1 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3 Copyright (c) 2001, 2002 by D-Link Corporation
4 Written by Edward Peng.<edward_peng@dlink.com.tw>
5 Created 03-May-2001, base on Linux' sundance.c.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
13 #define DRV_NAME "DL2000/TC902x-based linux driver"
14 #define DRV_VERSION "v1.19"
15 #define DRV_RELDATE "2007/08/12"
17 #include <linux/dma-mapping.h>
19 static char version[] __devinitdata =
20 KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
22 static int mtu[MAX_UNITS];
23 static int vlan[MAX_UNITS];
24 static int jumbo[MAX_UNITS];
25 static char *media[MAX_UNITS];
26 static int tx_flow=-1;
27 static int rx_flow=-1;
28 static int copy_thresh;
29 static int rx_coalesce=10; /* Rx frame count each interrupt */
30 static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */
31 static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */
34 MODULE_AUTHOR ("Edward Peng");
35 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
36 MODULE_LICENSE("GPL");
37 module_param_array(mtu, int, NULL, 0);
38 module_param_array(media, charp, NULL, 0);
39 module_param_array(vlan, int, NULL, 0);
40 module_param_array(jumbo, int, NULL, 0);
41 module_param(tx_flow, int, 0);
42 module_param(rx_flow, int, 0);
43 module_param(copy_thresh, int, 0);
44 module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */
45 module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */
46 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
49 /* Enable the default interrupts */
50 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
51 UpdateStats | LinkEvent)
53 writew(DEFAULT_INTR, ioaddr + IntEnable)
55 static const int max_intrloop = 50;
56 static const int multicast_filter_limit = 0x40;
58 static int rio_open (struct net_device *dev);
59 static void rio_timer (unsigned long data);
60 static void rio_tx_timeout (struct net_device *dev);
61 static void alloc_list (struct net_device *dev);
62 static int start_xmit (struct sk_buff *skb, struct net_device *dev);
63 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
64 static void rio_free_tx (struct net_device *dev, int irq);
65 static void tx_error (struct net_device *dev, int tx_status);
66 static int receive_packet (struct net_device *dev);
67 static void rio_error (struct net_device *dev, int int_status);
68 static int change_mtu (struct net_device *dev, int new_mtu);
69 static void set_multicast (struct net_device *dev);
70 static struct net_device_stats *get_stats (struct net_device *dev);
71 static int clear_stats (struct net_device *dev);
72 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
73 static int rio_close (struct net_device *dev);
74 static int find_miiphy (struct net_device *dev);
75 static int parse_eeprom (struct net_device *dev);
76 static int read_eeprom (long ioaddr, int eep_addr);
77 static int mii_wait_link (struct net_device *dev, int wait);
78 static int mii_set_media (struct net_device *dev);
79 static int mii_get_media (struct net_device *dev);
80 static int mii_set_media_pcs (struct net_device *dev);
81 static int mii_get_media_pcs (struct net_device *dev);
82 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
83 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
86 static const struct ethtool_ops ethtool_ops;
89 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
91 struct net_device *dev;
92 struct netdev_private *np;
94 int chip_idx = ent->driver_data;
97 static int version_printed;
100 DECLARE_MAC_BUF(mac);
102 if (!version_printed++)
103 printk ("%s", version);
105 err = pci_enable_device (pdev);
110 err = pci_request_regions (pdev, "dl2k");
112 goto err_out_disable;
114 pci_set_master (pdev);
115 dev = alloc_etherdev (sizeof (*np));
120 SET_NETDEV_DEV(dev, &pdev->dev);
123 ioaddr = pci_resource_start (pdev, 1);
124 ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE);
130 ioaddr = pci_resource_start (pdev, 0);
132 dev->base_addr = ioaddr;
134 np = netdev_priv(dev);
135 np->chip_id = chip_idx;
137 spin_lock_init (&np->tx_lock);
138 spin_lock_init (&np->rx_lock);
140 /* Parse manual configuration */
143 if (card_idx < MAX_UNITS) {
144 if (media[card_idx] != NULL) {
146 if (strcmp (media[card_idx], "auto") == 0 ||
147 strcmp (media[card_idx], "autosense") == 0 ||
148 strcmp (media[card_idx], "0") == 0 ) {
150 } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
151 strcmp (media[card_idx], "4") == 0) {
154 } else if (strcmp (media[card_idx], "100mbps_hd") == 0
155 || strcmp (media[card_idx], "3") == 0) {
158 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
159 strcmp (media[card_idx], "2") == 0) {
162 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
163 strcmp (media[card_idx], "1") == 0) {
166 } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
167 strcmp (media[card_idx], "6") == 0) {
170 } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
171 strcmp (media[card_idx], "5") == 0) {
178 if (jumbo[card_idx] != 0) {
180 dev->mtu = MAX_JUMBO;
183 if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
184 dev->mtu = mtu[card_idx];
186 np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
188 if (rx_coalesce > 0 && rx_timeout > 0) {
189 np->rx_coalesce = rx_coalesce;
190 np->rx_timeout = rx_timeout;
193 np->tx_flow = (tx_flow == 0) ? 0 : 1;
194 np->rx_flow = (rx_flow == 0) ? 0 : 1;
198 else if (tx_coalesce > TX_RING_SIZE-1)
199 tx_coalesce = TX_RING_SIZE - 1;
201 dev->open = &rio_open;
202 dev->hard_start_xmit = &start_xmit;
203 dev->stop = &rio_close;
204 dev->get_stats = &get_stats;
205 dev->set_multicast_list = &set_multicast;
206 dev->do_ioctl = &rio_ioctl;
207 dev->tx_timeout = &rio_tx_timeout;
208 dev->watchdog_timeo = TX_TIMEOUT;
209 dev->change_mtu = &change_mtu;
210 SET_ETHTOOL_OPS(dev, ðtool_ops);
212 dev->features = NETIF_F_IP_CSUM;
214 pci_set_drvdata (pdev, dev);
216 ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
218 goto err_out_iounmap;
219 np->tx_ring = (struct netdev_desc *) ring_space;
220 np->tx_ring_dma = ring_dma;
222 ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
224 goto err_out_unmap_tx;
225 np->rx_ring = (struct netdev_desc *) ring_space;
226 np->rx_ring_dma = ring_dma;
228 /* Parse eeprom data */
231 /* Find PHY address */
232 err = find_miiphy (dev);
234 goto err_out_unmap_rx;
237 np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0;
239 /* Set media and reset PHY */
241 /* default Auto-Negotiation for fiber deivices */
242 if (np->an_enable == 2) {
245 mii_set_media_pcs (dev);
247 /* Auto-Negotiation is mandatory for 1000BASE-T,
248 IEEE 802.3ab Annex 28D page 14 */
249 if (np->speed == 1000)
254 err = register_netdev (dev);
256 goto err_out_unmap_rx;
260 printk (KERN_INFO "%s: %s, %s, IRQ %d\n",
261 dev->name, np->name, print_mac(mac, dev->dev_addr), irq);
263 printk(KERN_INFO "tx_coalesce:\t%d packets\n",
266 printk(KERN_INFO "rx_coalesce:\t%d packets\n"
267 KERN_INFO "rx_timeout: \t%d ns\n",
268 np->rx_coalesce, np->rx_timeout*640);
270 printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
274 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
276 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
279 iounmap ((void *) ioaddr);
286 pci_release_regions (pdev);
289 pci_disable_device (pdev);
294 find_miiphy (struct net_device *dev)
296 int i, phy_found = 0;
297 struct netdev_private *np;
299 np = netdev_priv(dev);
300 ioaddr = dev->base_addr;
303 for (i = 31; i >= 0; i--) {
304 int mii_status = mii_read (dev, i, 1);
305 if (mii_status != 0xffff && mii_status != 0x0000) {
311 printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
318 parse_eeprom (struct net_device *dev)
321 long ioaddr = dev->base_addr;
325 PSROM_t psrom = (PSROM_t) sromdata;
326 struct netdev_private *np = netdev_priv(dev);
331 ioaddr = pci_resource_start (np->pdev, 0);
334 for (i = 0; i < 128; i++) {
335 ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom (ioaddr, i));
338 ioaddr = dev->base_addr;
340 if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */
342 crc = ~ether_crc_le (256 - 4, sromdata);
343 if (psrom->crc != crc) {
344 printk (KERN_ERR "%s: EEPROM data CRC error.\n",
350 /* Set MAC address */
351 for (i = 0; i < 6; i++)
352 dev->dev_addr[i] = psrom->mac_addr[i];
354 if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
358 /* Parse Software Information Block */
360 psib = (u8 *) sromdata;
364 if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
365 printk (KERN_ERR "Cell data error\n");
369 case 0: /* Format version */
371 case 1: /* End of cell */
373 case 2: /* Duplex Polarity */
374 np->duplex_polarity = psib[i];
375 writeb (readb (ioaddr + PhyCtrl) | psib[i],
378 case 3: /* Wake Polarity */
379 np->wake_polarity = psib[i];
381 case 9: /* Adapter description */
382 j = (next - i > 255) ? 255 : next - i;
383 memcpy (np->name, &(psib[i]), j);
389 case 8: /* Reversed */
391 default: /* Unknown cell */
401 rio_open (struct net_device *dev)
403 struct netdev_private *np = netdev_priv(dev);
404 long ioaddr = dev->base_addr;
408 i = request_irq (dev->irq, &rio_interrupt, IRQF_SHARED, dev->name, dev);
412 /* Reset all logic functions */
413 writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset,
414 ioaddr + ASICCtrl + 2);
417 /* DebugCtrl bit 4, 5, 9 must set */
418 writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl);
422 writew (MAX_JUMBO+14, ioaddr + MaxFrameSize);
426 /* Get station address */
427 for (i = 0; i < 6; i++)
428 writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i);
432 writel (np->rx_coalesce | np->rx_timeout << 16,
433 ioaddr + RxDMAIntCtrl);
435 /* Set RIO to poll every N*320nsec. */
436 writeb (0x20, ioaddr + RxDMAPollPeriod);
437 writeb (0xff, ioaddr + TxDMAPollPeriod);
438 writeb (0x30, ioaddr + RxDMABurstThresh);
439 writeb (0x30, ioaddr + RxDMAUrgentThresh);
440 writel (0x0007ffff, ioaddr + RmonStatMask);
441 /* clear statistics */
446 /* priority field in RxDMAIntCtrl */
447 writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10,
448 ioaddr + RxDMAIntCtrl);
450 writew (np->vlan, ioaddr + VLANId);
451 /* Length/Type should be 0x8100 */
452 writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag);
453 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
454 VLAN information tagged by TFC' VID, CFI fields. */
455 writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging,
459 init_timer (&np->timer);
460 np->timer.expires = jiffies + 1*HZ;
461 np->timer.data = (unsigned long) dev;
462 np->timer.function = &rio_timer;
463 add_timer (&np->timer);
466 writel (readl (ioaddr + MACCtrl) | StatsEnable | RxEnable | TxEnable,
470 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
471 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
472 macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
473 macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
474 writew(macctrl, ioaddr + MACCtrl);
476 netif_start_queue (dev);
478 /* Enable default interrupts */
484 rio_timer (unsigned long data)
486 struct net_device *dev = (struct net_device *)data;
487 struct netdev_private *np = netdev_priv(dev);
489 int next_tick = 1*HZ;
492 spin_lock_irqsave(&np->rx_lock, flags);
493 /* Recover rx ring exhausted error */
494 if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
495 printk(KERN_INFO "Try to recover rx ring exhausted...\n");
496 /* Re-allocate skbuffs to fill the descriptor ring */
497 for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
499 entry = np->old_rx % RX_RING_SIZE;
500 /* Dropped packets don't need to re-allocate */
501 if (np->rx_skbuff[entry] == NULL) {
502 skb = dev_alloc_skb (np->rx_buf_sz);
504 np->rx_ring[entry].fraginfo = 0;
506 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
510 np->rx_skbuff[entry] = skb;
511 /* 16 byte align the IP header */
512 skb_reserve (skb, 2);
513 np->rx_ring[entry].fraginfo =
514 cpu_to_le64 (pci_map_single
515 (np->pdev, skb->data, np->rx_buf_sz,
516 PCI_DMA_FROMDEVICE));
518 np->rx_ring[entry].fraginfo |=
519 cpu_to_le64((u64)np->rx_buf_sz << 48);
520 np->rx_ring[entry].status = 0;
523 spin_unlock_irqrestore (&np->rx_lock, flags);
524 np->timer.expires = jiffies + next_tick;
525 add_timer(&np->timer);
529 rio_tx_timeout (struct net_device *dev)
531 long ioaddr = dev->base_addr;
533 printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
534 dev->name, readl (ioaddr + TxStatus));
537 dev->trans_start = jiffies;
540 /* allocate and initialize Tx and Rx descriptors */
542 alloc_list (struct net_device *dev)
544 struct netdev_private *np = netdev_priv(dev);
547 np->cur_rx = np->cur_tx = 0;
548 np->old_rx = np->old_tx = 0;
549 np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
551 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
552 for (i = 0; i < TX_RING_SIZE; i++) {
553 np->tx_skbuff[i] = NULL;
554 np->tx_ring[i].status = cpu_to_le64 (TFDDone);
555 np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
556 ((i+1)%TX_RING_SIZE) *
557 sizeof (struct netdev_desc));
560 /* Initialize Rx descriptors */
561 for (i = 0; i < RX_RING_SIZE; i++) {
562 np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
563 ((i + 1) % RX_RING_SIZE) *
564 sizeof (struct netdev_desc));
565 np->rx_ring[i].status = 0;
566 np->rx_ring[i].fraginfo = 0;
567 np->rx_skbuff[i] = NULL;
570 /* Allocate the rx buffers */
571 for (i = 0; i < RX_RING_SIZE; i++) {
572 /* Allocated fixed size of skbuff */
573 struct sk_buff *skb = dev_alloc_skb (np->rx_buf_sz);
574 np->rx_skbuff[i] = skb;
577 "%s: alloc_list: allocate Rx buffer error! ",
581 skb_reserve (skb, 2); /* 16 byte align the IP header. */
582 /* Rubicon now supports 40 bits of addressing space. */
583 np->rx_ring[i].fraginfo =
584 cpu_to_le64 ( pci_map_single (
585 np->pdev, skb->data, np->rx_buf_sz,
586 PCI_DMA_FROMDEVICE));
587 np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
591 writel (np->rx_ring_dma, dev->base_addr + RFDListPtr0);
592 writel (0, dev->base_addr + RFDListPtr1);
598 start_xmit (struct sk_buff *skb, struct net_device *dev)
600 struct netdev_private *np = netdev_priv(dev);
601 struct netdev_desc *txdesc;
604 u64 tfc_vlan_tag = 0;
606 if (np->link_status == 0) { /* Link Down */
610 ioaddr = dev->base_addr;
611 entry = np->cur_tx % TX_RING_SIZE;
612 np->tx_skbuff[entry] = skb;
613 txdesc = &np->tx_ring[entry];
616 if (skb->ip_summed == CHECKSUM_PARTIAL) {
618 cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
623 tfc_vlan_tag = VLANTagInsert |
624 ((u64)np->vlan << 32) |
625 ((u64)skb->priority << 45);
627 txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
630 txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
632 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
633 * Work around: Always use 1 descriptor in 10Mbps mode */
634 if (entry % np->tx_coalesce == 0 || np->speed == 10)
635 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
638 (1 << FragCountShift));
640 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
642 (1 << FragCountShift));
645 writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl);
647 writel(10000, ioaddr + CountDown);
648 np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
649 if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
650 < TX_QUEUE_LEN - 1 && np->speed != 10) {
652 } else if (!netif_queue_stopped(dev)) {
653 netif_stop_queue (dev);
656 /* The first TFDListPtr */
657 if (readl (dev->base_addr + TFDListPtr0) == 0) {
658 writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc),
659 dev->base_addr + TFDListPtr0);
660 writel (0, dev->base_addr + TFDListPtr1);
663 /* NETDEV WATCHDOG timer */
664 dev->trans_start = jiffies;
669 rio_interrupt (int irq, void *dev_instance)
671 struct net_device *dev = dev_instance;
672 struct netdev_private *np;
675 int cnt = max_intrloop;
678 ioaddr = dev->base_addr;
679 np = netdev_priv(dev);
681 int_status = readw (ioaddr + IntStatus);
682 writew (int_status, ioaddr + IntStatus);
683 int_status &= DEFAULT_INTR;
684 if (int_status == 0 || --cnt < 0)
687 /* Processing received packets */
688 if (int_status & RxDMAComplete)
689 receive_packet (dev);
690 /* TxDMAComplete interrupt */
691 if ((int_status & (TxDMAComplete|IntRequested))) {
693 tx_status = readl (ioaddr + TxStatus);
694 if (tx_status & 0x01)
695 tx_error (dev, tx_status);
696 /* Free used tx skbuffs */
697 rio_free_tx (dev, 1);
700 /* Handle uncommon events */
702 (HostError | LinkEvent | UpdateStats))
703 rio_error (dev, int_status);
705 if (np->cur_tx != np->old_tx)
706 writel (100, ioaddr + CountDown);
707 return IRQ_RETVAL(handled);
710 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
712 return le64_to_cpu(desc->fraginfo) & DMA_48BIT_MASK;
716 rio_free_tx (struct net_device *dev, int irq)
718 struct netdev_private *np = netdev_priv(dev);
719 int entry = np->old_tx % TX_RING_SIZE;
721 unsigned long flag = 0;
724 spin_lock(&np->tx_lock);
726 spin_lock_irqsave(&np->tx_lock, flag);
728 /* Free used tx skbuffs */
729 while (entry != np->cur_tx) {
732 if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
734 skb = np->tx_skbuff[entry];
735 pci_unmap_single (np->pdev,
736 desc_to_dma(&np->tx_ring[entry]),
737 skb->len, PCI_DMA_TODEVICE);
739 dev_kfree_skb_irq (skb);
743 np->tx_skbuff[entry] = NULL;
744 entry = (entry + 1) % TX_RING_SIZE;
748 spin_unlock(&np->tx_lock);
750 spin_unlock_irqrestore(&np->tx_lock, flag);
753 /* If the ring is no longer full, clear tx_full and
754 call netif_wake_queue() */
756 if (netif_queue_stopped(dev) &&
757 ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
758 < TX_QUEUE_LEN - 1 || np->speed == 10)) {
759 netif_wake_queue (dev);
764 tx_error (struct net_device *dev, int tx_status)
766 struct netdev_private *np;
767 long ioaddr = dev->base_addr;
771 np = netdev_priv(dev);
773 frame_id = (tx_status & 0xffff0000);
774 printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
775 dev->name, tx_status, frame_id);
776 np->stats.tx_errors++;
777 /* Ttransmit Underrun */
778 if (tx_status & 0x10) {
779 np->stats.tx_fifo_errors++;
780 writew (readw (ioaddr + TxStartThresh) + 0x10,
781 ioaddr + TxStartThresh);
782 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
783 writew (TxReset | DMAReset | FIFOReset | NetworkReset,
784 ioaddr + ASICCtrl + 2);
785 /* Wait for ResetBusy bit clear */
786 for (i = 50; i > 0; i--) {
787 if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
791 rio_free_tx (dev, 1);
792 /* Reset TFDListPtr */
793 writel (np->tx_ring_dma +
794 np->old_tx * sizeof (struct netdev_desc),
795 dev->base_addr + TFDListPtr0);
796 writel (0, dev->base_addr + TFDListPtr1);
798 /* Let TxStartThresh stay default value */
801 if (tx_status & 0x04) {
802 np->stats.tx_fifo_errors++;
803 /* TxReset and clear FIFO */
804 writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2);
805 /* Wait reset done */
806 for (i = 50; i > 0; i--) {
807 if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
811 /* Let TxStartThresh stay default value */
813 /* Maximum Collisions */
815 if (tx_status & 0x08)
816 np->stats.collisions16++;
818 if (tx_status & 0x08)
819 np->stats.collisions++;
822 writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl);
826 receive_packet (struct net_device *dev)
828 struct netdev_private *np = netdev_priv(dev);
829 int entry = np->cur_rx % RX_RING_SIZE;
832 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
834 struct netdev_desc *desc = &np->rx_ring[entry];
838 if (!(desc->status & cpu_to_le64(RFDDone)) ||
839 !(desc->status & cpu_to_le64(FrameStart)) ||
840 !(desc->status & cpu_to_le64(FrameEnd)))
843 /* Chip omits the CRC. */
844 frame_status = le64_to_cpu(desc->status);
845 pkt_len = frame_status & 0xffff;
848 /* Update rx error statistics, drop packet. */
849 if (frame_status & RFS_Errors) {
850 np->stats.rx_errors++;
851 if (frame_status & (RxRuntFrame | RxLengthError))
852 np->stats.rx_length_errors++;
853 if (frame_status & RxFCSError)
854 np->stats.rx_crc_errors++;
855 if (frame_status & RxAlignmentError && np->speed != 1000)
856 np->stats.rx_frame_errors++;
857 if (frame_status & RxFIFOOverrun)
858 np->stats.rx_fifo_errors++;
862 /* Small skbuffs for short packets */
863 if (pkt_len > copy_thresh) {
864 pci_unmap_single (np->pdev,
868 skb_put (skb = np->rx_skbuff[entry], pkt_len);
869 np->rx_skbuff[entry] = NULL;
870 } else if ((skb = dev_alloc_skb (pkt_len + 2)) != NULL) {
871 pci_dma_sync_single_for_cpu(np->pdev,
875 /* 16 byte align the IP header */
876 skb_reserve (skb, 2);
877 skb_copy_to_linear_data (skb,
878 np->rx_skbuff[entry]->data,
880 skb_put (skb, pkt_len);
881 pci_dma_sync_single_for_device(np->pdev,
886 skb->protocol = eth_type_trans (skb, dev);
888 /* Checksum done by hw, but csum value unavailable. */
889 if (np->pdev->pci_rev_id >= 0x0c &&
890 !(frame_status & (TCPError | UDPError | IPError))) {
891 skb->ip_summed = CHECKSUM_UNNECESSARY;
895 dev->last_rx = jiffies;
897 entry = (entry + 1) % RX_RING_SIZE;
899 spin_lock(&np->rx_lock);
901 /* Re-allocate skbuffs to fill the descriptor ring */
903 while (entry != np->cur_rx) {
905 /* Dropped packets don't need to re-allocate */
906 if (np->rx_skbuff[entry] == NULL) {
907 skb = dev_alloc_skb (np->rx_buf_sz);
909 np->rx_ring[entry].fraginfo = 0;
911 "%s: receive_packet: "
912 "Unable to re-allocate Rx skbuff.#%d\n",
916 np->rx_skbuff[entry] = skb;
917 /* 16 byte align the IP header */
918 skb_reserve (skb, 2);
919 np->rx_ring[entry].fraginfo =
920 cpu_to_le64 (pci_map_single
921 (np->pdev, skb->data, np->rx_buf_sz,
922 PCI_DMA_FROMDEVICE));
924 np->rx_ring[entry].fraginfo |=
925 cpu_to_le64((u64)np->rx_buf_sz << 48);
926 np->rx_ring[entry].status = 0;
927 entry = (entry + 1) % RX_RING_SIZE;
930 spin_unlock(&np->rx_lock);
935 rio_error (struct net_device *dev, int int_status)
937 long ioaddr = dev->base_addr;
938 struct netdev_private *np = netdev_priv(dev);
941 /* Link change event */
942 if (int_status & LinkEvent) {
943 if (mii_wait_link (dev, 10) == 0) {
944 printk (KERN_INFO "%s: Link up\n", dev->name);
946 mii_get_media_pcs (dev);
949 if (np->speed == 1000)
950 np->tx_coalesce = tx_coalesce;
954 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
955 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
956 macctrl |= (np->tx_flow) ?
957 TxFlowControlEnable : 0;
958 macctrl |= (np->rx_flow) ?
959 RxFlowControlEnable : 0;
960 writew(macctrl, ioaddr + MACCtrl);
962 netif_carrier_on(dev);
964 printk (KERN_INFO "%s: Link off\n", dev->name);
966 netif_carrier_off(dev);
970 /* UpdateStats statistics registers */
971 if (int_status & UpdateStats) {
975 /* PCI Error, a catastronphic error related to the bus interface
976 occurs, set GlobalReset and HostReset to reset. */
977 if (int_status & HostError) {
978 printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
979 dev->name, int_status);
980 writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2);
985 static struct net_device_stats *
986 get_stats (struct net_device *dev)
988 long ioaddr = dev->base_addr;
989 struct netdev_private *np = netdev_priv(dev);
993 unsigned int stat_reg;
995 /* All statistics registers need to be acknowledged,
996 else statistic overflow could cause problems */
998 np->stats.rx_packets += readl (ioaddr + FramesRcvOk);
999 np->stats.tx_packets += readl (ioaddr + FramesXmtOk);
1000 np->stats.rx_bytes += readl (ioaddr + OctetRcvOk);
1001 np->stats.tx_bytes += readl (ioaddr + OctetXmtOk);
1003 np->stats.multicast = readl (ioaddr + McstFramesRcvdOk);
1004 np->stats.collisions += readl (ioaddr + SingleColFrames)
1005 + readl (ioaddr + MultiColFrames);
1007 /* detailed tx errors */
1008 stat_reg = readw (ioaddr + FramesAbortXSColls);
1009 np->stats.tx_aborted_errors += stat_reg;
1010 np->stats.tx_errors += stat_reg;
1012 stat_reg = readw (ioaddr + CarrierSenseErrors);
1013 np->stats.tx_carrier_errors += stat_reg;
1014 np->stats.tx_errors += stat_reg;
1016 /* Clear all other statistic register. */
1017 readl (ioaddr + McstOctetXmtOk);
1018 readw (ioaddr + BcstFramesXmtdOk);
1019 readl (ioaddr + McstFramesXmtdOk);
1020 readw (ioaddr + BcstFramesRcvdOk);
1021 readw (ioaddr + MacControlFramesRcvd);
1022 readw (ioaddr + FrameTooLongErrors);
1023 readw (ioaddr + InRangeLengthErrors);
1024 readw (ioaddr + FramesCheckSeqErrors);
1025 readw (ioaddr + FramesLostRxErrors);
1026 readl (ioaddr + McstOctetXmtOk);
1027 readl (ioaddr + BcstOctetXmtOk);
1028 readl (ioaddr + McstFramesXmtdOk);
1029 readl (ioaddr + FramesWDeferredXmt);
1030 readl (ioaddr + LateCollisions);
1031 readw (ioaddr + BcstFramesXmtdOk);
1032 readw (ioaddr + MacControlFramesXmtd);
1033 readw (ioaddr + FramesWEXDeferal);
1036 for (i = 0x100; i <= 0x150; i += 4)
1039 readw (ioaddr + TxJumboFrames);
1040 readw (ioaddr + RxJumboFrames);
1041 readw (ioaddr + TCPCheckSumErrors);
1042 readw (ioaddr + UDPCheckSumErrors);
1043 readw (ioaddr + IPCheckSumErrors);
1048 clear_stats (struct net_device *dev)
1050 long ioaddr = dev->base_addr;
1055 /* All statistics registers need to be acknowledged,
1056 else statistic overflow could cause problems */
1057 readl (ioaddr + FramesRcvOk);
1058 readl (ioaddr + FramesXmtOk);
1059 readl (ioaddr + OctetRcvOk);
1060 readl (ioaddr + OctetXmtOk);
1062 readl (ioaddr + McstFramesRcvdOk);
1063 readl (ioaddr + SingleColFrames);
1064 readl (ioaddr + MultiColFrames);
1065 readl (ioaddr + LateCollisions);
1066 /* detailed rx errors */
1067 readw (ioaddr + FrameTooLongErrors);
1068 readw (ioaddr + InRangeLengthErrors);
1069 readw (ioaddr + FramesCheckSeqErrors);
1070 readw (ioaddr + FramesLostRxErrors);
1072 /* detailed tx errors */
1073 readw (ioaddr + FramesAbortXSColls);
1074 readw (ioaddr + CarrierSenseErrors);
1076 /* Clear all other statistic register. */
1077 readl (ioaddr + McstOctetXmtOk);
1078 readw (ioaddr + BcstFramesXmtdOk);
1079 readl (ioaddr + McstFramesXmtdOk);
1080 readw (ioaddr + BcstFramesRcvdOk);
1081 readw (ioaddr + MacControlFramesRcvd);
1082 readl (ioaddr + McstOctetXmtOk);
1083 readl (ioaddr + BcstOctetXmtOk);
1084 readl (ioaddr + McstFramesXmtdOk);
1085 readl (ioaddr + FramesWDeferredXmt);
1086 readw (ioaddr + BcstFramesXmtdOk);
1087 readw (ioaddr + MacControlFramesXmtd);
1088 readw (ioaddr + FramesWEXDeferal);
1090 for (i = 0x100; i <= 0x150; i += 4)
1093 readw (ioaddr + TxJumboFrames);
1094 readw (ioaddr + RxJumboFrames);
1095 readw (ioaddr + TCPCheckSumErrors);
1096 readw (ioaddr + UDPCheckSumErrors);
1097 readw (ioaddr + IPCheckSumErrors);
1103 change_mtu (struct net_device *dev, int new_mtu)
1105 struct netdev_private *np = netdev_priv(dev);
1106 int max = (np->jumbo) ? MAX_JUMBO : 1536;
1108 if ((new_mtu < 68) || (new_mtu > max)) {
1118 set_multicast (struct net_device *dev)
1120 long ioaddr = dev->base_addr;
1123 struct netdev_private *np = netdev_priv(dev);
1125 hash_table[0] = hash_table[1] = 0;
1126 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1127 hash_table[1] |= 0x02000000;
1128 if (dev->flags & IFF_PROMISC) {
1129 /* Receive all frames promiscuously. */
1130 rx_mode = ReceiveAllFrames;
1131 } else if ((dev->flags & IFF_ALLMULTI) ||
1132 (dev->mc_count > multicast_filter_limit)) {
1133 /* Receive broadcast and multicast frames */
1134 rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1135 } else if (dev->mc_count > 0) {
1137 struct dev_mc_list *mclist;
1138 /* Receive broadcast frames and multicast frames filtering
1141 ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1142 for (i=0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1143 i++, mclist=mclist->next)
1146 int crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr);
1147 /* The inverted high significant 6 bits of CRC are
1148 used as an index to hashtable */
1149 for (bit = 0; bit < 6; bit++)
1150 if (crc & (1 << (31 - bit)))
1151 index |= (1 << bit);
1152 hash_table[index / 32] |= (1 << (index % 32));
1155 rx_mode = ReceiveBroadcast | ReceiveUnicast;
1158 /* ReceiveVLANMatch field in ReceiveMode */
1159 rx_mode |= ReceiveVLANMatch;
1162 writel (hash_table[0], ioaddr + HashTable0);
1163 writel (hash_table[1], ioaddr + HashTable1);
1164 writew (rx_mode, ioaddr + ReceiveMode);
1167 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1169 struct netdev_private *np = netdev_priv(dev);
1170 strcpy(info->driver, "dl2k");
1171 strcpy(info->version, DRV_VERSION);
1172 strcpy(info->bus_info, pci_name(np->pdev));
1175 static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1177 struct netdev_private *np = netdev_priv(dev);
1178 if (np->phy_media) {
1180 cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1181 cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1182 cmd->port = PORT_FIBRE;
1183 cmd->transceiver = XCVR_INTERNAL;
1186 cmd->supported = SUPPORTED_10baseT_Half |
1187 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1188 | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1189 SUPPORTED_Autoneg | SUPPORTED_MII;
1190 cmd->advertising = ADVERTISED_10baseT_Half |
1191 ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1192 ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1193 ADVERTISED_Autoneg | ADVERTISED_MII;
1194 cmd->port = PORT_MII;
1195 cmd->transceiver = XCVR_INTERNAL;
1197 if ( np->link_status ) {
1198 cmd->speed = np->speed;
1199 cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1205 cmd->autoneg = AUTONEG_ENABLE;
1207 cmd->autoneg = AUTONEG_DISABLE;
1209 cmd->phy_address = np->phy_addr;
1213 static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1215 struct netdev_private *np = netdev_priv(dev);
1216 netif_carrier_off(dev);
1217 if (cmd->autoneg == AUTONEG_ENABLE) {
1227 if (np->speed == 1000) {
1228 cmd->speed = SPEED_100;
1229 cmd->duplex = DUPLEX_FULL;
1230 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1232 switch(cmd->speed + cmd->duplex) {
1234 case SPEED_10 + DUPLEX_HALF:
1236 np->full_duplex = 0;
1239 case SPEED_10 + DUPLEX_FULL:
1241 np->full_duplex = 1;
1243 case SPEED_100 + DUPLEX_HALF:
1245 np->full_duplex = 0;
1247 case SPEED_100 + DUPLEX_FULL:
1249 np->full_duplex = 1;
1251 case SPEED_1000 + DUPLEX_HALF:/* not supported */
1252 case SPEED_1000 + DUPLEX_FULL:/* not supported */
1261 static u32 rio_get_link(struct net_device *dev)
1263 struct netdev_private *np = netdev_priv(dev);
1264 return np->link_status;
1267 static const struct ethtool_ops ethtool_ops = {
1268 .get_drvinfo = rio_get_drvinfo,
1269 .get_settings = rio_get_settings,
1270 .set_settings = rio_set_settings,
1271 .get_link = rio_get_link,
1275 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1278 struct netdev_private *np = netdev_priv(dev);
1279 struct mii_data *miidata = (struct mii_data *) &rq->ifr_ifru;
1281 struct netdev_desc *desc;
1284 phy_addr = np->phy_addr;
1286 case SIOCDEVPRIVATE:
1289 case SIOCDEVPRIVATE + 1:
1290 miidata->out_value = mii_read (dev, phy_addr, miidata->reg_num);
1292 case SIOCDEVPRIVATE + 2:
1293 mii_write (dev, phy_addr, miidata->reg_num, miidata->in_value);
1295 case SIOCDEVPRIVATE + 3:
1297 case SIOCDEVPRIVATE + 4:
1299 case SIOCDEVPRIVATE + 5:
1300 netif_stop_queue (dev);
1302 case SIOCDEVPRIVATE + 6:
1303 netif_wake_queue (dev);
1305 case SIOCDEVPRIVATE + 7:
1307 ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
1308 netif_queue_stopped(dev), np->cur_tx, np->old_tx, np->cur_rx,
1311 case SIOCDEVPRIVATE + 8:
1312 printk("TX ring:\n");
1313 for (i = 0; i < TX_RING_SIZE; i++) {
1314 desc = &np->tx_ring[i];
1316 ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
1318 (u32) (np->tx_ring_dma + i * sizeof (*desc)),
1319 (u32) desc->next_desc,
1320 (u32) desc->status, (u32) (desc->fraginfo >> 32),
1321 (u32) desc->fraginfo);
1333 #define EEP_READ 0x0200
1334 #define EEP_BUSY 0x8000
1335 /* Read the EEPROM word */
1336 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1338 read_eeprom (long ioaddr, int eep_addr)
1341 outw (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl);
1343 if (!(inw (ioaddr + EepromCtrl) & EEP_BUSY)) {
1344 return inw (ioaddr + EepromData);
1350 enum phy_ctrl_bits {
1351 MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1355 #define mii_delay() readb(ioaddr)
1357 mii_sendbit (struct net_device *dev, u32 data)
1359 long ioaddr = dev->base_addr + PhyCtrl;
1360 data = (data) ? MII_DATA1 : 0;
1362 data |= (readb (ioaddr) & 0xf8) | MII_WRITE;
1363 writeb (data, ioaddr);
1365 writeb (data | MII_CLK, ioaddr);
1370 mii_getbit (struct net_device *dev)
1372 long ioaddr = dev->base_addr + PhyCtrl;
1375 data = (readb (ioaddr) & 0xf8) | MII_READ;
1376 writeb (data, ioaddr);
1378 writeb (data | MII_CLK, ioaddr);
1380 return ((readb (ioaddr) >> 1) & 1);
1384 mii_send_bits (struct net_device *dev, u32 data, int len)
1387 for (i = len - 1; i >= 0; i--) {
1388 mii_sendbit (dev, data & (1 << i));
1393 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1400 mii_send_bits (dev, 0xffffffff, 32);
1401 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1402 /* ST,OP = 0110'b for read operation */
1403 cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1404 mii_send_bits (dev, cmd, 14);
1406 if (mii_getbit (dev))
1409 for (i = 0; i < 16; i++) {
1410 retval |= mii_getbit (dev);
1415 return (retval >> 1) & 0xffff;
1421 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1426 mii_send_bits (dev, 0xffffffff, 32);
1427 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1428 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1429 cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1430 mii_send_bits (dev, cmd, 32);
1436 mii_wait_link (struct net_device *dev, int wait)
1440 struct netdev_private *np;
1442 np = netdev_priv(dev);
1443 phy_addr = np->phy_addr;
1446 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1447 if (bmsr & MII_BMSR_LINK_STATUS)
1450 } while (--wait > 0);
1454 mii_get_media (struct net_device *dev)
1461 struct netdev_private *np;
1463 np = netdev_priv(dev);
1464 phy_addr = np->phy_addr;
1466 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1467 if (np->an_enable) {
1468 if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
1469 /* Auto-Negotiation not completed */
1472 negotiate = mii_read (dev, phy_addr, MII_ANAR) &
1473 mii_read (dev, phy_addr, MII_ANLPAR);
1474 mscr.image = mii_read (dev, phy_addr, MII_MSCR);
1475 mssr.image = mii_read (dev, phy_addr, MII_MSSR);
1476 if (mscr.bits.media_1000BT_FD & mssr.bits.lp_1000BT_FD) {
1478 np->full_duplex = 1;
1479 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1480 } else if (mscr.bits.media_1000BT_HD & mssr.bits.lp_1000BT_HD) {
1482 np->full_duplex = 0;
1483 printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1484 } else if (negotiate & MII_ANAR_100BX_FD) {
1486 np->full_duplex = 1;
1487 printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1488 } else if (negotiate & MII_ANAR_100BX_HD) {
1490 np->full_duplex = 0;
1491 printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1492 } else if (negotiate & MII_ANAR_10BT_FD) {
1494 np->full_duplex = 1;
1495 printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1496 } else if (negotiate & MII_ANAR_10BT_HD) {
1498 np->full_duplex = 0;
1499 printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1501 if (negotiate & MII_ANAR_PAUSE) {
1504 } else if (negotiate & MII_ANAR_ASYMMETRIC) {
1508 /* else tx_flow, rx_flow = user select */
1510 __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1511 switch (bmcr & (MII_BMCR_SPEED_100 | MII_BMCR_SPEED_1000)) {
1512 case MII_BMCR_SPEED_1000:
1513 printk (KERN_INFO "Operating at 1000 Mbps, ");
1515 case MII_BMCR_SPEED_100:
1516 printk (KERN_INFO "Operating at 100 Mbps, ");
1519 printk (KERN_INFO "Operating at 10 Mbps, ");
1521 if (bmcr & MII_BMCR_DUPLEX_MODE) {
1522 printk ("Full duplex\n");
1524 printk ("Half duplex\n");
1528 printk(KERN_INFO "Enable Tx Flow Control\n");
1530 printk(KERN_INFO "Disable Tx Flow Control\n");
1532 printk(KERN_INFO "Enable Rx Flow Control\n");
1534 printk(KERN_INFO "Disable Rx Flow Control\n");
1540 mii_set_media (struct net_device *dev)
1547 struct netdev_private *np;
1548 np = netdev_priv(dev);
1549 phy_addr = np->phy_addr;
1551 /* Does user set speed? */
1552 if (np->an_enable) {
1553 /* Advertise capabilities */
1554 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1555 anar = mii_read (dev, phy_addr, MII_ANAR) &
1556 ~MII_ANAR_100BX_FD &
1557 ~MII_ANAR_100BX_HD &
1561 if (bmsr & MII_BMSR_100BX_FD)
1562 anar |= MII_ANAR_100BX_FD;
1563 if (bmsr & MII_BMSR_100BX_HD)
1564 anar |= MII_ANAR_100BX_HD;
1565 if (bmsr & MII_BMSR_100BT4)
1566 anar |= MII_ANAR_100BT4;
1567 if (bmsr & MII_BMSR_10BT_FD)
1568 anar |= MII_ANAR_10BT_FD;
1569 if (bmsr & MII_BMSR_10BT_HD)
1570 anar |= MII_ANAR_10BT_HD;
1571 anar |= MII_ANAR_PAUSE | MII_ANAR_ASYMMETRIC;
1572 mii_write (dev, phy_addr, MII_ANAR, anar);
1574 /* Enable Auto crossover */
1575 pscr.image = mii_read (dev, phy_addr, MII_PHY_SCR);
1576 pscr.bits.mdi_crossover_mode = 3; /* 11'b */
1577 mii_write (dev, phy_addr, MII_PHY_SCR, pscr.image);
1579 /* Soft reset PHY */
1580 mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1581 bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN | MII_BMCR_RESET;
1582 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1585 /* Force speed setting */
1586 /* 1) Disable Auto crossover */
1587 pscr.image = mii_read (dev, phy_addr, MII_PHY_SCR);
1588 pscr.bits.mdi_crossover_mode = 0;
1589 mii_write (dev, phy_addr, MII_PHY_SCR, pscr.image);
1592 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1593 bmcr |= MII_BMCR_RESET;
1594 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1597 bmcr = 0x1940; /* must be 0x1940 */
1598 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1599 mdelay (100); /* wait a certain time */
1601 /* 4) Advertise nothing */
1602 mii_write (dev, phy_addr, MII_ANAR, 0);
1604 /* 5) Set media and Power Up */
1605 bmcr = MII_BMCR_POWER_DOWN;
1606 if (np->speed == 100) {
1607 bmcr |= MII_BMCR_SPEED_100;
1608 printk (KERN_INFO "Manual 100 Mbps, ");
1609 } else if (np->speed == 10) {
1610 printk (KERN_INFO "Manual 10 Mbps, ");
1612 if (np->full_duplex) {
1613 bmcr |= MII_BMCR_DUPLEX_MODE;
1614 printk ("Full duplex\n");
1616 printk ("Half duplex\n");
1619 /* Set 1000BaseT Master/Slave setting */
1620 mscr.image = mii_read (dev, phy_addr, MII_MSCR);
1621 mscr.bits.cfg_enable = 1;
1622 mscr.bits.cfg_value = 0;
1624 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1631 mii_get_media_pcs (struct net_device *dev)
1636 struct netdev_private *np;
1638 np = netdev_priv(dev);
1639 phy_addr = np->phy_addr;
1641 bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1642 if (np->an_enable) {
1643 if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
1644 /* Auto-Negotiation not completed */
1647 negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1648 mii_read (dev, phy_addr, PCS_ANLPAR);
1650 if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1651 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1652 np->full_duplex = 1;
1654 printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1655 np->full_duplex = 0;
1657 if (negotiate & PCS_ANAR_PAUSE) {
1660 } else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1664 /* else tx_flow, rx_flow = user select */
1666 __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1667 printk (KERN_INFO "Operating at 1000 Mbps, ");
1668 if (bmcr & MII_BMCR_DUPLEX_MODE) {
1669 printk ("Full duplex\n");
1671 printk ("Half duplex\n");
1675 printk(KERN_INFO "Enable Tx Flow Control\n");
1677 printk(KERN_INFO "Disable Tx Flow Control\n");
1679 printk(KERN_INFO "Enable Rx Flow Control\n");
1681 printk(KERN_INFO "Disable Rx Flow Control\n");
1687 mii_set_media_pcs (struct net_device *dev)
1693 struct netdev_private *np;
1694 np = netdev_priv(dev);
1695 phy_addr = np->phy_addr;
1697 /* Auto-Negotiation? */
1698 if (np->an_enable) {
1699 /* Advertise capabilities */
1700 esr.image = mii_read (dev, phy_addr, PCS_ESR);
1701 anar = mii_read (dev, phy_addr, MII_ANAR) &
1702 ~PCS_ANAR_HALF_DUPLEX &
1703 ~PCS_ANAR_FULL_DUPLEX;
1704 if (esr.bits.media_1000BT_HD | esr.bits.media_1000BX_HD)
1705 anar |= PCS_ANAR_HALF_DUPLEX;
1706 if (esr.bits.media_1000BT_FD | esr.bits.media_1000BX_FD)
1707 anar |= PCS_ANAR_FULL_DUPLEX;
1708 anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1709 mii_write (dev, phy_addr, MII_ANAR, anar);
1711 /* Soft reset PHY */
1712 mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1713 bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN |
1715 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1718 /* Force speed setting */
1720 bmcr = MII_BMCR_RESET;
1721 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1723 if (np->full_duplex) {
1724 bmcr = MII_BMCR_DUPLEX_MODE;
1725 printk (KERN_INFO "Manual full duplex\n");
1728 printk (KERN_INFO "Manual half duplex\n");
1730 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1733 /* Advertise nothing */
1734 mii_write (dev, phy_addr, MII_ANAR, 0);
1741 rio_close (struct net_device *dev)
1743 long ioaddr = dev->base_addr;
1744 struct netdev_private *np = netdev_priv(dev);
1745 struct sk_buff *skb;
1748 netif_stop_queue (dev);
1750 /* Disable interrupts */
1751 writew (0, ioaddr + IntEnable);
1753 /* Stop Tx and Rx logics */
1754 writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl);
1755 synchronize_irq (dev->irq);
1756 free_irq (dev->irq, dev);
1757 del_timer_sync (&np->timer);
1759 /* Free all the skbuffs in the queue. */
1760 for (i = 0; i < RX_RING_SIZE; i++) {
1761 np->rx_ring[i].status = 0;
1762 np->rx_ring[i].fraginfo = 0;
1763 skb = np->rx_skbuff[i];
1765 pci_unmap_single(np->pdev,
1766 desc_to_dma(&np->rx_ring[i]),
1767 skb->len, PCI_DMA_FROMDEVICE);
1768 dev_kfree_skb (skb);
1769 np->rx_skbuff[i] = NULL;
1772 for (i = 0; i < TX_RING_SIZE; i++) {
1773 skb = np->tx_skbuff[i];
1775 pci_unmap_single(np->pdev,
1776 desc_to_dma(&np->tx_ring[i]),
1777 skb->len, PCI_DMA_TODEVICE);
1778 dev_kfree_skb (skb);
1779 np->tx_skbuff[i] = NULL;
1786 static void __devexit
1787 rio_remove1 (struct pci_dev *pdev)
1789 struct net_device *dev = pci_get_drvdata (pdev);
1792 struct netdev_private *np = netdev_priv(dev);
1794 unregister_netdev (dev);
1795 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1797 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1800 iounmap ((char *) (dev->base_addr));
1803 pci_release_regions (pdev);
1804 pci_disable_device (pdev);
1806 pci_set_drvdata (pdev, NULL);
1809 static struct pci_driver rio_driver = {
1811 .id_table = rio_pci_tbl,
1812 .probe = rio_probe1,
1813 .remove = __devexit_p(rio_remove1),
1819 return pci_register_driver(&rio_driver);
1825 pci_unregister_driver (&rio_driver);
1828 module_init (rio_init);
1829 module_exit (rio_exit);
1835 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1837 Read Documentation/networking/dl2k.txt for details.