Merge branches 'release', 'acpica', 'bugzilla-10224', 'bugzilla-9772', 'bugzilla...
[linux-2.6] / arch / s390 / kernel / process.c
1 /*
2  *  arch/s390/kernel/process.c
3  *
4  *  S390 version
5  *    Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
6  *    Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com),
7  *               Hartmut Penner (hp@de.ibm.com),
8  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
9  *
10  *  Derived from "arch/i386/kernel/process.c"
11  *    Copyright (C) 1995, Linus Torvalds
12  */
13
14 /*
15  * This file handles the architecture-dependent parts of process handling..
16  */
17
18 #include <linux/compiler.h>
19 #include <linux/cpu.h>
20 #include <linux/errno.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/fs.h>
25 #include <linux/smp.h>
26 #include <linux/stddef.h>
27 #include <linux/unistd.h>
28 #include <linux/ptrace.h>
29 #include <linux/slab.h>
30 #include <linux/vmalloc.h>
31 #include <linux/user.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/reboot.h>
35 #include <linux/init.h>
36 #include <linux/module.h>
37 #include <linux/notifier.h>
38 #include <linux/utsname.h>
39 #include <linux/tick.h>
40 #include <linux/elfcore.h>
41 #include <asm/uaccess.h>
42 #include <asm/pgtable.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/irq.h>
47 #include <asm/timer.h>
48 #include <asm/cpu.h>
49 #include "entry.h"
50
51 asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
52
53 /*
54  * Return saved PC of a blocked thread. used in kernel/sched.
55  * resume in entry.S does not create a new stack frame, it
56  * just stores the registers %r6-%r15 to the frame given by
57  * schedule. We want to return the address of the caller of
58  * schedule, so we have to walk the backchain one time to
59  * find the frame schedule() store its return address.
60  */
61 unsigned long thread_saved_pc(struct task_struct *tsk)
62 {
63         struct stack_frame *sf, *low, *high;
64
65         if (!tsk || !task_stack_page(tsk))
66                 return 0;
67         low = task_stack_page(tsk);
68         high = (struct stack_frame *) task_pt_regs(tsk);
69         sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
70         if (sf <= low || sf > high)
71                 return 0;
72         sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
73         if (sf <= low || sf > high)
74                 return 0;
75         return sf->gprs[8];
76 }
77
78 /*
79  * Need to know about CPUs going idle?
80  */
81 static ATOMIC_NOTIFIER_HEAD(idle_chain);
82 DEFINE_PER_CPU(struct s390_idle_data, s390_idle);
83
84 int register_idle_notifier(struct notifier_block *nb)
85 {
86         return atomic_notifier_chain_register(&idle_chain, nb);
87 }
88 EXPORT_SYMBOL(register_idle_notifier);
89
90 int unregister_idle_notifier(struct notifier_block *nb)
91 {
92         return atomic_notifier_chain_unregister(&idle_chain, nb);
93 }
94 EXPORT_SYMBOL(unregister_idle_notifier);
95
96 static int s390_idle_enter(void)
97 {
98         struct s390_idle_data *idle;
99         int nr_calls = 0;
100         void *hcpu;
101         int rc;
102
103         hcpu = (void *)(long)smp_processor_id();
104         rc = __atomic_notifier_call_chain(&idle_chain, S390_CPU_IDLE, hcpu, -1,
105                                           &nr_calls);
106         if (rc == NOTIFY_BAD) {
107                 nr_calls--;
108                 __atomic_notifier_call_chain(&idle_chain, S390_CPU_NOT_IDLE,
109                                              hcpu, nr_calls, NULL);
110                 return rc;
111         }
112         idle = &__get_cpu_var(s390_idle);
113         spin_lock(&idle->lock);
114         idle->idle_count++;
115         idle->in_idle = 1;
116         idle->idle_enter = get_clock();
117         spin_unlock(&idle->lock);
118         return NOTIFY_OK;
119 }
120
121 void s390_idle_leave(void)
122 {
123         struct s390_idle_data *idle;
124
125         idle = &__get_cpu_var(s390_idle);
126         spin_lock(&idle->lock);
127         idle->idle_time += get_clock() - idle->idle_enter;
128         idle->in_idle = 0;
129         spin_unlock(&idle->lock);
130         atomic_notifier_call_chain(&idle_chain, S390_CPU_NOT_IDLE,
131                                    (void *)(long) smp_processor_id());
132 }
133
134 extern void s390_handle_mcck(void);
135 /*
136  * The idle loop on a S390...
137  */
138 static void default_idle(void)
139 {
140         /* CPU is going idle. */
141         local_irq_disable();
142         if (need_resched()) {
143                 local_irq_enable();
144                 return;
145         }
146         if (s390_idle_enter() == NOTIFY_BAD) {
147                 local_irq_enable();
148                 return;
149         }
150 #ifdef CONFIG_HOTPLUG_CPU
151         if (cpu_is_offline(smp_processor_id())) {
152                 preempt_enable_no_resched();
153                 cpu_die();
154         }
155 #endif
156         local_mcck_disable();
157         if (test_thread_flag(TIF_MCCK_PENDING)) {
158                 local_mcck_enable();
159                 s390_idle_leave();
160                 local_irq_enable();
161                 s390_handle_mcck();
162                 return;
163         }
164         trace_hardirqs_on();
165         /* Wait for external, I/O or machine check interrupt. */
166         __load_psw_mask(psw_kernel_bits | PSW_MASK_WAIT |
167                         PSW_MASK_IO | PSW_MASK_EXT);
168 }
169
170 void cpu_idle(void)
171 {
172         for (;;) {
173                 tick_nohz_stop_sched_tick();
174                 while (!need_resched())
175                         default_idle();
176                 tick_nohz_restart_sched_tick();
177                 preempt_enable_no_resched();
178                 schedule();
179                 preempt_disable();
180         }
181 }
182
183 void show_regs(struct pt_regs *regs)
184 {
185         print_modules();
186         printk("CPU: %d %s %s %.*s\n",
187                task_thread_info(current)->cpu, print_tainted(),
188                init_utsname()->release,
189                (int)strcspn(init_utsname()->version, " "),
190                init_utsname()->version);
191         printk("Process %s (pid: %d, task: %p, ksp: %p)\n",
192                current->comm, current->pid, current,
193                (void *) current->thread.ksp);
194         show_registers(regs);
195         /* Show stack backtrace if pt_regs is from kernel mode */
196         if (!(regs->psw.mask & PSW_MASK_PSTATE))
197                 show_trace(NULL, (unsigned long *) regs->gprs[15]);
198         show_last_breaking_event(regs);
199 }
200
201 extern void kernel_thread_starter(void);
202
203 asm(
204         ".align 4\n"
205         "kernel_thread_starter:\n"
206         "    la    2,0(10)\n"
207         "    basr  14,9\n"
208         "    la    2,0\n"
209         "    br    11\n");
210
211 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
212 {
213         struct pt_regs regs;
214
215         memset(&regs, 0, sizeof(regs));
216         regs.psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT;
217         regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
218         regs.gprs[9] = (unsigned long) fn;
219         regs.gprs[10] = (unsigned long) arg;
220         regs.gprs[11] = (unsigned long) do_exit;
221         regs.orig_gpr2 = -1;
222
223         /* Ok, create the new process.. */
224         return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
225                        0, &regs, 0, NULL, NULL);
226 }
227
228 /*
229  * Free current thread data structures etc..
230  */
231 void exit_thread(void)
232 {
233 }
234
235 void flush_thread(void)
236 {
237         clear_used_math();
238         clear_tsk_thread_flag(current, TIF_USEDFPU);
239 }
240
241 void release_thread(struct task_struct *dead_task)
242 {
243 }
244
245 int copy_thread(int nr, unsigned long clone_flags, unsigned long new_stackp,
246         unsigned long unused,
247         struct task_struct * p, struct pt_regs * regs)
248 {
249         struct fake_frame
250           {
251             struct stack_frame sf;
252             struct pt_regs childregs;
253           } *frame;
254
255         frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
256         p->thread.ksp = (unsigned long) frame;
257         /* Store access registers to kernel stack of new process. */
258         frame->childregs = *regs;
259         frame->childregs.gprs[2] = 0;   /* child returns 0 on fork. */
260         frame->childregs.gprs[15] = new_stackp;
261         frame->sf.back_chain = 0;
262
263         /* new return point is ret_from_fork */
264         frame->sf.gprs[8] = (unsigned long) ret_from_fork;
265
266         /* fake return stack for resume(), don't go back to schedule */
267         frame->sf.gprs[9] = (unsigned long) frame;
268
269         /* Save access registers to new thread structure. */
270         save_access_regs(&p->thread.acrs[0]);
271
272 #ifndef CONFIG_64BIT
273         /*
274          * save fprs to current->thread.fp_regs to merge them with
275          * the emulated registers and then copy the result to the child.
276          */
277         save_fp_regs(&current->thread.fp_regs);
278         memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
279                sizeof(s390_fp_regs));
280         /* Set a new TLS ?  */
281         if (clone_flags & CLONE_SETTLS)
282                 p->thread.acrs[0] = regs->gprs[6];
283 #else /* CONFIG_64BIT */
284         /* Save the fpu registers to new thread structure. */
285         save_fp_regs(&p->thread.fp_regs);
286         /* Set a new TLS ?  */
287         if (clone_flags & CLONE_SETTLS) {
288                 if (test_thread_flag(TIF_31BIT)) {
289                         p->thread.acrs[0] = (unsigned int) regs->gprs[6];
290                 } else {
291                         p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
292                         p->thread.acrs[1] = (unsigned int) regs->gprs[6];
293                 }
294         }
295 #endif /* CONFIG_64BIT */
296         /* start new process with ar4 pointing to the correct address space */
297         p->thread.mm_segment = get_fs();
298         /* Don't copy debug registers */
299         memset(&p->thread.per_info,0,sizeof(p->thread.per_info));
300
301         return 0;
302 }
303
304 asmlinkage long sys_fork(void)
305 {
306         struct pt_regs *regs = task_pt_regs(current);
307         return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
308 }
309
310 asmlinkage long sys_clone(void)
311 {
312         struct pt_regs *regs = task_pt_regs(current);
313         unsigned long clone_flags;
314         unsigned long newsp;
315         int __user *parent_tidptr, *child_tidptr;
316
317         clone_flags = regs->gprs[3];
318         newsp = regs->orig_gpr2;
319         parent_tidptr = (int __user *) regs->gprs[4];
320         child_tidptr = (int __user *) regs->gprs[5];
321         if (!newsp)
322                 newsp = regs->gprs[15];
323         return do_fork(clone_flags, newsp, regs, 0,
324                        parent_tidptr, child_tidptr);
325 }
326
327 /*
328  * This is trivial, and on the face of it looks like it
329  * could equally well be done in user mode.
330  *
331  * Not so, for quite unobvious reasons - register pressure.
332  * In user mode vfork() cannot have a stack frame, and if
333  * done by calling the "clone()" system call directly, you
334  * do not have enough call-clobbered registers to hold all
335  * the information you need.
336  */
337 asmlinkage long sys_vfork(void)
338 {
339         struct pt_regs *regs = task_pt_regs(current);
340         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
341                        regs->gprs[15], regs, 0, NULL, NULL);
342 }
343
344 asmlinkage void execve_tail(void)
345 {
346         task_lock(current);
347         current->ptrace &= ~PT_DTRACE;
348         task_unlock(current);
349         current->thread.fp_regs.fpc = 0;
350         if (MACHINE_HAS_IEEE)
351                 asm volatile("sfpc %0,%0" : : "d" (0));
352 }
353
354 /*
355  * sys_execve() executes a new program.
356  */
357 asmlinkage long sys_execve(void)
358 {
359         struct pt_regs *regs = task_pt_regs(current);
360         char *filename;
361         unsigned long result;
362         int rc;
363
364         filename = getname((char __user *) regs->orig_gpr2);
365         if (IS_ERR(filename)) {
366                 result = PTR_ERR(filename);
367                 goto out;
368         }
369         rc = do_execve(filename, (char __user * __user *) regs->gprs[3],
370                        (char __user * __user *) regs->gprs[4], regs);
371         if (rc) {
372                 result = rc;
373                 goto out_putname;
374         }
375         execve_tail();
376         result = regs->gprs[2];
377 out_putname:
378         putname(filename);
379 out:
380         return result;
381 }
382
383 /*
384  * fill in the FPU structure for a core dump.
385  */
386 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
387 {
388 #ifndef CONFIG_64BIT
389         /*
390          * save fprs to current->thread.fp_regs to merge them with
391          * the emulated registers and then copy the result to the dump.
392          */
393         save_fp_regs(&current->thread.fp_regs);
394         memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
395 #else /* CONFIG_64BIT */
396         save_fp_regs(fpregs);
397 #endif /* CONFIG_64BIT */
398         return 1;
399 }
400
401 unsigned long get_wchan(struct task_struct *p)
402 {
403         struct stack_frame *sf, *low, *high;
404         unsigned long return_address;
405         int count;
406
407         if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
408                 return 0;
409         low = task_stack_page(p);
410         high = (struct stack_frame *) task_pt_regs(p);
411         sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
412         if (sf <= low || sf > high)
413                 return 0;
414         for (count = 0; count < 16; count++) {
415                 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
416                 if (sf <= low || sf > high)
417                         return 0;
418                 return_address = sf->gprs[8] & PSW_ADDR_INSN;
419                 if (!in_sched_functions(return_address))
420                         return return_address;
421         }
422         return 0;
423 }
424