1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
3 Written/copyright 1999-2001 by Donald Becker.
4 Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6 Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL. License for under other terms may be
14 available. Contact the original author for details.
16 The original author may be reached as becker@scyld.com, or at
17 Scyld Computing Corporation
18 410 Severn Ave., Suite 210
21 Support information and updates available at
22 http://www.scyld.com/network/netsemi.html
23 [link no longer provides useful info -jgarzik]
27 * big endian support with CFG:BEM instead of cpu_to_le32
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/errno.h>
35 #include <linux/ioport.h>
36 #include <linux/slab.h>
37 #include <linux/interrupt.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/init.h>
43 #include <linux/spinlock.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/mii.h>
48 #include <linux/crc32.h>
49 #include <linux/bitops.h>
50 #include <linux/prefetch.h>
51 #include <asm/processor.h> /* Processor type for cache alignment. */
54 #include <asm/uaccess.h>
56 #define DRV_NAME "natsemi"
57 #define DRV_VERSION "2.1"
58 #define DRV_RELDATE "Sept 11, 2006"
62 /* Updated to recommendations in pci-skeleton v2.03. */
64 /* The user-configurable values.
65 These may be modified when a driver module is loaded.*/
67 #define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \
72 static int debug = -1;
76 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77 This chip uses a 512 element hash table based on the Ethernet CRC. */
78 static const int multicast_filter_limit = 100;
80 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81 Setting to > 1518 effectively disables this feature. */
82 static int rx_copybreak;
84 static int dspcfg_workaround = 1;
86 /* Used to pass the media type, etc.
87 Both 'options[]' and 'full_duplex[]' should exist for driver
89 The media type is usually passed in 'options[]'.
91 #define MAX_UNITS 8 /* More are supported, limit only on options */
92 static int options[MAX_UNITS];
93 static int full_duplex[MAX_UNITS];
95 /* Operational parameters that are set at compile time. */
97 /* Keep the ring sizes a power of two for compile efficiency.
98 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
99 Making the Tx ring too large decreases the effectiveness of channel
100 bonding and packet priority.
101 There are no ill effects from too-large receive rings. */
102 #define TX_RING_SIZE 16
103 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */
104 #define RX_RING_SIZE 32
106 /* Operational parameters that usually are not changed. */
107 /* Time in jiffies before concluding the transmitter is hung. */
108 #define TX_TIMEOUT (2*HZ)
110 #define NATSEMI_HW_TIMEOUT 400
111 #define NATSEMI_TIMER_FREQ 3*HZ
112 #define NATSEMI_PG0_NREGS 64
113 #define NATSEMI_RFDR_NREGS 8
114 #define NATSEMI_PG1_NREGS 4
115 #define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
117 #define NATSEMI_REGS_VER 1 /* v1 added RFDR registers */
118 #define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32))
121 * The nic writes 32-bit values, even if the upper bytes of
122 * a 32-bit value are beyond the end of the buffer.
124 #define NATSEMI_HEADERS 22 /* 2*mac,type,vlan,crc */
125 #define NATSEMI_PADDING 16 /* 2 bytes should be sufficient */
126 #define NATSEMI_LONGPKT 1518 /* limit for normal packets */
127 #define NATSEMI_RX_LIMIT 2046 /* maximum supported by hardware */
129 /* These identify the driver base version and may not be removed. */
130 static const char version[] __devinitdata =
131 KERN_INFO DRV_NAME " dp8381x driver, version "
132 DRV_VERSION ", " DRV_RELDATE "\n"
133 KERN_INFO " originally by Donald Becker <becker@scyld.com>\n"
134 KERN_INFO " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
136 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
137 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
138 MODULE_LICENSE("GPL");
140 module_param(mtu, int, 0);
141 module_param(debug, int, 0);
142 module_param(rx_copybreak, int, 0);
143 module_param(dspcfg_workaround, int, 1);
144 module_param_array(options, int, NULL, 0);
145 module_param_array(full_duplex, int, NULL, 0);
146 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
147 MODULE_PARM_DESC(debug, "DP8381x default debug level");
148 MODULE_PARM_DESC(rx_copybreak,
149 "DP8381x copy breakpoint for copy-only-tiny-frames");
150 MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
151 MODULE_PARM_DESC(options,
152 "DP8381x: Bits 0-3: media type, bit 17: full duplex");
153 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
158 I. Board Compatibility
160 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
161 It also works with other chips in in the DP83810 series.
163 II. Board-specific settings
165 This driver requires the PCI interrupt line to be valid.
166 It honors the EEPROM-set values.
168 III. Driver operation
172 This driver uses two statically allocated fixed-size descriptor lists
173 formed into rings by a branch from the final descriptor to the beginning of
174 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
175 The NatSemi design uses a 'next descriptor' pointer that the driver forms
178 IIIb/c. Transmit/Receive Structure
180 This driver uses a zero-copy receive and transmit scheme.
181 The driver allocates full frame size skbuffs for the Rx ring buffers at
182 open() time and passes the skb->data field to the chip as receive data
183 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
184 a fresh skbuff is allocated and the frame is copied to the new skbuff.
185 When the incoming frame is larger, the skbuff is passed directly up the
186 protocol stack. Buffers consumed this way are replaced by newly allocated
187 skbuffs in a later phase of receives.
189 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
190 using a full-sized skbuff for small frames vs. the copying costs of larger
191 frames. New boards are typically used in generously configured machines
192 and the underfilled buffers have negligible impact compared to the benefit of
193 a single allocation size, so the default value of zero results in never
194 copying packets. When copying is done, the cost is usually mitigated by using
195 a combined copy/checksum routine. Copying also preloads the cache, which is
196 most useful with small frames.
198 A subtle aspect of the operation is that unaligned buffers are not permitted
199 by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't
200 longword aligned for further processing. On copies frames are put into the
201 skbuff at an offset of "+2", 16-byte aligning the IP header.
203 IIId. Synchronization
205 Most operations are synchronized on the np->lock irq spinlock, except the
206 performance critical codepaths:
208 The rx process only runs in the interrupt handler. Access from outside
209 the interrupt handler is only permitted after disable_irq().
211 The rx process usually runs under the netif_tx_lock. If np->intr_tx_reap
212 is set, then access is permitted under spin_lock_irq(&np->lock).
214 Thus configuration functions that want to access everything must call
215 disable_irq(dev->irq);
216 netif_tx_lock_bh(dev);
217 spin_lock_irq(&np->lock);
221 NatSemi PCI network controllers are very uncommon.
225 http://www.scyld.com/expert/100mbps.html
226 http://www.scyld.com/expert/NWay.html
227 Datasheet is available from:
228 http://www.national.com/pf/DP/DP83815.html
238 * Support for fibre connections on Am79C874:
239 * This phy needs a special setup when connected to a fibre cable.
240 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
242 #define PHYID_AM79C874 0x0022561b
245 MII_MCTRL = 0x15, /* mode control register */
246 MII_FX_SEL = 0x0001, /* 100BASE-FX (fiber) */
247 MII_EN_SCRM = 0x0004, /* enable scrambler (tp) */
251 NATSEMI_FLAG_IGNORE_PHY = 0x1,
254 /* array of board data directly indexed by pci_tbl[x].driver_data */
255 static const struct {
258 unsigned int eeprom_size;
259 } natsemi_pci_info[] __devinitdata = {
260 { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
261 { "NatSemi DP8381[56]", 0, 24 },
264 static const struct pci_device_id natsemi_pci_tbl[] __devinitdata = {
265 { PCI_VENDOR_ID_NS, 0x0020, 0x12d9, 0x000c, 0, 0, 0 },
266 { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
267 { } /* terminate list */
269 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
271 /* Offsets to the device registers.
272 Unlike software-only systems, device drivers interact with complex hardware.
273 It's not useful to define symbolic names for every register bit in the
276 enum register_offsets {
284 IntrHoldoff = 0x1C, /* DP83816 only */
311 /* These are from the spec, around page 78... on a separate table.
312 * The meaning of these registers depend on the value of PGSEL. */
319 /* the values for the 'magic' registers above (PGSEL=1) */
320 #define PMDCSR_VAL 0x189c /* enable preferred adaptation circuitry */
321 #define TSTDAT_VAL 0x0
322 #define DSPCFG_VAL 0x5040
323 #define SDCFG_VAL 0x008c /* set voltage thresholds for Signal Detect */
324 #define DSPCFG_LOCK 0x20 /* coefficient lock bit in DSPCFG */
325 #define DSPCFG_COEF 0x1000 /* see coefficient (in TSTDAT) bit in DSPCFG */
326 #define TSTDAT_FIXED 0xe8 /* magic number for bad coefficients */
328 /* misc PCI space registers */
329 enum pci_register_offsets {
343 enum ChipConfig_bits {
347 CfgAnegEnable = 0x2000,
349 CfgAnegFull = 0x8000,
350 CfgAnegDone = 0x8000000,
351 CfgFullDuplex = 0x20000000,
352 CfgSpeed100 = 0x40000000,
353 CfgLink = 0x80000000,
359 EE_ChipSelect = 0x08,
366 enum PCIBusCfg_bits {
370 /* Bits in the interrupt status/mask registers. */
371 enum IntrStatus_bits {
375 IntrRxEarly = 0x0008,
377 IntrRxOverrun = 0x0020,
382 IntrTxUnderrun = 0x0400,
387 IntrHighBits = 0x8000,
388 RxStatusFIFOOver = 0x10000,
389 IntrPCIErr = 0xf00000,
390 RxResetDone = 0x1000000,
391 TxResetDone = 0x2000000,
392 IntrAbnormalSummary = 0xCD20,
396 * Default Interrupts:
397 * Rx OK, Rx Packet Error, Rx Overrun,
398 * Tx OK, Tx Packet Error, Tx Underrun,
399 * MIB Service, Phy Interrupt, High Bits,
400 * Rx Status FIFO overrun,
401 * Received Target Abort, Received Master Abort,
402 * Signalled System Error, Received Parity Error
404 #define DEFAULT_INTR 0x00f1cd65
409 TxMxdmaMask = 0x700000,
411 TxMxdma_4 = 0x100000,
412 TxMxdma_8 = 0x200000,
413 TxMxdma_16 = 0x300000,
414 TxMxdma_32 = 0x400000,
415 TxMxdma_64 = 0x500000,
416 TxMxdma_128 = 0x600000,
417 TxMxdma_256 = 0x700000,
418 TxCollRetry = 0x800000,
419 TxAutoPad = 0x10000000,
420 TxMacLoop = 0x20000000,
421 TxHeartIgn = 0x40000000,
422 TxCarrierIgn = 0x80000000
427 * - 256 byte DMA burst length
428 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
429 * - 64 bytes initial drain threshold (i.e. begin actual transmission
430 * when 64 byte are in the fifo)
431 * - on tx underruns, increase drain threshold by 64.
432 * - at most use a drain threshold of 1472 bytes: The sum of the fill
433 * threshold and the drain threshold must be less than 2016 bytes.
436 #define TX_FLTH_VAL ((512/32) << 8)
437 #define TX_DRTH_VAL_START (64/32)
438 #define TX_DRTH_VAL_INC 2
439 #define TX_DRTH_VAL_LIMIT (1472/32)
443 RxMxdmaMask = 0x700000,
445 RxMxdma_4 = 0x100000,
446 RxMxdma_8 = 0x200000,
447 RxMxdma_16 = 0x300000,
448 RxMxdma_32 = 0x400000,
449 RxMxdma_64 = 0x500000,
450 RxMxdma_128 = 0x600000,
451 RxMxdma_256 = 0x700000,
452 RxAcceptLong = 0x8000000,
453 RxAcceptTx = 0x10000000,
454 RxAcceptRunt = 0x40000000,
455 RxAcceptErr = 0x80000000
457 #define RX_DRTH_VAL (128/8)
475 WakeMagicSecure = 0x400,
476 SecureHack = 0x100000,
478 WokeUnicast = 0x800000,
479 WokeMulticast = 0x1000000,
480 WokeBroadcast = 0x2000000,
482 WokePMatch0 = 0x8000000,
483 WokePMatch1 = 0x10000000,
484 WokePMatch2 = 0x20000000,
485 WokePMatch3 = 0x40000000,
486 WokeMagic = 0x80000000,
487 WakeOptsSummary = 0x7ff
490 enum RxFilterAddr_bits {
491 RFCRAddressMask = 0x3ff,
492 AcceptMulticast = 0x00200000,
493 AcceptMyPhys = 0x08000000,
494 AcceptAllPhys = 0x10000000,
495 AcceptAllMulticast = 0x20000000,
496 AcceptBroadcast = 0x40000000,
497 RxFilterEnable = 0x80000000
500 enum StatsCtrl_bits {
507 enum MIntrCtrl_bits {
515 #define PHY_ADDR_NONE 32
516 #define PHY_ADDR_INTERNAL 1
518 /* values we might find in the silicon revision register */
519 #define SRR_DP83815_C 0x0302
520 #define SRR_DP83815_D 0x0403
521 #define SRR_DP83816_A4 0x0504
522 #define SRR_DP83816_A5 0x0505
524 /* The Rx and Tx buffer descriptors. */
525 /* Note that using only 32 bit fields simplifies conversion to big-endian
534 /* Bits in network_desc.status */
535 enum desc_status_bits {
536 DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
537 DescNoCRC=0x10000000, DescPktOK=0x08000000,
540 DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
541 DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
542 DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
543 DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
545 DescRxAbort=0x04000000, DescRxOver=0x02000000,
546 DescRxDest=0x01800000, DescRxLong=0x00400000,
547 DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
548 DescRxCRC=0x00080000, DescRxAlign=0x00040000,
549 DescRxLoop=0x00020000, DesRxColl=0x00010000,
552 struct netdev_private {
553 /* Descriptor rings first for alignment */
555 struct netdev_desc *rx_ring;
556 struct netdev_desc *tx_ring;
557 /* The addresses of receive-in-place skbuffs */
558 struct sk_buff *rx_skbuff[RX_RING_SIZE];
559 dma_addr_t rx_dma[RX_RING_SIZE];
560 /* address of a sent-in-place packet/buffer, for later free() */
561 struct sk_buff *tx_skbuff[TX_RING_SIZE];
562 dma_addr_t tx_dma[TX_RING_SIZE];
563 struct net_device *dev;
564 struct napi_struct napi;
565 struct net_device_stats stats;
566 /* Media monitoring timer */
567 struct timer_list timer;
568 /* Frequently used values: keep some adjacent for cache effect */
569 struct pci_dev *pci_dev;
570 struct netdev_desc *rx_head_desc;
571 /* Producer/consumer ring indices */
572 unsigned int cur_rx, dirty_rx;
573 unsigned int cur_tx, dirty_tx;
574 /* Based on MTU+slack. */
575 unsigned int rx_buf_sz;
577 /* Interrupt status */
579 /* Do not touch the nic registers */
581 /* Don't pay attention to the reported link state. */
583 /* external phy that is used: only valid if dev->if_port != PORT_TP */
585 int phy_addr_external;
586 unsigned int full_duplex;
590 /* FIFO and PCI burst thresholds */
591 u32 tx_config, rx_config;
592 /* original contents of ClkRun register */
594 /* silicon revision */
596 /* expected DSPCFG value */
598 int dspcfg_workaround;
599 /* parms saved in ethtool format */
600 u16 speed; /* The forced speed, 10Mb, 100Mb, gigabit */
601 u8 duplex; /* Duplex, half or full */
602 u8 autoneg; /* Autonegotiation enabled */
603 /* MII transceiver section */
612 static void move_int_phy(struct net_device *dev, int addr);
613 static int eeprom_read(void __iomem *ioaddr, int location);
614 static int mdio_read(struct net_device *dev, int reg);
615 static void mdio_write(struct net_device *dev, int reg, u16 data);
616 static void init_phy_fixup(struct net_device *dev);
617 static int miiport_read(struct net_device *dev, int phy_id, int reg);
618 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
619 static int find_mii(struct net_device *dev);
620 static void natsemi_reset(struct net_device *dev);
621 static void natsemi_reload_eeprom(struct net_device *dev);
622 static void natsemi_stop_rxtx(struct net_device *dev);
623 static int netdev_open(struct net_device *dev);
624 static void do_cable_magic(struct net_device *dev);
625 static void undo_cable_magic(struct net_device *dev);
626 static void check_link(struct net_device *dev);
627 static void netdev_timer(unsigned long data);
628 static void dump_ring(struct net_device *dev);
629 static void tx_timeout(struct net_device *dev);
630 static int alloc_ring(struct net_device *dev);
631 static void refill_rx(struct net_device *dev);
632 static void init_ring(struct net_device *dev);
633 static void drain_tx(struct net_device *dev);
634 static void drain_ring(struct net_device *dev);
635 static void free_ring(struct net_device *dev);
636 static void reinit_ring(struct net_device *dev);
637 static void init_registers(struct net_device *dev);
638 static int start_tx(struct sk_buff *skb, struct net_device *dev);
639 static irqreturn_t intr_handler(int irq, void *dev_instance);
640 static void netdev_error(struct net_device *dev, int intr_status);
641 static int natsemi_poll(struct napi_struct *napi, int budget);
642 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
643 static void netdev_tx_done(struct net_device *dev);
644 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
645 #ifdef CONFIG_NET_POLL_CONTROLLER
646 static void natsemi_poll_controller(struct net_device *dev);
648 static void __set_rx_mode(struct net_device *dev);
649 static void set_rx_mode(struct net_device *dev);
650 static void __get_stats(struct net_device *dev);
651 static struct net_device_stats *get_stats(struct net_device *dev);
652 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
653 static int netdev_set_wol(struct net_device *dev, u32 newval);
654 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
655 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
656 static int netdev_get_sopass(struct net_device *dev, u8 *data);
657 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
658 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
659 static void enable_wol_mode(struct net_device *dev, int enable_intr);
660 static int netdev_close(struct net_device *dev);
661 static int netdev_get_regs(struct net_device *dev, u8 *buf);
662 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
663 static const struct ethtool_ops ethtool_ops;
665 #define NATSEMI_ATTR(_name) \
666 static ssize_t natsemi_show_##_name(struct device *dev, \
667 struct device_attribute *attr, char *buf); \
668 static ssize_t natsemi_set_##_name(struct device *dev, \
669 struct device_attribute *attr, \
670 const char *buf, size_t count); \
671 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
673 #define NATSEMI_CREATE_FILE(_dev, _name) \
674 device_create_file(&_dev->dev, &dev_attr_##_name)
675 #define NATSEMI_REMOVE_FILE(_dev, _name) \
676 device_remove_file(&_dev->dev, &dev_attr_##_name)
678 NATSEMI_ATTR(dspcfg_workaround);
680 static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
681 struct device_attribute *attr,
684 struct netdev_private *np = netdev_priv(to_net_dev(dev));
686 return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
689 static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
690 struct device_attribute *attr,
691 const char *buf, size_t count)
693 struct netdev_private *np = netdev_priv(to_net_dev(dev));
697 /* Find out the new setting */
698 if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
700 else if (!strncmp("off", buf, count - 1)
701 || !strncmp("0", buf, count - 1))
706 spin_lock_irqsave(&np->lock, flags);
708 np->dspcfg_workaround = new_setting;
710 spin_unlock_irqrestore(&np->lock, flags);
715 static inline void __iomem *ns_ioaddr(struct net_device *dev)
717 return (void __iomem *) dev->base_addr;
720 static inline void natsemi_irq_enable(struct net_device *dev)
722 writel(1, ns_ioaddr(dev) + IntrEnable);
723 readl(ns_ioaddr(dev) + IntrEnable);
726 static inline void natsemi_irq_disable(struct net_device *dev)
728 writel(0, ns_ioaddr(dev) + IntrEnable);
729 readl(ns_ioaddr(dev) + IntrEnable);
732 static void move_int_phy(struct net_device *dev, int addr)
734 struct netdev_private *np = netdev_priv(dev);
735 void __iomem *ioaddr = ns_ioaddr(dev);
739 * The internal phy is visible on the external mii bus. Therefore we must
740 * move it away before we can send commands to an external phy.
741 * There are two addresses we must avoid:
742 * - the address on the external phy that is used for transmission.
743 * - the address that we want to access. User space can access phys
744 * on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independant from the
745 * phy that is used for transmission.
750 if (target == np->phy_addr_external)
752 writew(target, ioaddr + PhyCtrl);
753 readw(ioaddr + PhyCtrl);
757 static void __devinit natsemi_init_media (struct net_device *dev)
759 struct netdev_private *np = netdev_priv(dev);
763 netif_carrier_on(dev);
765 netif_carrier_off(dev);
767 /* get the initial settings from hardware */
768 tmp = mdio_read(dev, MII_BMCR);
769 np->speed = (tmp & BMCR_SPEED100)? SPEED_100 : SPEED_10;
770 np->duplex = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF;
771 np->autoneg = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
772 np->advertising= mdio_read(dev, MII_ADVERTISE);
774 if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL
775 && netif_msg_probe(np)) {
776 printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
778 pci_name(np->pci_dev),
779 (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
780 "enabled, advertise" : "disabled, force",
782 (ADVERTISE_100FULL|ADVERTISE_100HALF))?
785 (ADVERTISE_100FULL|ADVERTISE_10FULL))?
788 if (netif_msg_probe(np))
790 "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
791 pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
796 static int __devinit natsemi_probe1 (struct pci_dev *pdev,
797 const struct pci_device_id *ent)
799 struct net_device *dev;
800 struct netdev_private *np;
801 int i, option, irq, chip_idx = ent->driver_data;
802 static int find_cnt = -1;
803 unsigned long iostart, iosize;
804 void __iomem *ioaddr;
805 const int pcibar = 1; /* PCI base address register */
809 /* when built into the kernel, we only print version if device is found */
811 static int printed_version;
812 if (!printed_version++)
816 i = pci_enable_device(pdev);
819 /* natsemi has a non-standard PM control register
820 * in PCI config space. Some boards apparently need
821 * to be brought to D0 in this manner.
823 pci_read_config_dword(pdev, PCIPM, &tmp);
824 if (tmp & PCI_PM_CTRL_STATE_MASK) {
825 /* D0 state, disable PME assertion */
826 u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
827 pci_write_config_dword(pdev, PCIPM, newtmp);
831 iostart = pci_resource_start(pdev, pcibar);
832 iosize = pci_resource_len(pdev, pcibar);
835 pci_set_master(pdev);
837 dev = alloc_etherdev(sizeof (struct netdev_private));
840 SET_NETDEV_DEV(dev, &pdev->dev);
842 i = pci_request_regions(pdev, DRV_NAME);
844 goto err_pci_request_regions;
846 ioaddr = ioremap(iostart, iosize);
852 /* Work around the dropped serial bit. */
853 prev_eedata = eeprom_read(ioaddr, 6);
854 for (i = 0; i < 3; i++) {
855 int eedata = eeprom_read(ioaddr, i + 7);
856 dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
857 dev->dev_addr[i*2+1] = eedata >> 7;
858 prev_eedata = eedata;
861 dev->base_addr = (unsigned long __force) ioaddr;
864 np = netdev_priv(dev);
865 netif_napi_add(dev, &np->napi, natsemi_poll, 64);
868 pci_set_drvdata(pdev, dev);
870 spin_lock_init(&np->lock);
871 np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
874 np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
875 if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
879 np->dspcfg_workaround = dspcfg_workaround;
882 * - If configured to ignore the PHY set up for external.
883 * - If the nic was configured to use an external phy and if find_mii
884 * finds a phy: use external port, first phy that replies.
885 * - Otherwise: internal port.
886 * Note that the phy address for the internal phy doesn't matter:
887 * The address would be used to access a phy over the mii bus, but
888 * the internal phy is accessed through mapped registers.
890 if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
891 dev->if_port = PORT_MII;
893 dev->if_port = PORT_TP;
894 /* Reset the chip to erase previous misconfiguration. */
895 natsemi_reload_eeprom(dev);
898 if (dev->if_port != PORT_TP) {
899 np->phy_addr_external = find_mii(dev);
900 /* If we're ignoring the PHY it doesn't matter if we can't
902 if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
903 dev->if_port = PORT_TP;
904 np->phy_addr_external = PHY_ADDR_INTERNAL;
907 np->phy_addr_external = PHY_ADDR_INTERNAL;
910 option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
912 option = dev->mem_start;
914 /* The lower four bits are the media type. */
920 "natsemi %s: ignoring user supplied media type %d",
921 pci_name(np->pci_dev), option & 15);
923 if (find_cnt < MAX_UNITS && full_duplex[find_cnt])
926 /* The chip-specific entries in the device structure. */
927 dev->open = &netdev_open;
928 dev->hard_start_xmit = &start_tx;
929 dev->stop = &netdev_close;
930 dev->get_stats = &get_stats;
931 dev->set_multicast_list = &set_rx_mode;
932 dev->change_mtu = &natsemi_change_mtu;
933 dev->do_ioctl = &netdev_ioctl;
934 dev->tx_timeout = &tx_timeout;
935 dev->watchdog_timeo = TX_TIMEOUT;
937 #ifdef CONFIG_NET_POLL_CONTROLLER
938 dev->poll_controller = &natsemi_poll_controller;
940 SET_ETHTOOL_OPS(dev, ðtool_ops);
945 natsemi_init_media(dev);
947 /* save the silicon revision for later querying */
948 np->srr = readl(ioaddr + SiliconRev);
949 if (netif_msg_hw(np))
950 printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
951 pci_name(np->pci_dev), np->srr);
953 i = register_netdev(dev);
955 goto err_register_netdev;
957 if (NATSEMI_CREATE_FILE(pdev, dspcfg_workaround))
958 goto err_create_file;
960 if (netif_msg_drv(np)) {
961 printk(KERN_INFO "natsemi %s: %s at %#08lx (%s), ",
962 dev->name, natsemi_pci_info[chip_idx].name, iostart,
963 pci_name(np->pci_dev));
964 for (i = 0; i < ETH_ALEN-1; i++)
965 printk("%02x:", dev->dev_addr[i]);
966 printk("%02x, IRQ %d", dev->dev_addr[i], irq);
967 if (dev->if_port == PORT_TP)
968 printk(", port TP.\n");
969 else if (np->ignore_phy)
970 printk(", port MII, ignoring PHY\n");
972 printk(", port MII, phy ad %d.\n", np->phy_addr_external);
977 unregister_netdev(dev);
983 pci_release_regions(pdev);
984 pci_set_drvdata(pdev, NULL);
986 err_pci_request_regions:
992 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
993 The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
995 /* Delay between EEPROM clock transitions.
996 No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
997 a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that
998 made udelay() unreliable.
999 The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
1002 #define eeprom_delay(ee_addr) readl(ee_addr)
1004 #define EE_Write0 (EE_ChipSelect)
1005 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
1007 /* The EEPROM commands include the alway-set leading bit. */
1009 EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1012 static int eeprom_read(void __iomem *addr, int location)
1016 void __iomem *ee_addr = addr + EECtrl;
1017 int read_cmd = location | EE_ReadCmd;
1019 writel(EE_Write0, ee_addr);
1021 /* Shift the read command bits out. */
1022 for (i = 10; i >= 0; i--) {
1023 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1024 writel(dataval, ee_addr);
1025 eeprom_delay(ee_addr);
1026 writel(dataval | EE_ShiftClk, ee_addr);
1027 eeprom_delay(ee_addr);
1029 writel(EE_ChipSelect, ee_addr);
1030 eeprom_delay(ee_addr);
1032 for (i = 0; i < 16; i++) {
1033 writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1034 eeprom_delay(ee_addr);
1035 retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1036 writel(EE_ChipSelect, ee_addr);
1037 eeprom_delay(ee_addr);
1040 /* Terminate the EEPROM access. */
1041 writel(EE_Write0, ee_addr);
1046 /* MII transceiver control section.
1047 * The 83815 series has an internal transceiver, and we present the
1048 * internal management registers as if they were MII connected.
1049 * External Phy registers are referenced through the MII interface.
1052 /* clock transitions >= 20ns (25MHz)
1053 * One readl should be good to PCI @ 100MHz
1055 #define mii_delay(ioaddr) readl(ioaddr + EECtrl)
1057 static int mii_getbit (struct net_device *dev)
1060 void __iomem *ioaddr = ns_ioaddr(dev);
1062 writel(MII_ShiftClk, ioaddr + EECtrl);
1063 data = readl(ioaddr + EECtrl);
1064 writel(0, ioaddr + EECtrl);
1066 return (data & MII_Data)? 1 : 0;
1069 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1072 void __iomem *ioaddr = ns_ioaddr(dev);
1074 for (i = (1 << (len-1)); i; i >>= 1)
1076 u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1077 writel(mdio_val, ioaddr + EECtrl);
1079 writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1082 writel(0, ioaddr + EECtrl);
1086 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1093 mii_send_bits (dev, 0xffffffff, 32);
1094 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1095 /* ST,OP = 0110'b for read operation */
1096 cmd = (0x06 << 10) | (phy_id << 5) | reg;
1097 mii_send_bits (dev, cmd, 14);
1099 if (mii_getbit (dev))
1102 for (i = 0; i < 16; i++) {
1104 retval |= mii_getbit (dev);
1111 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1116 mii_send_bits (dev, 0xffffffff, 32);
1117 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1118 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1119 cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1120 mii_send_bits (dev, cmd, 32);
1125 static int mdio_read(struct net_device *dev, int reg)
1127 struct netdev_private *np = netdev_priv(dev);
1128 void __iomem *ioaddr = ns_ioaddr(dev);
1130 /* The 83815 series has two ports:
1131 * - an internal transceiver
1132 * - an external mii bus
1134 if (dev->if_port == PORT_TP)
1135 return readw(ioaddr+BasicControl+(reg<<2));
1137 return miiport_read(dev, np->phy_addr_external, reg);
1140 static void mdio_write(struct net_device *dev, int reg, u16 data)
1142 struct netdev_private *np = netdev_priv(dev);
1143 void __iomem *ioaddr = ns_ioaddr(dev);
1145 /* The 83815 series has an internal transceiver; handle separately */
1146 if (dev->if_port == PORT_TP)
1147 writew(data, ioaddr+BasicControl+(reg<<2));
1149 miiport_write(dev, np->phy_addr_external, reg, data);
1152 static void init_phy_fixup(struct net_device *dev)
1154 struct netdev_private *np = netdev_priv(dev);
1155 void __iomem *ioaddr = ns_ioaddr(dev);
1160 /* restore stuff lost when power was out */
1161 tmp = mdio_read(dev, MII_BMCR);
1162 if (np->autoneg == AUTONEG_ENABLE) {
1163 /* renegotiate if something changed */
1164 if ((tmp & BMCR_ANENABLE) == 0
1165 || np->advertising != mdio_read(dev, MII_ADVERTISE))
1167 /* turn on autonegotiation and force negotiation */
1168 tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1169 mdio_write(dev, MII_ADVERTISE, np->advertising);
1172 /* turn off auto negotiation, set speed and duplexity */
1173 tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1174 if (np->speed == SPEED_100)
1175 tmp |= BMCR_SPEED100;
1176 if (np->duplex == DUPLEX_FULL)
1177 tmp |= BMCR_FULLDPLX;
1179 * Note: there is no good way to inform the link partner
1180 * that our capabilities changed. The user has to unplug
1181 * and replug the network cable after some changes, e.g.
1182 * after switching from 10HD, autoneg off to 100 HD,
1186 mdio_write(dev, MII_BMCR, tmp);
1187 readl(ioaddr + ChipConfig);
1190 /* find out what phy this is */
1191 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1192 + mdio_read(dev, MII_PHYSID2);
1194 /* handle external phys here */
1196 case PHYID_AM79C874:
1197 /* phy specific configuration for fibre/tp operation */
1198 tmp = mdio_read(dev, MII_MCTRL);
1199 tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1200 if (dev->if_port == PORT_FIBRE)
1204 mdio_write(dev, MII_MCTRL, tmp);
1209 cfg = readl(ioaddr + ChipConfig);
1210 if (cfg & CfgExtPhy)
1213 /* On page 78 of the spec, they recommend some settings for "optimum
1214 performance" to be done in sequence. These settings optimize some
1215 of the 100Mbit autodetection circuitry. They say we only want to
1216 do this for rev C of the chip, but engineers at NSC (Bradley
1217 Kennedy) recommends always setting them. If you don't, you get
1218 errors on some autonegotiations that make the device unusable.
1220 It seems that the DSP needs a few usec to reinitialize after
1221 the start of the phy. Just retry writing these values until they
1224 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1227 writew(1, ioaddr + PGSEL);
1228 writew(PMDCSR_VAL, ioaddr + PMDCSR);
1229 writew(TSTDAT_VAL, ioaddr + TSTDAT);
1230 np->dspcfg = (np->srr <= SRR_DP83815_C)?
1231 DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1232 writew(np->dspcfg, ioaddr + DSPCFG);
1233 writew(SDCFG_VAL, ioaddr + SDCFG);
1234 writew(0, ioaddr + PGSEL);
1235 readl(ioaddr + ChipConfig);
1238 writew(1, ioaddr + PGSEL);
1239 dspcfg = readw(ioaddr + DSPCFG);
1240 writew(0, ioaddr + PGSEL);
1241 if (np->dspcfg == dspcfg)
1245 if (netif_msg_link(np)) {
1246 if (i==NATSEMI_HW_TIMEOUT) {
1248 "%s: DSPCFG mismatch after retrying for %d usec.\n",
1252 "%s: DSPCFG accepted after %d usec.\n",
1257 * Enable PHY Specific event based interrupts. Link state change
1258 * and Auto-Negotiation Completion are among the affected.
1259 * Read the intr status to clear it (needed for wake events).
1261 readw(ioaddr + MIntrStatus);
1262 writew(MICRIntEn, ioaddr + MIntrCtrl);
1265 static int switch_port_external(struct net_device *dev)
1267 struct netdev_private *np = netdev_priv(dev);
1268 void __iomem *ioaddr = ns_ioaddr(dev);
1271 cfg = readl(ioaddr + ChipConfig);
1272 if (cfg & CfgExtPhy)
1275 if (netif_msg_link(np)) {
1276 printk(KERN_INFO "%s: switching to external transceiver.\n",
1280 /* 1) switch back to external phy */
1281 writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1282 readl(ioaddr + ChipConfig);
1285 /* 2) reset the external phy: */
1286 /* resetting the external PHY has been known to cause a hub supplying
1287 * power over Ethernet to kill the power. We don't want to kill
1288 * power to this computer, so we avoid resetting the phy.
1291 /* 3) reinit the phy fixup, it got lost during power down. */
1292 move_int_phy(dev, np->phy_addr_external);
1293 init_phy_fixup(dev);
1298 static int switch_port_internal(struct net_device *dev)
1300 struct netdev_private *np = netdev_priv(dev);
1301 void __iomem *ioaddr = ns_ioaddr(dev);
1306 cfg = readl(ioaddr + ChipConfig);
1307 if (!(cfg &CfgExtPhy))
1310 if (netif_msg_link(np)) {
1311 printk(KERN_INFO "%s: switching to internal transceiver.\n",
1314 /* 1) switch back to internal phy: */
1315 cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1316 writel(cfg, ioaddr + ChipConfig);
1317 readl(ioaddr + ChipConfig);
1320 /* 2) reset the internal phy: */
1321 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1322 writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1323 readl(ioaddr + ChipConfig);
1325 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1326 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1327 if (!(bmcr & BMCR_RESET))
1331 if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1333 "%s: phy reset did not complete in %d usec.\n",
1336 /* 3) reinit the phy fixup, it got lost during power down. */
1337 init_phy_fixup(dev);
1342 /* Scan for a PHY on the external mii bus.
1343 * There are two tricky points:
1344 * - Do not scan while the internal phy is enabled. The internal phy will
1345 * crash: e.g. reads from the DSPCFG register will return odd values and
1346 * the nasty random phy reset code will reset the nic every few seconds.
1347 * - The internal phy must be moved around, an external phy could
1348 * have the same address as the internal phy.
1350 static int find_mii(struct net_device *dev)
1352 struct netdev_private *np = netdev_priv(dev);
1357 /* Switch to external phy */
1358 did_switch = switch_port_external(dev);
1360 /* Scan the possible phy addresses:
1362 * PHY address 0 means that the phy is in isolate mode. Not yet
1363 * supported due to lack of test hardware. User space should
1364 * handle it through ethtool.
1366 for (i = 1; i <= 31; i++) {
1367 move_int_phy(dev, i);
1368 tmp = miiport_read(dev, i, MII_BMSR);
1369 if (tmp != 0xffff && tmp != 0x0000) {
1370 /* found something! */
1371 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1372 + mdio_read(dev, MII_PHYSID2);
1373 if (netif_msg_probe(np)) {
1374 printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1375 pci_name(np->pci_dev), np->mii, i);
1380 /* And switch back to internal phy: */
1382 switch_port_internal(dev);
1386 /* CFG bits [13:16] [18:23] */
1387 #define CFG_RESET_SAVE 0xfde000
1388 /* WCSR bits [0:4] [9:10] */
1389 #define WCSR_RESET_SAVE 0x61f
1390 /* RFCR bits [20] [22] [27:31] */
1391 #define RFCR_RESET_SAVE 0xf8500000;
1393 static void natsemi_reset(struct net_device *dev)
1401 struct netdev_private *np = netdev_priv(dev);
1402 void __iomem *ioaddr = ns_ioaddr(dev);
1405 * Resetting the chip causes some registers to be lost.
1406 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1407 * we save the state that would have been loaded from EEPROM
1408 * on a normal power-up (see the spec EEPROM map). This assumes
1409 * whoever calls this will follow up with init_registers() eventually.
1413 cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1415 wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1417 rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1419 for (i = 0; i < 3; i++) {
1420 writel(i*2, ioaddr + RxFilterAddr);
1421 pmatch[i] = readw(ioaddr + RxFilterData);
1424 for (i = 0; i < 3; i++) {
1425 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1426 sopass[i] = readw(ioaddr + RxFilterData);
1429 /* now whack the chip */
1430 writel(ChipReset, ioaddr + ChipCmd);
1431 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1432 if (!(readl(ioaddr + ChipCmd) & ChipReset))
1436 if (i==NATSEMI_HW_TIMEOUT) {
1437 printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1439 } else if (netif_msg_hw(np)) {
1440 printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1445 cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1446 /* turn on external phy if it was selected */
1447 if (dev->if_port == PORT_TP)
1448 cfg &= ~(CfgExtPhy | CfgPhyDis);
1450 cfg |= (CfgExtPhy | CfgPhyDis);
1451 writel(cfg, ioaddr + ChipConfig);
1453 wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1454 writel(wcsr, ioaddr + WOLCmd);
1456 rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1457 /* restore PMATCH */
1458 for (i = 0; i < 3; i++) {
1459 writel(i*2, ioaddr + RxFilterAddr);
1460 writew(pmatch[i], ioaddr + RxFilterData);
1462 for (i = 0; i < 3; i++) {
1463 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1464 writew(sopass[i], ioaddr + RxFilterData);
1467 writel(rfcr, ioaddr + RxFilterAddr);
1470 static void reset_rx(struct net_device *dev)
1473 struct netdev_private *np = netdev_priv(dev);
1474 void __iomem *ioaddr = ns_ioaddr(dev);
1476 np->intr_status &= ~RxResetDone;
1478 writel(RxReset, ioaddr + ChipCmd);
1480 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1481 np->intr_status |= readl(ioaddr + IntrStatus);
1482 if (np->intr_status & RxResetDone)
1486 if (i==NATSEMI_HW_TIMEOUT) {
1487 printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1489 } else if (netif_msg_hw(np)) {
1490 printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1495 static void natsemi_reload_eeprom(struct net_device *dev)
1497 struct netdev_private *np = netdev_priv(dev);
1498 void __iomem *ioaddr = ns_ioaddr(dev);
1501 writel(EepromReload, ioaddr + PCIBusCfg);
1502 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1504 if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1507 if (i==NATSEMI_HW_TIMEOUT) {
1508 printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1509 pci_name(np->pci_dev), i*50);
1510 } else if (netif_msg_hw(np)) {
1511 printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1512 pci_name(np->pci_dev), i*50);
1516 static void natsemi_stop_rxtx(struct net_device *dev)
1518 void __iomem * ioaddr = ns_ioaddr(dev);
1519 struct netdev_private *np = netdev_priv(dev);
1522 writel(RxOff | TxOff, ioaddr + ChipCmd);
1523 for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1524 if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1528 if (i==NATSEMI_HW_TIMEOUT) {
1529 printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1531 } else if (netif_msg_hw(np)) {
1532 printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1537 static int netdev_open(struct net_device *dev)
1539 struct netdev_private *np = netdev_priv(dev);
1540 void __iomem * ioaddr = ns_ioaddr(dev);
1543 /* Reset the chip, just in case. */
1546 i = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
1549 if (netif_msg_ifup(np))
1550 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1551 dev->name, dev->irq);
1552 i = alloc_ring(dev);
1554 free_irq(dev->irq, dev);
1557 napi_enable(&np->napi);
1560 spin_lock_irq(&np->lock);
1561 init_registers(dev);
1562 /* now set the MAC address according to dev->dev_addr */
1563 for (i = 0; i < 3; i++) {
1564 u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1566 writel(i*2, ioaddr + RxFilterAddr);
1567 writew(mac, ioaddr + RxFilterData);
1569 writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1570 spin_unlock_irq(&np->lock);
1572 netif_start_queue(dev);
1574 if (netif_msg_ifup(np))
1575 printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1576 dev->name, (int)readl(ioaddr + ChipCmd));
1578 /* Set the timer to check for link beat. */
1579 init_timer(&np->timer);
1580 np->timer.expires = jiffies + NATSEMI_TIMER_FREQ;
1581 np->timer.data = (unsigned long)dev;
1582 np->timer.function = &netdev_timer; /* timer handler */
1583 add_timer(&np->timer);
1588 static void do_cable_magic(struct net_device *dev)
1590 struct netdev_private *np = netdev_priv(dev);
1591 void __iomem *ioaddr = ns_ioaddr(dev);
1593 if (dev->if_port != PORT_TP)
1596 if (np->srr >= SRR_DP83816_A5)
1600 * 100 MBit links with short cables can trip an issue with the chip.
1601 * The problem manifests as lots of CRC errors and/or flickering
1602 * activity LED while idle. This process is based on instructions
1603 * from engineers at National.
1605 if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1608 writew(1, ioaddr + PGSEL);
1610 * coefficient visibility should already be enabled via
1613 data = readw(ioaddr + TSTDAT) & 0xff;
1615 * the value must be negative, and within certain values
1616 * (these values all come from National)
1618 if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1619 struct netdev_private *np = netdev_priv(dev);
1621 /* the bug has been triggered - fix the coefficient */
1622 writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1623 /* lock the value */
1624 data = readw(ioaddr + DSPCFG);
1625 np->dspcfg = data | DSPCFG_LOCK;
1626 writew(np->dspcfg, ioaddr + DSPCFG);
1628 writew(0, ioaddr + PGSEL);
1632 static void undo_cable_magic(struct net_device *dev)
1635 struct netdev_private *np = netdev_priv(dev);
1636 void __iomem * ioaddr = ns_ioaddr(dev);
1638 if (dev->if_port != PORT_TP)
1641 if (np->srr >= SRR_DP83816_A5)
1644 writew(1, ioaddr + PGSEL);
1645 /* make sure the lock bit is clear */
1646 data = readw(ioaddr + DSPCFG);
1647 np->dspcfg = data & ~DSPCFG_LOCK;
1648 writew(np->dspcfg, ioaddr + DSPCFG);
1649 writew(0, ioaddr + PGSEL);
1652 static void check_link(struct net_device *dev)
1654 struct netdev_private *np = netdev_priv(dev);
1655 void __iomem * ioaddr = ns_ioaddr(dev);
1656 int duplex = np->duplex;
1659 /* If we are ignoring the PHY then don't try reading it. */
1661 goto propagate_state;
1663 /* The link status field is latched: it remains low after a temporary
1664 * link failure until it's read. We need the current link status,
1667 mdio_read(dev, MII_BMSR);
1668 bmsr = mdio_read(dev, MII_BMSR);
1670 if (!(bmsr & BMSR_LSTATUS)) {
1671 if (netif_carrier_ok(dev)) {
1672 if (netif_msg_link(np))
1673 printk(KERN_NOTICE "%s: link down.\n",
1675 netif_carrier_off(dev);
1676 undo_cable_magic(dev);
1680 if (!netif_carrier_ok(dev)) {
1681 if (netif_msg_link(np))
1682 printk(KERN_NOTICE "%s: link up.\n", dev->name);
1683 netif_carrier_on(dev);
1684 do_cable_magic(dev);
1687 duplex = np->full_duplex;
1689 if (bmsr & BMSR_ANEGCOMPLETE) {
1690 int tmp = mii_nway_result(
1691 np->advertising & mdio_read(dev, MII_LPA));
1692 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1694 } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1699 /* if duplex is set then bit 28 must be set, too */
1700 if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1701 if (netif_msg_link(np))
1703 "%s: Setting %s-duplex based on negotiated "
1704 "link capability.\n", dev->name,
1705 duplex ? "full" : "half");
1707 np->rx_config |= RxAcceptTx;
1708 np->tx_config |= TxCarrierIgn | TxHeartIgn;
1710 np->rx_config &= ~RxAcceptTx;
1711 np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1713 writel(np->tx_config, ioaddr + TxConfig);
1714 writel(np->rx_config, ioaddr + RxConfig);
1718 static void init_registers(struct net_device *dev)
1720 struct netdev_private *np = netdev_priv(dev);
1721 void __iomem * ioaddr = ns_ioaddr(dev);
1723 init_phy_fixup(dev);
1725 /* clear any interrupts that are pending, such as wake events */
1726 readl(ioaddr + IntrStatus);
1728 writel(np->ring_dma, ioaddr + RxRingPtr);
1729 writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1730 ioaddr + TxRingPtr);
1732 /* Initialize other registers.
1733 * Configure the PCI bus bursts and FIFO thresholds.
1734 * Configure for standard, in-spec Ethernet.
1735 * Start with half-duplex. check_link will update
1736 * to the correct settings.
1739 /* DRTH: 2: start tx if 64 bytes are in the fifo
1740 * FLTH: 0x10: refill with next packet if 512 bytes are free
1741 * MXDMA: 0: up to 256 byte bursts.
1742 * MXDMA must be <= FLTH
1746 np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1747 TX_FLTH_VAL | TX_DRTH_VAL_START;
1748 writel(np->tx_config, ioaddr + TxConfig);
1750 /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1751 * MXDMA 0: up to 256 byte bursts
1753 np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1754 /* if receive ring now has bigger buffers than normal, enable jumbo */
1755 if (np->rx_buf_sz > NATSEMI_LONGPKT)
1756 np->rx_config |= RxAcceptLong;
1758 writel(np->rx_config, ioaddr + RxConfig);
1761 * The PME bit is initialized from the EEPROM contents.
1762 * PCI cards probably have PME disabled, but motherboard
1763 * implementations may have PME set to enable WakeOnLan.
1764 * With PME set the chip will scan incoming packets but
1765 * nothing will be written to memory. */
1766 np->SavedClkRun = readl(ioaddr + ClkRun);
1767 writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1768 if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1769 printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1770 dev->name, readl(ioaddr + WOLCmd));
1776 /* Enable interrupts by setting the interrupt mask. */
1777 writel(DEFAULT_INTR, ioaddr + IntrMask);
1778 natsemi_irq_enable(dev);
1780 writel(RxOn | TxOn, ioaddr + ChipCmd);
1781 writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1787 * 1) check for link changes. Usually they are handled by the MII interrupt
1788 * but it doesn't hurt to check twice.
1789 * 2) check for sudden death of the NIC:
1790 * It seems that a reference set for this chip went out with incorrect info,
1791 * and there exist boards that aren't quite right. An unexpected voltage
1792 * drop can cause the PHY to get itself in a weird state (basically reset).
1793 * NOTE: this only seems to affect revC chips. The user can disable
1794 * this check via dspcfg_workaround sysfs option.
1795 * 3) check of death of the RX path due to OOM
1797 static void netdev_timer(unsigned long data)
1799 struct net_device *dev = (struct net_device *)data;
1800 struct netdev_private *np = netdev_priv(dev);
1801 void __iomem * ioaddr = ns_ioaddr(dev);
1802 int next_tick = 5*HZ;
1804 if (netif_msg_timer(np)) {
1805 /* DO NOT read the IntrStatus register,
1806 * a read clears any pending interrupts.
1808 printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1812 if (dev->if_port == PORT_TP) {
1815 spin_lock_irq(&np->lock);
1816 /* check for a nasty random phy-reset - use dspcfg as a flag */
1817 writew(1, ioaddr+PGSEL);
1818 dspcfg = readw(ioaddr+DSPCFG);
1819 writew(0, ioaddr+PGSEL);
1820 if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1821 if (!netif_queue_stopped(dev)) {
1822 spin_unlock_irq(&np->lock);
1823 if (netif_msg_drv(np))
1824 printk(KERN_NOTICE "%s: possible phy reset: "
1825 "re-initializing\n", dev->name);
1826 disable_irq(dev->irq);
1827 spin_lock_irq(&np->lock);
1828 natsemi_stop_rxtx(dev);
1831 init_registers(dev);
1832 spin_unlock_irq(&np->lock);
1833 enable_irq(dev->irq);
1837 spin_unlock_irq(&np->lock);
1840 /* init_registers() calls check_link() for the above case */
1842 spin_unlock_irq(&np->lock);
1845 spin_lock_irq(&np->lock);
1847 spin_unlock_irq(&np->lock);
1850 disable_irq(dev->irq);
1853 enable_irq(dev->irq);
1855 writel(RxOn, ioaddr + ChipCmd);
1860 mod_timer(&np->timer, jiffies + next_tick);
1863 static void dump_ring(struct net_device *dev)
1865 struct netdev_private *np = netdev_priv(dev);
1867 if (netif_msg_pktdata(np)) {
1869 printk(KERN_DEBUG " Tx ring at %p:\n", np->tx_ring);
1870 for (i = 0; i < TX_RING_SIZE; i++) {
1871 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1872 i, np->tx_ring[i].next_desc,
1873 np->tx_ring[i].cmd_status,
1874 np->tx_ring[i].addr);
1876 printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring);
1877 for (i = 0; i < RX_RING_SIZE; i++) {
1878 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1879 i, np->rx_ring[i].next_desc,
1880 np->rx_ring[i].cmd_status,
1881 np->rx_ring[i].addr);
1886 static void tx_timeout(struct net_device *dev)
1888 struct netdev_private *np = netdev_priv(dev);
1889 void __iomem * ioaddr = ns_ioaddr(dev);
1891 disable_irq(dev->irq);
1892 spin_lock_irq(&np->lock);
1893 if (!np->hands_off) {
1894 if (netif_msg_tx_err(np))
1896 "%s: Transmit timed out, status %#08x,"
1898 dev->name, readl(ioaddr + IntrStatus));
1903 init_registers(dev);
1906 "%s: tx_timeout while in hands_off state?\n",
1909 spin_unlock_irq(&np->lock);
1910 enable_irq(dev->irq);
1912 dev->trans_start = jiffies;
1913 np->stats.tx_errors++;
1914 netif_wake_queue(dev);
1917 static int alloc_ring(struct net_device *dev)
1919 struct netdev_private *np = netdev_priv(dev);
1920 np->rx_ring = pci_alloc_consistent(np->pci_dev,
1921 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1925 np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1929 static void refill_rx(struct net_device *dev)
1931 struct netdev_private *np = netdev_priv(dev);
1933 /* Refill the Rx ring buffers. */
1934 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1935 struct sk_buff *skb;
1936 int entry = np->dirty_rx % RX_RING_SIZE;
1937 if (np->rx_skbuff[entry] == NULL) {
1938 unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1939 skb = dev_alloc_skb(buflen);
1940 np->rx_skbuff[entry] = skb;
1942 break; /* Better luck next round. */
1943 skb->dev = dev; /* Mark as being used by this device. */
1944 np->rx_dma[entry] = pci_map_single(np->pci_dev,
1945 skb->data, buflen, PCI_DMA_FROMDEVICE);
1946 np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1948 np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1950 if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1951 if (netif_msg_rx_err(np))
1952 printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1957 static void set_bufsize(struct net_device *dev)
1959 struct netdev_private *np = netdev_priv(dev);
1960 if (dev->mtu <= ETH_DATA_LEN)
1961 np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1963 np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1966 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1967 static void init_ring(struct net_device *dev)
1969 struct netdev_private *np = netdev_priv(dev);
1973 np->dirty_tx = np->cur_tx = 0;
1974 for (i = 0; i < TX_RING_SIZE; i++) {
1975 np->tx_skbuff[i] = NULL;
1976 np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1977 +sizeof(struct netdev_desc)
1978 *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1979 np->tx_ring[i].cmd_status = 0;
1984 np->cur_rx = RX_RING_SIZE;
1988 np->rx_head_desc = &np->rx_ring[0];
1990 /* Please be carefull before changing this loop - at least gcc-2.95.1
1991 * miscompiles it otherwise.
1993 /* Initialize all Rx descriptors. */
1994 for (i = 0; i < RX_RING_SIZE; i++) {
1995 np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1996 +sizeof(struct netdev_desc)
1997 *((i+1)%RX_RING_SIZE));
1998 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1999 np->rx_skbuff[i] = NULL;
2005 static void drain_tx(struct net_device *dev)
2007 struct netdev_private *np = netdev_priv(dev);
2010 for (i = 0; i < TX_RING_SIZE; i++) {
2011 if (np->tx_skbuff[i]) {
2012 pci_unmap_single(np->pci_dev,
2013 np->tx_dma[i], np->tx_skbuff[i]->len,
2015 dev_kfree_skb(np->tx_skbuff[i]);
2016 np->stats.tx_dropped++;
2018 np->tx_skbuff[i] = NULL;
2022 static void drain_rx(struct net_device *dev)
2024 struct netdev_private *np = netdev_priv(dev);
2025 unsigned int buflen = np->rx_buf_sz;
2028 /* Free all the skbuffs in the Rx queue. */
2029 for (i = 0; i < RX_RING_SIZE; i++) {
2030 np->rx_ring[i].cmd_status = 0;
2031 np->rx_ring[i].addr = 0xBADF00D0; /* An invalid address. */
2032 if (np->rx_skbuff[i]) {
2033 pci_unmap_single(np->pci_dev,
2034 np->rx_dma[i], buflen,
2035 PCI_DMA_FROMDEVICE);
2036 dev_kfree_skb(np->rx_skbuff[i]);
2038 np->rx_skbuff[i] = NULL;
2042 static void drain_ring(struct net_device *dev)
2048 static void free_ring(struct net_device *dev)
2050 struct netdev_private *np = netdev_priv(dev);
2051 pci_free_consistent(np->pci_dev,
2052 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2053 np->rx_ring, np->ring_dma);
2056 static void reinit_rx(struct net_device *dev)
2058 struct netdev_private *np = netdev_priv(dev);
2063 np->cur_rx = RX_RING_SIZE;
2064 np->rx_head_desc = &np->rx_ring[0];
2065 /* Initialize all Rx descriptors. */
2066 for (i = 0; i < RX_RING_SIZE; i++)
2067 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2072 static void reinit_ring(struct net_device *dev)
2074 struct netdev_private *np = netdev_priv(dev);
2079 np->dirty_tx = np->cur_tx = 0;
2080 for (i=0;i<TX_RING_SIZE;i++)
2081 np->tx_ring[i].cmd_status = 0;
2086 static int start_tx(struct sk_buff *skb, struct net_device *dev)
2088 struct netdev_private *np = netdev_priv(dev);
2089 void __iomem * ioaddr = ns_ioaddr(dev);
2091 unsigned long flags;
2093 /* Note: Ordering is important here, set the field with the
2094 "ownership" bit last, and only then increment cur_tx. */
2096 /* Calculate the next Tx descriptor entry. */
2097 entry = np->cur_tx % TX_RING_SIZE;
2099 np->tx_skbuff[entry] = skb;
2100 np->tx_dma[entry] = pci_map_single(np->pci_dev,
2101 skb->data,skb->len, PCI_DMA_TODEVICE);
2103 np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2105 spin_lock_irqsave(&np->lock, flags);
2107 if (!np->hands_off) {
2108 np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2109 /* StrongARM: Explicitly cache flush np->tx_ring and
2110 * skb->data,skb->len. */
2113 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2114 netdev_tx_done(dev);
2115 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2116 netif_stop_queue(dev);
2118 /* Wake the potentially-idle transmit channel. */
2119 writel(TxOn, ioaddr + ChipCmd);
2121 dev_kfree_skb_irq(skb);
2122 np->stats.tx_dropped++;
2124 spin_unlock_irqrestore(&np->lock, flags);
2126 dev->trans_start = jiffies;
2128 if (netif_msg_tx_queued(np)) {
2129 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2130 dev->name, np->cur_tx, entry);
2135 static void netdev_tx_done(struct net_device *dev)
2137 struct netdev_private *np = netdev_priv(dev);
2139 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2140 int entry = np->dirty_tx % TX_RING_SIZE;
2141 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2143 if (netif_msg_tx_done(np))
2145 "%s: tx frame #%d finished, status %#08x.\n",
2146 dev->name, np->dirty_tx,
2147 le32_to_cpu(np->tx_ring[entry].cmd_status));
2148 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2149 np->stats.tx_packets++;
2150 np->stats.tx_bytes += np->tx_skbuff[entry]->len;
2151 } else { /* Various Tx errors */
2153 le32_to_cpu(np->tx_ring[entry].cmd_status);
2154 if (tx_status & (DescTxAbort|DescTxExcColl))
2155 np->stats.tx_aborted_errors++;
2156 if (tx_status & DescTxFIFO)
2157 np->stats.tx_fifo_errors++;
2158 if (tx_status & DescTxCarrier)
2159 np->stats.tx_carrier_errors++;
2160 if (tx_status & DescTxOOWCol)
2161 np->stats.tx_window_errors++;
2162 np->stats.tx_errors++;
2164 pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2165 np->tx_skbuff[entry]->len,
2167 /* Free the original skb. */
2168 dev_kfree_skb_irq(np->tx_skbuff[entry]);
2169 np->tx_skbuff[entry] = NULL;
2171 if (netif_queue_stopped(dev)
2172 && np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2173 /* The ring is no longer full, wake queue. */
2174 netif_wake_queue(dev);
2178 /* The interrupt handler doesn't actually handle interrupts itself, it
2179 * schedules a NAPI poll if there is anything to do. */
2180 static irqreturn_t intr_handler(int irq, void *dev_instance)
2182 struct net_device *dev = dev_instance;
2183 struct netdev_private *np = netdev_priv(dev);
2184 void __iomem * ioaddr = ns_ioaddr(dev);
2186 /* Reading IntrStatus automatically acknowledges so don't do
2187 * that while interrupts are disabled, (for example, while a
2188 * poll is scheduled). */
2189 if (np->hands_off || !readl(ioaddr + IntrEnable))
2192 np->intr_status = readl(ioaddr + IntrStatus);
2194 if (!np->intr_status)
2197 if (netif_msg_intr(np))
2199 "%s: Interrupt, status %#08x, mask %#08x.\n",
2200 dev->name, np->intr_status,
2201 readl(ioaddr + IntrMask));
2203 prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2205 if (netif_rx_schedule_prep(dev, &np->napi)) {
2206 /* Disable interrupts and register for poll */
2207 natsemi_irq_disable(dev);
2208 __netif_rx_schedule(dev, &np->napi);
2211 "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2212 dev->name, np->intr_status,
2213 readl(ioaddr + IntrMask));
2218 /* This is the NAPI poll routine. As well as the standard RX handling
2219 * it also handles all other interrupts that the chip might raise.
2221 static int natsemi_poll(struct napi_struct *napi, int budget)
2223 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2224 struct net_device *dev = np->dev;
2225 void __iomem * ioaddr = ns_ioaddr(dev);
2229 if (netif_msg_intr(np))
2231 "%s: Poll, status %#08x, mask %#08x.\n",
2232 dev->name, np->intr_status,
2233 readl(ioaddr + IntrMask));
2235 /* netdev_rx() may read IntrStatus again if the RX state
2236 * machine falls over so do it first. */
2237 if (np->intr_status &
2238 (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2239 IntrRxErr | IntrRxOverrun)) {
2240 netdev_rx(dev, &work_done, budget);
2243 if (np->intr_status &
2244 (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2245 spin_lock(&np->lock);
2246 netdev_tx_done(dev);
2247 spin_unlock(&np->lock);
2250 /* Abnormal error summary/uncommon events handlers. */
2251 if (np->intr_status & IntrAbnormalSummary)
2252 netdev_error(dev, np->intr_status);
2254 if (work_done >= budget)
2257 np->intr_status = readl(ioaddr + IntrStatus);
2258 } while (np->intr_status);
2260 netif_rx_complete(dev, napi);
2262 /* Reenable interrupts providing nothing is trying to shut
2264 spin_lock(&np->lock);
2265 if (!np->hands_off && netif_running(dev))
2266 natsemi_irq_enable(dev);
2267 spin_unlock(&np->lock);
2272 /* This routine is logically part of the interrupt handler, but separated
2273 for clarity and better register allocation. */
2274 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2276 struct netdev_private *np = netdev_priv(dev);
2277 int entry = np->cur_rx % RX_RING_SIZE;
2278 int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2279 s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2280 unsigned int buflen = np->rx_buf_sz;
2281 void __iomem * ioaddr = ns_ioaddr(dev);
2283 /* If the driver owns the next entry it's a new packet. Send it up. */
2284 while (desc_status < 0) { /* e.g. & DescOwn */
2286 if (netif_msg_rx_status(np))
2288 " netdev_rx() entry %d status was %#08x.\n",
2289 entry, desc_status);
2293 if (*work_done >= work_to_do)
2298 pkt_len = (desc_status & DescSizeMask) - 4;
2299 if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2300 if (desc_status & DescMore) {
2301 unsigned long flags;
2303 if (netif_msg_rx_err(np))
2305 "%s: Oversized(?) Ethernet "
2306 "frame spanned multiple "
2307 "buffers, entry %#08x "
2308 "status %#08x.\n", dev->name,
2309 np->cur_rx, desc_status);
2310 np->stats.rx_length_errors++;
2312 /* The RX state machine has probably
2313 * locked up beneath us. Follow the
2314 * reset procedure documented in
2317 spin_lock_irqsave(&np->lock, flags);
2320 writel(np->ring_dma, ioaddr + RxRingPtr);
2322 spin_unlock_irqrestore(&np->lock, flags);
2324 /* We'll enable RX on exit from this
2329 /* There was an error. */
2330 np->stats.rx_errors++;
2331 if (desc_status & (DescRxAbort|DescRxOver))
2332 np->stats.rx_over_errors++;
2333 if (desc_status & (DescRxLong|DescRxRunt))
2334 np->stats.rx_length_errors++;
2335 if (desc_status & (DescRxInvalid|DescRxAlign))
2336 np->stats.rx_frame_errors++;
2337 if (desc_status & DescRxCRC)
2338 np->stats.rx_crc_errors++;
2340 } else if (pkt_len > np->rx_buf_sz) {
2341 /* if this is the tail of a double buffer
2342 * packet, we've already counted the error
2343 * on the first part. Ignore the second half.
2346 struct sk_buff *skb;
2347 /* Omit CRC size. */
2348 /* Check if the packet is long enough to accept
2349 * without copying to a minimally-sized skbuff. */
2350 if (pkt_len < rx_copybreak
2351 && (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) {
2352 /* 16 byte align the IP header */
2353 skb_reserve(skb, RX_OFFSET);
2354 pci_dma_sync_single_for_cpu(np->pci_dev,
2357 PCI_DMA_FROMDEVICE);
2358 skb_copy_to_linear_data(skb,
2359 np->rx_skbuff[entry]->data, pkt_len);
2360 skb_put(skb, pkt_len);
2361 pci_dma_sync_single_for_device(np->pci_dev,
2364 PCI_DMA_FROMDEVICE);
2366 pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2367 buflen, PCI_DMA_FROMDEVICE);
2368 skb_put(skb = np->rx_skbuff[entry], pkt_len);
2369 np->rx_skbuff[entry] = NULL;
2371 skb->protocol = eth_type_trans(skb, dev);
2372 netif_receive_skb(skb);
2373 dev->last_rx = jiffies;
2374 np->stats.rx_packets++;
2375 np->stats.rx_bytes += pkt_len;
2377 entry = (++np->cur_rx) % RX_RING_SIZE;
2378 np->rx_head_desc = &np->rx_ring[entry];
2379 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2383 /* Restart Rx engine if stopped. */
2385 mod_timer(&np->timer, jiffies + 1);
2387 writel(RxOn, ioaddr + ChipCmd);
2390 static void netdev_error(struct net_device *dev, int intr_status)
2392 struct netdev_private *np = netdev_priv(dev);
2393 void __iomem * ioaddr = ns_ioaddr(dev);
2395 spin_lock(&np->lock);
2396 if (intr_status & LinkChange) {
2397 u16 lpa = mdio_read(dev, MII_LPA);
2398 if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE
2399 && netif_msg_link(np)) {
2401 "%s: Autonegotiation advertising"
2402 " %#04x partner %#04x.\n", dev->name,
2403 np->advertising, lpa);
2406 /* read MII int status to clear the flag */
2407 readw(ioaddr + MIntrStatus);
2410 if (intr_status & StatsMax) {
2413 if (intr_status & IntrTxUnderrun) {
2414 if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2415 np->tx_config += TX_DRTH_VAL_INC;
2416 if (netif_msg_tx_err(np))
2418 "%s: increased tx threshold, txcfg %#08x.\n",
2419 dev->name, np->tx_config);
2421 if (netif_msg_tx_err(np))
2423 "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2424 dev->name, np->tx_config);
2426 writel(np->tx_config, ioaddr + TxConfig);
2428 if (intr_status & WOLPkt && netif_msg_wol(np)) {
2429 int wol_status = readl(ioaddr + WOLCmd);
2430 printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2431 dev->name, wol_status);
2433 if (intr_status & RxStatusFIFOOver) {
2434 if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2435 printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2438 np->stats.rx_fifo_errors++;
2439 np->stats.rx_errors++;
2441 /* Hmmmmm, it's not clear how to recover from PCI faults. */
2442 if (intr_status & IntrPCIErr) {
2443 printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2444 intr_status & IntrPCIErr);
2445 np->stats.tx_fifo_errors++;
2446 np->stats.tx_errors++;
2447 np->stats.rx_fifo_errors++;
2448 np->stats.rx_errors++;
2450 spin_unlock(&np->lock);
2453 static void __get_stats(struct net_device *dev)
2455 void __iomem * ioaddr = ns_ioaddr(dev);
2456 struct netdev_private *np = netdev_priv(dev);
2458 /* The chip only need report frame silently dropped. */
2459 np->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2460 np->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2463 static struct net_device_stats *get_stats(struct net_device *dev)
2465 struct netdev_private *np = netdev_priv(dev);
2467 /* The chip only need report frame silently dropped. */
2468 spin_lock_irq(&np->lock);
2469 if (netif_running(dev) && !np->hands_off)
2471 spin_unlock_irq(&np->lock);
2476 #ifdef CONFIG_NET_POLL_CONTROLLER
2477 static void natsemi_poll_controller(struct net_device *dev)
2479 disable_irq(dev->irq);
2480 intr_handler(dev->irq, dev);
2481 enable_irq(dev->irq);
2485 #define HASH_TABLE 0x200
2486 static void __set_rx_mode(struct net_device *dev)
2488 void __iomem * ioaddr = ns_ioaddr(dev);
2489 struct netdev_private *np = netdev_priv(dev);
2490 u8 mc_filter[64]; /* Multicast hash filter */
2493 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2494 rx_mode = RxFilterEnable | AcceptBroadcast
2495 | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2496 } else if ((dev->mc_count > multicast_filter_limit)
2497 || (dev->flags & IFF_ALLMULTI)) {
2498 rx_mode = RxFilterEnable | AcceptBroadcast
2499 | AcceptAllMulticast | AcceptMyPhys;
2501 struct dev_mc_list *mclist;
2503 memset(mc_filter, 0, sizeof(mc_filter));
2504 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
2505 i++, mclist = mclist->next) {
2506 int i = (ether_crc(ETH_ALEN, mclist->dmi_addr) >> 23) & 0x1ff;
2507 mc_filter[i/8] |= (1 << (i & 0x07));
2509 rx_mode = RxFilterEnable | AcceptBroadcast
2510 | AcceptMulticast | AcceptMyPhys;
2511 for (i = 0; i < 64; i += 2) {
2512 writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2513 writel((mc_filter[i + 1] << 8) + mc_filter[i],
2514 ioaddr + RxFilterData);
2517 writel(rx_mode, ioaddr + RxFilterAddr);
2518 np->cur_rx_mode = rx_mode;
2521 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2523 if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2528 /* synchronized against open : rtnl_lock() held by caller */
2529 if (netif_running(dev)) {
2530 struct netdev_private *np = netdev_priv(dev);
2531 void __iomem * ioaddr = ns_ioaddr(dev);
2533 disable_irq(dev->irq);
2534 spin_lock(&np->lock);
2536 natsemi_stop_rxtx(dev);
2537 /* drain rx queue */
2539 /* change buffers */
2542 writel(np->ring_dma, ioaddr + RxRingPtr);
2543 /* restart engines */
2544 writel(RxOn | TxOn, ioaddr + ChipCmd);
2545 spin_unlock(&np->lock);
2546 enable_irq(dev->irq);
2551 static void set_rx_mode(struct net_device *dev)
2553 struct netdev_private *np = netdev_priv(dev);
2554 spin_lock_irq(&np->lock);
2557 spin_unlock_irq(&np->lock);
2560 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2562 struct netdev_private *np = netdev_priv(dev);
2563 strncpy(info->driver, DRV_NAME, ETHTOOL_BUSINFO_LEN);
2564 strncpy(info->version, DRV_VERSION, ETHTOOL_BUSINFO_LEN);
2565 strncpy(info->bus_info, pci_name(np->pci_dev), ETHTOOL_BUSINFO_LEN);
2568 static int get_regs_len(struct net_device *dev)
2570 return NATSEMI_REGS_SIZE;
2573 static int get_eeprom_len(struct net_device *dev)
2575 struct netdev_private *np = netdev_priv(dev);
2576 return np->eeprom_size;
2579 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2581 struct netdev_private *np = netdev_priv(dev);
2582 spin_lock_irq(&np->lock);
2583 netdev_get_ecmd(dev, ecmd);
2584 spin_unlock_irq(&np->lock);
2588 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2590 struct netdev_private *np = netdev_priv(dev);
2592 spin_lock_irq(&np->lock);
2593 res = netdev_set_ecmd(dev, ecmd);
2594 spin_unlock_irq(&np->lock);
2598 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2600 struct netdev_private *np = netdev_priv(dev);
2601 spin_lock_irq(&np->lock);
2602 netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2603 netdev_get_sopass(dev, wol->sopass);
2604 spin_unlock_irq(&np->lock);
2607 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2609 struct netdev_private *np = netdev_priv(dev);
2611 spin_lock_irq(&np->lock);
2612 netdev_set_wol(dev, wol->wolopts);
2613 res = netdev_set_sopass(dev, wol->sopass);
2614 spin_unlock_irq(&np->lock);
2618 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2620 struct netdev_private *np = netdev_priv(dev);
2621 regs->version = NATSEMI_REGS_VER;
2622 spin_lock_irq(&np->lock);
2623 netdev_get_regs(dev, buf);
2624 spin_unlock_irq(&np->lock);
2627 static u32 get_msglevel(struct net_device *dev)
2629 struct netdev_private *np = netdev_priv(dev);
2630 return np->msg_enable;
2633 static void set_msglevel(struct net_device *dev, u32 val)
2635 struct netdev_private *np = netdev_priv(dev);
2636 np->msg_enable = val;
2639 static int nway_reset(struct net_device *dev)
2643 /* if autoneg is off, it's an error */
2644 tmp = mdio_read(dev, MII_BMCR);
2645 if (tmp & BMCR_ANENABLE) {
2646 tmp |= (BMCR_ANRESTART);
2647 mdio_write(dev, MII_BMCR, tmp);
2653 static u32 get_link(struct net_device *dev)
2655 /* LSTATUS is latched low until a read - so read twice */
2656 mdio_read(dev, MII_BMSR);
2657 return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2660 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2662 struct netdev_private *np = netdev_priv(dev);
2666 eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2670 eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2671 spin_lock_irq(&np->lock);
2672 res = netdev_get_eeprom(dev, eebuf);
2673 spin_unlock_irq(&np->lock);
2675 memcpy(data, eebuf+eeprom->offset, eeprom->len);
2680 static const struct ethtool_ops ethtool_ops = {
2681 .get_drvinfo = get_drvinfo,
2682 .get_regs_len = get_regs_len,
2683 .get_eeprom_len = get_eeprom_len,
2684 .get_settings = get_settings,
2685 .set_settings = set_settings,
2688 .get_regs = get_regs,
2689 .get_msglevel = get_msglevel,
2690 .set_msglevel = set_msglevel,
2691 .nway_reset = nway_reset,
2692 .get_link = get_link,
2693 .get_eeprom = get_eeprom,
2696 static int netdev_set_wol(struct net_device *dev, u32 newval)
2698 struct netdev_private *np = netdev_priv(dev);
2699 void __iomem * ioaddr = ns_ioaddr(dev);
2700 u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2702 /* translate to bitmasks this chip understands */
2703 if (newval & WAKE_PHY)
2705 if (newval & WAKE_UCAST)
2706 data |= WakeUnicast;
2707 if (newval & WAKE_MCAST)
2708 data |= WakeMulticast;
2709 if (newval & WAKE_BCAST)
2710 data |= WakeBroadcast;
2711 if (newval & WAKE_ARP)
2713 if (newval & WAKE_MAGIC)
2715 if (np->srr >= SRR_DP83815_D) {
2716 if (newval & WAKE_MAGICSECURE) {
2717 data |= WakeMagicSecure;
2721 writel(data, ioaddr + WOLCmd);
2726 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2728 struct netdev_private *np = netdev_priv(dev);
2729 void __iomem * ioaddr = ns_ioaddr(dev);
2730 u32 regval = readl(ioaddr + WOLCmd);
2732 *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2733 | WAKE_ARP | WAKE_MAGIC);
2735 if (np->srr >= SRR_DP83815_D) {
2736 /* SOPASS works on revD and higher */
2737 *supported |= WAKE_MAGICSECURE;
2741 /* translate from chip bitmasks */
2742 if (regval & WakePhy)
2744 if (regval & WakeUnicast)
2746 if (regval & WakeMulticast)
2748 if (regval & WakeBroadcast)
2750 if (regval & WakeArp)
2752 if (regval & WakeMagic)
2754 if (regval & WakeMagicSecure) {
2755 /* this can be on in revC, but it's broken */
2756 *cur |= WAKE_MAGICSECURE;
2762 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2764 struct netdev_private *np = netdev_priv(dev);
2765 void __iomem * ioaddr = ns_ioaddr(dev);
2766 u16 *sval = (u16 *)newval;
2769 if (np->srr < SRR_DP83815_D) {
2773 /* enable writing to these registers by disabling the RX filter */
2774 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2775 addr &= ~RxFilterEnable;
2776 writel(addr, ioaddr + RxFilterAddr);
2778 /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2779 writel(addr | 0xa, ioaddr + RxFilterAddr);
2780 writew(sval[0], ioaddr + RxFilterData);
2782 writel(addr | 0xc, ioaddr + RxFilterAddr);
2783 writew(sval[1], ioaddr + RxFilterData);
2785 writel(addr | 0xe, ioaddr + RxFilterAddr);
2786 writew(sval[2], ioaddr + RxFilterData);
2788 /* re-enable the RX filter */
2789 writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2794 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2796 struct netdev_private *np = netdev_priv(dev);
2797 void __iomem * ioaddr = ns_ioaddr(dev);
2798 u16 *sval = (u16 *)data;
2801 if (np->srr < SRR_DP83815_D) {
2802 sval[0] = sval[1] = sval[2] = 0;
2806 /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2807 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2809 writel(addr | 0xa, ioaddr + RxFilterAddr);
2810 sval[0] = readw(ioaddr + RxFilterData);
2812 writel(addr | 0xc, ioaddr + RxFilterAddr);
2813 sval[1] = readw(ioaddr + RxFilterData);
2815 writel(addr | 0xe, ioaddr + RxFilterAddr);
2816 sval[2] = readw(ioaddr + RxFilterData);
2818 writel(addr, ioaddr + RxFilterAddr);
2823 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2825 struct netdev_private *np = netdev_priv(dev);
2828 ecmd->port = dev->if_port;
2829 ecmd->speed = np->speed;
2830 ecmd->duplex = np->duplex;
2831 ecmd->autoneg = np->autoneg;
2832 ecmd->advertising = 0;
2833 if (np->advertising & ADVERTISE_10HALF)
2834 ecmd->advertising |= ADVERTISED_10baseT_Half;
2835 if (np->advertising & ADVERTISE_10FULL)
2836 ecmd->advertising |= ADVERTISED_10baseT_Full;
2837 if (np->advertising & ADVERTISE_100HALF)
2838 ecmd->advertising |= ADVERTISED_100baseT_Half;
2839 if (np->advertising & ADVERTISE_100FULL)
2840 ecmd->advertising |= ADVERTISED_100baseT_Full;
2841 ecmd->supported = (SUPPORTED_Autoneg |
2842 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2843 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2844 SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2845 ecmd->phy_address = np->phy_addr_external;
2847 * We intentionally report the phy address of the external
2848 * phy, even if the internal phy is used. This is necessary
2849 * to work around a deficiency of the ethtool interface:
2850 * It's only possible to query the settings of the active
2852 * # ethtool -s ethX port mii
2853 * actually sends an ioctl to switch to port mii with the
2854 * settings that are used for the current active port.
2855 * If we would report a different phy address in this
2857 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2858 * would unintentionally change the phy address.
2860 * Fortunately the phy address doesn't matter with the
2864 /* set information based on active port type */
2865 switch (ecmd->port) {
2868 ecmd->advertising |= ADVERTISED_TP;
2869 ecmd->transceiver = XCVR_INTERNAL;
2872 ecmd->advertising |= ADVERTISED_MII;
2873 ecmd->transceiver = XCVR_EXTERNAL;
2876 ecmd->advertising |= ADVERTISED_FIBRE;
2877 ecmd->transceiver = XCVR_EXTERNAL;
2881 /* if autonegotiation is on, try to return the active speed/duplex */
2882 if (ecmd->autoneg == AUTONEG_ENABLE) {
2883 ecmd->advertising |= ADVERTISED_Autoneg;
2884 tmp = mii_nway_result(
2885 np->advertising & mdio_read(dev, MII_LPA));
2886 if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2887 ecmd->speed = SPEED_100;
2889 ecmd->speed = SPEED_10;
2890 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2891 ecmd->duplex = DUPLEX_FULL;
2893 ecmd->duplex = DUPLEX_HALF;
2896 /* ignore maxtxpkt, maxrxpkt for now */
2901 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2903 struct netdev_private *np = netdev_priv(dev);
2905 if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2907 if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2909 if (ecmd->autoneg == AUTONEG_ENABLE) {
2910 if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2911 ADVERTISED_10baseT_Full |
2912 ADVERTISED_100baseT_Half |
2913 ADVERTISED_100baseT_Full)) == 0) {
2916 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2917 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2919 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2926 * If we're ignoring the PHY then autoneg and the internal
2927 * transciever are really not going to work so don't let the
2930 if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
2931 ecmd->port == PORT_TP))
2935 * maxtxpkt, maxrxpkt: ignored for now.
2938 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2939 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2940 * selects based on ecmd->port.
2942 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2943 * phys that are connected to the mii bus. It's used to apply fibre
2947 /* WHEW! now lets bang some bits */
2949 /* save the parms */
2950 dev->if_port = ecmd->port;
2951 np->autoneg = ecmd->autoneg;
2952 np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2953 if (np->autoneg == AUTONEG_ENABLE) {
2954 /* advertise only what has been requested */
2955 np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2956 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2957 np->advertising |= ADVERTISE_10HALF;
2958 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2959 np->advertising |= ADVERTISE_10FULL;
2960 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2961 np->advertising |= ADVERTISE_100HALF;
2962 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2963 np->advertising |= ADVERTISE_100FULL;
2965 np->speed = ecmd->speed;
2966 np->duplex = ecmd->duplex;
2967 /* user overriding the initial full duplex parm? */
2968 if (np->duplex == DUPLEX_HALF)
2969 np->full_duplex = 0;
2972 /* get the right phy enabled */
2973 if (ecmd->port == PORT_TP)
2974 switch_port_internal(dev);
2976 switch_port_external(dev);
2978 /* set parms and see how this affected our link status */
2979 init_phy_fixup(dev);
2984 static int netdev_get_regs(struct net_device *dev, u8 *buf)
2989 u32 *rbuf = (u32 *)buf;
2990 void __iomem * ioaddr = ns_ioaddr(dev);
2992 /* read non-mii page 0 of registers */
2993 for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2994 rbuf[i] = readl(ioaddr + i*4);
2997 /* read current mii registers */
2998 for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2999 rbuf[i] = mdio_read(dev, i & 0x1f);
3001 /* read only the 'magic' registers from page 1 */
3002 writew(1, ioaddr + PGSEL);
3003 rbuf[i++] = readw(ioaddr + PMDCSR);
3004 rbuf[i++] = readw(ioaddr + TSTDAT);
3005 rbuf[i++] = readw(ioaddr + DSPCFG);
3006 rbuf[i++] = readw(ioaddr + SDCFG);
3007 writew(0, ioaddr + PGSEL);
3009 /* read RFCR indexed registers */
3010 rfcr = readl(ioaddr + RxFilterAddr);
3011 for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3012 writel(j*2, ioaddr + RxFilterAddr);
3013 rbuf[i++] = readw(ioaddr + RxFilterData);
3015 writel(rfcr, ioaddr + RxFilterAddr);
3017 /* the interrupt status is clear-on-read - see if we missed any */
3018 if (rbuf[4] & rbuf[5]) {
3020 "%s: shoot, we dropped an interrupt (%#08x)\n",
3021 dev->name, rbuf[4] & rbuf[5]);
3027 #define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3028 | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \
3029 | (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \
3030 | (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \
3031 | (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \
3032 | (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \
3033 | (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \
3034 | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3036 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3039 u16 *ebuf = (u16 *)buf;
3040 void __iomem * ioaddr = ns_ioaddr(dev);
3041 struct netdev_private *np = netdev_priv(dev);
3043 /* eeprom_read reads 16 bits, and indexes by 16 bits */
3044 for (i = 0; i < np->eeprom_size/2; i++) {
3045 ebuf[i] = eeprom_read(ioaddr, i);
3046 /* The EEPROM itself stores data bit-swapped, but eeprom_read
3047 * reads it back "sanely". So we swap it back here in order to
3048 * present it to userland as it is stored. */
3049 ebuf[i] = SWAP_BITS(ebuf[i]);
3054 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3056 struct mii_ioctl_data *data = if_mii(rq);
3057 struct netdev_private *np = netdev_priv(dev);
3060 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
3061 case SIOCDEVPRIVATE: /* for binary compat, remove in 2.5 */
3062 data->phy_id = np->phy_addr_external;
3065 case SIOCGMIIREG: /* Read MII PHY register. */
3066 case SIOCDEVPRIVATE+1: /* for binary compat, remove in 2.5 */
3067 /* The phy_id is not enough to uniquely identify
3068 * the intended target. Therefore the command is sent to
3069 * the given mii on the current port.
3071 if (dev->if_port == PORT_TP) {
3072 if ((data->phy_id & 0x1f) == np->phy_addr_external)
3073 data->val_out = mdio_read(dev,
3074 data->reg_num & 0x1f);
3078 move_int_phy(dev, data->phy_id & 0x1f);
3079 data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3080 data->reg_num & 0x1f);
3084 case SIOCSMIIREG: /* Write MII PHY register. */
3085 case SIOCDEVPRIVATE+2: /* for binary compat, remove in 2.5 */
3086 if (!capable(CAP_NET_ADMIN))
3088 if (dev->if_port == PORT_TP) {
3089 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3090 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3091 np->advertising = data->val_in;
3092 mdio_write(dev, data->reg_num & 0x1f,
3096 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3097 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3098 np->advertising = data->val_in;
3100 move_int_phy(dev, data->phy_id & 0x1f);
3101 miiport_write(dev, data->phy_id & 0x1f,
3102 data->reg_num & 0x1f,
3111 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3113 void __iomem * ioaddr = ns_ioaddr(dev);
3114 struct netdev_private *np = netdev_priv(dev);
3116 if (netif_msg_wol(np))
3117 printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3120 /* For WOL we must restart the rx process in silent mode.
3121 * Write NULL to the RxRingPtr. Only possible if
3122 * rx process is stopped
3124 writel(0, ioaddr + RxRingPtr);
3126 /* read WoL status to clear */
3127 readl(ioaddr + WOLCmd);
3129 /* PME on, clear status */
3130 writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3132 /* and restart the rx process */
3133 writel(RxOn, ioaddr + ChipCmd);
3136 /* enable the WOL interrupt.
3137 * Could be used to send a netlink message.
3139 writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3140 natsemi_irq_enable(dev);
3144 static int netdev_close(struct net_device *dev)
3146 void __iomem * ioaddr = ns_ioaddr(dev);
3147 struct netdev_private *np = netdev_priv(dev);
3149 if (netif_msg_ifdown(np))
3151 "%s: Shutting down ethercard, status was %#04x.\n",
3152 dev->name, (int)readl(ioaddr + ChipCmd));
3153 if (netif_msg_pktdata(np))
3155 "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
3156 dev->name, np->cur_tx, np->dirty_tx,
3157 np->cur_rx, np->dirty_rx);
3159 napi_disable(&np->napi);
3162 * FIXME: what if someone tries to close a device
3163 * that is suspended?
3164 * Should we reenable the nic to switch to
3165 * the final WOL settings?
3168 del_timer_sync(&np->timer);
3169 disable_irq(dev->irq);
3170 spin_lock_irq(&np->lock);
3171 natsemi_irq_disable(dev);
3173 spin_unlock_irq(&np->lock);
3174 enable_irq(dev->irq);
3176 free_irq(dev->irq, dev);
3178 /* Interrupt disabled, interrupt handler released,
3179 * queue stopped, timer deleted, rtnl_lock held
3180 * All async codepaths that access the driver are disabled.
3182 spin_lock_irq(&np->lock);
3184 readl(ioaddr + IntrMask);
3185 readw(ioaddr + MIntrStatus);
3188 writel(StatsFreeze, ioaddr + StatsCtrl);
3190 /* Stop the chip's Tx and Rx processes. */
3191 natsemi_stop_rxtx(dev);
3194 spin_unlock_irq(&np->lock);
3196 /* clear the carrier last - an interrupt could reenable it otherwise */
3197 netif_carrier_off(dev);
3198 netif_stop_queue(dev);
3205 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3207 /* restart the NIC in WOL mode.
3208 * The nic must be stopped for this.
3210 enable_wol_mode(dev, 0);
3212 /* Restore PME enable bit unmolested */
3213 writel(np->SavedClkRun, ioaddr + ClkRun);
3220 static void __devexit natsemi_remove1 (struct pci_dev *pdev)
3222 struct net_device *dev = pci_get_drvdata(pdev);
3223 void __iomem * ioaddr = ns_ioaddr(dev);
3225 NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3226 unregister_netdev (dev);
3227 pci_release_regions (pdev);
3230 pci_set_drvdata(pdev, NULL);
3236 * The ns83815 chip doesn't have explicit RxStop bits.
3237 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3238 * of the nic, thus this function must be very careful:
3240 * suspend/resume synchronization:
3242 * netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3243 * start_tx, tx_timeout
3245 * No function accesses the hardware without checking np->hands_off.
3246 * the check occurs under spin_lock_irq(&np->lock);
3248 * * netdev_ioctl: noncritical access.
3249 * * netdev_open: cannot happen due to the device_detach
3250 * * netdev_close: doesn't hurt.
3251 * * netdev_timer: timer stopped by natsemi_suspend.
3252 * * intr_handler: doesn't acquire the spinlock. suspend calls
3253 * disable_irq() to enforce synchronization.
3254 * * natsemi_poll: checks before reenabling interrupts. suspend
3255 * sets hands_off, disables interrupts and then waits with
3258 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3261 static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3263 struct net_device *dev = pci_get_drvdata (pdev);
3264 struct netdev_private *np = netdev_priv(dev);
3265 void __iomem * ioaddr = ns_ioaddr(dev);
3268 if (netif_running (dev)) {
3269 del_timer_sync(&np->timer);
3271 disable_irq(dev->irq);
3272 spin_lock_irq(&np->lock);
3274 natsemi_irq_disable(dev);
3276 natsemi_stop_rxtx(dev);
3277 netif_stop_queue(dev);
3279 spin_unlock_irq(&np->lock);
3280 enable_irq(dev->irq);
3282 napi_disable(&np->napi);
3284 /* Update the error counts. */
3287 /* pci_power_off(pdev, -1); */
3290 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3291 /* Restore PME enable bit */
3293 /* restart the NIC in WOL mode.
3294 * The nic must be stopped for this.
3295 * FIXME: use the WOL interrupt
3297 enable_wol_mode(dev, 0);
3299 /* Restore PME enable bit unmolested */
3300 writel(np->SavedClkRun, ioaddr + ClkRun);
3304 netif_device_detach(dev);
3310 static int natsemi_resume (struct pci_dev *pdev)
3312 struct net_device *dev = pci_get_drvdata (pdev);
3313 struct netdev_private *np = netdev_priv(dev);
3316 if (netif_device_present(dev))
3318 if (netif_running(dev)) {
3319 BUG_ON(!np->hands_off);
3320 pci_enable_device(pdev);
3321 /* pci_power_on(pdev); */
3323 napi_enable(&np->napi);
3327 disable_irq(dev->irq);
3328 spin_lock_irq(&np->lock);
3330 init_registers(dev);
3331 netif_device_attach(dev);
3332 spin_unlock_irq(&np->lock);
3333 enable_irq(dev->irq);
3335 mod_timer(&np->timer, jiffies + 1*HZ);
3337 netif_device_attach(dev);
3343 #endif /* CONFIG_PM */
3345 static struct pci_driver natsemi_driver = {
3347 .id_table = natsemi_pci_tbl,
3348 .probe = natsemi_probe1,
3349 .remove = __devexit_p(natsemi_remove1),
3351 .suspend = natsemi_suspend,
3352 .resume = natsemi_resume,
3356 static int __init natsemi_init_mod (void)
3358 /* when a module, this is printed whether or not devices are found in probe */
3363 return pci_register_driver(&natsemi_driver);
3366 static void __exit natsemi_exit_mod (void)
3368 pci_unregister_driver (&natsemi_driver);
3371 module_init(natsemi_init_mod);
3372 module_exit(natsemi_exit_mod);