Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux...
[linux-2.6] / kernel / auditfilter.c
1 /* auditfilter.c -- filtering of audit events
2  *
3  * Copyright 2003-2004 Red Hat, Inc.
4  * Copyright 2005 Hewlett-Packard Development Company, L.P.
5  * Copyright 2005 IBM Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/audit.h>
24 #include <linux/kthread.h>
25 #include <linux/mutex.h>
26 #include <linux/fs.h>
27 #include <linux/namei.h>
28 #include <linux/netlink.h>
29 #include <linux/sched.h>
30 #include <linux/inotify.h>
31 #include <linux/selinux.h>
32 #include "audit.h"
33
34 /*
35  * Locking model:
36  *
37  * audit_filter_mutex:
38  *              Synchronizes writes and blocking reads of audit's filterlist
39  *              data.  Rcu is used to traverse the filterlist and access
40  *              contents of structs audit_entry, audit_watch and opaque
41  *              selinux rules during filtering.  If modified, these structures
42  *              must be copied and replace their counterparts in the filterlist.
43  *              An audit_parent struct is not accessed during filtering, so may
44  *              be written directly provided audit_filter_mutex is held.
45  */
46
47 /*
48  * Reference counting:
49  *
50  * audit_parent: lifetime is from audit_init_parent() to receipt of an IN_IGNORED
51  *      event.  Each audit_watch holds a reference to its associated parent.
52  *
53  * audit_watch: if added to lists, lifetime is from audit_init_watch() to
54  *      audit_remove_watch().  Additionally, an audit_watch may exist
55  *      temporarily to assist in searching existing filter data.  Each
56  *      audit_krule holds a reference to its associated watch.
57  */
58
59 struct audit_parent {
60         struct list_head        ilist;  /* entry in inotify registration list */
61         struct list_head        watches; /* associated watches */
62         struct inotify_watch    wdata;  /* inotify watch data */
63         unsigned                flags;  /* status flags */
64 };
65
66 /*
67  * audit_parent status flags:
68  *
69  * AUDIT_PARENT_INVALID - set anytime rules/watches are auto-removed due to
70  * a filesystem event to ensure we're adding audit watches to a valid parent.
71  * Technically not needed for IN_DELETE_SELF or IN_UNMOUNT events, as we cannot
72  * receive them while we have nameidata, but must be used for IN_MOVE_SELF which
73  * we can receive while holding nameidata.
74  */
75 #define AUDIT_PARENT_INVALID    0x001
76
77 /* Audit filter lists, defined in <linux/audit.h> */
78 struct list_head audit_filter_list[AUDIT_NR_FILTERS] = {
79         LIST_HEAD_INIT(audit_filter_list[0]),
80         LIST_HEAD_INIT(audit_filter_list[1]),
81         LIST_HEAD_INIT(audit_filter_list[2]),
82         LIST_HEAD_INIT(audit_filter_list[3]),
83         LIST_HEAD_INIT(audit_filter_list[4]),
84         LIST_HEAD_INIT(audit_filter_list[5]),
85 #if AUDIT_NR_FILTERS != 6
86 #error Fix audit_filter_list initialiser
87 #endif
88 };
89
90 DEFINE_MUTEX(audit_filter_mutex);
91
92 /* Inotify handle */
93 extern struct inotify_handle *audit_ih;
94
95 /* Inotify events we care about. */
96 #define AUDIT_IN_WATCH IN_MOVE|IN_CREATE|IN_DELETE|IN_DELETE_SELF|IN_MOVE_SELF
97
98 extern int audit_enabled;
99
100 void audit_free_parent(struct inotify_watch *i_watch)
101 {
102         struct audit_parent *parent;
103
104         parent = container_of(i_watch, struct audit_parent, wdata);
105         WARN_ON(!list_empty(&parent->watches));
106         kfree(parent);
107 }
108
109 static inline void audit_get_watch(struct audit_watch *watch)
110 {
111         atomic_inc(&watch->count);
112 }
113
114 static void audit_put_watch(struct audit_watch *watch)
115 {
116         if (atomic_dec_and_test(&watch->count)) {
117                 WARN_ON(watch->parent);
118                 WARN_ON(!list_empty(&watch->rules));
119                 kfree(watch->path);
120                 kfree(watch);
121         }
122 }
123
124 static void audit_remove_watch(struct audit_watch *watch)
125 {
126         list_del(&watch->wlist);
127         put_inotify_watch(&watch->parent->wdata);
128         watch->parent = NULL;
129         audit_put_watch(watch); /* match initial get */
130 }
131
132 static inline void audit_free_rule(struct audit_entry *e)
133 {
134         int i;
135
136         /* some rules don't have associated watches */
137         if (e->rule.watch)
138                 audit_put_watch(e->rule.watch);
139         if (e->rule.fields)
140                 for (i = 0; i < e->rule.field_count; i++) {
141                         struct audit_field *f = &e->rule.fields[i];
142                         kfree(f->se_str);
143                         selinux_audit_rule_free(f->se_rule);
144                 }
145         kfree(e->rule.fields);
146         kfree(e->rule.filterkey);
147         kfree(e);
148 }
149
150 void audit_free_rule_rcu(struct rcu_head *head)
151 {
152         struct audit_entry *e = container_of(head, struct audit_entry, rcu);
153         audit_free_rule(e);
154 }
155
156 /* Initialize a parent watch entry. */
157 static struct audit_parent *audit_init_parent(struct nameidata *ndp)
158 {
159         struct audit_parent *parent;
160         s32 wd;
161
162         parent = kzalloc(sizeof(*parent), GFP_KERNEL);
163         if (unlikely(!parent))
164                 return ERR_PTR(-ENOMEM);
165
166         INIT_LIST_HEAD(&parent->watches);
167         parent->flags = 0;
168
169         inotify_init_watch(&parent->wdata);
170         /* grab a ref so inotify watch hangs around until we take audit_filter_mutex */
171         get_inotify_watch(&parent->wdata);
172         wd = inotify_add_watch(audit_ih, &parent->wdata,
173                                ndp->path.dentry->d_inode, AUDIT_IN_WATCH);
174         if (wd < 0) {
175                 audit_free_parent(&parent->wdata);
176                 return ERR_PTR(wd);
177         }
178
179         return parent;
180 }
181
182 /* Initialize a watch entry. */
183 static struct audit_watch *audit_init_watch(char *path)
184 {
185         struct audit_watch *watch;
186
187         watch = kzalloc(sizeof(*watch), GFP_KERNEL);
188         if (unlikely(!watch))
189                 return ERR_PTR(-ENOMEM);
190
191         INIT_LIST_HEAD(&watch->rules);
192         atomic_set(&watch->count, 1);
193         watch->path = path;
194         watch->dev = (dev_t)-1;
195         watch->ino = (unsigned long)-1;
196
197         return watch;
198 }
199
200 /* Initialize an audit filterlist entry. */
201 static inline struct audit_entry *audit_init_entry(u32 field_count)
202 {
203         struct audit_entry *entry;
204         struct audit_field *fields;
205
206         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
207         if (unlikely(!entry))
208                 return NULL;
209
210         fields = kzalloc(sizeof(*fields) * field_count, GFP_KERNEL);
211         if (unlikely(!fields)) {
212                 kfree(entry);
213                 return NULL;
214         }
215         entry->rule.fields = fields;
216
217         return entry;
218 }
219
220 /* Unpack a filter field's string representation from user-space
221  * buffer. */
222 char *audit_unpack_string(void **bufp, size_t *remain, size_t len)
223 {
224         char *str;
225
226         if (!*bufp || (len == 0) || (len > *remain))
227                 return ERR_PTR(-EINVAL);
228
229         /* Of the currently implemented string fields, PATH_MAX
230          * defines the longest valid length.
231          */
232         if (len > PATH_MAX)
233                 return ERR_PTR(-ENAMETOOLONG);
234
235         str = kmalloc(len + 1, GFP_KERNEL);
236         if (unlikely(!str))
237                 return ERR_PTR(-ENOMEM);
238
239         memcpy(str, *bufp, len);
240         str[len] = 0;
241         *bufp += len;
242         *remain -= len;
243
244         return str;
245 }
246
247 /* Translate an inode field to kernel respresentation. */
248 static inline int audit_to_inode(struct audit_krule *krule,
249                                  struct audit_field *f)
250 {
251         if (krule->listnr != AUDIT_FILTER_EXIT ||
252             krule->watch || krule->inode_f || krule->tree)
253                 return -EINVAL;
254
255         krule->inode_f = f;
256         return 0;
257 }
258
259 /* Translate a watch string to kernel respresentation. */
260 static int audit_to_watch(struct audit_krule *krule, char *path, int len,
261                           u32 op)
262 {
263         struct audit_watch *watch;
264
265         if (!audit_ih)
266                 return -EOPNOTSUPP;
267
268         if (path[0] != '/' || path[len-1] == '/' ||
269             krule->listnr != AUDIT_FILTER_EXIT ||
270             op & ~AUDIT_EQUAL ||
271             krule->inode_f || krule->watch || krule->tree)
272                 return -EINVAL;
273
274         watch = audit_init_watch(path);
275         if (unlikely(IS_ERR(watch)))
276                 return PTR_ERR(watch);
277
278         audit_get_watch(watch);
279         krule->watch = watch;
280
281         return 0;
282 }
283
284 static __u32 *classes[AUDIT_SYSCALL_CLASSES];
285
286 int __init audit_register_class(int class, unsigned *list)
287 {
288         __u32 *p = kzalloc(AUDIT_BITMASK_SIZE * sizeof(__u32), GFP_KERNEL);
289         if (!p)
290                 return -ENOMEM;
291         while (*list != ~0U) {
292                 unsigned n = *list++;
293                 if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) {
294                         kfree(p);
295                         return -EINVAL;
296                 }
297                 p[AUDIT_WORD(n)] |= AUDIT_BIT(n);
298         }
299         if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) {
300                 kfree(p);
301                 return -EINVAL;
302         }
303         classes[class] = p;
304         return 0;
305 }
306
307 int audit_match_class(int class, unsigned syscall)
308 {
309         if (unlikely(syscall >= AUDIT_BITMASK_SIZE * 32))
310                 return 0;
311         if (unlikely(class >= AUDIT_SYSCALL_CLASSES || !classes[class]))
312                 return 0;
313         return classes[class][AUDIT_WORD(syscall)] & AUDIT_BIT(syscall);
314 }
315
316 #ifdef CONFIG_AUDITSYSCALL
317 static inline int audit_match_class_bits(int class, u32 *mask)
318 {
319         int i;
320
321         if (classes[class]) {
322                 for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
323                         if (mask[i] & classes[class][i])
324                                 return 0;
325         }
326         return 1;
327 }
328
329 static int audit_match_signal(struct audit_entry *entry)
330 {
331         struct audit_field *arch = entry->rule.arch_f;
332
333         if (!arch) {
334                 /* When arch is unspecified, we must check both masks on biarch
335                  * as syscall number alone is ambiguous. */
336                 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
337                                                entry->rule.mask) &&
338                         audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
339                                                entry->rule.mask));
340         }
341
342         switch(audit_classify_arch(arch->val)) {
343         case 0: /* native */
344                 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
345                                                entry->rule.mask));
346         case 1: /* 32bit on biarch */
347                 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
348                                                entry->rule.mask));
349         default:
350                 return 1;
351         }
352 }
353 #endif
354
355 /* Common user-space to kernel rule translation. */
356 static inline struct audit_entry *audit_to_entry_common(struct audit_rule *rule)
357 {
358         unsigned listnr;
359         struct audit_entry *entry;
360         int i, err;
361
362         err = -EINVAL;
363         listnr = rule->flags & ~AUDIT_FILTER_PREPEND;
364         switch(listnr) {
365         default:
366                 goto exit_err;
367         case AUDIT_FILTER_USER:
368         case AUDIT_FILTER_TYPE:
369 #ifdef CONFIG_AUDITSYSCALL
370         case AUDIT_FILTER_ENTRY:
371         case AUDIT_FILTER_EXIT:
372         case AUDIT_FILTER_TASK:
373 #endif
374                 ;
375         }
376         if (unlikely(rule->action == AUDIT_POSSIBLE)) {
377                 printk(KERN_ERR "AUDIT_POSSIBLE is deprecated\n");
378                 goto exit_err;
379         }
380         if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS)
381                 goto exit_err;
382         if (rule->field_count > AUDIT_MAX_FIELDS)
383                 goto exit_err;
384
385         err = -ENOMEM;
386         entry = audit_init_entry(rule->field_count);
387         if (!entry)
388                 goto exit_err;
389
390         entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND;
391         entry->rule.listnr = listnr;
392         entry->rule.action = rule->action;
393         entry->rule.field_count = rule->field_count;
394
395         for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
396                 entry->rule.mask[i] = rule->mask[i];
397
398         for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) {
399                 int bit = AUDIT_BITMASK_SIZE * 32 - i - 1;
400                 __u32 *p = &entry->rule.mask[AUDIT_WORD(bit)];
401                 __u32 *class;
402
403                 if (!(*p & AUDIT_BIT(bit)))
404                         continue;
405                 *p &= ~AUDIT_BIT(bit);
406                 class = classes[i];
407                 if (class) {
408                         int j;
409                         for (j = 0; j < AUDIT_BITMASK_SIZE; j++)
410                                 entry->rule.mask[j] |= class[j];
411                 }
412         }
413
414         return entry;
415
416 exit_err:
417         return ERR_PTR(err);
418 }
419
420 /* Translate struct audit_rule to kernel's rule respresentation.
421  * Exists for backward compatibility with userspace. */
422 static struct audit_entry *audit_rule_to_entry(struct audit_rule *rule)
423 {
424         struct audit_entry *entry;
425         struct audit_field *f;
426         int err = 0;
427         int i;
428
429         entry = audit_to_entry_common(rule);
430         if (IS_ERR(entry))
431                 goto exit_nofree;
432
433         for (i = 0; i < rule->field_count; i++) {
434                 struct audit_field *f = &entry->rule.fields[i];
435
436                 f->op = rule->fields[i] & (AUDIT_NEGATE|AUDIT_OPERATORS);
437                 f->type = rule->fields[i] & ~(AUDIT_NEGATE|AUDIT_OPERATORS);
438                 f->val = rule->values[i];
439
440                 err = -EINVAL;
441                 switch(f->type) {
442                 default:
443                         goto exit_free;
444                 case AUDIT_PID:
445                 case AUDIT_UID:
446                 case AUDIT_EUID:
447                 case AUDIT_SUID:
448                 case AUDIT_FSUID:
449                 case AUDIT_GID:
450                 case AUDIT_EGID:
451                 case AUDIT_SGID:
452                 case AUDIT_FSGID:
453                 case AUDIT_LOGINUID:
454                 case AUDIT_PERS:
455                 case AUDIT_MSGTYPE:
456                 case AUDIT_PPID:
457                 case AUDIT_DEVMAJOR:
458                 case AUDIT_DEVMINOR:
459                 case AUDIT_EXIT:
460                 case AUDIT_SUCCESS:
461                         /* bit ops are only useful on syscall args */
462                         if (f->op == AUDIT_BIT_MASK ||
463                                                 f->op == AUDIT_BIT_TEST) {
464                                 err = -EINVAL;
465                                 goto exit_free;
466                         }
467                         break;
468                 case AUDIT_ARG0:
469                 case AUDIT_ARG1:
470                 case AUDIT_ARG2:
471                 case AUDIT_ARG3:
472                         break;
473                 /* arch is only allowed to be = or != */
474                 case AUDIT_ARCH:
475                         if ((f->op != AUDIT_NOT_EQUAL) && (f->op != AUDIT_EQUAL)
476                                         && (f->op != AUDIT_NEGATE) && (f->op)) {
477                                 err = -EINVAL;
478                                 goto exit_free;
479                         }
480                         entry->rule.arch_f = f;
481                         break;
482                 case AUDIT_PERM:
483                         if (f->val & ~15)
484                                 goto exit_free;
485                         break;
486                 case AUDIT_INODE:
487                         err = audit_to_inode(&entry->rule, f);
488                         if (err)
489                                 goto exit_free;
490                         break;
491                 }
492
493                 entry->rule.vers_ops = (f->op & AUDIT_OPERATORS) ? 2 : 1;
494
495                 /* Support for legacy operators where
496                  * AUDIT_NEGATE bit signifies != and otherwise assumes == */
497                 if (f->op & AUDIT_NEGATE)
498                         f->op = AUDIT_NOT_EQUAL;
499                 else if (!f->op)
500                         f->op = AUDIT_EQUAL;
501                 else if (f->op == AUDIT_OPERATORS) {
502                         err = -EINVAL;
503                         goto exit_free;
504                 }
505         }
506
507         f = entry->rule.inode_f;
508         if (f) {
509                 switch(f->op) {
510                 case AUDIT_NOT_EQUAL:
511                         entry->rule.inode_f = NULL;
512                 case AUDIT_EQUAL:
513                         break;
514                 default:
515                         err = -EINVAL;
516                         goto exit_free;
517                 }
518         }
519
520 exit_nofree:
521         return entry;
522
523 exit_free:
524         audit_free_rule(entry);
525         return ERR_PTR(err);
526 }
527
528 /* Translate struct audit_rule_data to kernel's rule respresentation. */
529 static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data,
530                                                size_t datasz)
531 {
532         int err = 0;
533         struct audit_entry *entry;
534         struct audit_field *f;
535         void *bufp;
536         size_t remain = datasz - sizeof(struct audit_rule_data);
537         int i;
538         char *str;
539
540         entry = audit_to_entry_common((struct audit_rule *)data);
541         if (IS_ERR(entry))
542                 goto exit_nofree;
543
544         bufp = data->buf;
545         entry->rule.vers_ops = 2;
546         for (i = 0; i < data->field_count; i++) {
547                 struct audit_field *f = &entry->rule.fields[i];
548
549                 err = -EINVAL;
550                 if (!(data->fieldflags[i] & AUDIT_OPERATORS) ||
551                     data->fieldflags[i] & ~AUDIT_OPERATORS)
552                         goto exit_free;
553
554                 f->op = data->fieldflags[i] & AUDIT_OPERATORS;
555                 f->type = data->fields[i];
556                 f->val = data->values[i];
557                 f->se_str = NULL;
558                 f->se_rule = NULL;
559                 switch(f->type) {
560                 case AUDIT_PID:
561                 case AUDIT_UID:
562                 case AUDIT_EUID:
563                 case AUDIT_SUID:
564                 case AUDIT_FSUID:
565                 case AUDIT_GID:
566                 case AUDIT_EGID:
567                 case AUDIT_SGID:
568                 case AUDIT_FSGID:
569                 case AUDIT_LOGINUID:
570                 case AUDIT_PERS:
571                 case AUDIT_MSGTYPE:
572                 case AUDIT_PPID:
573                 case AUDIT_DEVMAJOR:
574                 case AUDIT_DEVMINOR:
575                 case AUDIT_EXIT:
576                 case AUDIT_SUCCESS:
577                 case AUDIT_ARG0:
578                 case AUDIT_ARG1:
579                 case AUDIT_ARG2:
580                 case AUDIT_ARG3:
581                         break;
582                 case AUDIT_ARCH:
583                         entry->rule.arch_f = f;
584                         break;
585                 case AUDIT_SUBJ_USER:
586                 case AUDIT_SUBJ_ROLE:
587                 case AUDIT_SUBJ_TYPE:
588                 case AUDIT_SUBJ_SEN:
589                 case AUDIT_SUBJ_CLR:
590                 case AUDIT_OBJ_USER:
591                 case AUDIT_OBJ_ROLE:
592                 case AUDIT_OBJ_TYPE:
593                 case AUDIT_OBJ_LEV_LOW:
594                 case AUDIT_OBJ_LEV_HIGH:
595                         str = audit_unpack_string(&bufp, &remain, f->val);
596                         if (IS_ERR(str))
597                                 goto exit_free;
598                         entry->rule.buflen += f->val;
599
600                         err = selinux_audit_rule_init(f->type, f->op, str,
601                                                       &f->se_rule);
602                         /* Keep currently invalid fields around in case they
603                          * become valid after a policy reload. */
604                         if (err == -EINVAL) {
605                                 printk(KERN_WARNING "audit rule for selinux "
606                                        "\'%s\' is invalid\n",  str);
607                                 err = 0;
608                         }
609                         if (err) {
610                                 kfree(str);
611                                 goto exit_free;
612                         } else
613                                 f->se_str = str;
614                         break;
615                 case AUDIT_WATCH:
616                         str = audit_unpack_string(&bufp, &remain, f->val);
617                         if (IS_ERR(str))
618                                 goto exit_free;
619                         entry->rule.buflen += f->val;
620
621                         err = audit_to_watch(&entry->rule, str, f->val, f->op);
622                         if (err) {
623                                 kfree(str);
624                                 goto exit_free;
625                         }
626                         break;
627                 case AUDIT_DIR:
628                         str = audit_unpack_string(&bufp, &remain, f->val);
629                         if (IS_ERR(str))
630                                 goto exit_free;
631                         entry->rule.buflen += f->val;
632
633                         err = audit_make_tree(&entry->rule, str, f->op);
634                         kfree(str);
635                         if (err)
636                                 goto exit_free;
637                         break;
638                 case AUDIT_INODE:
639                         err = audit_to_inode(&entry->rule, f);
640                         if (err)
641                                 goto exit_free;
642                         break;
643                 case AUDIT_FILTERKEY:
644                         err = -EINVAL;
645                         if (entry->rule.filterkey || f->val > AUDIT_MAX_KEY_LEN)
646                                 goto exit_free;
647                         str = audit_unpack_string(&bufp, &remain, f->val);
648                         if (IS_ERR(str))
649                                 goto exit_free;
650                         entry->rule.buflen += f->val;
651                         entry->rule.filterkey = str;
652                         break;
653                 case AUDIT_PERM:
654                         if (f->val & ~15)
655                                 goto exit_free;
656                         break;
657                 default:
658                         goto exit_free;
659                 }
660         }
661
662         f = entry->rule.inode_f;
663         if (f) {
664                 switch(f->op) {
665                 case AUDIT_NOT_EQUAL:
666                         entry->rule.inode_f = NULL;
667                 case AUDIT_EQUAL:
668                         break;
669                 default:
670                         err = -EINVAL;
671                         goto exit_free;
672                 }
673         }
674
675 exit_nofree:
676         return entry;
677
678 exit_free:
679         audit_free_rule(entry);
680         return ERR_PTR(err);
681 }
682
683 /* Pack a filter field's string representation into data block. */
684 static inline size_t audit_pack_string(void **bufp, const char *str)
685 {
686         size_t len = strlen(str);
687
688         memcpy(*bufp, str, len);
689         *bufp += len;
690
691         return len;
692 }
693
694 /* Translate kernel rule respresentation to struct audit_rule.
695  * Exists for backward compatibility with userspace. */
696 static struct audit_rule *audit_krule_to_rule(struct audit_krule *krule)
697 {
698         struct audit_rule *rule;
699         int i;
700
701         rule = kzalloc(sizeof(*rule), GFP_KERNEL);
702         if (unlikely(!rule))
703                 return NULL;
704
705         rule->flags = krule->flags | krule->listnr;
706         rule->action = krule->action;
707         rule->field_count = krule->field_count;
708         for (i = 0; i < rule->field_count; i++) {
709                 rule->values[i] = krule->fields[i].val;
710                 rule->fields[i] = krule->fields[i].type;
711
712                 if (krule->vers_ops == 1) {
713                         if (krule->fields[i].op & AUDIT_NOT_EQUAL)
714                                 rule->fields[i] |= AUDIT_NEGATE;
715                 } else {
716                         rule->fields[i] |= krule->fields[i].op;
717                 }
718         }
719         for (i = 0; i < AUDIT_BITMASK_SIZE; i++) rule->mask[i] = krule->mask[i];
720
721         return rule;
722 }
723
724 /* Translate kernel rule respresentation to struct audit_rule_data. */
725 static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule)
726 {
727         struct audit_rule_data *data;
728         void *bufp;
729         int i;
730
731         data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL);
732         if (unlikely(!data))
733                 return NULL;
734         memset(data, 0, sizeof(*data));
735
736         data->flags = krule->flags | krule->listnr;
737         data->action = krule->action;
738         data->field_count = krule->field_count;
739         bufp = data->buf;
740         for (i = 0; i < data->field_count; i++) {
741                 struct audit_field *f = &krule->fields[i];
742
743                 data->fields[i] = f->type;
744                 data->fieldflags[i] = f->op;
745                 switch(f->type) {
746                 case AUDIT_SUBJ_USER:
747                 case AUDIT_SUBJ_ROLE:
748                 case AUDIT_SUBJ_TYPE:
749                 case AUDIT_SUBJ_SEN:
750                 case AUDIT_SUBJ_CLR:
751                 case AUDIT_OBJ_USER:
752                 case AUDIT_OBJ_ROLE:
753                 case AUDIT_OBJ_TYPE:
754                 case AUDIT_OBJ_LEV_LOW:
755                 case AUDIT_OBJ_LEV_HIGH:
756                         data->buflen += data->values[i] =
757                                 audit_pack_string(&bufp, f->se_str);
758                         break;
759                 case AUDIT_WATCH:
760                         data->buflen += data->values[i] =
761                                 audit_pack_string(&bufp, krule->watch->path);
762                         break;
763                 case AUDIT_DIR:
764                         data->buflen += data->values[i] =
765                                 audit_pack_string(&bufp,
766                                                   audit_tree_path(krule->tree));
767                         break;
768                 case AUDIT_FILTERKEY:
769                         data->buflen += data->values[i] =
770                                 audit_pack_string(&bufp, krule->filterkey);
771                         break;
772                 default:
773                         data->values[i] = f->val;
774                 }
775         }
776         for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i];
777
778         return data;
779 }
780
781 /* Compare two rules in kernel format.  Considered success if rules
782  * don't match. */
783 static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b)
784 {
785         int i;
786
787         if (a->flags != b->flags ||
788             a->listnr != b->listnr ||
789             a->action != b->action ||
790             a->field_count != b->field_count)
791                 return 1;
792
793         for (i = 0; i < a->field_count; i++) {
794                 if (a->fields[i].type != b->fields[i].type ||
795                     a->fields[i].op != b->fields[i].op)
796                         return 1;
797
798                 switch(a->fields[i].type) {
799                 case AUDIT_SUBJ_USER:
800                 case AUDIT_SUBJ_ROLE:
801                 case AUDIT_SUBJ_TYPE:
802                 case AUDIT_SUBJ_SEN:
803                 case AUDIT_SUBJ_CLR:
804                 case AUDIT_OBJ_USER:
805                 case AUDIT_OBJ_ROLE:
806                 case AUDIT_OBJ_TYPE:
807                 case AUDIT_OBJ_LEV_LOW:
808                 case AUDIT_OBJ_LEV_HIGH:
809                         if (strcmp(a->fields[i].se_str, b->fields[i].se_str))
810                                 return 1;
811                         break;
812                 case AUDIT_WATCH:
813                         if (strcmp(a->watch->path, b->watch->path))
814                                 return 1;
815                         break;
816                 case AUDIT_DIR:
817                         if (strcmp(audit_tree_path(a->tree),
818                                    audit_tree_path(b->tree)))
819                                 return 1;
820                         break;
821                 case AUDIT_FILTERKEY:
822                         /* both filterkeys exist based on above type compare */
823                         if (strcmp(a->filterkey, b->filterkey))
824                                 return 1;
825                         break;
826                 default:
827                         if (a->fields[i].val != b->fields[i].val)
828                                 return 1;
829                 }
830         }
831
832         for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
833                 if (a->mask[i] != b->mask[i])
834                         return 1;
835
836         return 0;
837 }
838
839 /* Duplicate the given audit watch.  The new watch's rules list is initialized
840  * to an empty list and wlist is undefined. */
841 static struct audit_watch *audit_dupe_watch(struct audit_watch *old)
842 {
843         char *path;
844         struct audit_watch *new;
845
846         path = kstrdup(old->path, GFP_KERNEL);
847         if (unlikely(!path))
848                 return ERR_PTR(-ENOMEM);
849
850         new = audit_init_watch(path);
851         if (unlikely(IS_ERR(new))) {
852                 kfree(path);
853                 goto out;
854         }
855
856         new->dev = old->dev;
857         new->ino = old->ino;
858         get_inotify_watch(&old->parent->wdata);
859         new->parent = old->parent;
860
861 out:
862         return new;
863 }
864
865 /* Duplicate selinux field information.  The se_rule is opaque, so must be
866  * re-initialized. */
867 static inline int audit_dupe_selinux_field(struct audit_field *df,
868                                            struct audit_field *sf)
869 {
870         int ret = 0;
871         char *se_str;
872
873         /* our own copy of se_str */
874         se_str = kstrdup(sf->se_str, GFP_KERNEL);
875         if (unlikely(!se_str))
876                 return -ENOMEM;
877         df->se_str = se_str;
878
879         /* our own (refreshed) copy of se_rule */
880         ret = selinux_audit_rule_init(df->type, df->op, df->se_str,
881                                       &df->se_rule);
882         /* Keep currently invalid fields around in case they
883          * become valid after a policy reload. */
884         if (ret == -EINVAL) {
885                 printk(KERN_WARNING "audit rule for selinux \'%s\' is "
886                        "invalid\n", df->se_str);
887                 ret = 0;
888         }
889
890         return ret;
891 }
892
893 /* Duplicate an audit rule.  This will be a deep copy with the exception
894  * of the watch - that pointer is carried over.  The selinux specific fields
895  * will be updated in the copy.  The point is to be able to replace the old
896  * rule with the new rule in the filterlist, then free the old rule.
897  * The rlist element is undefined; list manipulations are handled apart from
898  * the initial copy. */
899 static struct audit_entry *audit_dupe_rule(struct audit_krule *old,
900                                            struct audit_watch *watch)
901 {
902         u32 fcount = old->field_count;
903         struct audit_entry *entry;
904         struct audit_krule *new;
905         char *fk;
906         int i, err = 0;
907
908         entry = audit_init_entry(fcount);
909         if (unlikely(!entry))
910                 return ERR_PTR(-ENOMEM);
911
912         new = &entry->rule;
913         new->vers_ops = old->vers_ops;
914         new->flags = old->flags;
915         new->listnr = old->listnr;
916         new->action = old->action;
917         for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
918                 new->mask[i] = old->mask[i];
919         new->buflen = old->buflen;
920         new->inode_f = old->inode_f;
921         new->watch = NULL;
922         new->field_count = old->field_count;
923         /*
924          * note that we are OK with not refcounting here; audit_match_tree()
925          * never dereferences tree and we can't get false positives there
926          * since we'd have to have rule gone from the list *and* removed
927          * before the chunks found by lookup had been allocated, i.e. before
928          * the beginning of list scan.
929          */
930         new->tree = old->tree;
931         memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount);
932
933         /* deep copy this information, updating the se_rule fields, because
934          * the originals will all be freed when the old rule is freed. */
935         for (i = 0; i < fcount; i++) {
936                 switch (new->fields[i].type) {
937                 case AUDIT_SUBJ_USER:
938                 case AUDIT_SUBJ_ROLE:
939                 case AUDIT_SUBJ_TYPE:
940                 case AUDIT_SUBJ_SEN:
941                 case AUDIT_SUBJ_CLR:
942                 case AUDIT_OBJ_USER:
943                 case AUDIT_OBJ_ROLE:
944                 case AUDIT_OBJ_TYPE:
945                 case AUDIT_OBJ_LEV_LOW:
946                 case AUDIT_OBJ_LEV_HIGH:
947                         err = audit_dupe_selinux_field(&new->fields[i],
948                                                        &old->fields[i]);
949                         break;
950                 case AUDIT_FILTERKEY:
951                         fk = kstrdup(old->filterkey, GFP_KERNEL);
952                         if (unlikely(!fk))
953                                 err = -ENOMEM;
954                         else
955                                 new->filterkey = fk;
956                 }
957                 if (err) {
958                         audit_free_rule(entry);
959                         return ERR_PTR(err);
960                 }
961         }
962
963         if (watch) {
964                 audit_get_watch(watch);
965                 new->watch = watch;
966         }
967
968         return entry;
969 }
970
971 /* Update inode info in audit rules based on filesystem event. */
972 static void audit_update_watch(struct audit_parent *parent,
973                                const char *dname, dev_t dev,
974                                unsigned long ino, unsigned invalidating)
975 {
976         struct audit_watch *owatch, *nwatch, *nextw;
977         struct audit_krule *r, *nextr;
978         struct audit_entry *oentry, *nentry;
979
980         mutex_lock(&audit_filter_mutex);
981         list_for_each_entry_safe(owatch, nextw, &parent->watches, wlist) {
982                 if (audit_compare_dname_path(dname, owatch->path, NULL))
983                         continue;
984
985                 /* If the update involves invalidating rules, do the inode-based
986                  * filtering now, so we don't omit records. */
987                 if (invalidating && current->audit_context &&
988                     audit_filter_inodes(current, current->audit_context) == AUDIT_RECORD_CONTEXT)
989                         audit_set_auditable(current->audit_context);
990
991                 nwatch = audit_dupe_watch(owatch);
992                 if (unlikely(IS_ERR(nwatch))) {
993                         mutex_unlock(&audit_filter_mutex);
994                         audit_panic("error updating watch, skipping");
995                         return;
996                 }
997                 nwatch->dev = dev;
998                 nwatch->ino = ino;
999
1000                 list_for_each_entry_safe(r, nextr, &owatch->rules, rlist) {
1001
1002                         oentry = container_of(r, struct audit_entry, rule);
1003                         list_del(&oentry->rule.rlist);
1004                         list_del_rcu(&oentry->list);
1005
1006                         nentry = audit_dupe_rule(&oentry->rule, nwatch);
1007                         if (unlikely(IS_ERR(nentry)))
1008                                 audit_panic("error updating watch, removing");
1009                         else {
1010                                 int h = audit_hash_ino((u32)ino);
1011                                 list_add(&nentry->rule.rlist, &nwatch->rules);
1012                                 list_add_rcu(&nentry->list, &audit_inode_hash[h]);
1013                         }
1014
1015                         call_rcu(&oentry->rcu, audit_free_rule_rcu);
1016                 }
1017
1018                 if (audit_enabled) {
1019                         struct audit_buffer *ab;
1020                         ab = audit_log_start(NULL, GFP_KERNEL,
1021                                 AUDIT_CONFIG_CHANGE);
1022                         audit_log_format(ab,
1023                                 "op=updated rules specifying path=");
1024                         audit_log_untrustedstring(ab, owatch->path);
1025                         audit_log_format(ab, " with dev=%u ino=%lu\n",
1026                                  dev, ino);
1027                         audit_log_format(ab, " list=%d res=1", r->listnr);
1028                         audit_log_end(ab);
1029                 }
1030                 audit_remove_watch(owatch);
1031                 goto add_watch_to_parent; /* event applies to a single watch */
1032         }
1033         mutex_unlock(&audit_filter_mutex);
1034         return;
1035
1036 add_watch_to_parent:
1037         list_add(&nwatch->wlist, &parent->watches);
1038         mutex_unlock(&audit_filter_mutex);
1039         return;
1040 }
1041
1042 /* Remove all watches & rules associated with a parent that is going away. */
1043 static void audit_remove_parent_watches(struct audit_parent *parent)
1044 {
1045         struct audit_watch *w, *nextw;
1046         struct audit_krule *r, *nextr;
1047         struct audit_entry *e;
1048
1049         mutex_lock(&audit_filter_mutex);
1050         parent->flags |= AUDIT_PARENT_INVALID;
1051         list_for_each_entry_safe(w, nextw, &parent->watches, wlist) {
1052                 list_for_each_entry_safe(r, nextr, &w->rules, rlist) {
1053                         e = container_of(r, struct audit_entry, rule);
1054                         if (audit_enabled) {
1055                                 struct audit_buffer *ab;
1056                                 ab = audit_log_start(NULL, GFP_KERNEL,
1057                                         AUDIT_CONFIG_CHANGE);
1058                                 audit_log_format(ab, "op=remove rule path=");
1059                                 audit_log_untrustedstring(ab, w->path);
1060                                 if (r->filterkey) {
1061                                         audit_log_format(ab, " key=");
1062                                         audit_log_untrustedstring(ab,
1063                                                         r->filterkey);
1064                                 } else
1065                                         audit_log_format(ab, " key=(null)");
1066                                 audit_log_format(ab, " list=%d res=1",
1067                                         r->listnr);
1068                                 audit_log_end(ab);
1069                         }
1070                         list_del(&r->rlist);
1071                         list_del_rcu(&e->list);
1072                         call_rcu(&e->rcu, audit_free_rule_rcu);
1073                 }
1074                 audit_remove_watch(w);
1075         }
1076         mutex_unlock(&audit_filter_mutex);
1077 }
1078
1079 /* Unregister inotify watches for parents on in_list.
1080  * Generates an IN_IGNORED event. */
1081 static void audit_inotify_unregister(struct list_head *in_list)
1082 {
1083         struct audit_parent *p, *n;
1084
1085         list_for_each_entry_safe(p, n, in_list, ilist) {
1086                 list_del(&p->ilist);
1087                 inotify_rm_watch(audit_ih, &p->wdata);
1088                 /* the put matching the get in audit_do_del_rule() */
1089                 put_inotify_watch(&p->wdata);
1090         }
1091 }
1092
1093 /* Find an existing audit rule.
1094  * Caller must hold audit_filter_mutex to prevent stale rule data. */
1095 static struct audit_entry *audit_find_rule(struct audit_entry *entry,
1096                                            struct list_head *list)
1097 {
1098         struct audit_entry *e, *found = NULL;
1099         int h;
1100
1101         if (entry->rule.watch) {
1102                 /* we don't know the inode number, so must walk entire hash */
1103                 for (h = 0; h < AUDIT_INODE_BUCKETS; h++) {
1104                         list = &audit_inode_hash[h];
1105                         list_for_each_entry(e, list, list)
1106                                 if (!audit_compare_rule(&entry->rule, &e->rule)) {
1107                                         found = e;
1108                                         goto out;
1109                                 }
1110                 }
1111                 goto out;
1112         }
1113
1114         list_for_each_entry(e, list, list)
1115                 if (!audit_compare_rule(&entry->rule, &e->rule)) {
1116                         found = e;
1117                         goto out;
1118                 }
1119
1120 out:
1121         return found;
1122 }
1123
1124 /* Get path information necessary for adding watches. */
1125 static int audit_get_nd(char *path, struct nameidata **ndp,
1126                         struct nameidata **ndw)
1127 {
1128         struct nameidata *ndparent, *ndwatch;
1129         int err;
1130
1131         ndparent = kmalloc(sizeof(*ndparent), GFP_KERNEL);
1132         if (unlikely(!ndparent))
1133                 return -ENOMEM;
1134
1135         ndwatch = kmalloc(sizeof(*ndwatch), GFP_KERNEL);
1136         if (unlikely(!ndwatch)) {
1137                 kfree(ndparent);
1138                 return -ENOMEM;
1139         }
1140
1141         err = path_lookup(path, LOOKUP_PARENT, ndparent);
1142         if (err) {
1143                 kfree(ndparent);
1144                 kfree(ndwatch);
1145                 return err;
1146         }
1147
1148         err = path_lookup(path, 0, ndwatch);
1149         if (err) {
1150                 kfree(ndwatch);
1151                 ndwatch = NULL;
1152         }
1153
1154         *ndp = ndparent;
1155         *ndw = ndwatch;
1156
1157         return 0;
1158 }
1159
1160 /* Release resources used for watch path information. */
1161 static void audit_put_nd(struct nameidata *ndp, struct nameidata *ndw)
1162 {
1163         if (ndp) {
1164                 path_put(&ndp->path);
1165                 kfree(ndp);
1166         }
1167         if (ndw) {
1168                 path_put(&ndw->path);
1169                 kfree(ndw);
1170         }
1171 }
1172
1173 /* Associate the given rule with an existing parent inotify_watch.
1174  * Caller must hold audit_filter_mutex. */
1175 static void audit_add_to_parent(struct audit_krule *krule,
1176                                 struct audit_parent *parent)
1177 {
1178         struct audit_watch *w, *watch = krule->watch;
1179         int watch_found = 0;
1180
1181         list_for_each_entry(w, &parent->watches, wlist) {
1182                 if (strcmp(watch->path, w->path))
1183                         continue;
1184
1185                 watch_found = 1;
1186
1187                 /* put krule's and initial refs to temporary watch */
1188                 audit_put_watch(watch);
1189                 audit_put_watch(watch);
1190
1191                 audit_get_watch(w);
1192                 krule->watch = watch = w;
1193                 break;
1194         }
1195
1196         if (!watch_found) {
1197                 get_inotify_watch(&parent->wdata);
1198                 watch->parent = parent;
1199
1200                 list_add(&watch->wlist, &parent->watches);
1201         }
1202         list_add(&krule->rlist, &watch->rules);
1203 }
1204
1205 /* Find a matching watch entry, or add this one.
1206  * Caller must hold audit_filter_mutex. */
1207 static int audit_add_watch(struct audit_krule *krule, struct nameidata *ndp,
1208                            struct nameidata *ndw)
1209 {
1210         struct audit_watch *watch = krule->watch;
1211         struct inotify_watch *i_watch;
1212         struct audit_parent *parent;
1213         int ret = 0;
1214
1215         /* update watch filter fields */
1216         if (ndw) {
1217                 watch->dev = ndw->path.dentry->d_inode->i_sb->s_dev;
1218                 watch->ino = ndw->path.dentry->d_inode->i_ino;
1219         }
1220
1221         /* The audit_filter_mutex must not be held during inotify calls because
1222          * we hold it during inotify event callback processing.  If an existing
1223          * inotify watch is found, inotify_find_watch() grabs a reference before
1224          * returning.
1225          */
1226         mutex_unlock(&audit_filter_mutex);
1227
1228         if (inotify_find_watch(audit_ih, ndp->path.dentry->d_inode,
1229                                &i_watch) < 0) {
1230                 parent = audit_init_parent(ndp);
1231                 if (IS_ERR(parent)) {
1232                         /* caller expects mutex locked */
1233                         mutex_lock(&audit_filter_mutex);
1234                         return PTR_ERR(parent);
1235                 }
1236         } else
1237                 parent = container_of(i_watch, struct audit_parent, wdata);
1238
1239         mutex_lock(&audit_filter_mutex);
1240
1241         /* parent was moved before we took audit_filter_mutex */
1242         if (parent->flags & AUDIT_PARENT_INVALID)
1243                 ret = -ENOENT;
1244         else
1245                 audit_add_to_parent(krule, parent);
1246
1247         /* match get in audit_init_parent or inotify_find_watch */
1248         put_inotify_watch(&parent->wdata);
1249         return ret;
1250 }
1251
1252 /* Add rule to given filterlist if not a duplicate. */
1253 static inline int audit_add_rule(struct audit_entry *entry,
1254                                  struct list_head *list)
1255 {
1256         struct audit_entry *e;
1257         struct audit_field *inode_f = entry->rule.inode_f;
1258         struct audit_watch *watch = entry->rule.watch;
1259         struct audit_tree *tree = entry->rule.tree;
1260         struct nameidata *ndp = NULL, *ndw = NULL;
1261         int h, err;
1262 #ifdef CONFIG_AUDITSYSCALL
1263         int dont_count = 0;
1264
1265         /* If either of these, don't count towards total */
1266         if (entry->rule.listnr == AUDIT_FILTER_USER ||
1267                 entry->rule.listnr == AUDIT_FILTER_TYPE)
1268                 dont_count = 1;
1269 #endif
1270
1271         if (inode_f) {
1272                 h = audit_hash_ino(inode_f->val);
1273                 list = &audit_inode_hash[h];
1274         }
1275
1276         mutex_lock(&audit_filter_mutex);
1277         e = audit_find_rule(entry, list);
1278         mutex_unlock(&audit_filter_mutex);
1279         if (e) {
1280                 err = -EEXIST;
1281                 /* normally audit_add_tree_rule() will free it on failure */
1282                 if (tree)
1283                         audit_put_tree(tree);
1284                 goto error;
1285         }
1286
1287         /* Avoid calling path_lookup under audit_filter_mutex. */
1288         if (watch) {
1289                 err = audit_get_nd(watch->path, &ndp, &ndw);
1290                 if (err)
1291                         goto error;
1292         }
1293
1294         mutex_lock(&audit_filter_mutex);
1295         if (watch) {
1296                 /* audit_filter_mutex is dropped and re-taken during this call */
1297                 err = audit_add_watch(&entry->rule, ndp, ndw);
1298                 if (err) {
1299                         mutex_unlock(&audit_filter_mutex);
1300                         goto error;
1301                 }
1302                 h = audit_hash_ino((u32)watch->ino);
1303                 list = &audit_inode_hash[h];
1304         }
1305         if (tree) {
1306                 err = audit_add_tree_rule(&entry->rule);
1307                 if (err) {
1308                         mutex_unlock(&audit_filter_mutex);
1309                         goto error;
1310                 }
1311         }
1312
1313         if (entry->rule.flags & AUDIT_FILTER_PREPEND) {
1314                 list_add_rcu(&entry->list, list);
1315                 entry->rule.flags &= ~AUDIT_FILTER_PREPEND;
1316         } else {
1317                 list_add_tail_rcu(&entry->list, list);
1318         }
1319 #ifdef CONFIG_AUDITSYSCALL
1320         if (!dont_count)
1321                 audit_n_rules++;
1322
1323         if (!audit_match_signal(entry))
1324                 audit_signals++;
1325 #endif
1326         mutex_unlock(&audit_filter_mutex);
1327
1328         audit_put_nd(ndp, ndw);         /* NULL args OK */
1329         return 0;
1330
1331 error:
1332         audit_put_nd(ndp, ndw);         /* NULL args OK */
1333         if (watch)
1334                 audit_put_watch(watch); /* tmp watch, matches initial get */
1335         return err;
1336 }
1337
1338 /* Remove an existing rule from filterlist. */
1339 static inline int audit_del_rule(struct audit_entry *entry,
1340                                  struct list_head *list)
1341 {
1342         struct audit_entry  *e;
1343         struct audit_field *inode_f = entry->rule.inode_f;
1344         struct audit_watch *watch, *tmp_watch = entry->rule.watch;
1345         struct audit_tree *tree = entry->rule.tree;
1346         LIST_HEAD(inotify_list);
1347         int h, ret = 0;
1348 #ifdef CONFIG_AUDITSYSCALL
1349         int dont_count = 0;
1350
1351         /* If either of these, don't count towards total */
1352         if (entry->rule.listnr == AUDIT_FILTER_USER ||
1353                 entry->rule.listnr == AUDIT_FILTER_TYPE)
1354                 dont_count = 1;
1355 #endif
1356
1357         if (inode_f) {
1358                 h = audit_hash_ino(inode_f->val);
1359                 list = &audit_inode_hash[h];
1360         }
1361
1362         mutex_lock(&audit_filter_mutex);
1363         e = audit_find_rule(entry, list);
1364         if (!e) {
1365                 mutex_unlock(&audit_filter_mutex);
1366                 ret = -ENOENT;
1367                 goto out;
1368         }
1369
1370         watch = e->rule.watch;
1371         if (watch) {
1372                 struct audit_parent *parent = watch->parent;
1373
1374                 list_del(&e->rule.rlist);
1375
1376                 if (list_empty(&watch->rules)) {
1377                         audit_remove_watch(watch);
1378
1379                         if (list_empty(&parent->watches)) {
1380                                 /* Put parent on the inotify un-registration
1381                                  * list.  Grab a reference before releasing
1382                                  * audit_filter_mutex, to be released in
1383                                  * audit_inotify_unregister(). */
1384                                 list_add(&parent->ilist, &inotify_list);
1385                                 get_inotify_watch(&parent->wdata);
1386                         }
1387                 }
1388         }
1389
1390         if (e->rule.tree)
1391                 audit_remove_tree_rule(&e->rule);
1392
1393         list_del_rcu(&e->list);
1394         call_rcu(&e->rcu, audit_free_rule_rcu);
1395
1396 #ifdef CONFIG_AUDITSYSCALL
1397         if (!dont_count)
1398                 audit_n_rules--;
1399
1400         if (!audit_match_signal(entry))
1401                 audit_signals--;
1402 #endif
1403         mutex_unlock(&audit_filter_mutex);
1404
1405         if (!list_empty(&inotify_list))
1406                 audit_inotify_unregister(&inotify_list);
1407
1408 out:
1409         if (tmp_watch)
1410                 audit_put_watch(tmp_watch); /* match initial get */
1411         if (tree)
1412                 audit_put_tree(tree);   /* that's the temporary one */
1413
1414         return ret;
1415 }
1416
1417 /* List rules using struct audit_rule.  Exists for backward
1418  * compatibility with userspace. */
1419 static void audit_list(int pid, int seq, struct sk_buff_head *q)
1420 {
1421         struct sk_buff *skb;
1422         struct audit_entry *entry;
1423         int i;
1424
1425         /* This is a blocking read, so use audit_filter_mutex instead of rcu
1426          * iterator to sync with list writers. */
1427         for (i=0; i<AUDIT_NR_FILTERS; i++) {
1428                 list_for_each_entry(entry, &audit_filter_list[i], list) {
1429                         struct audit_rule *rule;
1430
1431                         rule = audit_krule_to_rule(&entry->rule);
1432                         if (unlikely(!rule))
1433                                 break;
1434                         skb = audit_make_reply(pid, seq, AUDIT_LIST, 0, 1,
1435                                          rule, sizeof(*rule));
1436                         if (skb)
1437                                 skb_queue_tail(q, skb);
1438                         kfree(rule);
1439                 }
1440         }
1441         for (i = 0; i < AUDIT_INODE_BUCKETS; i++) {
1442                 list_for_each_entry(entry, &audit_inode_hash[i], list) {
1443                         struct audit_rule *rule;
1444
1445                         rule = audit_krule_to_rule(&entry->rule);
1446                         if (unlikely(!rule))
1447                                 break;
1448                         skb = audit_make_reply(pid, seq, AUDIT_LIST, 0, 1,
1449                                          rule, sizeof(*rule));
1450                         if (skb)
1451                                 skb_queue_tail(q, skb);
1452                         kfree(rule);
1453                 }
1454         }
1455         skb = audit_make_reply(pid, seq, AUDIT_LIST, 1, 1, NULL, 0);
1456         if (skb)
1457                 skb_queue_tail(q, skb);
1458 }
1459
1460 /* List rules using struct audit_rule_data. */
1461 static void audit_list_rules(int pid, int seq, struct sk_buff_head *q)
1462 {
1463         struct sk_buff *skb;
1464         struct audit_entry *e;
1465         int i;
1466
1467         /* This is a blocking read, so use audit_filter_mutex instead of rcu
1468          * iterator to sync with list writers. */
1469         for (i=0; i<AUDIT_NR_FILTERS; i++) {
1470                 list_for_each_entry(e, &audit_filter_list[i], list) {
1471                         struct audit_rule_data *data;
1472
1473                         data = audit_krule_to_data(&e->rule);
1474                         if (unlikely(!data))
1475                                 break;
1476                         skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 0, 1,
1477                                          data, sizeof(*data) + data->buflen);
1478                         if (skb)
1479                                 skb_queue_tail(q, skb);
1480                         kfree(data);
1481                 }
1482         }
1483         for (i=0; i< AUDIT_INODE_BUCKETS; i++) {
1484                 list_for_each_entry(e, &audit_inode_hash[i], list) {
1485                         struct audit_rule_data *data;
1486
1487                         data = audit_krule_to_data(&e->rule);
1488                         if (unlikely(!data))
1489                                 break;
1490                         skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 0, 1,
1491                                          data, sizeof(*data) + data->buflen);
1492                         if (skb)
1493                                 skb_queue_tail(q, skb);
1494                         kfree(data);
1495                 }
1496         }
1497         skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 1, 1, NULL, 0);
1498         if (skb)
1499                 skb_queue_tail(q, skb);
1500 }
1501
1502 /* Log rule additions and removals */
1503 static void audit_log_rule_change(uid_t loginuid, u32 sid, char *action,
1504                                   struct audit_krule *rule, int res)
1505 {
1506         struct audit_buffer *ab;
1507
1508         if (!audit_enabled)
1509                 return;
1510
1511         ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
1512         if (!ab)
1513                 return;
1514         audit_log_format(ab, "auid=%u", loginuid);
1515         if (sid) {
1516                 char *ctx = NULL;
1517                 u32 len;
1518                 if (selinux_sid_to_string(sid, &ctx, &len))
1519                         audit_log_format(ab, " ssid=%u", sid);
1520                 else
1521                         audit_log_format(ab, " subj=%s", ctx);
1522                 kfree(ctx);
1523         }
1524         audit_log_format(ab, " op=%s rule key=", action);
1525         if (rule->filterkey)
1526                 audit_log_untrustedstring(ab, rule->filterkey);
1527         else
1528                 audit_log_format(ab, "(null)");
1529         audit_log_format(ab, " list=%d res=%d", rule->listnr, res);
1530         audit_log_end(ab);
1531 }
1532
1533 /**
1534  * audit_receive_filter - apply all rules to the specified message type
1535  * @type: audit message type
1536  * @pid: target pid for netlink audit messages
1537  * @uid: target uid for netlink audit messages
1538  * @seq: netlink audit message sequence (serial) number
1539  * @data: payload data
1540  * @datasz: size of payload data
1541  * @loginuid: loginuid of sender
1542  * @sid: SE Linux Security ID of sender
1543  */
1544 int audit_receive_filter(int type, int pid, int uid, int seq, void *data,
1545                          size_t datasz, uid_t loginuid, u32 sid)
1546 {
1547         struct task_struct *tsk;
1548         struct audit_netlink_list *dest;
1549         int err = 0;
1550         struct audit_entry *entry;
1551
1552         switch (type) {
1553         case AUDIT_LIST:
1554         case AUDIT_LIST_RULES:
1555                 /* We can't just spew out the rules here because we might fill
1556                  * the available socket buffer space and deadlock waiting for
1557                  * auditctl to read from it... which isn't ever going to
1558                  * happen if we're actually running in the context of auditctl
1559                  * trying to _send_ the stuff */
1560
1561                 dest = kmalloc(sizeof(struct audit_netlink_list), GFP_KERNEL);
1562                 if (!dest)
1563                         return -ENOMEM;
1564                 dest->pid = pid;
1565                 skb_queue_head_init(&dest->q);
1566
1567                 mutex_lock(&audit_filter_mutex);
1568                 if (type == AUDIT_LIST)
1569                         audit_list(pid, seq, &dest->q);
1570                 else
1571                         audit_list_rules(pid, seq, &dest->q);
1572                 mutex_unlock(&audit_filter_mutex);
1573
1574                 tsk = kthread_run(audit_send_list, dest, "audit_send_list");
1575                 if (IS_ERR(tsk)) {
1576                         skb_queue_purge(&dest->q);
1577                         kfree(dest);
1578                         err = PTR_ERR(tsk);
1579                 }
1580                 break;
1581         case AUDIT_ADD:
1582         case AUDIT_ADD_RULE:
1583                 if (type == AUDIT_ADD)
1584                         entry = audit_rule_to_entry(data);
1585                 else
1586                         entry = audit_data_to_entry(data, datasz);
1587                 if (IS_ERR(entry))
1588                         return PTR_ERR(entry);
1589
1590                 err = audit_add_rule(entry,
1591                                      &audit_filter_list[entry->rule.listnr]);
1592                 audit_log_rule_change(loginuid, sid, "add", &entry->rule, !err);
1593
1594                 if (err)
1595                         audit_free_rule(entry);
1596                 break;
1597         case AUDIT_DEL:
1598         case AUDIT_DEL_RULE:
1599                 if (type == AUDIT_DEL)
1600                         entry = audit_rule_to_entry(data);
1601                 else
1602                         entry = audit_data_to_entry(data, datasz);
1603                 if (IS_ERR(entry))
1604                         return PTR_ERR(entry);
1605
1606                 err = audit_del_rule(entry,
1607                                      &audit_filter_list[entry->rule.listnr]);
1608                 audit_log_rule_change(loginuid, sid, "remove", &entry->rule,
1609                                       !err);
1610
1611                 audit_free_rule(entry);
1612                 break;
1613         default:
1614                 return -EINVAL;
1615         }
1616
1617         return err;
1618 }
1619
1620 int audit_comparator(const u32 left, const u32 op, const u32 right)
1621 {
1622         switch (op) {
1623         case AUDIT_EQUAL:
1624                 return (left == right);
1625         case AUDIT_NOT_EQUAL:
1626                 return (left != right);
1627         case AUDIT_LESS_THAN:
1628                 return (left < right);
1629         case AUDIT_LESS_THAN_OR_EQUAL:
1630                 return (left <= right);
1631         case AUDIT_GREATER_THAN:
1632                 return (left > right);
1633         case AUDIT_GREATER_THAN_OR_EQUAL:
1634                 return (left >= right);
1635         case AUDIT_BIT_MASK:
1636                 return (left & right);
1637         case AUDIT_BIT_TEST:
1638                 return ((left & right) == right);
1639         }
1640         BUG();
1641         return 0;
1642 }
1643
1644 /* Compare given dentry name with last component in given path,
1645  * return of 0 indicates a match. */
1646 int audit_compare_dname_path(const char *dname, const char *path,
1647                              int *dirlen)
1648 {
1649         int dlen, plen;
1650         const char *p;
1651
1652         if (!dname || !path)
1653                 return 1;
1654
1655         dlen = strlen(dname);
1656         plen = strlen(path);
1657         if (plen < dlen)
1658                 return 1;
1659
1660         /* disregard trailing slashes */
1661         p = path + plen - 1;
1662         while ((*p == '/') && (p > path))
1663                 p--;
1664
1665         /* find last path component */
1666         p = p - dlen + 1;
1667         if (p < path)
1668                 return 1;
1669         else if (p > path) {
1670                 if (*--p != '/')
1671                         return 1;
1672                 else
1673                         p++;
1674         }
1675
1676         /* return length of path's directory component */
1677         if (dirlen)
1678                 *dirlen = p - path;
1679         return strncmp(p, dname, dlen);
1680 }
1681
1682 static int audit_filter_user_rules(struct netlink_skb_parms *cb,
1683                                    struct audit_krule *rule,
1684                                    enum audit_state *state)
1685 {
1686         int i;
1687
1688         for (i = 0; i < rule->field_count; i++) {
1689                 struct audit_field *f = &rule->fields[i];
1690                 int result = 0;
1691
1692                 switch (f->type) {
1693                 case AUDIT_PID:
1694                         result = audit_comparator(cb->creds.pid, f->op, f->val);
1695                         break;
1696                 case AUDIT_UID:
1697                         result = audit_comparator(cb->creds.uid, f->op, f->val);
1698                         break;
1699                 case AUDIT_GID:
1700                         result = audit_comparator(cb->creds.gid, f->op, f->val);
1701                         break;
1702                 case AUDIT_LOGINUID:
1703                         result = audit_comparator(cb->loginuid, f->op, f->val);
1704                         break;
1705                 }
1706
1707                 if (!result)
1708                         return 0;
1709         }
1710         switch (rule->action) {
1711         case AUDIT_NEVER:    *state = AUDIT_DISABLED;       break;
1712         case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
1713         }
1714         return 1;
1715 }
1716
1717 int audit_filter_user(struct netlink_skb_parms *cb, int type)
1718 {
1719         enum audit_state state = AUDIT_DISABLED;
1720         struct audit_entry *e;
1721         int ret = 1;
1722
1723         rcu_read_lock();
1724         list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_USER], list) {
1725                 if (audit_filter_user_rules(cb, &e->rule, &state)) {
1726                         if (state == AUDIT_DISABLED)
1727                                 ret = 0;
1728                         break;
1729                 }
1730         }
1731         rcu_read_unlock();
1732
1733         return ret; /* Audit by default */
1734 }
1735
1736 int audit_filter_type(int type)
1737 {
1738         struct audit_entry *e;
1739         int result = 0;
1740
1741         rcu_read_lock();
1742         if (list_empty(&audit_filter_list[AUDIT_FILTER_TYPE]))
1743                 goto unlock_and_return;
1744
1745         list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TYPE],
1746                                 list) {
1747                 int i;
1748                 for (i = 0; i < e->rule.field_count; i++) {
1749                         struct audit_field *f = &e->rule.fields[i];
1750                         if (f->type == AUDIT_MSGTYPE) {
1751                                 result = audit_comparator(type, f->op, f->val);
1752                                 if (!result)
1753                                         break;
1754                         }
1755                 }
1756                 if (result)
1757                         goto unlock_and_return;
1758         }
1759 unlock_and_return:
1760         rcu_read_unlock();
1761         return result;
1762 }
1763
1764 /* Check to see if the rule contains any selinux fields.  Returns 1 if there
1765    are selinux fields specified in the rule, 0 otherwise. */
1766 static inline int audit_rule_has_selinux(struct audit_krule *rule)
1767 {
1768         int i;
1769
1770         for (i = 0; i < rule->field_count; i++) {
1771                 struct audit_field *f = &rule->fields[i];
1772                 switch (f->type) {
1773                 case AUDIT_SUBJ_USER:
1774                 case AUDIT_SUBJ_ROLE:
1775                 case AUDIT_SUBJ_TYPE:
1776                 case AUDIT_SUBJ_SEN:
1777                 case AUDIT_SUBJ_CLR:
1778                 case AUDIT_OBJ_USER:
1779                 case AUDIT_OBJ_ROLE:
1780                 case AUDIT_OBJ_TYPE:
1781                 case AUDIT_OBJ_LEV_LOW:
1782                 case AUDIT_OBJ_LEV_HIGH:
1783                         return 1;
1784                 }
1785         }
1786
1787         return 0;
1788 }
1789
1790 /* This function will re-initialize the se_rule field of all applicable rules.
1791  * It will traverse the filter lists serarching for rules that contain selinux
1792  * specific filter fields.  When such a rule is found, it is copied, the
1793  * selinux field is re-initialized, and the old rule is replaced with the
1794  * updated rule. */
1795 int selinux_audit_rule_update(void)
1796 {
1797         struct audit_entry *entry, *n, *nentry;
1798         struct audit_watch *watch;
1799         struct audit_tree *tree;
1800         int i, err = 0;
1801
1802         /* audit_filter_mutex synchronizes the writers */
1803         mutex_lock(&audit_filter_mutex);
1804
1805         for (i = 0; i < AUDIT_NR_FILTERS; i++) {
1806                 list_for_each_entry_safe(entry, n, &audit_filter_list[i], list) {
1807                         if (!audit_rule_has_selinux(&entry->rule))
1808                                 continue;
1809
1810                         watch = entry->rule.watch;
1811                         tree = entry->rule.tree;
1812                         nentry = audit_dupe_rule(&entry->rule, watch);
1813                         if (unlikely(IS_ERR(nentry))) {
1814                                 /* save the first error encountered for the
1815                                  * return value */
1816                                 if (!err)
1817                                         err = PTR_ERR(nentry);
1818                                 audit_panic("error updating selinux filters");
1819                                 if (watch)
1820                                         list_del(&entry->rule.rlist);
1821                                 list_del_rcu(&entry->list);
1822                         } else {
1823                                 if (watch) {
1824                                         list_add(&nentry->rule.rlist,
1825                                                  &watch->rules);
1826                                         list_del(&entry->rule.rlist);
1827                                 } else if (tree)
1828                                         list_replace_init(&entry->rule.rlist,
1829                                                      &nentry->rule.rlist);
1830                                 list_replace_rcu(&entry->list, &nentry->list);
1831                         }
1832                         call_rcu(&entry->rcu, audit_free_rule_rcu);
1833                 }
1834         }
1835
1836         mutex_unlock(&audit_filter_mutex);
1837
1838         return err;
1839 }
1840
1841 /* Update watch data in audit rules based on inotify events. */
1842 void audit_handle_ievent(struct inotify_watch *i_watch, u32 wd, u32 mask,
1843                          u32 cookie, const char *dname, struct inode *inode)
1844 {
1845         struct audit_parent *parent;
1846
1847         parent = container_of(i_watch, struct audit_parent, wdata);
1848
1849         if (mask & (IN_CREATE|IN_MOVED_TO) && inode)
1850                 audit_update_watch(parent, dname, inode->i_sb->s_dev,
1851                                    inode->i_ino, 0);
1852         else if (mask & (IN_DELETE|IN_MOVED_FROM))
1853                 audit_update_watch(parent, dname, (dev_t)-1, (unsigned long)-1, 1);
1854         /* inotify automatically removes the watch and sends IN_IGNORED */
1855         else if (mask & (IN_DELETE_SELF|IN_UNMOUNT))
1856                 audit_remove_parent_watches(parent);
1857         /* inotify does not remove the watch, so remove it manually */
1858         else if(mask & IN_MOVE_SELF) {
1859                 audit_remove_parent_watches(parent);
1860                 inotify_remove_watch_locked(audit_ih, i_watch);
1861         } else if (mask & IN_IGNORED)
1862                 put_inotify_watch(i_watch);
1863 }