5 #include <linux/clockchips.h>
6 #include <linux/interrupt.h>
7 #include <linux/spinlock.h>
8 #include <linux/jiffies.h>
9 #include <linux/module.h>
10 #include <linux/timex.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
15 #include <asm/i8253.h>
19 DEFINE_SPINLOCK(i8253_lock);
20 EXPORT_SYMBOL(i8253_lock);
23 static void pit_disable_clocksource(void);
25 static inline void pit_disable_clocksource(void) { }
29 * HPET replaces the PIT, when enabled. So we need to know, which of
30 * the two timers is used
32 struct clock_event_device *global_clock_event;
35 * Initialize the PIT timer.
37 * This is also called after resume to bring the PIT into operation again.
39 static void init_pit_timer(enum clock_event_mode mode,
40 struct clock_event_device *evt)
42 spin_lock(&i8253_lock);
45 case CLOCK_EVT_MODE_PERIODIC:
46 /* binary, mode 2, LSB/MSB, ch 0 */
47 outb_pit(0x34, PIT_MODE);
48 outb_pit(LATCH & 0xff , PIT_CH0); /* LSB */
49 outb_pit(LATCH >> 8 , PIT_CH0); /* MSB */
52 case CLOCK_EVT_MODE_SHUTDOWN:
53 case CLOCK_EVT_MODE_UNUSED:
54 if (evt->mode == CLOCK_EVT_MODE_PERIODIC ||
55 evt->mode == CLOCK_EVT_MODE_ONESHOT) {
56 outb_pit(0x30, PIT_MODE);
60 pit_disable_clocksource();
63 case CLOCK_EVT_MODE_ONESHOT:
65 pit_disable_clocksource();
66 outb_pit(0x38, PIT_MODE);
69 case CLOCK_EVT_MODE_RESUME:
70 /* Nothing to do here */
73 spin_unlock(&i8253_lock);
77 * Program the next event in oneshot mode
79 * Delta is given in PIT ticks
81 static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
83 spin_lock(&i8253_lock);
84 outb_pit(delta & 0xff , PIT_CH0); /* LSB */
85 outb_pit(delta >> 8 , PIT_CH0); /* MSB */
86 spin_unlock(&i8253_lock);
92 * On UP the PIT can serve all of the possible timer functions. On SMP systems
93 * it can be solely used for the global tick.
95 * The profiling and update capabilities are switched off once the local apic is
96 * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
97 * !using_apic_timer decisions in do_timer_interrupt_hook()
99 static struct clock_event_device pit_ce = {
101 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
102 .set_mode = init_pit_timer,
103 .set_next_event = pit_next_event,
109 * Initialize the conversion factor and the min/max deltas of the clock event
110 * structure and register the clock event source with the framework.
112 void __init setup_pit_timer(void)
115 * Start pit with the boot cpu mask and make it global after the
116 * IO_APIC has been initialized.
118 pit_ce.cpumask = cpumask_of(smp_processor_id());
119 pit_ce.mult = div_sc(CLOCK_TICK_RATE, NSEC_PER_SEC, pit_ce.shift);
120 pit_ce.max_delta_ns = clockevent_delta2ns(0x7FFF, &pit_ce);
121 pit_ce.min_delta_ns = clockevent_delta2ns(0xF, &pit_ce);
123 clockevents_register_device(&pit_ce);
124 global_clock_event = &pit_ce;
127 #ifndef CONFIG_X86_64
129 * Since the PIT overflows every tick, its not very useful
130 * to just read by itself. So use jiffies to emulate a free
133 static cycle_t pit_read(struct clocksource *cs)
135 static int old_count;
141 spin_lock_irqsave(&i8253_lock, flags);
143 * Although our caller may have the read side of xtime_lock,
144 * this is now a seqlock, and we are cheating in this routine
145 * by having side effects on state that we cannot undo if
146 * there is a collision on the seqlock and our caller has to
147 * retry. (Namely, old_jifs and old_count.) So we must treat
148 * jiffies as volatile despite the lock. We read jiffies
149 * before latching the timer count to guarantee that although
150 * the jiffies value might be older than the count (that is,
151 * the counter may underflow between the last point where
152 * jiffies was incremented and the point where we latch the
153 * count), it cannot be newer.
156 outb_pit(0x00, PIT_MODE); /* latch the count ASAP */
157 count = inb_pit(PIT_CH0); /* read the latched count */
158 count |= inb_pit(PIT_CH0) << 8;
160 /* VIA686a test code... reset the latch if count > max + 1 */
162 outb_pit(0x34, PIT_MODE);
163 outb_pit(LATCH & 0xff, PIT_CH0);
164 outb_pit(LATCH >> 8, PIT_CH0);
169 * It's possible for count to appear to go the wrong way for a
172 * 1. The timer counter underflows, but we haven't handled the
173 * resulting interrupt and incremented jiffies yet.
174 * 2. Hardware problem with the timer, not giving us continuous time,
175 * the counter does small "jumps" upwards on some Pentium systems,
176 * (see c't 95/10 page 335 for Neptun bug.)
178 * Previous attempts to handle these cases intelligently were
179 * buggy, so we just do the simple thing now.
181 if (count > old_count && jifs == old_jifs)
187 spin_unlock_irqrestore(&i8253_lock, flags);
189 count = (LATCH - 1) - count;
191 return (cycle_t)(jifs * LATCH) + count;
194 static struct clocksource pit_cs = {
198 .mask = CLOCKSOURCE_MASK(32),
203 static void pit_disable_clocksource(void)
206 * Use mult to check whether it is registered or not
209 clocksource_unregister(&pit_cs);
214 static int __init init_pit_clocksource(void)
217 * Several reasons not to register PIT as a clocksource:
219 * - On SMP PIT does not scale due to i8253_lock
220 * - when HPET is enabled
221 * - when local APIC timer is active (PIT is switched off)
223 if (num_possible_cpus() > 1 || is_hpet_enabled() ||
224 pit_ce.mode != CLOCK_EVT_MODE_PERIODIC)
227 pit_cs.mult = clocksource_hz2mult(CLOCK_TICK_RATE, pit_cs.shift);
229 return clocksource_register(&pit_cs);
231 arch_initcall(init_pit_clocksource);
233 #endif /* !CONFIG_X86_64 */