1 /* Generic MTRR (Memory Type Range Register) driver.
3 Copyright (C) 1997-2000 Richard Gooch
4 Copyright (c) 2002 Patrick Mochel
6 This library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
11 This library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
16 You should have received a copy of the GNU Library General Public
17 License along with this library; if not, write to the Free
18 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 Richard Gooch may be reached by email at rgooch@atnf.csiro.au
21 The postal address is:
22 Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
24 Source: "Pentium Pro Family Developer's Manual, Volume 3:
25 Operating System Writer's Guide" (Intel document number 242692),
28 This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
30 Source: Intel Architecture Software Developers Manual, Volume 3:
31 System Programming Guide; Section 9.11. (1997 edition - PPro).
34 #include <linux/module.h>
35 #include <linux/init.h>
36 #include <linux/pci.h>
37 #include <linux/smp.h>
38 #include <linux/cpu.h>
39 #include <linux/mutex.h>
40 #include <linux/sort.h>
44 #include <asm/uaccess.h>
45 #include <asm/processor.h>
47 #include <asm/kvm_para.h>
50 u32 num_var_ranges = 0;
52 unsigned int mtrr_usage_table[MAX_VAR_RANGES];
53 static DEFINE_MUTEX(mtrr_mutex);
55 u64 size_or_mask, size_and_mask;
57 static struct mtrr_ops * mtrr_ops[X86_VENDOR_NUM] = {};
59 struct mtrr_ops * mtrr_if = NULL;
61 static void set_mtrr(unsigned int reg, unsigned long base,
62 unsigned long size, mtrr_type type);
64 void set_mtrr_ops(struct mtrr_ops * ops)
66 if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
67 mtrr_ops[ops->vendor] = ops;
70 /* Returns non-zero if we have the write-combining memory type */
71 static int have_wrcomb(void)
76 if ((dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL)) != NULL) {
77 /* ServerWorks LE chipsets < rev 6 have problems with write-combining
78 Don't allow it and leave room for other chipsets to be tagged */
79 if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
80 dev->device == PCI_DEVICE_ID_SERVERWORKS_LE) {
81 pci_read_config_byte(dev, PCI_CLASS_REVISION, &rev);
83 printk(KERN_INFO "mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
88 /* Intel 450NX errata # 23. Non ascending cacheline evictions to
89 write combining memory may resulting in data corruption */
90 if (dev->vendor == PCI_VENDOR_ID_INTEL &&
91 dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
92 printk(KERN_INFO "mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
98 return (mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0);
101 /* This function returns the number of variable MTRRs */
102 static void __init set_num_var_ranges(void)
104 unsigned long config = 0, dummy;
107 rdmsr(MTRRcap_MSR, config, dummy);
108 } else if (is_cpu(AMD))
110 else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
112 num_var_ranges = config & 0xff;
115 static void __init init_table(void)
119 max = num_var_ranges;
120 for (i = 0; i < max; i++)
121 mtrr_usage_table[i] = 1;
124 struct set_mtrr_data {
127 unsigned long smp_base;
128 unsigned long smp_size;
129 unsigned int smp_reg;
133 static void ipi_handler(void *info)
134 /* [SUMMARY] Synchronisation handler. Executed by "other" CPUs.
139 struct set_mtrr_data *data = info;
142 local_irq_save(flags);
144 atomic_dec(&data->count);
145 while(!atomic_read(&data->gate))
148 /* The master has cleared me to execute */
149 if (data->smp_reg != ~0U)
150 mtrr_if->set(data->smp_reg, data->smp_base,
151 data->smp_size, data->smp_type);
155 atomic_dec(&data->count);
156 while(atomic_read(&data->gate))
159 atomic_dec(&data->count);
160 local_irq_restore(flags);
164 static inline int types_compatible(mtrr_type type1, mtrr_type type2) {
165 return type1 == MTRR_TYPE_UNCACHABLE ||
166 type2 == MTRR_TYPE_UNCACHABLE ||
167 (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
168 (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
172 * set_mtrr - update mtrrs on all processors
173 * @reg: mtrr in question
178 * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
180 * 1. Send IPI to do the following:
181 * 2. Disable Interrupts
182 * 3. Wait for all procs to do so
183 * 4. Enter no-fill cache mode
187 * 8. Disable all range registers
188 * 9. Update the MTRRs
189 * 10. Enable all range registers
190 * 11. Flush all TLBs and caches again
191 * 12. Enter normal cache mode and reenable caching
193 * 14. Wait for buddies to catch up
194 * 15. Enable interrupts.
196 * What does that mean for us? Well, first we set data.count to the number
197 * of CPUs. As each CPU disables interrupts, it'll decrement it once. We wait
198 * until it hits 0 and proceed. We set the data.gate flag and reset data.count.
199 * Meanwhile, they are waiting for that flag to be set. Once it's set, each
200 * CPU goes through the transition of updating MTRRs. The CPU vendors may each do it
201 * differently, so we call mtrr_if->set() callback and let them take care of it.
202 * When they're done, they again decrement data->count and wait for data.gate to
204 * When we finish, we wait for data.count to hit 0 and toggle the data.gate flag.
205 * Everyone then enables interrupts and we all continue on.
207 * Note that the mechanism is the same for UP systems, too; all the SMP stuff
210 static void set_mtrr(unsigned int reg, unsigned long base,
211 unsigned long size, mtrr_type type)
213 struct set_mtrr_data data;
217 data.smp_base = base;
218 data.smp_size = size;
219 data.smp_type = type;
220 atomic_set(&data.count, num_booting_cpus() - 1);
221 /* make sure data.count is visible before unleashing other CPUs */
223 atomic_set(&data.gate,0);
225 /* Start the ball rolling on other CPUs */
226 if (smp_call_function(ipi_handler, &data, 1, 0) != 0)
227 panic("mtrr: timed out waiting for other CPUs\n");
229 local_irq_save(flags);
231 while(atomic_read(&data.count))
234 /* ok, reset count and toggle gate */
235 atomic_set(&data.count, num_booting_cpus() - 1);
237 atomic_set(&data.gate,1);
239 /* do our MTRR business */
242 * We use this same function to initialize the mtrrs on boot.
243 * The state of the boot cpu's mtrrs has been saved, and we want
244 * to replicate across all the APs.
245 * If we're doing that @reg is set to something special...
248 mtrr_if->set(reg,base,size,type);
250 /* wait for the others */
251 while(atomic_read(&data.count))
254 atomic_set(&data.count, num_booting_cpus() - 1);
256 atomic_set(&data.gate,0);
259 * Wait here for everyone to have seen the gate change
260 * So we're the last ones to touch 'data'
262 while(atomic_read(&data.count))
265 local_irq_restore(flags);
269 * mtrr_add_page - Add a memory type region
270 * @base: Physical base address of region in pages (in units of 4 kB!)
271 * @size: Physical size of region in pages (4 kB)
272 * @type: Type of MTRR desired
273 * @increment: If this is true do usage counting on the region
275 * Memory type region registers control the caching on newer Intel and
276 * non Intel processors. This function allows drivers to request an
277 * MTRR is added. The details and hardware specifics of each processor's
278 * implementation are hidden from the caller, but nevertheless the
279 * caller should expect to need to provide a power of two size on an
280 * equivalent power of two boundary.
282 * If the region cannot be added either because all regions are in use
283 * or the CPU cannot support it a negative value is returned. On success
284 * the register number for this entry is returned, but should be treated
287 * On a multiprocessor machine the changes are made to all processors.
288 * This is required on x86 by the Intel processors.
290 * The available types are
292 * %MTRR_TYPE_UNCACHABLE - No caching
294 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
296 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
298 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
300 * BUGS: Needs a quiet flag for the cases where drivers do not mind
301 * failures and do not wish system log messages to be sent.
304 int mtrr_add_page(unsigned long base, unsigned long size,
305 unsigned int type, bool increment)
307 int i, replace, error;
309 unsigned long lbase, lsize;
314 if ((error = mtrr_if->validate_add_page(base,size,type)))
317 if (type >= MTRR_NUM_TYPES) {
318 printk(KERN_WARNING "mtrr: type: %u invalid\n", type);
322 /* If the type is WC, check that this processor supports it */
323 if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
325 "mtrr: your processor doesn't support write-combining\n");
330 printk(KERN_WARNING "mtrr: zero sized request\n");
334 if (base & size_or_mask || size & size_or_mask) {
335 printk(KERN_WARNING "mtrr: base or size exceeds the MTRR width\n");
342 /* No CPU hotplug when we change MTRR entries */
344 /* Search for existing MTRR */
345 mutex_lock(&mtrr_mutex);
346 for (i = 0; i < num_var_ranges; ++i) {
347 mtrr_if->get(i, &lbase, &lsize, <ype);
348 if (!lsize || base > lbase + lsize - 1 || base + size - 1 < lbase)
350 /* At this point we know there is some kind of overlap/enclosure */
351 if (base < lbase || base + size - 1 > lbase + lsize - 1) {
352 if (base <= lbase && base + size - 1 >= lbase + lsize - 1) {
353 /* New region encloses an existing region */
355 replace = replace == -1 ? i : -2;
358 else if (types_compatible(type, ltype))
362 "mtrr: 0x%lx000,0x%lx000 overlaps existing"
363 " 0x%lx000,0x%lx000\n", base, size, lbase,
367 /* New region is enclosed by an existing region */
369 if (types_compatible(type, ltype))
371 printk (KERN_WARNING "mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
372 base, size, mtrr_attrib_to_str(ltype),
373 mtrr_attrib_to_str(type));
377 ++mtrr_usage_table[i];
381 /* Search for an empty MTRR */
382 i = mtrr_if->get_free_region(base, size, replace);
384 set_mtrr(i, base, size, type);
385 if (likely(replace < 0)) {
386 mtrr_usage_table[i] = 1;
388 mtrr_usage_table[i] = mtrr_usage_table[replace];
390 mtrr_usage_table[i]++;
391 if (unlikely(replace != i)) {
392 set_mtrr(replace, 0, 0, 0);
393 mtrr_usage_table[replace] = 0;
397 printk(KERN_INFO "mtrr: no more MTRRs available\n");
400 mutex_unlock(&mtrr_mutex);
405 static int mtrr_check(unsigned long base, unsigned long size)
407 if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
409 "mtrr: size and base must be multiples of 4 kiB\n");
411 "mtrr: size: 0x%lx base: 0x%lx\n", size, base);
419 * mtrr_add - Add a memory type region
420 * @base: Physical base address of region
421 * @size: Physical size of region
422 * @type: Type of MTRR desired
423 * @increment: If this is true do usage counting on the region
425 * Memory type region registers control the caching on newer Intel and
426 * non Intel processors. This function allows drivers to request an
427 * MTRR is added. The details and hardware specifics of each processor's
428 * implementation are hidden from the caller, but nevertheless the
429 * caller should expect to need to provide a power of two size on an
430 * equivalent power of two boundary.
432 * If the region cannot be added either because all regions are in use
433 * or the CPU cannot support it a negative value is returned. On success
434 * the register number for this entry is returned, but should be treated
437 * On a multiprocessor machine the changes are made to all processors.
438 * This is required on x86 by the Intel processors.
440 * The available types are
442 * %MTRR_TYPE_UNCACHABLE - No caching
444 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
446 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
448 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
450 * BUGS: Needs a quiet flag for the cases where drivers do not mind
451 * failures and do not wish system log messages to be sent.
455 mtrr_add(unsigned long base, unsigned long size, unsigned int type,
458 if (mtrr_check(base, size))
460 return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
465 * mtrr_del_page - delete a memory type region
466 * @reg: Register returned by mtrr_add
467 * @base: Physical base address
468 * @size: Size of region
470 * If register is supplied then base and size are ignored. This is
471 * how drivers should call it.
473 * Releases an MTRR region. If the usage count drops to zero the
474 * register is freed and the region returns to default state.
475 * On success the register is returned, on failure a negative error
479 int mtrr_del_page(int reg, unsigned long base, unsigned long size)
483 unsigned long lbase, lsize;
489 max = num_var_ranges;
490 /* No CPU hotplug when we change MTRR entries */
492 mutex_lock(&mtrr_mutex);
494 /* Search for existing MTRR */
495 for (i = 0; i < max; ++i) {
496 mtrr_if->get(i, &lbase, &lsize, <ype);
497 if (lbase == base && lsize == size) {
503 printk(KERN_DEBUG "mtrr: no MTRR for %lx000,%lx000 found\n", base,
509 printk(KERN_WARNING "mtrr: register: %d too big\n", reg);
512 mtrr_if->get(reg, &lbase, &lsize, <ype);
514 printk(KERN_WARNING "mtrr: MTRR %d not used\n", reg);
517 if (mtrr_usage_table[reg] < 1) {
518 printk(KERN_WARNING "mtrr: reg: %d has count=0\n", reg);
521 if (--mtrr_usage_table[reg] < 1)
522 set_mtrr(reg, 0, 0, 0);
525 mutex_unlock(&mtrr_mutex);
530 * mtrr_del - delete a memory type region
531 * @reg: Register returned by mtrr_add
532 * @base: Physical base address
533 * @size: Size of region
535 * If register is supplied then base and size are ignored. This is
536 * how drivers should call it.
538 * Releases an MTRR region. If the usage count drops to zero the
539 * register is freed and the region returns to default state.
540 * On success the register is returned, on failure a negative error
545 mtrr_del(int reg, unsigned long base, unsigned long size)
547 if (mtrr_check(base, size))
549 return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
552 EXPORT_SYMBOL(mtrr_add);
553 EXPORT_SYMBOL(mtrr_del);
556 * These should be called implicitly, but we can't yet until all the initcall
559 static void __init init_ifs(void)
561 #ifndef CONFIG_X86_64
568 /* The suspend/resume methods are only for CPU without MTRR. CPU using generic
569 * MTRR driver doesn't require this
577 static struct mtrr_value mtrr_state[MAX_VAR_RANGES];
579 static int mtrr_save(struct sys_device * sysdev, pm_message_t state)
583 for (i = 0; i < num_var_ranges; i++) {
585 &mtrr_state[i].lbase,
586 &mtrr_state[i].lsize,
587 &mtrr_state[i].ltype);
592 static int mtrr_restore(struct sys_device * sysdev)
596 for (i = 0; i < num_var_ranges; i++) {
597 if (mtrr_state[i].lsize)
601 mtrr_state[i].ltype);
608 static struct sysdev_driver mtrr_sysdev_driver = {
609 .suspend = mtrr_save,
610 .resume = mtrr_restore,
613 #ifdef CONFIG_MTRR_SANITIZER
615 #ifdef CONFIG_MTRR_SANITIZER_ENABLE_DEFAULT
616 static int enable_mtrr_cleanup __initdata = 1;
618 static int enable_mtrr_cleanup __initdata;
623 static int enable_mtrr_cleanup __initdata = -1;
627 static int __init disable_mtrr_cleanup_setup(char *str)
629 if (enable_mtrr_cleanup != -1)
630 enable_mtrr_cleanup = 0;
633 early_param("disable_mtrr_cleanup", disable_mtrr_cleanup_setup);
635 static int __init enable_mtrr_cleanup_setup(char *str)
637 if (enable_mtrr_cleanup != -1)
638 enable_mtrr_cleanup = 1;
641 early_param("enble_mtrr_cleanup", enable_mtrr_cleanup_setup);
643 #define RANGE_NUM 256
650 static int __init add_range(struct res_range *range, int nr_range, unsigned long start,
651 unsigned long end, int merge)
658 /* try to merge it with old one */
659 for (i = 0; i < nr_range; i++) {
660 unsigned long final_start, final_end;
661 unsigned long common_start, common_end;
666 common_start = max(range[i].start, start);
667 common_end = min(range[i].end, end);
668 if (common_start > common_end + 1)
671 final_start = min(range[i].start, start);
672 final_end = max(range[i].end, end);
674 range[i].start = final_start;
675 range[i].end = final_end;
680 /* need to add that */
681 if (nr_range >= RANGE_NUM)
684 range[nr_range].start = start;
685 range[nr_range].end = end;
692 static void __init subtract_range(struct res_range *range, unsigned long start,
698 for (j = 0; j < RANGE_NUM; j++) {
702 if (start <= range[j].start && end >= range[j].end) {
708 if (start <= range[j].start && end < range[j].end && range[j].start < end + 1) {
709 range[j].start = end + 1;
714 if (start > range[j].start && end >= range[j].end && range[j].end > start - 1) {
715 range[j].end = start - 1;
719 if (start > range[j].start && end < range[j].end) {
720 /* find the new spare */
721 for (i = 0; i < RANGE_NUM; i++) {
722 if (range[i].end == 0)
726 range[i].end = range[j].end;
727 range[i].start = end + 1;
729 printk(KERN_ERR "run of slot in ranges\n");
731 range[j].end = start - 1;
737 static int __init cmp_range(const void *x1, const void *x2)
739 const struct res_range *r1 = x1;
740 const struct res_range *r2 = x2;
746 return start1 - start2;
749 struct var_mtrr_state {
750 unsigned long range_startk, range_sizek;
751 unsigned long chunk_sizek;
752 unsigned long gran_sizek;
754 unsigned address_bits;
757 static void __init set_var_mtrr(
758 unsigned int reg, unsigned long basek, unsigned long sizek,
759 unsigned char type, unsigned address_bits)
761 u32 base_lo, base_hi, mask_lo, mask_hi;
762 unsigned address_mask_high;
765 fill_mtrr_var_range(reg, 0, 0, 0, 0);
769 address_mask_high = ((1u << (address_bits - 32u)) - 1u);
771 base_hi = basek >> 22;
772 base_lo = basek << 10;
774 if (sizek < 4*1024*1024) {
775 mask_hi = address_mask_high;
776 mask_lo = ~((sizek << 10) - 1);
778 mask_hi = address_mask_high & (~((sizek >> 22) - 1));
784 fill_mtrr_var_range(reg, base_lo, base_hi, mask_lo, mask_hi);
787 static unsigned int __init range_to_mtrr(unsigned int reg,
788 unsigned long range_startk, unsigned long range_sizek,
789 unsigned char type, unsigned address_bits)
791 if (!range_sizek || (reg >= num_var_ranges))
794 while (range_sizek) {
795 unsigned long max_align, align;
797 /* Compute the maximum size I can make a range */
799 max_align = ffs(range_startk) - 1;
802 align = fls(range_sizek) - 1;
803 if (align > max_align)
807 printk(KERN_INFO "Setting variable MTRR %d, base: %ldMB, range: %ldMB, type %s\n",
808 reg, range_startk >> 10, sizek >> 10,
809 (type == MTRR_TYPE_UNCACHABLE)?"UC":
810 ((type == MTRR_TYPE_WRBACK)?"WB":"Other")
812 set_var_mtrr(reg++, range_startk, sizek, type, address_bits);
813 range_startk += sizek;
814 range_sizek -= sizek;
815 if (reg >= num_var_ranges)
821 static void __init range_to_mtrr_with_hole(struct var_mtrr_state *state, unsigned long basek)
823 unsigned long hole_basek, hole_sizek;
824 unsigned long range0_basek, range0_sizek;
825 unsigned long range_basek, range_sizek;
826 unsigned long chunk_sizek;
827 unsigned long gran_sizek;
831 chunk_sizek = state->chunk_sizek;
832 gran_sizek = state->gran_sizek;
834 /* align with gran size, prevent small block used up MTRRs */
835 range_basek = ALIGN(state->range_startk, gran_sizek);
836 if ((range_basek > basek) && basek)
838 range_sizek = ALIGN(state->range_sizek - (range_basek - state->range_startk), gran_sizek);
840 while (range_basek + range_sizek > (state->range_startk + state->range_sizek)) {
841 range_sizek -= gran_sizek;
845 state->range_startk = range_basek;
846 state->range_sizek = range_sizek;
848 /* try to append some small hole */
849 range0_basek = state->range_startk;
850 range0_sizek = ALIGN(state->range_sizek, chunk_sizek);
851 if ((range0_sizek == state->range_sizek) ||
852 ((range0_basek + range0_sizek - chunk_sizek > basek) && basek)) {
853 printk(KERN_INFO "rangeX: %016lx - %016lx\n", range0_basek<<10, (range0_basek + state->range_sizek)<<10);
854 state->reg = range_to_mtrr(state->reg, range0_basek,
855 state->range_sizek, MTRR_TYPE_WRBACK, state->address_bits);
860 range0_sizek -= chunk_sizek;
861 printk(KERN_INFO "range0: %016lx - %016lx\n", range0_basek<<10, (range0_basek + range0_sizek)<<10);
862 state->reg = range_to_mtrr(state->reg, range0_basek,
863 range0_sizek, MTRR_TYPE_WRBACK, state->address_bits);
865 range_basek = range0_basek + range0_sizek;
866 range_sizek = chunk_sizek;
867 if (range_sizek - (state->range_sizek - range0_sizek) < (chunk_sizek >> 1)) {
868 hole_sizek = range_sizek - (state->range_sizek - range0_sizek);
869 hole_basek = range_basek + range_sizek - hole_sizek;
871 range_sizek = state->range_sizek - range0_sizek;
873 printk(KERN_INFO "range: %016lx - %016lx\n", range_basek<<10, (range_basek + range_sizek)<<10);
874 state->reg = range_to_mtrr(state->reg, range_basek,
875 range_sizek, MTRR_TYPE_WRBACK, state->address_bits);
877 printk(KERN_INFO "hole: %016lx - %016lx\n", hole_basek<<10, (hole_basek + hole_sizek)<<10);
878 state->reg = range_to_mtrr(state->reg, hole_basek,
879 hole_sizek, MTRR_TYPE_UNCACHABLE, state->address_bits);
883 static void __init set_var_mtrr_range(struct var_mtrr_state *state, unsigned long base_pfn, unsigned long size_pfn)
885 unsigned long basek, sizek;
887 if (state->reg >= num_var_ranges)
890 basek = base_pfn << (PAGE_SHIFT - 10);
891 sizek = size_pfn << (PAGE_SHIFT - 10);
893 /* See if I can merge with the last range */
894 if ((basek <= 1024) || (state->range_startk + state->range_sizek == basek)) {
895 unsigned long endk = basek + sizek;
896 state->range_sizek = endk - state->range_startk;
899 /* Write the range mtrrs */
900 if (state->range_sizek != 0) {
901 range_to_mtrr_with_hole(state, basek);
903 state->range_startk = 0;
904 state->range_sizek = 0;
906 /* Allocate an msr */
907 state->range_startk = basek;
908 state->range_sizek = sizek;
911 /* mininum size of mtrr block that can take hole */
912 static u64 mtrr_chunk_size __initdata = (256ULL<<20);
914 static int __init parse_mtrr_chunk_size_opt(char *p)
918 mtrr_chunk_size = memparse(p, &p);
921 early_param("mtrr_chunk_size", parse_mtrr_chunk_size_opt);
923 /* granity of mtrr of block */
924 static u64 mtrr_gran_size __initdata = (64ULL<<20);
926 static int __init parse_mtrr_gran_size_opt(char *p)
930 mtrr_gran_size = memparse(p, &p);
933 early_param("mtrr_gran_size", parse_mtrr_gran_size_opt);
935 static void __init x86_setup_var_mtrrs(struct res_range *range, int nr_range, unsigned address_bits)
937 struct var_mtrr_state var_state;
940 var_state.range_startk = 0;
941 var_state.range_sizek = 0;
943 var_state.address_bits = address_bits;
944 var_state.chunk_sizek = mtrr_chunk_size >> 10;
945 var_state.gran_sizek = mtrr_gran_size >> 10;
947 /* Write the range etc */
948 for (i = 0; i < nr_range; i++)
949 set_var_mtrr_range(&var_state, range[i].start, range[i].end - range[i].start + 1);
951 /* Write the last range */
952 range_to_mtrr_with_hole(&var_state, 0);
953 printk(KERN_INFO "DONE variable MTRRs\n");
954 /* Clear out the extra MTRR's */
955 while (var_state.reg < num_var_ranges)
956 set_var_mtrr(var_state.reg++, 0, 0, 0, var_state.address_bits);
959 static int __init x86_get_mtrr_mem_range(struct res_range *range, int nr_range, unsigned long extra_remove_base, unsigned long extra_remove_size)
961 unsigned long i, base, size;
964 for (i = 0; i < num_var_ranges; i++) {
965 mtrr_if->get(i, &base, &size, &type);
966 if (type != MTRR_TYPE_WRBACK)
968 nr_range = add_range(range, nr_range, base, base + size - 1, 1);
970 printk(KERN_INFO "After WB checking\n");
971 for (i = 0; i < nr_range; i++)
972 printk(KERN_INFO "MTRR MAP PFN: %016lx - %016lx\n", range[i].start, range[i].end + 1);
974 /* take out UC ranges */
975 for (i = 0; i < num_var_ranges; i++) {
976 mtrr_if->get(i, &base, &size, &type);
977 if (type != MTRR_TYPE_UNCACHABLE)
981 subtract_range(range, base, base + size - 1);
983 if (extra_remove_size)
984 subtract_range(range, extra_remove_base, extra_remove_base + extra_remove_size - 1);
986 /* get new range num */
988 for (i = 0; i < RANGE_NUM; i++) {
993 printk(KERN_INFO "After UC checking\n");
994 for (i = 0; i < nr_range; i++)
995 printk(KERN_INFO "MTRR MAP PFN: %016lx - %016lx\n", range[i].start, range[i].end + 1);
997 /* sort the ranges */
998 sort(range, nr_range, sizeof(struct res_range), cmp_range, NULL);
999 printk(KERN_INFO "After sorting\n");
1000 for (i = 0; i < nr_range; i++)
1001 printk(KERN_INFO "MTRR MAP PFN: %016lx - %016lx\n", range[i].start, range[i].end + 1);
1006 static int __init mtrr_cleanup(unsigned address_bits)
1008 unsigned long i, base, size, def, dummy;
1010 struct res_range range[RANGE_NUM];
1012 unsigned long extra_remove_base, extra_remove_size;
1014 /* extra one for all 0 */
1015 int num[MTRR_NUM_TYPES + 1];
1017 if (!is_cpu(INTEL) || enable_mtrr_cleanup < 1)
1019 rdmsr(MTRRdefType_MSR, def, dummy);
1021 if (def != MTRR_TYPE_UNCACHABLE)
1024 /* check entries number */
1025 memset(num, 0, sizeof(num));
1026 for (i = 0; i < num_var_ranges; i++) {
1027 mtrr_if->get(i, &base, &size, &type);
1028 if (type >= MTRR_NUM_TYPES)
1031 type = MTRR_NUM_TYPES;
1035 /* check if we got UC entries */
1036 if (!num[MTRR_TYPE_UNCACHABLE])
1039 /* check if we only had WB and UC */
1040 if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
1041 num_var_ranges - num[MTRR_NUM_TYPES])
1044 memset(range, 0, sizeof(range));
1045 extra_remove_size = 0;
1047 extra_remove_base = 1 << (32 - PAGE_SHIFT);
1048 extra_remove_size = (mtrr_tom2>>PAGE_SHIFT) - extra_remove_base;
1050 nr_range = x86_get_mtrr_mem_range(range, 0, extra_remove_base, extra_remove_size);
1052 /* convert ranges to var ranges state */
1053 x86_setup_var_mtrrs(range, nr_range, address_bits);
1059 static int disable_mtrr_trim;
1061 static int __init disable_mtrr_trim_setup(char *str)
1063 disable_mtrr_trim = 1;
1066 early_param("disable_mtrr_trim", disable_mtrr_trim_setup);
1069 * Newer AMD K8s and later CPUs have a special magic MSR way to force WB
1070 * for memory >4GB. Check for that here.
1071 * Note this won't check if the MTRRs < 4GB where the magic bit doesn't
1072 * apply to are wrong, but so far we don't know of any such case in the wild.
1074 #define Tom2Enabled (1U << 21)
1075 #define Tom2ForceMemTypeWB (1U << 22)
1077 int __init amd_special_default_mtrr(void)
1081 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
1083 if (boot_cpu_data.x86 < 0xf || boot_cpu_data.x86 > 0x11)
1085 /* In case some hypervisor doesn't pass SYSCFG through */
1086 if (rdmsr_safe(MSR_K8_SYSCFG, &l, &h) < 0)
1089 * Memory between 4GB and top of mem is forced WB by this magic bit.
1090 * Reserved before K8RevF, but should be zero there.
1092 if ((l & (Tom2Enabled | Tom2ForceMemTypeWB)) ==
1093 (Tom2Enabled | Tom2ForceMemTypeWB))
1099 * mtrr_trim_uncached_memory - trim RAM not covered by MTRRs
1100 * @end_pfn: ending page frame number
1102 * Some buggy BIOSes don't setup the MTRRs properly for systems with certain
1103 * memory configurations. This routine checks that the highest MTRR matches
1104 * the end of memory, to make sure the MTRRs having a write back type cover
1105 * all of the memory the kernel is intending to use. If not, it'll trim any
1106 * memory off the end by adjusting end_pfn, removing it from the kernel's
1107 * allocation pools, warning the user with an obnoxious message.
1109 int __init mtrr_trim_uncached_memory(unsigned long end_pfn)
1111 unsigned long i, base, size, highest_pfn = 0, def, dummy;
1113 u64 trim_start, trim_size;
1116 * Make sure we only trim uncachable memory on machines that
1117 * support the Intel MTRR architecture:
1119 if (!is_cpu(INTEL) || disable_mtrr_trim)
1121 rdmsr(MTRRdefType_MSR, def, dummy);
1123 if (def != MTRR_TYPE_UNCACHABLE)
1126 if (amd_special_default_mtrr())
1129 /* Find highest cached pfn */
1130 for (i = 0; i < num_var_ranges; i++) {
1131 mtrr_if->get(i, &base, &size, &type);
1132 if (type != MTRR_TYPE_WRBACK)
1134 if (highest_pfn < base + size)
1135 highest_pfn = base + size;
1138 /* kvm/qemu doesn't have mtrr set right, don't trim them all */
1140 if (!kvm_para_available()) {
1142 "WARNING: strange, CPU MTRRs all blank?\n");
1148 if (highest_pfn < end_pfn) {
1149 printk(KERN_WARNING "WARNING: BIOS bug: CPU MTRRs don't cover"
1150 " all of memory, losing %luMB of RAM.\n",
1151 (end_pfn - highest_pfn) >> (20 - PAGE_SHIFT));
1155 printk(KERN_INFO "update e820 for mtrr\n");
1156 trim_start = highest_pfn;
1157 trim_start <<= PAGE_SHIFT;
1158 trim_size = end_pfn;
1159 trim_size <<= PAGE_SHIFT;
1160 trim_size -= trim_start;
1161 update_memory_range(trim_start, trim_size, E820_RAM,
1171 * mtrr_bp_init - initialize mtrrs on the boot CPU
1173 * This needs to be called early; before any of the other CPUs are
1174 * initialized (i.e. before smp_init()).
1177 void __init mtrr_bp_init(void)
1185 mtrr_if = &generic_mtrr_ops;
1186 size_or_mask = 0xff000000; /* 36 bits */
1187 size_and_mask = 0x00f00000;
1190 /* This is an AMD specific MSR, but we assume(hope?) that
1191 Intel will implement it to when they extend the address
1193 if (cpuid_eax(0x80000000) >= 0x80000008) {
1194 phys_addr = cpuid_eax(0x80000008) & 0xff;
1195 /* CPUID workaround for Intel 0F33/0F34 CPU */
1196 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
1197 boot_cpu_data.x86 == 0xF &&
1198 boot_cpu_data.x86_model == 0x3 &&
1199 (boot_cpu_data.x86_mask == 0x3 ||
1200 boot_cpu_data.x86_mask == 0x4))
1203 size_or_mask = ~((1ULL << (phys_addr - PAGE_SHIFT)) - 1);
1204 size_and_mask = ~size_or_mask & 0xfffff00000ULL;
1205 } else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
1206 boot_cpu_data.x86 == 6) {
1207 /* VIA C* family have Intel style MTRRs, but
1208 don't support PAE */
1209 size_or_mask = 0xfff00000; /* 32 bits */
1214 switch (boot_cpu_data.x86_vendor) {
1215 case X86_VENDOR_AMD:
1216 if (cpu_has_k6_mtrr) {
1217 /* Pre-Athlon (K6) AMD CPU MTRRs */
1218 mtrr_if = mtrr_ops[X86_VENDOR_AMD];
1219 size_or_mask = 0xfff00000; /* 32 bits */
1223 case X86_VENDOR_CENTAUR:
1224 if (cpu_has_centaur_mcr) {
1225 mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
1226 size_or_mask = 0xfff00000; /* 32 bits */
1230 case X86_VENDOR_CYRIX:
1231 if (cpu_has_cyrix_arr) {
1232 mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
1233 size_or_mask = 0xfff00000; /* 32 bits */
1243 set_num_var_ranges();
1248 if (mtrr_cleanup(phys_addr))
1255 void mtrr_ap_init(void)
1257 unsigned long flags;
1259 if (!mtrr_if || !use_intel())
1262 * Ideally we should hold mtrr_mutex here to avoid mtrr entries changed,
1263 * but this routine will be called in cpu boot time, holding the lock
1264 * breaks it. This routine is called in two cases: 1.very earily time
1265 * of software resume, when there absolutely isn't mtrr entry changes;
1266 * 2.cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug lock to
1267 * prevent mtrr entry changes
1269 local_irq_save(flags);
1273 local_irq_restore(flags);
1277 * Save current fixed-range MTRR state of the BSP
1279 void mtrr_save_state(void)
1281 smp_call_function_single(0, mtrr_save_fixed_ranges, NULL, 1, 1);
1284 static int __init mtrr_init_finialize(void)
1289 if (enable_mtrr_cleanup < 1)
1292 /* The CPUs haven't MTRR and seem to not support SMP. They have
1293 * specific drivers, we use a tricky method to support
1294 * suspend/resume for them.
1295 * TBD: is there any system with such CPU which supports
1296 * suspend/resume? if no, we should remove the code.
1298 sysdev_driver_register(&cpu_sysdev_class,
1299 &mtrr_sysdev_driver);
1303 subsys_initcall(mtrr_init_finialize);