RESEND [PATCH 3/3] NetXen: Graceful teardown of interface and hardware upon module...
[linux-2.6] / drivers / mtd / ubi / scan.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20
21 /*
22  * UBI scanning unit.
23  *
24  * This unit is responsible for scanning the flash media, checking UBI
25  * headers and providing complete information about the UBI flash image.
26  *
27  * The scanning information is reoresented by a &struct ubi_scan_info' object.
28  * Information about found volumes is represented by &struct ubi_scan_volume
29  * objects which are kept in volume RB-tree with root at the @volumes field.
30  * The RB-tree is indexed by the volume ID.
31  *
32  * Found logical eraseblocks are represented by &struct ubi_scan_leb objects.
33  * These objects are kept in per-volume RB-trees with the root at the
34  * corresponding &struct ubi_scan_volume object. To put it differently, we keep
35  * an RB-tree of per-volume objects and each of these objects is the root of
36  * RB-tree of per-eraseblock objects.
37  *
38  * Corrupted physical eraseblocks are put to the @corr list, free physical
39  * eraseblocks are put to the @free list and the physical eraseblock to be
40  * erased are put to the @erase list.
41  */
42
43 #include <linux/err.h>
44 #include <linux/crc32.h>
45 #include "ubi.h"
46
47 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
48 static int paranoid_check_si(const struct ubi_device *ubi,
49                              struct ubi_scan_info *si);
50 #else
51 #define paranoid_check_si(ubi, si) 0
52 #endif
53
54 /* Temporary variables used during scanning */
55 static struct ubi_ec_hdr *ech;
56 static struct ubi_vid_hdr *vidh;
57
58 int ubi_scan_add_to_list(struct ubi_scan_info *si, int pnum, int ec,
59                          struct list_head *list)
60 {
61         struct ubi_scan_leb *seb;
62
63         if (list == &si->free)
64                 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
65         else if (list == &si->erase)
66                 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
67         else if (list == &si->corr)
68                 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
69         else if (list == &si->alien)
70                 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
71         else
72                 BUG();
73
74         seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
75         if (!seb)
76                 return -ENOMEM;
77
78         seb->pnum = pnum;
79         seb->ec = ec;
80         list_add_tail(&seb->u.list, list);
81         return 0;
82 }
83
84 /**
85  * commit_to_mean_value - commit intermediate results to the final mean erase
86  * counter value.
87  * @si: scanning information
88  *
89  * This is a helper function which calculates partial mean erase counter mean
90  * value and adds it to the resulting mean value. As we can work only in
91  * integer arithmetic and we want to calculate the mean value of erase counter
92  * accurately, we first sum erase counter values in @si->ec_sum variable and
93  * count these components in @si->ec_count. If this temporary @si->ec_sum is
94  * going to overflow, we calculate the partial mean value
95  * (@si->ec_sum/@si->ec_count) and add it to @si->mean_ec.
96  */
97 static void commit_to_mean_value(struct ubi_scan_info *si)
98 {
99         si->ec_sum /= si->ec_count;
100         if (si->ec_sum % si->ec_count >= si->ec_count / 2)
101                 si->mean_ec += 1;
102         si->mean_ec += si->ec_sum;
103 }
104
105 /**
106  * validate_vid_hdr - check that volume identifier header is correct and
107  * consistent.
108  * @vid_hdr: the volume identifier header to check
109  * @sv: information about the volume this logical eraseblock belongs to
110  * @pnum: physical eraseblock number the VID header came from
111  *
112  * This function checks that data stored in @vid_hdr is consistent. Returns
113  * non-zero if an inconsistency was found and zero if not.
114  *
115  * Note, UBI does sanity check of everything it reads from the flash media.
116  * Most of the checks are done in the I/O unit. Here we check that the
117  * information in the VID header is consistent to the information in other VID
118  * headers of the same volume.
119  */
120 static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
121                             const struct ubi_scan_volume *sv, int pnum)
122 {
123         int vol_type = vid_hdr->vol_type;
124         int vol_id = ubi32_to_cpu(vid_hdr->vol_id);
125         int used_ebs = ubi32_to_cpu(vid_hdr->used_ebs);
126         int data_pad = ubi32_to_cpu(vid_hdr->data_pad);
127
128         if (sv->leb_count != 0) {
129                 int sv_vol_type;
130
131                 /*
132                  * This is not the first logical eraseblock belonging to this
133                  * volume. Ensure that the data in its VID header is consistent
134                  * to the data in previous logical eraseblock headers.
135                  */
136
137                 if (vol_id != sv->vol_id) {
138                         dbg_err("inconsistent vol_id");
139                         goto bad;
140                 }
141
142                 if (sv->vol_type == UBI_STATIC_VOLUME)
143                         sv_vol_type = UBI_VID_STATIC;
144                 else
145                         sv_vol_type = UBI_VID_DYNAMIC;
146
147                 if (vol_type != sv_vol_type) {
148                         dbg_err("inconsistent vol_type");
149                         goto bad;
150                 }
151
152                 if (used_ebs != sv->used_ebs) {
153                         dbg_err("inconsistent used_ebs");
154                         goto bad;
155                 }
156
157                 if (data_pad != sv->data_pad) {
158                         dbg_err("inconsistent data_pad");
159                         goto bad;
160                 }
161         }
162
163         return 0;
164
165 bad:
166         ubi_err("inconsistent VID header at PEB %d", pnum);
167         ubi_dbg_dump_vid_hdr(vid_hdr);
168         ubi_dbg_dump_sv(sv);
169         return -EINVAL;
170 }
171
172 /**
173  * add_volume - add volume to the scanning information.
174  * @si: scanning information
175  * @vol_id: ID of the volume to add
176  * @pnum: physical eraseblock number
177  * @vid_hdr: volume identifier header
178  *
179  * If the volume corresponding to the @vid_hdr logical eraseblock is already
180  * present in the scanning information, this function does nothing. Otherwise
181  * it adds corresponding volume to the scanning information. Returns a pointer
182  * to the scanning volume object in case of success and a negative error code
183  * in case of failure.
184  */
185 static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
186                                           int pnum,
187                                           const struct ubi_vid_hdr *vid_hdr)
188 {
189         struct ubi_scan_volume *sv;
190         struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
191
192         ubi_assert(vol_id == ubi32_to_cpu(vid_hdr->vol_id));
193
194         /* Walk the volume RB-tree to look if this volume is already present */
195         while (*p) {
196                 parent = *p;
197                 sv = rb_entry(parent, struct ubi_scan_volume, rb);
198
199                 if (vol_id == sv->vol_id)
200                         return sv;
201
202                 if (vol_id > sv->vol_id)
203                         p = &(*p)->rb_left;
204                 else
205                         p = &(*p)->rb_right;
206         }
207
208         /* The volume is absent - add it */
209         sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
210         if (!sv)
211                 return ERR_PTR(-ENOMEM);
212
213         sv->highest_lnum = sv->leb_count = 0;
214         si->max_sqnum = 0;
215         sv->vol_id = vol_id;
216         sv->root = RB_ROOT;
217         sv->used_ebs = ubi32_to_cpu(vid_hdr->used_ebs);
218         sv->data_pad = ubi32_to_cpu(vid_hdr->data_pad);
219         sv->compat = vid_hdr->compat;
220         sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
221                                                             : UBI_STATIC_VOLUME;
222         if (vol_id > si->highest_vol_id)
223                 si->highest_vol_id = vol_id;
224
225         rb_link_node(&sv->rb, parent, p);
226         rb_insert_color(&sv->rb, &si->volumes);
227         si->vols_found += 1;
228         dbg_bld("added volume %d", vol_id);
229         return sv;
230 }
231
232 /**
233  * compare_lebs - find out which logical eraseblock is newer.
234  * @ubi: UBI device description object
235  * @seb: first logical eraseblock to compare
236  * @pnum: physical eraseblock number of the second logical eraseblock to
237  * compare
238  * @vid_hdr: volume identifier header of the second logical eraseblock
239  *
240  * This function compares 2 copies of a LEB and informs which one is newer. In
241  * case of success this function returns a positive value, in case of failure, a
242  * negative error code is returned. The success return codes use the following
243  * bits:
244  *     o bit 0 is cleared: the first PEB (described by @seb) is newer then the
245  *       second PEB (described by @pnum and @vid_hdr);
246  *     o bit 0 is set: the second PEB is newer;
247  *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
248  *     o bit 1 is set: bit-flips were detected in the newer LEB;
249  *     o bit 2 is cleared: the older LEB is not corrupted;
250  *     o bit 2 is set: the older LEB is corrupted.
251  */
252 static int compare_lebs(const struct ubi_device *ubi,
253                         const struct ubi_scan_leb *seb, int pnum,
254                         const struct ubi_vid_hdr *vid_hdr)
255 {
256         void *buf;
257         int len, err, second_is_newer, bitflips = 0, corrupted = 0;
258         uint32_t data_crc, crc;
259         struct ubi_vid_hdr *vidh = NULL;
260         unsigned long long sqnum2 = ubi64_to_cpu(vid_hdr->sqnum);
261
262         if (seb->sqnum == 0 && sqnum2 == 0) {
263                 long long abs, v1 = seb->leb_ver, v2 = ubi32_to_cpu(vid_hdr->leb_ver);
264
265                 /*
266                  * UBI constantly increases the logical eraseblock version
267                  * number and it can overflow. Thus, we have to bear in mind
268                  * that versions that are close to %0xFFFFFFFF are less then
269                  * versions that are close to %0.
270                  *
271                  * The UBI WL unit guarantees that the number of pending tasks
272                  * is not greater then %0x7FFFFFFF. So, if the difference
273                  * between any two versions is greater or equivalent to
274                  * %0x7FFFFFFF, there was an overflow and the logical
275                  * eraseblock with lower version is actually newer then the one
276                  * with higher version.
277                  *
278                  * FIXME: but this is anyway obsolete and will be removed at
279                  * some point.
280                  */
281
282                 dbg_bld("using old crappy leb_ver stuff");
283
284                 abs = v1 - v2;
285                 if (abs < 0)
286                         abs = -abs;
287
288                 if (abs < 0x7FFFFFFF)
289                         /* Non-overflow situation */
290                         second_is_newer = (v2 > v1);
291                 else
292                         second_is_newer = (v2 < v1);
293         } else
294                 /* Obviously the LEB with lower sequence counter is older */
295                 second_is_newer = sqnum2 > seb->sqnum;
296
297         /*
298          * Now we know which copy is newer. If the copy flag of the PEB with
299          * newer version is not set, then we just return, otherwise we have to
300          * check data CRC. For the second PEB we already have the VID header,
301          * for the first one - we'll need to re-read it from flash.
302          *
303          * FIXME: this may be optimized so that we wouldn't read twice.
304          */
305
306         if (second_is_newer) {
307                 if (!vid_hdr->copy_flag) {
308                         /* It is not a copy, so it is newer */
309                         dbg_bld("second PEB %d is newer, copy_flag is unset",
310                                 pnum);
311                         return 1;
312                 }
313         } else {
314                 pnum = seb->pnum;
315
316                 vidh = ubi_zalloc_vid_hdr(ubi);
317                 if (!vidh)
318                         return -ENOMEM;
319
320                 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
321                 if (err) {
322                         if (err == UBI_IO_BITFLIPS)
323                                 bitflips = 1;
324                         else {
325                                 dbg_err("VID of PEB %d header is bad, but it "
326                                         "was OK earlier", pnum);
327                                 if (err > 0)
328                                         err = -EIO;
329
330                                 goto out_free_vidh;
331                         }
332                 }
333
334                 if (!vidh->copy_flag) {
335                         /* It is not a copy, so it is newer */
336                         dbg_bld("first PEB %d is newer, copy_flag is unset",
337                                 pnum);
338                         err = bitflips << 1;
339                         goto out_free_vidh;
340                 }
341
342                 vid_hdr = vidh;
343         }
344
345         /* Read the data of the copy and check the CRC */
346
347         len = ubi32_to_cpu(vid_hdr->data_size);
348         buf = kmalloc(len, GFP_KERNEL);
349         if (!buf) {
350                 err = -ENOMEM;
351                 goto out_free_vidh;
352         }
353
354         err = ubi_io_read_data(ubi, buf, pnum, 0, len);
355         if (err && err != UBI_IO_BITFLIPS)
356                 goto out_free_buf;
357
358         data_crc = ubi32_to_cpu(vid_hdr->data_crc);
359         crc = crc32(UBI_CRC32_INIT, buf, len);
360         if (crc != data_crc) {
361                 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
362                         pnum, crc, data_crc);
363                 corrupted = 1;
364                 bitflips = 0;
365                 second_is_newer = !second_is_newer;
366         } else {
367                 dbg_bld("PEB %d CRC is OK", pnum);
368                 bitflips = !!err;
369         }
370
371         kfree(buf);
372         ubi_free_vid_hdr(ubi, vidh);
373
374         if (second_is_newer)
375                 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
376         else
377                 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
378
379         return second_is_newer | (bitflips << 1) | (corrupted << 2);
380
381 out_free_buf:
382         kfree(buf);
383 out_free_vidh:
384         ubi_free_vid_hdr(ubi, vidh);
385         ubi_assert(err < 0);
386         return err;
387 }
388
389 /**
390  * ubi_scan_add_used - add information about a physical eraseblock to the
391  * scanning information.
392  * @ubi: UBI device description object
393  * @si: scanning information
394  * @pnum: the physical eraseblock number
395  * @ec: erase counter
396  * @vid_hdr: the volume identifier header
397  * @bitflips: if bit-flips were detected when this physical eraseblock was read
398  *
399  * This function returns zero in case of success and a negative error code in
400  * case of failure.
401  */
402 int ubi_scan_add_used(const struct ubi_device *ubi, struct ubi_scan_info *si,
403                       int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
404                       int bitflips)
405 {
406         int err, vol_id, lnum;
407         uint32_t leb_ver;
408         unsigned long long sqnum;
409         struct ubi_scan_volume *sv;
410         struct ubi_scan_leb *seb;
411         struct rb_node **p, *parent = NULL;
412
413         vol_id = ubi32_to_cpu(vid_hdr->vol_id);
414         lnum = ubi32_to_cpu(vid_hdr->lnum);
415         sqnum = ubi64_to_cpu(vid_hdr->sqnum);
416         leb_ver = ubi32_to_cpu(vid_hdr->leb_ver);
417
418         dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, ver %u, bitflips %d",
419                 pnum, vol_id, lnum, ec, sqnum, leb_ver, bitflips);
420
421         sv = add_volume(si, vol_id, pnum, vid_hdr);
422         if (IS_ERR(sv) < 0)
423                 return PTR_ERR(sv);
424
425         /*
426          * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
427          * if this is the first instance of this logical eraseblock or not.
428          */
429         p = &sv->root.rb_node;
430         while (*p) {
431                 int cmp_res;
432
433                 parent = *p;
434                 seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
435                 if (lnum != seb->lnum) {
436                         if (lnum < seb->lnum)
437                                 p = &(*p)->rb_left;
438                         else
439                                 p = &(*p)->rb_right;
440                         continue;
441                 }
442
443                 /*
444                  * There is already a physical eraseblock describing the same
445                  * logical eraseblock present.
446                  */
447
448                 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
449                         "LEB ver %u, EC %d", seb->pnum, seb->sqnum,
450                         seb->leb_ver, seb->ec);
451
452                 /*
453                  * Make sure that the logical eraseblocks have different
454                  * versions. Otherwise the image is bad.
455                  */
456                 if (seb->leb_ver == leb_ver && leb_ver != 0) {
457                         ubi_err("two LEBs with same version %u", leb_ver);
458                         ubi_dbg_dump_seb(seb, 0);
459                         ubi_dbg_dump_vid_hdr(vid_hdr);
460                         return -EINVAL;
461                 }
462
463                 /*
464                  * Make sure that the logical eraseblocks have different
465                  * sequence numbers. Otherwise the image is bad.
466                  *
467                  * FIXME: remove 'sqnum != 0' check when leb_ver is removed.
468                  */
469                 if (seb->sqnum == sqnum && sqnum != 0) {
470                         ubi_err("two LEBs with same sequence number %llu",
471                                 sqnum);
472                         ubi_dbg_dump_seb(seb, 0);
473                         ubi_dbg_dump_vid_hdr(vid_hdr);
474                         return -EINVAL;
475                 }
476
477                 /*
478                  * Now we have to drop the older one and preserve the newer
479                  * one.
480                  */
481                 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
482                 if (cmp_res < 0)
483                         return cmp_res;
484
485                 if (cmp_res & 1) {
486                         /*
487                          * This logical eraseblock is newer then the one
488                          * found earlier.
489                          */
490                         err = validate_vid_hdr(vid_hdr, sv, pnum);
491                         if (err)
492                                 return err;
493
494                         if (cmp_res & 4)
495                                 err = ubi_scan_add_to_list(si, seb->pnum,
496                                                            seb->ec, &si->corr);
497                         else
498                                 err = ubi_scan_add_to_list(si, seb->pnum,
499                                                            seb->ec, &si->erase);
500                         if (err)
501                                 return err;
502
503                         seb->ec = ec;
504                         seb->pnum = pnum;
505                         seb->scrub = ((cmp_res & 2) || bitflips);
506                         seb->sqnum = sqnum;
507                         seb->leb_ver = leb_ver;
508
509                         if (sv->highest_lnum == lnum)
510                                 sv->last_data_size =
511                                         ubi32_to_cpu(vid_hdr->data_size);
512
513                         return 0;
514                 } else {
515                         /*
516                          * This logical eraseblock is older then the one found
517                          * previously.
518                          */
519                         if (cmp_res & 4)
520                                 return ubi_scan_add_to_list(si, pnum, ec,
521                                                             &si->corr);
522                         else
523                                 return ubi_scan_add_to_list(si, pnum, ec,
524                                                             &si->erase);
525                 }
526         }
527
528         /*
529          * We've met this logical eraseblock for the first time, add it to the
530          * scanning information.
531          */
532
533         err = validate_vid_hdr(vid_hdr, sv, pnum);
534         if (err)
535                 return err;
536
537         seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
538         if (!seb)
539                 return -ENOMEM;
540
541         seb->ec = ec;
542         seb->pnum = pnum;
543         seb->lnum = lnum;
544         seb->sqnum = sqnum;
545         seb->scrub = bitflips;
546         seb->leb_ver = leb_ver;
547
548         if (sv->highest_lnum <= lnum) {
549                 sv->highest_lnum = lnum;
550                 sv->last_data_size = ubi32_to_cpu(vid_hdr->data_size);
551         }
552
553         if (si->max_sqnum < sqnum)
554                 si->max_sqnum = sqnum;
555
556         sv->leb_count += 1;
557         rb_link_node(&seb->u.rb, parent, p);
558         rb_insert_color(&seb->u.rb, &sv->root);
559         return 0;
560 }
561
562 /**
563  * ubi_scan_find_sv - find information about a particular volume in the
564  * scanning information.
565  * @si: scanning information
566  * @vol_id: the requested volume ID
567  *
568  * This function returns a pointer to the volume description or %NULL if there
569  * are no data about this volume in the scanning information.
570  */
571 struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
572                                          int vol_id)
573 {
574         struct ubi_scan_volume *sv;
575         struct rb_node *p = si->volumes.rb_node;
576
577         while (p) {
578                 sv = rb_entry(p, struct ubi_scan_volume, rb);
579
580                 if (vol_id == sv->vol_id)
581                         return sv;
582
583                 if (vol_id > sv->vol_id)
584                         p = p->rb_left;
585                 else
586                         p = p->rb_right;
587         }
588
589         return NULL;
590 }
591
592 /**
593  * ubi_scan_find_seb - find information about a particular logical
594  * eraseblock in the volume scanning information.
595  * @sv: a pointer to the volume scanning information
596  * @lnum: the requested logical eraseblock
597  *
598  * This function returns a pointer to the scanning logical eraseblock or %NULL
599  * if there are no data about it in the scanning volume information.
600  */
601 struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
602                                        int lnum)
603 {
604         struct ubi_scan_leb *seb;
605         struct rb_node *p = sv->root.rb_node;
606
607         while (p) {
608                 seb = rb_entry(p, struct ubi_scan_leb, u.rb);
609
610                 if (lnum == seb->lnum)
611                         return seb;
612
613                 if (lnum > seb->lnum)
614                         p = p->rb_left;
615                 else
616                         p = p->rb_right;
617         }
618
619         return NULL;
620 }
621
622 /**
623  * ubi_scan_rm_volume - delete scanning information about a volume.
624  * @si: scanning information
625  * @sv: the volume scanning information to delete
626  */
627 void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
628 {
629         struct rb_node *rb;
630         struct ubi_scan_leb *seb;
631
632         dbg_bld("remove scanning information about volume %d", sv->vol_id);
633
634         while ((rb = rb_first(&sv->root))) {
635                 seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
636                 rb_erase(&seb->u.rb, &sv->root);
637                 list_add_tail(&seb->u.list, &si->erase);
638         }
639
640         rb_erase(&sv->rb, &si->volumes);
641         kfree(sv);
642         si->vols_found -= 1;
643 }
644
645 /**
646  * ubi_scan_erase_peb - erase a physical eraseblock.
647  * @ubi: UBI device description object
648  * @si: scanning information
649  * @pnum: physical eraseblock number to erase;
650  * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
651  *
652  * This function erases physical eraseblock 'pnum', and writes the erase
653  * counter header to it. This function should only be used on UBI device
654  * initialization stages, when the EBA unit had not been yet initialized. This
655  * function returns zero in case of success and a negative error code in case
656  * of failure.
657  */
658 int ubi_scan_erase_peb(const struct ubi_device *ubi,
659                        const struct ubi_scan_info *si, int pnum, int ec)
660 {
661         int err;
662         struct ubi_ec_hdr *ec_hdr;
663
664         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
665         if (!ec_hdr)
666                 return -ENOMEM;
667
668         if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
669                 /*
670                  * Erase counter overflow. Upgrade UBI and use 64-bit
671                  * erase counters internally.
672                  */
673                 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
674                 return -EINVAL;
675         }
676
677         ec_hdr->ec = cpu_to_ubi64(ec);
678
679         err = ubi_io_sync_erase(ubi, pnum, 0);
680         if (err < 0)
681                 goto out_free;
682
683         err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
684
685 out_free:
686         kfree(ec_hdr);
687         return err;
688 }
689
690 /**
691  * ubi_scan_get_free_peb - get a free physical eraseblock.
692  * @ubi: UBI device description object
693  * @si: scanning information
694  *
695  * This function returns a free physical eraseblock. It is supposed to be
696  * called on the UBI initialization stages when the wear-leveling unit is not
697  * initialized yet. This function picks a physical eraseblocks from one of the
698  * lists, writes the EC header if it is needed, and removes it from the list.
699  *
700  * This function returns scanning physical eraseblock information in case of
701  * success and an error code in case of failure.
702  */
703 struct ubi_scan_leb *ubi_scan_get_free_peb(const struct ubi_device *ubi,
704                                            struct ubi_scan_info *si)
705 {
706         int err = 0, i;
707         struct ubi_scan_leb *seb;
708
709         if (!list_empty(&si->free)) {
710                 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
711                 list_del(&seb->u.list);
712                 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
713                 return seb;
714         }
715
716         for (i = 0; i < 2; i++) {
717                 struct list_head *head;
718                 struct ubi_scan_leb *tmp_seb;
719
720                 if (i == 0)
721                         head = &si->erase;
722                 else
723                         head = &si->corr;
724
725                 /*
726                  * We try to erase the first physical eraseblock from the @head
727                  * list and pick it if we succeed, or try to erase the
728                  * next one if not. And so forth. We don't want to take care
729                  * about bad eraseblocks here - they'll be handled later.
730                  */
731                 list_for_each_entry_safe(seb, tmp_seb, head, u.list) {
732                         if (seb->ec == UBI_SCAN_UNKNOWN_EC)
733                                 seb->ec = si->mean_ec;
734
735                         err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
736                         if (err)
737                                 continue;
738
739                         seb->ec += 1;
740                         list_del(&seb->u.list);
741                         dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
742                         return seb;
743                 }
744         }
745
746         ubi_err("no eraseblocks found");
747         return ERR_PTR(-ENOSPC);
748 }
749
750 /**
751  * process_eb - read UBI headers, check them and add corresponding data
752  * to the scanning information.
753  * @ubi: UBI device description object
754  * @si: scanning information
755  * @pnum: the physical eraseblock number
756  *
757  * This function returns a zero if the physical eraseblock was succesfully
758  * handled and a negative error code in case of failure.
759  */
760 static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, int pnum)
761 {
762         long long ec;
763         int err, bitflips = 0, vol_id, ec_corr = 0;
764
765         dbg_bld("scan PEB %d", pnum);
766
767         /* Skip bad physical eraseblocks */
768         err = ubi_io_is_bad(ubi, pnum);
769         if (err < 0)
770                 return err;
771         else if (err) {
772                 /*
773                  * FIXME: this is actually duty of the I/O unit to initialize
774                  * this, but MTD does not provide enough information.
775                  */
776                 si->bad_peb_count += 1;
777                 return 0;
778         }
779
780         err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
781         if (err < 0)
782                 return err;
783         else if (err == UBI_IO_BITFLIPS)
784                 bitflips = 1;
785         else if (err == UBI_IO_PEB_EMPTY)
786                 return ubi_scan_add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC,
787                                             &si->erase);
788         else if (err == UBI_IO_BAD_EC_HDR) {
789                 /*
790                  * We have to also look at the VID header, possibly it is not
791                  * corrupted. Set %bitflips flag in order to make this PEB be
792                  * moved and EC be re-created.
793                  */
794                 ec_corr = 1;
795                 ec = UBI_SCAN_UNKNOWN_EC;
796                 bitflips = 1;
797         }
798
799         si->is_empty = 0;
800
801         if (!ec_corr) {
802                 /* Make sure UBI version is OK */
803                 if (ech->version != UBI_VERSION) {
804                         ubi_err("this UBI version is %d, image version is %d",
805                                 UBI_VERSION, (int)ech->version);
806                         return -EINVAL;
807                 }
808
809                 ec = ubi64_to_cpu(ech->ec);
810                 if (ec > UBI_MAX_ERASECOUNTER) {
811                         /*
812                          * Erase counter overflow. The EC headers have 64 bits
813                          * reserved, but we anyway make use of only 31 bit
814                          * values, as this seems to be enough for any existing
815                          * flash. Upgrade UBI and use 64-bit erase counters
816                          * internally.
817                          */
818                         ubi_err("erase counter overflow, max is %d",
819                                 UBI_MAX_ERASECOUNTER);
820                         ubi_dbg_dump_ec_hdr(ech);
821                         return -EINVAL;
822                 }
823         }
824
825         /* OK, we've done with the EC header, let's look at the VID header */
826
827         err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
828         if (err < 0)
829                 return err;
830         else if (err == UBI_IO_BITFLIPS)
831                 bitflips = 1;
832         else if (err == UBI_IO_BAD_VID_HDR ||
833                  (err == UBI_IO_PEB_FREE && ec_corr)) {
834                 /* VID header is corrupted */
835                 err = ubi_scan_add_to_list(si, pnum, ec, &si->corr);
836                 if (err)
837                         return err;
838                 goto adjust_mean_ec;
839         } else if (err == UBI_IO_PEB_FREE) {
840                 /* No VID header - the physical eraseblock is free */
841                 err = ubi_scan_add_to_list(si, pnum, ec, &si->free);
842                 if (err)
843                         return err;
844                 goto adjust_mean_ec;
845         }
846
847         vol_id = ubi32_to_cpu(vidh->vol_id);
848         if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOL_ID) {
849                 int lnum = ubi32_to_cpu(vidh->lnum);
850
851                 /* Unsupported internal volume */
852                 switch (vidh->compat) {
853                 case UBI_COMPAT_DELETE:
854                         ubi_msg("\"delete\" compatible internal volume %d:%d"
855                                 " found, remove it", vol_id, lnum);
856                         err = ubi_scan_add_to_list(si, pnum, ec, &si->corr);
857                         if (err)
858                                 return err;
859                         break;
860
861                 case UBI_COMPAT_RO:
862                         ubi_msg("read-only compatible internal volume %d:%d"
863                                 " found, switch to read-only mode",
864                                 vol_id, lnum);
865                         ubi->ro_mode = 1;
866                         break;
867
868                 case UBI_COMPAT_PRESERVE:
869                         ubi_msg("\"preserve\" compatible internal volume %d:%d"
870                                 " found", vol_id, lnum);
871                         err = ubi_scan_add_to_list(si, pnum, ec, &si->alien);
872                         if (err)
873                                 return err;
874                         si->alien_peb_count += 1;
875                         return 0;
876
877                 case UBI_COMPAT_REJECT:
878                         ubi_err("incompatible internal volume %d:%d found",
879                                 vol_id, lnum);
880                         return -EINVAL;
881                 }
882         }
883
884         /* Both UBI headers seem to be fine */
885         err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
886         if (err)
887                 return err;
888
889 adjust_mean_ec:
890         if (!ec_corr) {
891                 if (si->ec_sum + ec < ec) {
892                         commit_to_mean_value(si);
893                         si->ec_sum = 0;
894                         si->ec_count = 0;
895                 } else {
896                         si->ec_sum += ec;
897                         si->ec_count += 1;
898                 }
899
900                 if (ec > si->max_ec)
901                         si->max_ec = ec;
902                 if (ec < si->min_ec)
903                         si->min_ec = ec;
904         }
905
906         return 0;
907 }
908
909 /**
910  * ubi_scan - scan an MTD device.
911  * @ubi: UBI device description object
912  *
913  * This function does full scanning of an MTD device and returns complete
914  * information about it. In case of failure, an error code is returned.
915  */
916 struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
917 {
918         int err, pnum;
919         struct rb_node *rb1, *rb2;
920         struct ubi_scan_volume *sv;
921         struct ubi_scan_leb *seb;
922         struct ubi_scan_info *si;
923
924         si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
925         if (!si)
926                 return ERR_PTR(-ENOMEM);
927
928         INIT_LIST_HEAD(&si->corr);
929         INIT_LIST_HEAD(&si->free);
930         INIT_LIST_HEAD(&si->erase);
931         INIT_LIST_HEAD(&si->alien);
932         si->volumes = RB_ROOT;
933         si->is_empty = 1;
934
935         err = -ENOMEM;
936         ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
937         if (!ech)
938                 goto out_si;
939
940         vidh = ubi_zalloc_vid_hdr(ubi);
941         if (!vidh)
942                 goto out_ech;
943
944         for (pnum = 0; pnum < ubi->peb_count; pnum++) {
945                 cond_resched();
946
947                 dbg_msg("process PEB %d", pnum);
948                 err = process_eb(ubi, si, pnum);
949                 if (err < 0)
950                         goto out_vidh;
951         }
952
953         dbg_msg("scanning is finished");
954
955         /* Finish mean erase counter calculations */
956         if (si->ec_count)
957                 commit_to_mean_value(si);
958
959         if (si->is_empty)
960                 ubi_msg("empty MTD device detected");
961
962         /*
963          * In case of unknown erase counter we use the mean erase counter
964          * value.
965          */
966         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
967                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
968                         if (seb->ec == UBI_SCAN_UNKNOWN_EC)
969                                 seb->ec = si->mean_ec;
970         }
971
972         list_for_each_entry(seb, &si->free, u.list) {
973                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
974                         seb->ec = si->mean_ec;
975         }
976
977         list_for_each_entry(seb, &si->corr, u.list)
978                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
979                         seb->ec = si->mean_ec;
980
981         list_for_each_entry(seb, &si->erase, u.list)
982                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
983                         seb->ec = si->mean_ec;
984
985         err = paranoid_check_si(ubi, si);
986         if (err) {
987                 if (err > 0)
988                         err = -EINVAL;
989                 goto out_vidh;
990         }
991
992         ubi_free_vid_hdr(ubi, vidh);
993         kfree(ech);
994
995         return si;
996
997 out_vidh:
998         ubi_free_vid_hdr(ubi, vidh);
999 out_ech:
1000         kfree(ech);
1001 out_si:
1002         ubi_scan_destroy_si(si);
1003         return ERR_PTR(err);
1004 }
1005
1006 /**
1007  * destroy_sv - free the scanning volume information
1008  * @sv: scanning volume information
1009  *
1010  * This function destroys the volume RB-tree (@sv->root) and the scanning
1011  * volume information.
1012  */
1013 static void destroy_sv(struct ubi_scan_volume *sv)
1014 {
1015         struct ubi_scan_leb *seb;
1016         struct rb_node *this = sv->root.rb_node;
1017
1018         while (this) {
1019                 if (this->rb_left)
1020                         this = this->rb_left;
1021                 else if (this->rb_right)
1022                         this = this->rb_right;
1023                 else {
1024                         seb = rb_entry(this, struct ubi_scan_leb, u.rb);
1025                         this = rb_parent(this);
1026                         if (this) {
1027                                 if (this->rb_left == &seb->u.rb)
1028                                         this->rb_left = NULL;
1029                                 else
1030                                         this->rb_right = NULL;
1031                         }
1032
1033                         kfree(seb);
1034                 }
1035         }
1036         kfree(sv);
1037 }
1038
1039 /**
1040  * ubi_scan_destroy_si - destroy scanning information.
1041  * @si: scanning information
1042  */
1043 void ubi_scan_destroy_si(struct ubi_scan_info *si)
1044 {
1045         struct ubi_scan_leb *seb, *seb_tmp;
1046         struct ubi_scan_volume *sv;
1047         struct rb_node *rb;
1048
1049         list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
1050                 list_del(&seb->u.list);
1051                 kfree(seb);
1052         }
1053         list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
1054                 list_del(&seb->u.list);
1055                 kfree(seb);
1056         }
1057         list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
1058                 list_del(&seb->u.list);
1059                 kfree(seb);
1060         }
1061         list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
1062                 list_del(&seb->u.list);
1063                 kfree(seb);
1064         }
1065
1066         /* Destroy the volume RB-tree */
1067         rb = si->volumes.rb_node;
1068         while (rb) {
1069                 if (rb->rb_left)
1070                         rb = rb->rb_left;
1071                 else if (rb->rb_right)
1072                         rb = rb->rb_right;
1073                 else {
1074                         sv = rb_entry(rb, struct ubi_scan_volume, rb);
1075
1076                         rb = rb_parent(rb);
1077                         if (rb) {
1078                                 if (rb->rb_left == &sv->rb)
1079                                         rb->rb_left = NULL;
1080                                 else
1081                                         rb->rb_right = NULL;
1082                         }
1083
1084                         destroy_sv(sv);
1085                 }
1086         }
1087
1088         kfree(si);
1089 }
1090
1091 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1092
1093 /**
1094  * paranoid_check_si - check if the scanning information is correct and
1095  * consistent.
1096  * @ubi: UBI device description object
1097  * @si: scanning information
1098  *
1099  * This function returns zero if the scanning information is all right, %1 if
1100  * not and a negative error code if an error occurred.
1101  */
1102 static int paranoid_check_si(const struct ubi_device *ubi,
1103                              struct ubi_scan_info *si)
1104 {
1105         int pnum, err, vols_found = 0;
1106         struct rb_node *rb1, *rb2;
1107         struct ubi_scan_volume *sv;
1108         struct ubi_scan_leb *seb, *last_seb;
1109         uint8_t *buf;
1110
1111         /*
1112          * At first, check that scanning information is ok.
1113          */
1114         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1115                 int leb_count = 0;
1116
1117                 cond_resched();
1118
1119                 vols_found += 1;
1120
1121                 if (si->is_empty) {
1122                         ubi_err("bad is_empty flag");
1123                         goto bad_sv;
1124                 }
1125
1126                 if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1127                     sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1128                     sv->data_pad < 0 || sv->last_data_size < 0) {
1129                         ubi_err("negative values");
1130                         goto bad_sv;
1131                 }
1132
1133                 if (sv->vol_id >= UBI_MAX_VOLUMES &&
1134                     sv->vol_id < UBI_INTERNAL_VOL_START) {
1135                         ubi_err("bad vol_id");
1136                         goto bad_sv;
1137                 }
1138
1139                 if (sv->vol_id > si->highest_vol_id) {
1140                         ubi_err("highest_vol_id is %d, but vol_id %d is there",
1141                                 si->highest_vol_id, sv->vol_id);
1142                         goto out;
1143                 }
1144
1145                 if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1146                     sv->vol_type != UBI_STATIC_VOLUME) {
1147                         ubi_err("bad vol_type");
1148                         goto bad_sv;
1149                 }
1150
1151                 if (sv->data_pad > ubi->leb_size / 2) {
1152                         ubi_err("bad data_pad");
1153                         goto bad_sv;
1154                 }
1155
1156                 last_seb = NULL;
1157                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1158                         cond_resched();
1159
1160                         last_seb = seb;
1161                         leb_count += 1;
1162
1163                         if (seb->pnum < 0 || seb->ec < 0) {
1164                                 ubi_err("negative values");
1165                                 goto bad_seb;
1166                         }
1167
1168                         if (seb->ec < si->min_ec) {
1169                                 ubi_err("bad si->min_ec (%d), %d found",
1170                                         si->min_ec, seb->ec);
1171                                 goto bad_seb;
1172                         }
1173
1174                         if (seb->ec > si->max_ec) {
1175                                 ubi_err("bad si->max_ec (%d), %d found",
1176                                         si->max_ec, seb->ec);
1177                                 goto bad_seb;
1178                         }
1179
1180                         if (seb->pnum >= ubi->peb_count) {
1181                                 ubi_err("too high PEB number %d, total PEBs %d",
1182                                         seb->pnum, ubi->peb_count);
1183                                 goto bad_seb;
1184                         }
1185
1186                         if (sv->vol_type == UBI_STATIC_VOLUME) {
1187                                 if (seb->lnum >= sv->used_ebs) {
1188                                         ubi_err("bad lnum or used_ebs");
1189                                         goto bad_seb;
1190                                 }
1191                         } else {
1192                                 if (sv->used_ebs != 0) {
1193                                         ubi_err("non-zero used_ebs");
1194                                         goto bad_seb;
1195                                 }
1196                         }
1197
1198                         if (seb->lnum > sv->highest_lnum) {
1199                                 ubi_err("incorrect highest_lnum or lnum");
1200                                 goto bad_seb;
1201                         }
1202                 }
1203
1204                 if (sv->leb_count != leb_count) {
1205                         ubi_err("bad leb_count, %d objects in the tree",
1206                                 leb_count);
1207                         goto bad_sv;
1208                 }
1209
1210                 if (!last_seb)
1211                         continue;
1212
1213                 seb = last_seb;
1214
1215                 if (seb->lnum != sv->highest_lnum) {
1216                         ubi_err("bad highest_lnum");
1217                         goto bad_seb;
1218                 }
1219         }
1220
1221         if (vols_found != si->vols_found) {
1222                 ubi_err("bad si->vols_found %d, should be %d",
1223                         si->vols_found, vols_found);
1224                 goto out;
1225         }
1226
1227         /* Check that scanning information is correct */
1228         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1229                 last_seb = NULL;
1230                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1231                         int vol_type;
1232
1233                         cond_resched();
1234
1235                         last_seb = seb;
1236
1237                         err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
1238                         if (err && err != UBI_IO_BITFLIPS) {
1239                                 ubi_err("VID header is not OK (%d)", err);
1240                                 if (err > 0)
1241                                         err = -EIO;
1242                                 return err;
1243                         }
1244
1245                         vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1246                                    UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1247                         if (sv->vol_type != vol_type) {
1248                                 ubi_err("bad vol_type");
1249                                 goto bad_vid_hdr;
1250                         }
1251
1252                         if (seb->sqnum != ubi64_to_cpu(vidh->sqnum)) {
1253                                 ubi_err("bad sqnum %llu", seb->sqnum);
1254                                 goto bad_vid_hdr;
1255                         }
1256
1257                         if (sv->vol_id != ubi32_to_cpu(vidh->vol_id)) {
1258                                 ubi_err("bad vol_id %d", sv->vol_id);
1259                                 goto bad_vid_hdr;
1260                         }
1261
1262                         if (sv->compat != vidh->compat) {
1263                                 ubi_err("bad compat %d", vidh->compat);
1264                                 goto bad_vid_hdr;
1265                         }
1266
1267                         if (seb->lnum != ubi32_to_cpu(vidh->lnum)) {
1268                                 ubi_err("bad lnum %d", seb->lnum);
1269                                 goto bad_vid_hdr;
1270                         }
1271
1272                         if (sv->used_ebs != ubi32_to_cpu(vidh->used_ebs)) {
1273                                 ubi_err("bad used_ebs %d", sv->used_ebs);
1274                                 goto bad_vid_hdr;
1275                         }
1276
1277                         if (sv->data_pad != ubi32_to_cpu(vidh->data_pad)) {
1278                                 ubi_err("bad data_pad %d", sv->data_pad);
1279                                 goto bad_vid_hdr;
1280                         }
1281
1282                         if (seb->leb_ver != ubi32_to_cpu(vidh->leb_ver)) {
1283                                 ubi_err("bad leb_ver %u", seb->leb_ver);
1284                                 goto bad_vid_hdr;
1285                         }
1286                 }
1287
1288                 if (!last_seb)
1289                         continue;
1290
1291                 if (sv->highest_lnum != ubi32_to_cpu(vidh->lnum)) {
1292                         ubi_err("bad highest_lnum %d", sv->highest_lnum);
1293                         goto bad_vid_hdr;
1294                 }
1295
1296                 if (sv->last_data_size != ubi32_to_cpu(vidh->data_size)) {
1297                         ubi_err("bad last_data_size %d", sv->last_data_size);
1298                         goto bad_vid_hdr;
1299                 }
1300         }
1301
1302         /*
1303          * Make sure that all the physical eraseblocks are in one of the lists
1304          * or trees.
1305          */
1306         buf = kmalloc(ubi->peb_count, GFP_KERNEL);
1307         if (!buf)
1308                 return -ENOMEM;
1309
1310         memset(buf, 1, ubi->peb_count);
1311         for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1312                 err = ubi_io_is_bad(ubi, pnum);
1313                 if (err < 0)
1314                         return err;
1315                 else if (err)
1316                         buf[pnum] = 0;
1317         }
1318
1319         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
1320                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
1321                         buf[seb->pnum] = 0;
1322
1323         list_for_each_entry(seb, &si->free, u.list)
1324                 buf[seb->pnum] = 0;
1325
1326         list_for_each_entry(seb, &si->corr, u.list)
1327                 buf[seb->pnum] = 0;
1328
1329         list_for_each_entry(seb, &si->erase, u.list)
1330                 buf[seb->pnum] = 0;
1331
1332         list_for_each_entry(seb, &si->alien, u.list)
1333                 buf[seb->pnum] = 0;
1334
1335         err = 0;
1336         for (pnum = 0; pnum < ubi->peb_count; pnum++)
1337                 if (buf[pnum]) {
1338                         ubi_err("PEB %d is not referred", pnum);
1339                         err = 1;
1340                 }
1341
1342         kfree(buf);
1343         if (err)
1344                 goto out;
1345         return 0;
1346
1347 bad_seb:
1348         ubi_err("bad scanning information about LEB %d", seb->lnum);
1349         ubi_dbg_dump_seb(seb, 0);
1350         ubi_dbg_dump_sv(sv);
1351         goto out;
1352
1353 bad_sv:
1354         ubi_err("bad scanning information about volume %d", sv->vol_id);
1355         ubi_dbg_dump_sv(sv);
1356         goto out;
1357
1358 bad_vid_hdr:
1359         ubi_err("bad scanning information about volume %d", sv->vol_id);
1360         ubi_dbg_dump_sv(sv);
1361         ubi_dbg_dump_vid_hdr(vidh);
1362
1363 out:
1364         ubi_dbg_dump_stack();
1365         return 1;
1366 }
1367
1368 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */