffic on the NIC */
6788         if (do_io)
6789                 stop_nic(sp);
6790
6791         s2io_rem_isr(sp);
6792
6793         /* Kill tasklet. */
6794         tasklet_kill(&sp->task);
6795
6796         /* Check if the device is Quiescent and then Reset the NIC */
6797         while(do_io) {
6798                 /* As per the HW requirement we need to replenish the
6799                  * receive buffer to avoid the ring bump. Since there is
6800                  * no intention of processing the Rx frame at this pointwe are
6801                  * just settting the ownership bit of rxd in Each Rx
6802                  * ring to HW and set the appropriate buffer size
6803                  * based on the ring mode
6804                  */
6805                 rxd_owner_bit_reset(sp);
6806
6807                 val64 = readq(&bar0->adapter_status);
6808                 if (verify_xena_quiescence(sp)) {
6809                         if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6810                         break;
6811                 }
6812
6813                 msleep(50);
6814                 cnt++;
6815                 if (cnt == 10) {
6816                         DBG_PRINT(ERR_DBG,
6817                                   "s2io_close:Device not Quiescent ");
6818                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6819                                   (unsigned long long) val64);
6820                         break;
6821                 }
6822         }
6823         if (do_io)
6824                 s2io_reset(sp);
6825
6826         spin_lock_irqsave(&sp->tx_lock, flags);
6827         /* Free all Tx buffers */
6828         free_tx_buffers(sp);
6829         spin_unlock_irqrestore(&sp->tx_lock, flags);
6830
6831         /* Free all Rx buffers */
6832         spin_lock_irqsave(&sp->rx_lock, flags);
6833         free_rx_buffers(sp);
6834         spin_unlock_irqrestore(&sp->rx_lock, flags);
6835
6836         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
6837 }
6838
6839 static void s2io_card_down(struct s2io_nic * sp)
6840 {
6841         do_s2io_card_down(sp, 1);
6842 }
6843
6844 static int s2io_card_up(struct s2io_nic * sp)
6845 {
6846         int i, ret = 0;
6847         struct mac_info *mac_control;
6848         struct config_param *config;
6849         struct net_device *dev = (struct net_device *) sp->dev;
6850         u16 interruptible;
6851
6852         /* Initialize the H/W I/O registers */
6853         if (init_nic(sp) != 0) {
6854                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6855                           dev->name);
6856                 s2io_reset(sp);
6857                 return -ENODEV;
6858         }
6859
6860         /*
6861          * Initializing the Rx buffers. For now we are considering only 1
6862          * Rx ring and initializing buffers into 30 Rx blocks
6863          */
6864         mac_control = &sp->mac_control;
6865         config = &sp->config;
6866
6867         for (i = 0; i < config->rx_ring_num; i++) {
6868                 if ((ret = fill_rx_buffers(sp, i))) {
6869                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6870                                   dev->name);
6871                         s2io_reset(sp);
6872                         free_rx_buffers(sp);
6873                         return -ENOMEM;
6874                 }
6875                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6876                           atomic_read(&sp->rx_bufs_left[i]));
6877         }
6878         /* Maintain the state prior to the open */
6879         if (sp->promisc_flg)
6880                 sp->promisc_flg = 0;
6881         if (sp->m_cast_flg) {
6882                 sp->m_cast_flg = 0;
6883                 sp->all_multi_pos= 0;
6884         }
6885
6886         /* Setting its receive mode */
6887         s2io_set_multicast(dev);
6888
6889         if (sp->lro) {
6890                 /* Initialize max aggregatable pkts per session based on MTU */
6891                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6892                 /* Check if we can use(if specified) user provided value */
6893                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6894                         sp->lro_max_aggr_per_sess = lro_max_pkts;
6895         }
6896
6897         /* Enable Rx Traffic and interrupts on the NIC */
6898         if (start_nic(sp)) {
6899                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6900                 s2io_reset(sp);
6901                 free_rx_buffers(sp);
6902                 return -ENODEV;
6903         }
6904
6905         /* Add interrupt service routine */
6906         if (s2io_add_isr(sp) != 0) {
6907                 if (sp->config.intr_type == MSI_X)
6908                         s2io_rem_isr(sp);
6909                 s2io_reset(sp);
6910                 free_rx_buffers(sp);
6911                 return -ENODEV;
6912         }
6913
6914         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6915
6916         /* Enable tasklet for the device */
6917         tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6918
6919         /*  Enable select interrupts */
6920         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
6921         if (sp->config.intr_type != INTA)
6922                 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6923         else {
6924                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6925                 interruptible |= TX_PIC_INTR;
6926                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6927         }
6928
6929         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
6930         return 0;
6931 }
6932
6933 /**
6934  * s2io_restart_nic - Resets the NIC.
6935  * @data : long pointer to the device private structure
6936  * Description:
6937  * This function is scheduled to be run by the s2io_tx_watchdog
6938  * function after 0.5 secs to reset the NIC. The idea is to reduce
6939  * the run time of the watch dog routine which is run holding a
6940  * spin lock.
6941  */
6942
6943 static void s2io_restart_nic(struct work_struct *work)
6944 {
6945         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6946         struct net_device *dev = sp->dev;
6947
6948         rtnl_lock();
6949
6950         if (!netif_running(dev))
6951                 goto out_unlock;
6952
6953         s2io_card_down(sp);
6954         if (s2io_card_up(sp)) {
6955                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6956                           dev->name);
6957         }
6958         netif_wake_queue(dev);
6959         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6960                   dev->name);
6961 out_unlock:
6962         rtnl_unlock();
6963 }
6964
6965 /**
6966  *  s2io_tx_watchdog - Watchdog for transmit side.
6967  *  @dev : Pointer to net device structure
6968  *  Description:
6969  *  This function is triggered if the Tx Queue is stopped
6970  *  for a pre-defined amount of time when the Interface is still up.
6971  *  If the Interface is jammed in such a situation, the hardware is
6972  *  reset (by s2io_close) and restarted again (by s2io_open) to
6973  *  overcome any problem that might have been caused in the hardware.
6974  *  Return value:
6975  *  void
6976  */
6977
6978 static void s2io_tx_watchdog(struct net_device *dev)
6979 {
6980         struct s2io_nic *sp = dev->priv;
6981
6982         if (netif_carrier_ok(dev)) {
6983                 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
6984                 schedule_work(&sp->rst_timer_task);
6985                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6986         }
6987 }
6988
6989 /**
6990  *   rx_osm_handler - To perform some OS related operations on SKB.
6991  *   @sp: private member of the device structure,pointer to s2io_nic structure.
6992  *   @skb : the socket buffer pointer.
6993  *   @len : length of the packet
6994  *   @cksum : FCS checksum of the frame.
6995  *   @ring_no : the ring from which this RxD was extracted.
6996  *   Description:
6997  *   This function is called by the Rx interrupt serivce routine to perform
6998  *   some OS related operations on the SKB before passing it to the upper
6999  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7000  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7001  *   to the upper layer. If the checksum is wrong, it increments the Rx
7002  *   packet error count, frees the SKB and returns error.
7003  *   Return value:
7004  *   SUCCESS on success and -1 on failure.
7005  */
7006 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7007 {
7008         struct s2io_nic *sp = ring_data->nic;
7009         struct net_device *dev = (struct net_device *) sp->dev;
7010         struct sk_buff *skb = (struct sk_buff *)
7011                 ((unsigned long) rxdp->Host_Control);
7012         int ring_no = ring_data->ring_no;
7013         u16 l3_csum, l4_csum;
7014         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7015         struct lro *lro;
7016         u8 err_mask;
7017
7018         skb->dev = dev;
7019
7020         if (err) {
7021                 /* Check for parity error */
7022                 if (err & 0x1) {
7023                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7024                 }
7025                 err_mask = err >> 48;
7026                 switch(err_mask) {
7027                         case 1:
7028                                 sp->mac_control.stats_info->sw_stat.
7029                                 rx_parity_err_cnt++;
7030                         break;
7031
7032                         case 2:
7033                                 sp->mac_control.stats_info->sw_stat.
7034                                 rx_abort_cnt++;
7035                         break;
7036
7037                         case 3:
7038                                 sp->mac_control.stats_info->sw_stat.
7039                                 rx_parity_abort_cnt++;
7040                         break;
7041
7042                         case 4:
7043                                 sp->mac_control.stats_info->sw_stat.
7044                                 rx_rda_fail_cnt++;
7045                         break;
7046
7047                         case 5:
7048                                 sp->mac_control.stats_info->sw_stat.
7049                                 rx_unkn_prot_cnt++;
7050                         break;
7051
7052                         case 6:
7053                                 sp->mac_control.stats_info->sw_stat.
7054                                 rx_fcs_err_cnt++;
7055                         break;
7056
7057                         case 7:
7058                                 sp->mac_control.stats_info->sw_stat.
7059                                 rx_buf_size_err_cnt++;
7060                         break;
7061
7062                         case 8:
7063                                 sp->mac_control.stats_info->sw_stat.
7064                                 rx_rxd_corrupt_cnt++;
7065                         break;
7066
7067                         case 15:
7068                                 sp->mac_control.stats_info->sw_stat.
7069                                 rx_unkn_err_cnt++;
7070                         break;
7071                 }
7072                 /*
7073                 * Drop the packet if bad transfer code. Exception being
7074                 * 0x5, which could be due to unsupported IPv6 extension header.
7075                 * In this case, we let stack handle the packet.
7076                 * Note that in this case, since checksum will be incorrect,
7077                 * stack will validate the same.
7078                 */
7079                 if (err_mask != 0x5) {
7080                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7081                                 dev->name, err_mask);
7082                         sp->stats.rx_crc_errors++;
7083                         sp->mac_control.stats_info->sw_stat.mem_freed
7084                                 += skb->truesize;
7085                         dev_kfree_skb(skb);
7086                         atomic_dec(&sp->rx_bufs_left[ring_no]);
7087                         rxdp->Host_Control = 0;
7088                         return 0;
7089                 }
7090         }
7091
7092         /* Updating statistics */
7093         sp->stats.rx_packets++;
7094         rxdp->Host_Control = 0;
7095         if (sp->rxd_mode == RXD_MODE_1) {
7096                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7097
7098                 sp->stats.rx_bytes += len;
7099                 skb_put(skb, len);
7100
7101         } else if (sp->rxd_mode == RXD_MODE_3B) {
7102                 int get_block = ring_data->rx_curr_get_info.block_index;
7103                 int get_off = ring_data->rx_curr_get_info.offset;
7104                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7105                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7106                 unsigned char *buff = skb_push(skb, buf0_len);
7107
7108                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7109                 sp->stats.rx_bytes += buf0_len + buf2_len;
7110                 memcpy(buff, ba->ba_0, buf0_len);
7111                 skb_put(skb, buf2_len);
7112         }
7113
7114         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
7115             (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7116             (sp->rx_csum)) {
7117                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7118                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7119                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7120                         /*
7121                          * NIC verifies if the Checksum of the received
7122                          * frame is Ok or not and accordingly returns
7123                          * a flag in the RxD.
7124                          */
7125                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7126                         if (sp->lro) {
7127                                 u32 tcp_len;
7128                                 u8 *tcp;
7129                                 int ret = 0;
7130
7131                                 ret = s2io_club_tcp_session(skb->data, &tcp,
7132                                                             &tcp_len, &lro,
7133                                                             rxdp, sp);
7134                                 switch (ret) {
7135                                         case 3: /* Begin anew */
7136                                                 lro->parent = skb;
7137                                                 goto aggregate;
7138                                         case 1: /* Aggregate */
7139                                         {
7140                                                 lro_append_pkt(sp, lro,
7141                                                         skb, tcp_len);
7142                                                 goto aggregate;
7143                                         }
7144                                         case 4: /* Flush session */
7145                                         {
7146                                                 lro_append_pkt(sp, lro,
7147                                                         skb, tcp_len);
7148                                                 queue_rx_frame(lro->parent);
7149                                                 clear_lro_session(lro);
7150                                                 sp->mac_control.stats_info->
7151                                                     sw_stat.flush_max_pkts++;
7152                                                 goto aggregate;
7153                                         }
7154                                         case 2: /* Flush both */
7155                                                 lro->parent->data_len =
7156                                                         lro->frags_len;
7157                                                 sp->mac_control.stats_info->
7158                                                      sw_stat.sending_both++;
7159                                                 queue_rx_frame(lro->parent);
7160                                                 clear_lro_session(lro);
7161                                                 goto send_up;
7162                                         case 0: /* sessions exceeded */
7163                                         case -1: /* non-TCP or not
7164                                                   * L2 aggregatable
7165                                                   */
7166                                         case 5: /*
7167                                                  * First pkt in session not
7168                                                  * L3/L4 aggregatable
7169                                                  */
7170                                                 break;
7171                                         default:
7172                                                 DBG_PRINT(ERR_DBG,
7173                                                         "%s: Samadhana!!\n",
7174                                                          __FUNCTION__);
7175                                                 BUG();
7176                                 }
7177                         }
7178                 } else {
7179                         /*
7180                          * Packet with erroneous checksum, let the
7181                          * upper layers deal with it.
7182                          */
7183                         skb->ip_summed = CHECKSUM_NONE;
7184                 }
7185         } else {
7186                 skb->ip_summed = CHECKSUM_NONE;
7187         }
7188         sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7189         if (!sp->lro) {
7190                 skb->protocol = eth_type_trans(skb, dev);
7191                 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
7192                         vlan_strip_flag)) {
7193                         /* Queueing the vlan frame to the upper layer */
7194                         if (napi)
7195                                 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
7196                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
7197                         else
7198                                 vlan_hwaccel_rx(skb, sp->vlgrp,
7199                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
7200                 } else {
7201                         if (napi)
7202                                 netif_receive_skb(skb);
7203                         else
7204                                 netif_rx(skb);
7205                 }
7206         } else {
7207 send_up:
7208                 queue_rx_frame(skb);
7209         }
7210         dev->last_rx = jiffies;
7211 aggregate:
7212         atomic_dec(&sp->rx_bufs_left[ring_no]);
7213         return SUCCESS;
7214 }
7215
7216 /**
7217  *  s2io_link - stops/starts the Tx queue.
7218  *  @sp : private member of the device structure, which is a pointer to the
7219  *  s2io_nic structure.
7220  *  @link : inidicates whether link is UP/DOWN.
7221  *  Description:
7222  *  This function stops/starts the Tx queue depending on whether the link
7223  *  status of the NIC is is down or up. This is called by the Alarm
7224  *  interrupt handler whenever a link change interrupt comes up.
7225  *  Return value:
7226  *  void.
7227  */
7228
7229 static void s2io_link(struct s2io_nic * sp, int link)
7230 {
7231         struct net_device *dev = (struct net_device *) sp->dev;
7232
7233         if (link != sp->last_link_state) {
7234                 if (link == LINK_DOWN) {
7235                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7236                         netif_carrier_off(dev);
7237                         if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7238                         sp->mac_control.stats_info->sw_stat.link_up_time =
7239                                 jiffies - sp->start_time;
7240                         sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7241                 } else {
7242                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7243                         if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7244                         sp->mac_control.stats_info->sw_stat.link_down_time =
7245                                 jiffies - sp->start_time;
7246                         sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7247                         netif_carrier_on(dev);
7248                 }
7249         }
7250         sp->last_link_state = link;
7251         sp->start_time = jiffies;
7252 }
7253
7254 /**
7255  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7256  *  @sp : private member of the device structure, which is a pointer to the
7257  *  s2io_nic structure.
7258  *  Description:
7259  *  This function initializes a few of the PCI and PCI-X configuration registers
7260  *  with recommended values.
7261  *  Return value:
7262  *  void
7263  */
7264
7265 static void s2io_init_pci(struct s2io_nic * sp)
7266 {
7267         u16 pci_cmd = 0, pcix_cmd = 0;
7268
7269         /* Enable Data Parity Error Recovery in PCI-X command register. */
7270         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7271                              &(pcix_cmd));
7272         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7273                               (pcix_cmd | 1));
7274         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7275                              &(pcix_cmd));
7276
7277         /* Set the PErr Response bit in PCI command register. */
7278         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7279         pci_write_config_word(sp->pdev, PCI_COMMAND,
7280                               (pci_cmd | PCI_COMMAND_PARITY));
7281         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7282 }
7283
7284 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7285 {
7286         if ( tx_fifo_num > 8) {
7287                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
7288                          "supported\n");
7289                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
7290                 tx_fifo_num = 8;
7291         }
7292         if ( rx_ring_num > 8) {
7293                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7294                          "supported\n");
7295                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7296                 rx_ring_num = 8;
7297         }
7298         if (*dev_intr_type != INTA)
7299                 napi = 0;
7300
7301         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7302                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7303                           "Defaulting to INTA\n");
7304                 *dev_intr_type = INTA;
7305         }
7306
7307         if ((*dev_intr_type == MSI_X) &&
7308                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7309                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7310                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7311                                         "Defaulting to INTA\n");
7312                 *dev_intr_type = INTA;
7313         }
7314
7315         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7316                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7317                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7318                 rx_ring_mode = 1;
7319         }
7320         return SUCCESS;
7321 }
7322
7323 /**
7324  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7325  * or Traffic class respectively.
7326  * @nic: device peivate variable
7327  * Description: The function configures the receive steering to
7328  * desired receive ring.
7329  * Return Value:  SUCCESS on success and
7330  * '-1' on failure (endian settings incorrect).
7331  */
7332 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7333 {
7334         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7335         register u64 val64 = 0;
7336
7337         if (ds_codepoint > 63)
7338                 return FAILURE;
7339
7340         val64 = RTS_DS_MEM_DATA(ring);
7341         writeq(val64, &bar0->rts_ds_mem_data);
7342
7343         val64 = RTS_DS_MEM_CTRL_WE |
7344                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7345                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7346
7347         writeq(val64, &bar0->rts_ds_mem_ctrl);
7348
7349         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7350                                 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7351                                 S2IO_BIT_RESET);
7352 }
7353
7354 /**
7355  *  s2io_init_nic - Initialization of the adapter .
7356  *  @pdev : structure containing the PCI related information of the device.
7357  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7358  *  Description:
7359  *  The function initializes an adapter identified by the pci_dec structure.
7360  *  All OS related initialization including memory and device structure and
7361  *  initlaization of the device private variable is done. Also the swapper
7362  *  control register is initialized to enable read and write into the I/O
7363  *  registers of the device.
7364  *  Return value:
7365  *  returns 0 on success and negative on failure.
7366  */
7367
7368 static int __devinit
7369 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7370 {
7371         struct s2io_nic *sp;
7372         struct net_device *dev;
7373         int i, j, ret;
7374         int dma_flag = FALSE;
7375         u32 mac_up, mac_down;
7376         u64 val64 = 0, tmp64 = 0;
7377         struct XENA_dev_config __iomem *bar0 = NULL;
7378         u16 subid;
7379         struct mac_info *mac_control;
7380         struct config_param *config;
7381         int mode;
7382         u8 dev_intr_type = intr_type;
7383         DECLARE_MAC_BUF(mac);
7384
7385         if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7386                 return ret;
7387
7388         if ((ret = pci_enable_device(pdev))) {
7389                 DBG_PRINT(ERR_DBG,
7390                           "s2io_init_nic: pci_enable_device failed\n");
7391                 return ret;
7392         }
7393
7394         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7395                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7396                 dma_flag = TRUE;
7397                 if (pci_set_consistent_dma_mask
7398                     (pdev, DMA_64BIT_MASK)) {
7399                         DBG_PRINT(ERR_DBG,
7400                                   "Unable to obtain 64bit DMA for \
7401                                         consistent allocations\n");
7402                         pci_disable_device(pdev);
7403                         return -ENOMEM;
7404                 }
7405         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7406                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7407         } else {
7408                 pci_disable_device(pdev);
7409                 return -ENOMEM;
7410         }
7411         if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7412                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7413                 pci_disable_device(pdev);
7414                 return -ENODEV;
7415         }
7416
7417         dev = alloc_etherdev(sizeof(struct s2io_nic));
7418         if (dev == NULL) {
7419                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7420                 pci_disable_device(pdev);
7421                 pci_release_regions(pdev);
7422                 return -ENODEV;
7423         }
7424
7425         pci_set_master(pdev);
7426         pci_set_drvdata(pdev, dev);
7427         SET_NETDEV_DEV(dev, &pdev->dev);
7428
7429         /*  Private member variable initialized to s2io NIC structure */
7430         sp = dev->priv;
7431         memset(sp, 0, sizeof(struct s2io_nic));
7432         sp->dev = dev;
7433         sp->pdev = pdev;
7434         sp->high_dma_flag = dma_flag;
7435         sp->device_enabled_once = FALSE;
7436         if (rx_ring_mode == 1)
7437                 sp->rxd_mode = RXD_MODE_1;
7438         if (rx_ring_mode == 2)
7439                 sp->rxd_mode = RXD_MODE_3B;
7440
7441         sp->config.intr_type = dev_intr_type;
7442
7443         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7444                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7445                 sp->device_type = XFRAME_II_DEVICE;
7446         else
7447                 sp->device_type = XFRAME_I_DEVICE;
7448
7449         sp->lro = lro_enable;
7450
7451         /* Initialize some PCI/PCI-X fields of the NIC. */
7452         s2io_init_pci(sp);
7453
7454         /*
7455          * Setting the device configuration parameters.
7456          * Most of these parameters can be specified by the user during
7457          * module insertion as they are module loadable parameters. If
7458          * these parameters are not not specified during load time, they
7459          * are initialized with default values.
7460          */
7461         mac_control = &sp->mac_control;
7462         config = &sp->config;
7463
7464         config->napi = napi;
7465
7466         /* Tx side parameters. */
7467         config->tx_fifo_num = tx_fifo_num;
7468         for (i = 0; i < MAX_TX_FIFOS; i++) {
7469                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7470                 config->tx_cfg[i].fifo_priority = i;
7471         }
7472
7473         /* mapping the QoS priority to the configured fifos */
7474         for (i = 0; i < MAX_TX_FIFOS; i++)
7475                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7476
7477         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7478         for (i = 0; i < config->tx_fifo_num; i++) {
7479                 config->tx_cfg[i].f_no_snoop =
7480                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7481                 if (config->tx_cfg[i].fifo_len < 65) {
7482                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7483                         break;
7484                 }
7485         }
7486         /* + 2 because one Txd for skb->data and one Txd for UFO */
7487         config->max_txds = MAX_SKB_FRAGS + 2;
7488
7489         /* Rx side parameters. */
7490         config->rx_ring_num = rx_ring_num;
7491         for (i = 0; i < MAX_RX_RINGS; i++) {
7492                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7493                     (rxd_count[sp->rxd_mode] + 1);
7494                 config->rx_cfg[i].ring_priority = i;
7495         }
7496
7497         for (i = 0; i < rx_ring_num; i++) {
7498                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7499                 config->rx_cfg[i].f_no_snoop =
7500                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7501         }
7502
7503         /*  Setting Mac Control parameters */
7504         mac_control->rmac_pause_time = rmac_pause_time;
7505         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7506         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7507
7508
7509         /* Initialize Ring buffer parameters. */
7510         for (i = 0; i < config->rx_ring_num; i++)
7511                 atomic_set(&sp->rx_bufs_left[i], 0);
7512
7513         /*  initialize the shared memory used by the NIC and the host */
7514         if (init_shared_mem(sp)) {
7515                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7516                           dev->name);
7517                 ret = -ENOMEM;
7518                 goto mem_alloc_failed;
7519         }
7520
7521         sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7522                                      pci_resource_len(pdev, 0));
7523         if (!sp->bar0) {
7524                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7525                           dev->name);
7526                 ret = -ENOMEM;
7527                 goto bar0_remap_failed;
7528         }
7529
7530         sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7531                                      pci_resource_len(pdev, 2));
7532         if (!sp->bar1) {
7533                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7534                           dev->name);
7535                 ret = -ENOMEM;
7536                 goto bar1_remap_failed;
7537         }
7538
7539         dev->irq = pdev->irq;
7540         dev->base_addr = (unsigned long) sp->bar0;
7541
7542         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7543         for (j = 0; j < MAX_TX_FIFOS; j++) {
7544                 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7545                     (sp->bar1 + (j * 0x00020000));
7546         }
7547
7548         /*  Driver entry points */
7549         dev->open = &s2io_open;
7550         dev->stop = &s2io_close;
7551         dev->hard_start_xmit = &s2io_xmit;
7552         dev->get_stats = &s2io_get_stats;
7553         dev->set_multicast_list = &s2io_set_multicast;
7554         dev->do_ioctl = &s2io_ioctl;
7555         dev->set_mac_address = &s2io_set_mac_addr;
7556         dev->change_mtu = &s2io_change_mtu;
7557         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7558         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7559         dev->vlan_rx_register = s2io_vlan_rx_register;
7560
7561         /*
7562          * will use eth_mac_addr() for  dev->set_mac_address
7563          * mac address will be set every time dev->open() is called
7564          */
7565         netif_napi_add(dev, &sp->napi, s2io_poll, 32);
7566
7567 #ifdef CONFIG_NET_POLL_CONTROLLER
7568         dev->poll_controller = s2io_netpoll;
7569 #endif
7570
7571         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7572         if (sp->high_dma_flag == TRUE)
7573                 dev->features |= NETIF_F_HIGHDMA;
7574         dev->features |= NETIF_F_TSO;
7575         dev->features |= NETIF_F_TSO6;
7576         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
7577                 dev->features |= NETIF_F_UFO;
7578                 dev->features |= NETIF_F_HW_CSUM;
7579         }
7580
7581         dev->tx_timeout = &s2io_tx_watchdog;
7582         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7583         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7584         INIT_WORK(&sp->set_link_task, s2io_set_link);
7585
7586         pci_save_state(sp->pdev);
7587
7588         /* Setting swapper control on the NIC, for proper reset operation */
7589         if (s2io_set_swapper(sp)) {
7590                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7591                           dev->name);
7592                 ret = -EAGAIN;
7593                 goto set_swap_failed;
7594         }
7595
7596         /* Verify if the Herc works on the slot its placed into */
7597         if (sp->device_type & XFRAME_II_DEVICE) {
7598                 mode = s2io_verify_pci_mode(sp);
7599                 if (mode < 0) {
7600                         DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7601                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7602                         ret = -EBADSLT;
7603                         goto set_swap_failed;
7604                 }
7605         }
7606
7607         /* Not needed for Herc */
7608         if (sp->device_type & XFRAME_I_DEVICE) {
7609                 /*
7610                  * Fix for all "FFs" MAC address problems observed on
7611                  * Alpha platforms
7612                  */
7613                 fix_mac_address(sp);
7614                 s2io_reset(sp);
7615         }
7616
7617         /*
7618          * MAC address initialization.
7619          * For now only one mac address will be read and used.
7620          */
7621         bar0 = sp->bar0;
7622         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7623             RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7624         writeq(val64, &bar0->rmac_addr_cmd_mem);
7625         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7626                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7627         tmp64 = readq(&bar0->rmac_addr_data0_mem);
7628         mac_down = (u32) tmp64;
7629         mac_up = (u32) (tmp64 >> 32);
7630
7631         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7632         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7633         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7634         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7635         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7636         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7637
7638         /*  Set the factory defined MAC address initially   */
7639         dev->addr_len = ETH_ALEN;
7640         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7641         memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
7642
7643          /* Store the values of the MSIX table in the s2io_nic structure */
7644         store_xmsi_data(sp);
7645         /* reset Nic and bring it to known state */
7646         s2io_reset(sp);
7647
7648         /*
7649          * Initialize the tasklet status and link state flags
7650          * and the card state parameter
7651          */
7652         sp->tasklet_status = 0;
7653         sp->state = 0;
7654
7655         /* Initialize spinlocks */
7656         spin_lock_init(&sp->tx_lock);
7657
7658         if (!napi)
7659                 spin_lock_init(&sp->put_lock);
7660         spin_lock_init(&sp->rx_lock);
7661
7662         /*
7663          * SXE-002: Configure link and activity LED to init state
7664          * on driver load.
7665          */
7666         subid = sp->pdev->subsystem_device;
7667         if ((subid & 0xFF) >= 0x07) {
7668                 val64 = readq(&bar0->gpio_control);
7669                 val64 |= 0x0000800000000000ULL;
7670                 writeq(val64, &bar0->gpio_control);
7671                 val64 = 0x0411040400000000ULL;
7672                 writeq(val64, (void __iomem *) bar0 + 0x2700);
7673                 val64 = readq(&bar0->gpio_control);
7674         }
7675
7676         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
7677
7678         if (register_netdev(dev)) {
7679                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7680                 ret = -ENODEV;
7681                 goto register_failed;
7682         }
7683         s2io_vpd_read(sp);
7684         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7685         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7686                   sp->product_name, pdev->revision);
7687         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7688                   s2io_driver_version);
7689         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
7690                   dev->name, print_mac(mac, dev->dev_addr));
7691         DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7692         if (sp->device_type & XFRAME_II_DEVICE) {
7693                 mode = s2io_print_pci_mode(sp);
7694                 if (mode < 0) {
7695                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7696                         ret = -EBADSLT;
7697                         unregister_netdev(dev);
7698                         goto set_swap_failed;
7699                 }
7700         }
7701         switch(sp->rxd_mode) {
7702                 case RXD_MODE_1:
7703                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7704                                                 dev->name);
7705                     break;
7706                 case RXD_MODE_3B:
7707                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7708                                                 dev->name);
7709                     break;
7710         }
7711
7712         if (napi)
7713                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7714         switch(sp->config.intr_type) {
7715                 case INTA:
7716                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7717                     break;
7718                 case MSI_X:
7719                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7720                     break;
7721         }
7722         if (sp->lro)
7723                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7724                           dev->name);
7725         if (ufo)
7726                 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7727                                         " enabled\n", dev->name);
7728         /* Initialize device name */
7729         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7730
7731         /*
7732          * Make Link state as off at this point, when the Link change
7733          * interrupt comes the state will be automatically changed to
7734          * the right state.
7735          */
7736         netif_carrier_off(dev);
7737
7738         return 0;
7739
7740       register_failed:
7741       set_swap_failed:
7742         iounmap(sp->bar1);
7743       bar1_remap_failed:
7744         iounmap(sp->bar0);
7745       bar0_remap_failed:
7746       mem_alloc_failed:
7747         free_shared_mem(sp);
7748         pci_disable_device(pdev);
7749         pci_release_regions(pdev);
7750         pci_set_drvdata(pdev, NULL);
7751         free_netdev(dev);
7752
7753         return ret;
7754 }
7755
7756 /**
7757  * s2io_rem_nic - Free the PCI device
7758  * @pdev: structure containing the PCI related information of the device.
7759  * Description: This function is called by the Pci subsystem to release a
7760  * PCI device and free up all resource held up by the device. This could
7761  * be in response to a Hot plug event or when the driver is to be removed
7762  * from memory.
7763  */
7764
7765 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7766 {
7767         struct net_device *dev =
7768             (struct net_device *) pci_get_drvdata(pdev);
7769         struct s2io_nic *sp;
7770
7771         if (dev == NULL) {
7772                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7773                 return;
7774         }
7775
7776         flush_scheduled_work();
7777
7778         sp = dev->priv;
7779         unregister_netdev(dev);
7780
7781         free_shared_mem(sp);
7782         iounmap(sp->bar0);
7783         iounmap(sp->bar1);
7784         pci_release_regions(pdev);
7785         pci_set_drvdata(pdev, NULL);
7786         free_netdev(dev);
7787         pci_disable_device(pdev);
7788 }
7789
7790 /**
7791  * s2io_starter - Entry point for the driver
7792  * Description: This function is the entry point for the driver. It verifies
7793  * the module loadable parameters and initializes PCI configuration space.
7794  */
7795
7796 static int __init s2io_starter(void)
7797 {
7798         return pci_register_driver(&s2io_driver);
7799 }
7800
7801 /**
7802  * s2io_closer - Cleanup routine for the driver
7803  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7804  */
7805
7806 static __exit void s2io_closer(void)
7807 {
7808         pci_unregister_driver(&s2io_driver);
7809         DBG_PRINT(INIT_DBG, "cleanup done\n");
7810 }
7811
7812 module_init(s2io_starter);
7813 module_exit(s2io_closer);
7814
7815 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7816                 struct tcphdr **tcp, struct RxD_t *rxdp)
7817 {
7818         int ip_off;
7819         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7820
7821         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7822                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7823                           __FUNCTION__);
7824                 return -1;
7825         }
7826
7827         /* TODO:
7828          * By default the VLAN field in the MAC is stripped by the card, if this
7829          * feature is turned off in rx_pa_cfg register, then the ip_off field
7830          * has to be shifted by a further 2 bytes
7831          */
7832         switch (l2_type) {
7833                 case 0: /* DIX type */
7834                 case 4: /* DIX type with VLAN */
7835                         ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7836                         break;
7837                 /* LLC, SNAP etc are considered non-mergeable */
7838                 default:
7839                         return -1;
7840         }
7841
7842         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7843         ip_len = (u8)((*ip)->ihl);
7844         ip_len <<= 2;
7845         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7846
7847         return 0;
7848 }
7849
7850 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7851                                   struct tcphdr *tcp)
7852 {
7853         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7854         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7855            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7856                 return -1;
7857         return 0;
7858 }
7859
7860 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7861 {
7862         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7863 }
7864
7865 static void initiate_new_session(struct lro *lro, u8 *l2h,
7866                      struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7867 {
7868         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7869         lro->l2h = l2h;
7870         lro->iph = ip;
7871         lro->tcph = tcp;
7872         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7873         lro->tcp_ack = ntohl(tcp->ack_seq);
7874         lro->sg_num = 1;
7875         lro->total_len = ntohs(ip->tot_len);
7876         lro->frags_len = 0;
7877         /*
7878          * check if we saw TCP timestamp. Other consistency checks have
7879          * already been done.
7880          */
7881         if (tcp->doff == 8) {
7882                 u32 *ptr;
7883                 ptr = (u32 *)(tcp+1);
7884                 lro->saw_ts = 1;
7885                 lro->cur_tsval = *(ptr+1);
7886                 lro->cur_tsecr = *(ptr+2);
7887         }
7888         lro->in_use = 1;
7889 }
7890
7891 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7892 {
7893         struct iphdr *ip = lro->iph;
7894         struct tcphdr *tcp = lro->tcph;
7895         __sum16 nchk;
7896         struct stat_block *statinfo = sp->mac_control.stats_info;
7897         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7898
7899         /* Update L3 header */
7900         ip->tot_len = htons(lro->total_len);
7901         ip->check = 0;
7902         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7903         ip->check = nchk;
7904
7905         /* Update L4 header */
7906         tcp->ack_seq = lro->tcp_ack;
7907         tcp->window = lro->window;
7908
7909         /* Update tsecr field if this session has timestamps enabled */
7910         if (lro->saw_ts) {
7911                 u32 *ptr = (u32 *)(tcp + 1);
7912                 *(ptr+2) = lro->cur_tsecr;
7913         }
7914
7915         /* Update counters required for calculation of
7916          * average no. of packets aggregated.
7917          */
7918         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7919         statinfo->sw_stat.num_aggregations++;
7920 }
7921
7922 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7923                 struct tcphdr *tcp, u32 l4_pyld)
7924 {
7925         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7926         lro->total_len += l4_pyld;
7927         lro->frags_len += l4_pyld;
7928         lro->tcp_next_seq += l4_pyld;
7929         lro->sg_num++;
7930
7931         /* Update ack seq no. and window ad(from this pkt) in LRO object */
7932         lro->tcp_ack = tcp->ack_seq;
7933         lro->window = tcp->window;
7934
7935         if (lro->saw_ts) {
7936                 u32 *ptr;
7937                 /* Update tsecr and tsval from this packet */
7938                 ptr = (u32 *) (tcp + 1);
7939                 lro->cur_tsval = *(ptr + 1);
7940                 lro->cur_tsecr = *(ptr + 2);
7941         }
7942 }
7943
7944 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7945                                     struct tcphdr *tcp, u32 tcp_pyld_len)
7946 {
7947         u8 *ptr;
7948
7949         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7950
7951         if (!tcp_pyld_len) {
7952                 /* Runt frame or a pure ack */
7953                 return -1;
7954         }
7955
7956         if (ip->ihl != 5) /* IP has options */
7957                 return -1;
7958
7959         /* If we see CE codepoint in IP header, packet is not mergeable */
7960         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7961                 return -1;
7962
7963         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7964         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7965                                     tcp->ece || tcp->cwr || !tcp->ack) {
7966                 /*
7967                  * Currently recognize only the ack control word and
7968                  * any other control field being set would result in
7969                  * flushing the LRO session
7970                  */
7971                 return -1;
7972         }
7973
7974         /*
7975          * Allow only one TCP timestamp option. Don't aggregate if
7976          * any other options are detected.
7977          */
7978         if (tcp->doff != 5 && tcp->doff != 8)
7979                 return -1;
7980
7981         if (tcp->doff == 8) {
7982                 ptr = (u8 *)(tcp + 1);
7983                 while (*ptr == TCPOPT_NOP)
7984                         ptr++;
7985                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7986                         return -1;
7987
7988                 /* Ensure timestamp value increases monotonically */
7989                 if (l_lro)
7990                         if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7991                                 return -1;
7992
7993                 /* timestamp echo reply should be non-zero */
7994                 if (*((u32 *)(ptr+6)) == 0)
7995                         return -1;
7996         }
7997
7998         return 0;
7999 }
8000
8001 static int
8002 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
8003                       struct RxD_t *rxdp, struct s2io_nic *sp)
8004 {
8005         struct iphdr *ip;
8006         struct tcphdr *tcph;
8007         int ret = 0, i;
8008
8009         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8010                                          rxdp))) {
8011                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8012                           ip->saddr, ip->daddr);
8013         } else {
8014                 return ret;
8015         }
8016
8017         tcph = (struct tcphdr *)*tcp;
8018         *tcp_len = get_l4_pyld_length(ip, tcph);
8019         for (i=0; i<MAX_LRO_SESSIONS; i++) {
8020                 struct lro *l_lro = &sp->lro0_n[i];
8021                 if (l_lro->in_use) {
8022                         if (check_for_socket_match(l_lro, ip, tcph))
8023                                 continue;
8024                         /* Sock pair matched */
8025                         *lro = l_lro;
8026
8027                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8028                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8029                                           "0x%x, actual 0x%x\n", __FUNCTION__,
8030                                           (*lro)->tcp_next_seq,
8031                                           ntohl(tcph->seq));
8032
8033                                 sp->mac_control.stats_info->
8034                                    sw_stat.outof_sequence_pkts++;
8035                                 ret = 2;
8036                                 break;
8037                         }
8038
8039                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8040                                 ret = 1; /* Aggregate */
8041                         else
8042                                 ret = 2; /* Flush both */
8043                         break;
8044                 }
8045         }
8046
8047         if (ret == 0) {
8048                 /* Before searching for available LRO objects,
8049                  * check if the pkt is L3/L4 aggregatable. If not
8050                  * don't create new LRO session. Just send this
8051                  * packet up.
8052                  */
8053                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8054                         return 5;
8055                 }
8056
8057                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8058                         struct lro *l_lro = &sp->lro0_n[i];
8059                         if (!(l_lro->in_use)) {
8060                                 *lro = l_lro;
8061                                 ret = 3; /* Begin anew */
8062                                 break;
8063                         }
8064                 }
8065         }
8066
8067         if (ret == 0) { /* sessions exceeded */
8068                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8069                           __FUNCTION__);
8070                 *lro = NULL;
8071                 return ret;
8072         }
8073
8074         switch (ret) {
8075                 case 3:
8076                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
8077                         break;
8078                 case 2:
8079                         update_L3L4_header(sp, *lro);
8080                         break;
8081                 case 1:
8082                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8083                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8084                                 update_L3L4_header(sp, *lro);
8085                                 ret = 4; /* Flush the LRO */
8086                         }
8087                         break;
8088                 default:
8089                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8090                                 __FUNCTION__);
8091                         break;
8092         }
8093
8094         return ret;
8095 }
8096
8097 static void clear_lro_session(struct lro *lro)
8098 {
8099         static u16 lro_struct_size = sizeof(struct lro);
8100
8101         memset(lro, 0, lro_struct_size);
8102 }
8103
8104 static void queue_rx_frame(struct sk_buff *skb)
8105 {
8106         struct net_device *dev = skb->dev;
8107
8108         skb->protocol = eth_type_trans(skb, dev);
8109         if (napi)
8110                 netif_receive_skb(skb);
8111         else
8112                 netif_rx(skb);
8113 }
8114
8115 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8116                            struct sk_buff *skb,
8117                            u32 tcp_len)
8118 {
8119         struct sk_buff *first = lro->parent;
8120
8121         first->len += tcp_len;
8122         first->data_len = lro->frags_len;
8123         skb_pull(skb, (skb->len - tcp_len));
8124         if (skb_shinfo(first)->frag_list)
8125                 lro->last_frag->next = skb;
8126         else
8127                 skb_shinfo(first)->frag_list = skb;
8128         first->truesize += skb->truesize;
8129         lro->last_frag = skb;
8130         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8131         return;
8132 }
8133
8134 /**
8135  * s2io_io_error_detected - called when PCI error is detected
8136  * @pdev: Pointer to PCI device
8137  * @state: The current pci connection state
8138  *
8139  * This function is called after a PCI bus error affecting
8140  * this device has been detected.
8141  */
8142 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8143                                                pci_channel_state_t state)
8144 {
8145         struct net_device *netdev = pci_get_drvdata(pdev);
8146         struct s2io_nic *sp = netdev->priv;
8147
8148         netif_device_detach(netdev);
8149
8150         if (netif_running(netdev)) {
8151                 /* Bring down the card, while avoiding PCI I/O */
8152                 do_s2io_card_down(sp, 0);
8153         }
8154         pci_disable_device(pdev);
8155
8156         return PCI_ERS_RESULT_NEED_RESET;
8157 }
8158
8159 /**
8160  * s2io_io_slot_reset - called after the pci bus has been reset.
8161  * @pdev: Pointer to PCI device
8162  *
8163  * Restart the card from scratch, as if from a cold-boot.
8164  * At this point, the card has exprienced a hard reset,
8165  * followed by fixups by BIOS, and has its config space
8166  * set up identically to what it was at cold boot.
8167  */
8168 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8169 {
8170         struct net_device *netdev = pci_get_drvdata(pdev);
8171         struct s2io_nic *sp = netdev->priv;
8172
8173         if (pci_enable_device(pdev)) {
8174                 printk(KERN_ERR "s2io: "
8175                        "Cannot re-enable PCI device after reset.\n");
8176                 return PCI_ERS_RESULT_DISCONNECT;
8177         }
8178
8179         pci_set_master(pdev);
8180         s2io_reset(sp);
8181
8182         return PCI_ERS_RESULT_RECOVERED;
8183 }
8184
8185 /**
8186  * s2io_io_resume - called when traffic can start flowing again.
8187  * @pdev: Pointer to PCI device
8188  *
8189  * This callback is called when the error recovery driver tells
8190  * us that its OK to resume normal operation.
8191  */
8192 static void s2io_io_resume(struct pci_dev *pdev)
8193 {
8194         struct net_device *netdev = pci_get_drvdata(pdev);
8195         struct s2io_nic *sp = netdev->priv;
8196
8197         if (netif_running(netdev)) {
8198                 if (s2io_card_up(sp)) {
8199                         printk(KERN_ERR "s2io: "
8200                                "Can't bring device back up after reset.\n");
8201                         return;
8202                 }
8203
8204                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8205                         s2io_card_down(sp);
8206                         printk(KERN_ERR "s2io: "
8207                                "Can't resetore mac addr after reset.\n");
8208                         return;
8209                 }
8210         }
8211
8212         netif_device_attach(netdev);
8213         netif_wake_queue(netdev);
8214 }