2 * drivers/mtd/nand/diskonchip.c
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
19 * $Id: diskonchip.c,v 1.55 2005/11/07 11:14:30 gleixner Exp $
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/rslib.h>
27 #include <linux/moduleparam.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/doc2000.h>
33 #include <linux/mtd/compatmac.h>
34 #include <linux/mtd/partitions.h>
35 #include <linux/mtd/inftl.h>
37 /* Where to look for the devices? */
38 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
39 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
42 static unsigned long __initdata doc_locations[] = {
43 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
44 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
45 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
46 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
47 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
48 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
49 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
50 #else /* CONFIG_MTD_DOCPROBE_HIGH */
51 0xc8000, 0xca000, 0xcc000, 0xce000,
52 0xd0000, 0xd2000, 0xd4000, 0xd6000,
53 0xd8000, 0xda000, 0xdc000, 0xde000,
54 0xe0000, 0xe2000, 0xe4000, 0xe6000,
55 0xe8000, 0xea000, 0xec000, 0xee000,
56 #endif /* CONFIG_MTD_DOCPROBE_HIGH */
57 #elif defined(__PPC__)
59 #elif defined(CONFIG_MOMENCO_OCELOT_G)
62 #warning Unknown architecture for DiskOnChip. No default probe locations defined
66 static struct mtd_info *doclist = NULL;
69 void __iomem *virtadr;
70 unsigned long physadr;
73 int chips_per_floor; /* The number of chips detected on each floor */
78 struct mtd_info *nextdoc;
81 /* This is the syndrome computed by the HW ecc generator upon reading an empty
82 page, one with all 0xff for data and stored ecc code. */
83 static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
85 /* This is the ecc value computed by the HW ecc generator upon writing an empty
86 page, one with all 0xff for data. */
87 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
89 #define INFTL_BBT_RESERVED_BLOCKS 4
91 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
92 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
93 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
95 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
96 unsigned int bitmask);
97 static void doc200x_select_chip(struct mtd_info *mtd, int chip);
100 module_param(debug, int, 0);
102 static int try_dword = 1;
103 module_param(try_dword, int, 0);
105 static int no_ecc_failures = 0;
106 module_param(no_ecc_failures, int, 0);
108 static int no_autopart = 0;
109 module_param(no_autopart, int, 0);
111 static int show_firmware_partition = 0;
112 module_param(show_firmware_partition, int, 0);
114 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
115 static int inftl_bbt_write = 1;
117 static int inftl_bbt_write = 0;
119 module_param(inftl_bbt_write, int, 0);
121 static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
122 module_param(doc_config_location, ulong, 0);
123 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
125 /* Sector size for HW ECC */
126 #define SECTOR_SIZE 512
127 /* The sector bytes are packed into NB_DATA 10 bit words */
128 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
129 /* Number of roots */
131 /* First consective root */
133 /* Number of symbols */
136 /* the Reed Solomon control structure */
137 static struct rs_control *rs_decoder;
140 * The HW decoder in the DoC ASIC's provides us a error syndrome,
141 * which we must convert to a standard syndrom usable by the generic
142 * Reed-Solomon library code.
144 * Fabrice Bellard figured this out in the old docecc code. I added
145 * some comments, improved a minor bit and converted it to make use
146 * of the generic Reed-Solomon libary. tglx
148 static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
150 int i, j, nerr, errpos[8];
152 uint16_t ds[4], s[5], tmp, errval[8], syn[4];
154 /* Convert the ecc bytes into words */
155 ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
156 ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
157 ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
158 ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
161 /* Initialize the syndrom buffer */
162 for (i = 0; i < NROOTS; i++)
166 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
167 * where x = alpha^(FCR + i)
169 for (j = 1; j < NROOTS; j++) {
172 tmp = rs->index_of[ds[j]];
173 for (i = 0; i < NROOTS; i++)
174 s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
177 /* Calc s[i] = s[i] / alpha^(v + i) */
178 for (i = 0; i < NROOTS; i++) {
180 syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
182 /* Call the decoder library */
183 nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
185 /* Incorrectable errors ? */
190 * Correct the errors. The bitpositions are a bit of magic,
191 * but they are given by the design of the de/encoder circuit
194 for (i = 0; i < nerr; i++) {
195 int index, bitpos, pos = 1015 - errpos[i];
197 if (pos >= NB_DATA && pos < 1019)
200 /* extract bit position (MSB first) */
201 pos = 10 * (NB_DATA - 1 - pos) - 6;
202 /* now correct the following 10 bits. At most two bytes
203 can be modified since pos is even */
204 index = (pos >> 3) ^ 1;
206 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
207 val = (uint8_t) (errval[i] >> (2 + bitpos));
209 if (index < SECTOR_SIZE)
212 index = ((pos >> 3) + 1) ^ 1;
213 bitpos = (bitpos + 10) & 7;
216 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
217 val = (uint8_t) (errval[i] << (8 - bitpos));
219 if (index < SECTOR_SIZE)
224 /* If the parity is wrong, no rescue possible */
225 return parity ? -1 : nerr;
228 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
233 for (i = 0; i < cycles; i++) {
234 if (DoC_is_Millennium(doc))
235 dummy = ReadDOC(doc->virtadr, NOP);
236 else if (DoC_is_MillenniumPlus(doc))
237 dummy = ReadDOC(doc->virtadr, Mplus_NOP);
239 dummy = ReadDOC(doc->virtadr, DOCStatus);
244 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
246 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
247 static int _DoC_WaitReady(struct doc_priv *doc)
249 void __iomem *docptr = doc->virtadr;
250 unsigned long timeo = jiffies + (HZ * 10);
253 printk("_DoC_WaitReady...\n");
254 /* Out-of-line routine to wait for chip response */
255 if (DoC_is_MillenniumPlus(doc)) {
256 while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
257 if (time_after(jiffies, timeo)) {
258 printk("_DoC_WaitReady timed out.\n");
265 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
266 if (time_after(jiffies, timeo)) {
267 printk("_DoC_WaitReady timed out.\n");
278 static inline int DoC_WaitReady(struct doc_priv *doc)
280 void __iomem *docptr = doc->virtadr;
283 if (DoC_is_MillenniumPlus(doc)) {
286 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
287 /* Call the out-of-line routine to wait */
288 ret = _DoC_WaitReady(doc);
292 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
293 /* Call the out-of-line routine to wait */
294 ret = _DoC_WaitReady(doc);
299 printk("DoC_WaitReady OK\n");
303 static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
305 struct nand_chip *this = mtd->priv;
306 struct doc_priv *doc = this->priv;
307 void __iomem *docptr = doc->virtadr;
310 printk("write_byte %02x\n", datum);
311 WriteDOC(datum, docptr, CDSNSlowIO);
312 WriteDOC(datum, docptr, 2k_CDSN_IO);
315 static u_char doc2000_read_byte(struct mtd_info *mtd)
317 struct nand_chip *this = mtd->priv;
318 struct doc_priv *doc = this->priv;
319 void __iomem *docptr = doc->virtadr;
322 ReadDOC(docptr, CDSNSlowIO);
324 ret = ReadDOC(docptr, 2k_CDSN_IO);
326 printk("read_byte returns %02x\n", ret);
330 static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
332 struct nand_chip *this = mtd->priv;
333 struct doc_priv *doc = this->priv;
334 void __iomem *docptr = doc->virtadr;
337 printk("writebuf of %d bytes: ", len);
338 for (i = 0; i < len; i++) {
339 WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
341 printk("%02x ", buf[i]);
347 static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
349 struct nand_chip *this = mtd->priv;
350 struct doc_priv *doc = this->priv;
351 void __iomem *docptr = doc->virtadr;
355 printk("readbuf of %d bytes: ", len);
357 for (i = 0; i < len; i++) {
358 buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
362 static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
364 struct nand_chip *this = mtd->priv;
365 struct doc_priv *doc = this->priv;
366 void __iomem *docptr = doc->virtadr;
370 printk("readbuf_dword of %d bytes: ", len);
372 if (unlikely((((unsigned long)buf) | len) & 3)) {
373 for (i = 0; i < len; i++) {
374 *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
377 for (i = 0; i < len; i += 4) {
378 *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
383 static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
385 struct nand_chip *this = mtd->priv;
386 struct doc_priv *doc = this->priv;
387 void __iomem *docptr = doc->virtadr;
390 for (i = 0; i < len; i++)
391 if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
396 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
398 struct nand_chip *this = mtd->priv;
399 struct doc_priv *doc = this->priv;
402 doc200x_select_chip(mtd, nr);
403 doc200x_hwcontrol(mtd, NAND_CMD_READID,
404 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
405 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
406 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
408 /* We cant' use dev_ready here, but at least we wait for the
409 * command to complete
413 ret = this->read_byte(mtd) << 8;
414 ret |= this->read_byte(mtd);
416 if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
417 /* First chip probe. See if we get same results by 32-bit access */
422 void __iomem *docptr = doc->virtadr;
424 doc200x_hwcontrol(mtd, NAND_CMD_READID,
425 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
426 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
427 doc200x_hwcontrol(mtd, NAND_CMD_NONE,
428 NAND_NCE | NAND_CTRL_CHANGE);
432 ident.dword = readl(docptr + DoC_2k_CDSN_IO);
433 if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
434 printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
435 this->read_buf = &doc2000_readbuf_dword;
442 static void __init doc2000_count_chips(struct mtd_info *mtd)
444 struct nand_chip *this = mtd->priv;
445 struct doc_priv *doc = this->priv;
449 /* Max 4 chips per floor on DiskOnChip 2000 */
450 doc->chips_per_floor = 4;
452 /* Find out what the first chip is */
453 mfrid = doc200x_ident_chip(mtd, 0);
455 /* Find how many chips in each floor. */
456 for (i = 1; i < 4; i++) {
457 if (doc200x_ident_chip(mtd, i) != mfrid)
460 doc->chips_per_floor = i;
461 printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
464 static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
466 struct doc_priv *doc = this->priv;
471 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
473 status = (int)this->read_byte(mtd);
478 static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
480 struct nand_chip *this = mtd->priv;
481 struct doc_priv *doc = this->priv;
482 void __iomem *docptr = doc->virtadr;
484 WriteDOC(datum, docptr, CDSNSlowIO);
485 WriteDOC(datum, docptr, Mil_CDSN_IO);
486 WriteDOC(datum, docptr, WritePipeTerm);
489 static u_char doc2001_read_byte(struct mtd_info *mtd)
491 struct nand_chip *this = mtd->priv;
492 struct doc_priv *doc = this->priv;
493 void __iomem *docptr = doc->virtadr;
495 //ReadDOC(docptr, CDSNSlowIO);
496 /* 11.4.5 -- delay twice to allow extended length cycle */
498 ReadDOC(docptr, ReadPipeInit);
499 //return ReadDOC(docptr, Mil_CDSN_IO);
500 return ReadDOC(docptr, LastDataRead);
503 static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
505 struct nand_chip *this = mtd->priv;
506 struct doc_priv *doc = this->priv;
507 void __iomem *docptr = doc->virtadr;
510 for (i = 0; i < len; i++)
511 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
512 /* Terminate write pipeline */
513 WriteDOC(0x00, docptr, WritePipeTerm);
516 static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
518 struct nand_chip *this = mtd->priv;
519 struct doc_priv *doc = this->priv;
520 void __iomem *docptr = doc->virtadr;
523 /* Start read pipeline */
524 ReadDOC(docptr, ReadPipeInit);
526 for (i = 0; i < len - 1; i++)
527 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
529 /* Terminate read pipeline */
530 buf[i] = ReadDOC(docptr, LastDataRead);
533 static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
535 struct nand_chip *this = mtd->priv;
536 struct doc_priv *doc = this->priv;
537 void __iomem *docptr = doc->virtadr;
540 /* Start read pipeline */
541 ReadDOC(docptr, ReadPipeInit);
543 for (i = 0; i < len - 1; i++)
544 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
545 ReadDOC(docptr, LastDataRead);
548 if (buf[i] != ReadDOC(docptr, LastDataRead))
553 static u_char doc2001plus_read_byte(struct mtd_info *mtd)
555 struct nand_chip *this = mtd->priv;
556 struct doc_priv *doc = this->priv;
557 void __iomem *docptr = doc->virtadr;
560 ReadDOC(docptr, Mplus_ReadPipeInit);
561 ReadDOC(docptr, Mplus_ReadPipeInit);
562 ret = ReadDOC(docptr, Mplus_LastDataRead);
564 printk("read_byte returns %02x\n", ret);
568 static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
570 struct nand_chip *this = mtd->priv;
571 struct doc_priv *doc = this->priv;
572 void __iomem *docptr = doc->virtadr;
576 printk("writebuf of %d bytes: ", len);
577 for (i = 0; i < len; i++) {
578 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
580 printk("%02x ", buf[i]);
586 static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
588 struct nand_chip *this = mtd->priv;
589 struct doc_priv *doc = this->priv;
590 void __iomem *docptr = doc->virtadr;
594 printk("readbuf of %d bytes: ", len);
596 /* Start read pipeline */
597 ReadDOC(docptr, Mplus_ReadPipeInit);
598 ReadDOC(docptr, Mplus_ReadPipeInit);
600 for (i = 0; i < len - 2; i++) {
601 buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
603 printk("%02x ", buf[i]);
606 /* Terminate read pipeline */
607 buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
609 printk("%02x ", buf[len - 2]);
610 buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
612 printk("%02x ", buf[len - 1]);
617 static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
619 struct nand_chip *this = mtd->priv;
620 struct doc_priv *doc = this->priv;
621 void __iomem *docptr = doc->virtadr;
625 printk("verifybuf of %d bytes: ", len);
627 /* Start read pipeline */
628 ReadDOC(docptr, Mplus_ReadPipeInit);
629 ReadDOC(docptr, Mplus_ReadPipeInit);
631 for (i = 0; i < len - 2; i++)
632 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
633 ReadDOC(docptr, Mplus_LastDataRead);
634 ReadDOC(docptr, Mplus_LastDataRead);
637 if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead))
639 if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead))
644 static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
646 struct nand_chip *this = mtd->priv;
647 struct doc_priv *doc = this->priv;
648 void __iomem *docptr = doc->virtadr;
652 printk("select chip (%d)\n", chip);
655 /* Disable flash internally */
656 WriteDOC(0, docptr, Mplus_FlashSelect);
660 floor = chip / doc->chips_per_floor;
661 chip -= (floor * doc->chips_per_floor);
663 /* Assert ChipEnable and deassert WriteProtect */
664 WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
665 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
668 doc->curfloor = floor;
671 static void doc200x_select_chip(struct mtd_info *mtd, int chip)
673 struct nand_chip *this = mtd->priv;
674 struct doc_priv *doc = this->priv;
675 void __iomem *docptr = doc->virtadr;
679 printk("select chip (%d)\n", chip);
684 floor = chip / doc->chips_per_floor;
685 chip -= (floor * doc->chips_per_floor);
687 /* 11.4.4 -- deassert CE before changing chip */
688 doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
690 WriteDOC(floor, docptr, FloorSelect);
691 WriteDOC(chip, docptr, CDSNDeviceSelect);
693 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
696 doc->curfloor = floor;
699 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
701 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
704 struct nand_chip *this = mtd->priv;
705 struct doc_priv *doc = this->priv;
706 void __iomem *docptr = doc->virtadr;
708 if (ctrl & NAND_CTRL_CHANGE) {
709 doc->CDSNControl &= ~CDSN_CTRL_MSK;
710 doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
712 printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
713 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
714 /* 11.4.3 -- 4 NOPs after CSDNControl write */
717 if (cmd != NAND_CMD_NONE) {
718 if (DoC_is_2000(doc))
719 doc2000_write_byte(mtd, cmd);
721 doc2001_write_byte(mtd, cmd);
725 static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
727 struct nand_chip *this = mtd->priv;
728 struct doc_priv *doc = this->priv;
729 void __iomem *docptr = doc->virtadr;
732 * Must terminate write pipeline before sending any commands
735 if (command == NAND_CMD_PAGEPROG) {
736 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
737 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
741 * Write out the command to the device.
743 if (command == NAND_CMD_SEQIN) {
746 if (column >= mtd->writesize) {
748 column -= mtd->writesize;
749 readcmd = NAND_CMD_READOOB;
750 } else if (column < 256) {
751 /* First 256 bytes --> READ0 */
752 readcmd = NAND_CMD_READ0;
755 readcmd = NAND_CMD_READ1;
757 WriteDOC(readcmd, docptr, Mplus_FlashCmd);
759 WriteDOC(command, docptr, Mplus_FlashCmd);
760 WriteDOC(0, docptr, Mplus_WritePipeTerm);
761 WriteDOC(0, docptr, Mplus_WritePipeTerm);
763 if (column != -1 || page_addr != -1) {
764 /* Serially input address */
766 /* Adjust columns for 16 bit buswidth */
767 if (this->options & NAND_BUSWIDTH_16)
769 WriteDOC(column, docptr, Mplus_FlashAddress);
771 if (page_addr != -1) {
772 WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
773 WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
774 /* One more address cycle for higher density devices */
775 if (this->chipsize & 0x0c000000) {
776 WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
777 printk("high density\n");
780 WriteDOC(0, docptr, Mplus_WritePipeTerm);
781 WriteDOC(0, docptr, Mplus_WritePipeTerm);
783 if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
784 command == NAND_CMD_READOOB || command == NAND_CMD_READID)
785 WriteDOC(0, docptr, Mplus_FlashControl);
789 * program and erase have their own busy handlers
790 * status and sequential in needs no delay
794 case NAND_CMD_PAGEPROG:
795 case NAND_CMD_ERASE1:
796 case NAND_CMD_ERASE2:
798 case NAND_CMD_STATUS:
804 udelay(this->chip_delay);
805 WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
806 WriteDOC(0, docptr, Mplus_WritePipeTerm);
807 WriteDOC(0, docptr, Mplus_WritePipeTerm);
808 while (!(this->read_byte(mtd) & 0x40)) ;
811 /* This applies to read commands */
814 * If we don't have access to the busy pin, we apply the given
817 if (!this->dev_ready) {
818 udelay(this->chip_delay);
823 /* Apply this short delay always to ensure that we do wait tWB in
824 * any case on any machine. */
826 /* wait until command is processed */
827 while (!this->dev_ready(mtd)) ;
830 static int doc200x_dev_ready(struct mtd_info *mtd)
832 struct nand_chip *this = mtd->priv;
833 struct doc_priv *doc = this->priv;
834 void __iomem *docptr = doc->virtadr;
836 if (DoC_is_MillenniumPlus(doc)) {
837 /* 11.4.2 -- must NOP four times before checking FR/B# */
839 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
841 printk("not ready\n");
845 printk("was ready\n");
848 /* 11.4.2 -- must NOP four times before checking FR/B# */
850 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
852 printk("not ready\n");
855 /* 11.4.2 -- Must NOP twice if it's ready */
858 printk("was ready\n");
863 static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
865 /* This is our last resort if we couldn't find or create a BBT. Just
866 pretend all blocks are good. */
870 static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
872 struct nand_chip *this = mtd->priv;
873 struct doc_priv *doc = this->priv;
874 void __iomem *docptr = doc->virtadr;
876 /* Prime the ECC engine */
879 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
880 WriteDOC(DOC_ECC_EN, docptr, ECCConf);
883 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
884 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
889 static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
891 struct nand_chip *this = mtd->priv;
892 struct doc_priv *doc = this->priv;
893 void __iomem *docptr = doc->virtadr;
895 /* Prime the ECC engine */
898 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
899 WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
902 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
903 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
908 /* This code is only called on write */
909 static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
911 struct nand_chip *this = mtd->priv;
912 struct doc_priv *doc = this->priv;
913 void __iomem *docptr = doc->virtadr;
917 /* flush the pipeline */
918 if (DoC_is_2000(doc)) {
919 WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
920 WriteDOC(0, docptr, 2k_CDSN_IO);
921 WriteDOC(0, docptr, 2k_CDSN_IO);
922 WriteDOC(0, docptr, 2k_CDSN_IO);
923 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
924 } else if (DoC_is_MillenniumPlus(doc)) {
925 WriteDOC(0, docptr, Mplus_NOP);
926 WriteDOC(0, docptr, Mplus_NOP);
927 WriteDOC(0, docptr, Mplus_NOP);
929 WriteDOC(0, docptr, NOP);
930 WriteDOC(0, docptr, NOP);
931 WriteDOC(0, docptr, NOP);
934 for (i = 0; i < 6; i++) {
935 if (DoC_is_MillenniumPlus(doc))
936 ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
938 ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
939 if (ecc_code[i] != empty_write_ecc[i])
942 if (DoC_is_MillenniumPlus(doc))
943 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
945 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
947 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
949 /* Note: this somewhat expensive test should not be triggered
950 often. It could be optimized away by examining the data in
951 the writebuf routine, and remembering the result. */
952 for (i = 0; i < 512; i++) {
959 /* If emptymatch still =1, we do have an all-0xff data buffer.
960 Return all-0xff ecc value instead of the computed one, so
961 it'll look just like a freshly-erased page. */
963 memset(ecc_code, 0xff, 6);
968 static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
969 u_char *read_ecc, u_char *isnull)
972 struct nand_chip *this = mtd->priv;
973 struct doc_priv *doc = this->priv;
974 void __iomem *docptr = doc->virtadr;
976 volatile u_char dummy;
979 /* flush the pipeline */
980 if (DoC_is_2000(doc)) {
981 dummy = ReadDOC(docptr, 2k_ECCStatus);
982 dummy = ReadDOC(docptr, 2k_ECCStatus);
983 dummy = ReadDOC(docptr, 2k_ECCStatus);
984 } else if (DoC_is_MillenniumPlus(doc)) {
985 dummy = ReadDOC(docptr, Mplus_ECCConf);
986 dummy = ReadDOC(docptr, Mplus_ECCConf);
987 dummy = ReadDOC(docptr, Mplus_ECCConf);
989 dummy = ReadDOC(docptr, ECCConf);
990 dummy = ReadDOC(docptr, ECCConf);
991 dummy = ReadDOC(docptr, ECCConf);
994 /* Error occured ? */
996 for (i = 0; i < 6; i++) {
997 if (DoC_is_MillenniumPlus(doc))
998 calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
1000 calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
1001 if (calc_ecc[i] != empty_read_syndrome[i])
1004 /* If emptymatch=1, the read syndrome is consistent with an
1005 all-0xff data and stored ecc block. Check the stored ecc. */
1007 for (i = 0; i < 6; i++) {
1008 if (read_ecc[i] == 0xff)
1014 /* If emptymatch still =1, check the data block. */
1016 /* Note: this somewhat expensive test should not be triggered
1017 often. It could be optimized away by examining the data in
1018 the readbuf routine, and remembering the result. */
1019 for (i = 0; i < 512; i++) {
1026 /* If emptymatch still =1, this is almost certainly a freshly-
1027 erased block, in which case the ECC will not come out right.
1028 We'll suppress the error and tell the caller everything's
1029 OK. Because it is. */
1031 ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
1033 printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
1035 if (DoC_is_MillenniumPlus(doc))
1036 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
1038 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1039 if (no_ecc_failures && (ret == -1)) {
1040 printk(KERN_ERR "suppressing ECC failure\n");
1046 //u_char mydatabuf[528];
1048 /* The strange out-of-order .oobfree list below is a (possibly unneeded)
1049 * attempt to retain compatibility. It used to read:
1050 * .oobfree = { {8, 8} }
1051 * Since that leaves two bytes unusable, it was changed. But the following
1052 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1053 * .oobfree = { {6, 10} }
1054 * jffs2 seems to handle the above gracefully, but the current scheme seems
1055 * safer. The only problem with it is that any code that parses oobfree must
1056 * be able to handle out-of-order segments.
1058 static struct nand_ecclayout doc200x_oobinfo = {
1060 .eccpos = {0, 1, 2, 3, 4, 5},
1061 .oobfree = {{8, 8}, {6, 2}}
1064 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1065 On sucessful return, buf will contain a copy of the media header for
1066 further processing. id is the string to scan for, and will presumably be
1067 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1068 header. The page #s of the found media headers are placed in mh0_page and
1069 mh1_page in the DOC private structure. */
1070 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1072 struct nand_chip *this = mtd->priv;
1073 struct doc_priv *doc = this->priv;
1078 for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1079 ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1080 if (retlen != mtd->writesize)
1083 printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1085 if (memcmp(buf, id, 6))
1087 printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1088 if (doc->mh0_page == -1) {
1089 doc->mh0_page = offs >> this->page_shift;
1094 doc->mh1_page = offs >> this->page_shift;
1097 if (doc->mh0_page == -1) {
1098 printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1101 /* Only one mediaheader was found. We want buf to contain a
1102 mediaheader on return, so we'll have to re-read the one we found. */
1103 offs = doc->mh0_page << this->page_shift;
1104 ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1105 if (retlen != mtd->writesize) {
1106 /* Insanity. Give up. */
1107 printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1113 static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1115 struct nand_chip *this = mtd->priv;
1116 struct doc_priv *doc = this->priv;
1119 struct NFTLMediaHeader *mh;
1120 const unsigned psize = 1 << this->page_shift;
1122 unsigned blocks, maxblocks;
1123 int offs, numheaders;
1125 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1127 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1130 if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1132 mh = (struct NFTLMediaHeader *)buf;
1134 mh->NumEraseUnits = le16_to_cpu(mh->NumEraseUnits);
1135 mh->FirstPhysicalEUN = le16_to_cpu(mh->FirstPhysicalEUN);
1136 mh->FormattedSize = le32_to_cpu(mh->FormattedSize);
1138 printk(KERN_INFO " DataOrgID = %s\n"
1139 " NumEraseUnits = %d\n"
1140 " FirstPhysicalEUN = %d\n"
1141 " FormattedSize = %d\n"
1142 " UnitSizeFactor = %d\n",
1143 mh->DataOrgID, mh->NumEraseUnits,
1144 mh->FirstPhysicalEUN, mh->FormattedSize,
1145 mh->UnitSizeFactor);
1147 blocks = mtd->size >> this->phys_erase_shift;
1148 maxblocks = min(32768U, mtd->erasesize - psize);
1150 if (mh->UnitSizeFactor == 0x00) {
1151 /* Auto-determine UnitSizeFactor. The constraints are:
1152 - There can be at most 32768 virtual blocks.
1153 - There can be at most (virtual block size - page size)
1154 virtual blocks (because MediaHeader+BBT must fit in 1).
1156 mh->UnitSizeFactor = 0xff;
1157 while (blocks > maxblocks) {
1159 maxblocks = min(32768U, (maxblocks << 1) + psize);
1160 mh->UnitSizeFactor--;
1162 printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1165 /* NOTE: The lines below modify internal variables of the NAND and MTD
1166 layers; variables with have already been configured by nand_scan.
1167 Unfortunately, we didn't know before this point what these values
1168 should be. Thus, this code is somewhat dependant on the exact
1169 implementation of the NAND layer. */
1170 if (mh->UnitSizeFactor != 0xff) {
1171 this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1172 mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1173 printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1174 blocks = mtd->size >> this->bbt_erase_shift;
1175 maxblocks = min(32768U, mtd->erasesize - psize);
1178 if (blocks > maxblocks) {
1179 printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
1183 /* Skip past the media headers. */
1184 offs = max(doc->mh0_page, doc->mh1_page);
1185 offs <<= this->page_shift;
1186 offs += mtd->erasesize;
1188 if (show_firmware_partition == 1) {
1189 parts[0].name = " DiskOnChip Firmware / Media Header partition";
1190 parts[0].offset = 0;
1191 parts[0].size = offs;
1195 parts[numparts].name = " DiskOnChip BDTL partition";
1196 parts[numparts].offset = offs;
1197 parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1199 offs += parts[numparts].size;
1202 if (offs < mtd->size) {
1203 parts[numparts].name = " DiskOnChip Remainder partition";
1204 parts[numparts].offset = offs;
1205 parts[numparts].size = mtd->size - offs;
1215 /* This is a stripped-down copy of the code in inftlmount.c */
1216 static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1218 struct nand_chip *this = mtd->priv;
1219 struct doc_priv *doc = this->priv;
1222 struct INFTLMediaHeader *mh;
1223 struct INFTLPartition *ip;
1226 int vshift, lastvunit = 0;
1228 int end = mtd->size;
1230 if (inftl_bbt_write)
1231 end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1233 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1235 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1239 if (!find_media_headers(mtd, buf, "BNAND", 0))
1241 doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1242 mh = (struct INFTLMediaHeader *)buf;
1244 mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
1245 mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
1246 mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
1247 mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
1248 mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
1249 mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
1251 printk(KERN_INFO " bootRecordID = %s\n"
1252 " NoOfBootImageBlocks = %d\n"
1253 " NoOfBinaryPartitions = %d\n"
1254 " NoOfBDTLPartitions = %d\n"
1255 " BlockMultiplerBits = %d\n"
1256 " FormatFlgs = %d\n"
1257 " OsakVersion = %d.%d.%d.%d\n"
1258 " PercentUsed = %d\n",
1259 mh->bootRecordID, mh->NoOfBootImageBlocks,
1260 mh->NoOfBinaryPartitions,
1261 mh->NoOfBDTLPartitions,
1262 mh->BlockMultiplierBits, mh->FormatFlags,
1263 ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1264 ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1265 ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1266 ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1269 vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1271 blocks = mtd->size >> vshift;
1272 if (blocks > 32768) {
1273 printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
1277 blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1278 if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1279 printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1283 /* Scan the partitions */
1284 for (i = 0; (i < 4); i++) {
1285 ip = &(mh->Partitions[i]);
1286 ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
1287 ip->firstUnit = le32_to_cpu(ip->firstUnit);
1288 ip->lastUnit = le32_to_cpu(ip->lastUnit);
1289 ip->flags = le32_to_cpu(ip->flags);
1290 ip->spareUnits = le32_to_cpu(ip->spareUnits);
1291 ip->Reserved0 = le32_to_cpu(ip->Reserved0);
1293 printk(KERN_INFO " PARTITION[%d] ->\n"
1294 " virtualUnits = %d\n"
1298 " spareUnits = %d\n",
1299 i, ip->virtualUnits, ip->firstUnit,
1300 ip->lastUnit, ip->flags,
1303 if ((show_firmware_partition == 1) &&
1304 (i == 0) && (ip->firstUnit > 0)) {
1305 parts[0].name = " DiskOnChip IPL / Media Header partition";
1306 parts[0].offset = 0;
1307 parts[0].size = mtd->erasesize * ip->firstUnit;
1311 if (ip->flags & INFTL_BINARY)
1312 parts[numparts].name = " DiskOnChip BDK partition";
1314 parts[numparts].name = " DiskOnChip BDTL partition";
1315 parts[numparts].offset = ip->firstUnit << vshift;
1316 parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1318 if (ip->lastUnit > lastvunit)
1319 lastvunit = ip->lastUnit;
1320 if (ip->flags & INFTL_LAST)
1324 if ((lastvunit << vshift) < end) {
1325 parts[numparts].name = " DiskOnChip Remainder partition";
1326 parts[numparts].offset = lastvunit << vshift;
1327 parts[numparts].size = end - parts[numparts].offset;
1336 static int __init nftl_scan_bbt(struct mtd_info *mtd)
1339 struct nand_chip *this = mtd->priv;
1340 struct doc_priv *doc = this->priv;
1341 struct mtd_partition parts[2];
1343 memset((char *)parts, 0, sizeof(parts));
1344 /* On NFTL, we have to find the media headers before we can read the
1345 BBTs, since they're stored in the media header eraseblocks. */
1346 numparts = nftl_partscan(mtd, parts);
1349 this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1350 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1352 this->bbt_td->veroffs = 7;
1353 this->bbt_td->pages[0] = doc->mh0_page + 1;
1354 if (doc->mh1_page != -1) {
1355 this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1356 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1358 this->bbt_md->veroffs = 7;
1359 this->bbt_md->pages[0] = doc->mh1_page + 1;
1361 this->bbt_md = NULL;
1364 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1365 At least as nand_bbt.c is currently written. */
1366 if ((ret = nand_scan_bbt(mtd, NULL)))
1368 add_mtd_device(mtd);
1369 #ifdef CONFIG_MTD_PARTITIONS
1371 add_mtd_partitions(mtd, parts, numparts);
1376 static int __init inftl_scan_bbt(struct mtd_info *mtd)
1379 struct nand_chip *this = mtd->priv;
1380 struct doc_priv *doc = this->priv;
1381 struct mtd_partition parts[5];
1383 if (this->numchips > doc->chips_per_floor) {
1384 printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1388 if (DoC_is_MillenniumPlus(doc)) {
1389 this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1390 if (inftl_bbt_write)
1391 this->bbt_td->options |= NAND_BBT_WRITE;
1392 this->bbt_td->pages[0] = 2;
1393 this->bbt_md = NULL;
1395 this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1396 if (inftl_bbt_write)
1397 this->bbt_td->options |= NAND_BBT_WRITE;
1398 this->bbt_td->offs = 8;
1399 this->bbt_td->len = 8;
1400 this->bbt_td->veroffs = 7;
1401 this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1402 this->bbt_td->reserved_block_code = 0x01;
1403 this->bbt_td->pattern = "MSYS_BBT";
1405 this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1406 if (inftl_bbt_write)
1407 this->bbt_md->options |= NAND_BBT_WRITE;
1408 this->bbt_md->offs = 8;
1409 this->bbt_md->len = 8;
1410 this->bbt_md->veroffs = 7;
1411 this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1412 this->bbt_md->reserved_block_code = 0x01;
1413 this->bbt_md->pattern = "TBB_SYSM";
1416 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1417 At least as nand_bbt.c is currently written. */
1418 if ((ret = nand_scan_bbt(mtd, NULL)))
1420 memset((char *)parts, 0, sizeof(parts));
1421 numparts = inftl_partscan(mtd, parts);
1422 /* At least for now, require the INFTL Media Header. We could probably
1423 do without it for non-INFTL use, since all it gives us is
1424 autopartitioning, but I want to give it more thought. */
1427 add_mtd_device(mtd);
1428 #ifdef CONFIG_MTD_PARTITIONS
1430 add_mtd_partitions(mtd, parts, numparts);
1435 static inline int __init doc2000_init(struct mtd_info *mtd)
1437 struct nand_chip *this = mtd->priv;
1438 struct doc_priv *doc = this->priv;
1440 this->read_byte = doc2000_read_byte;
1441 this->write_buf = doc2000_writebuf;
1442 this->read_buf = doc2000_readbuf;
1443 this->verify_buf = doc2000_verifybuf;
1444 this->scan_bbt = nftl_scan_bbt;
1446 doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1447 doc2000_count_chips(mtd);
1448 mtd->name = "DiskOnChip 2000 (NFTL Model)";
1449 return (4 * doc->chips_per_floor);
1452 static inline int __init doc2001_init(struct mtd_info *mtd)
1454 struct nand_chip *this = mtd->priv;
1455 struct doc_priv *doc = this->priv;
1457 this->read_byte = doc2001_read_byte;
1458 this->write_buf = doc2001_writebuf;
1459 this->read_buf = doc2001_readbuf;
1460 this->verify_buf = doc2001_verifybuf;
1462 ReadDOC(doc->virtadr, ChipID);
1463 ReadDOC(doc->virtadr, ChipID);
1464 ReadDOC(doc->virtadr, ChipID);
1465 if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1466 /* It's not a Millennium; it's one of the newer
1467 DiskOnChip 2000 units with a similar ASIC.
1468 Treat it like a Millennium, except that it
1469 can have multiple chips. */
1470 doc2000_count_chips(mtd);
1471 mtd->name = "DiskOnChip 2000 (INFTL Model)";
1472 this->scan_bbt = inftl_scan_bbt;
1473 return (4 * doc->chips_per_floor);
1475 /* Bog-standard Millennium */
1476 doc->chips_per_floor = 1;
1477 mtd->name = "DiskOnChip Millennium";
1478 this->scan_bbt = nftl_scan_bbt;
1483 static inline int __init doc2001plus_init(struct mtd_info *mtd)
1485 struct nand_chip *this = mtd->priv;
1486 struct doc_priv *doc = this->priv;
1488 this->read_byte = doc2001plus_read_byte;
1489 this->write_buf = doc2001plus_writebuf;
1490 this->read_buf = doc2001plus_readbuf;
1491 this->verify_buf = doc2001plus_verifybuf;
1492 this->scan_bbt = inftl_scan_bbt;
1493 this->cmd_ctrl = NULL;
1494 this->select_chip = doc2001plus_select_chip;
1495 this->cmdfunc = doc2001plus_command;
1496 this->ecc.hwctl = doc2001plus_enable_hwecc;
1498 doc->chips_per_floor = 1;
1499 mtd->name = "DiskOnChip Millennium Plus";
1504 static int __init doc_probe(unsigned long physadr)
1506 unsigned char ChipID;
1507 struct mtd_info *mtd;
1508 struct nand_chip *nand;
1509 struct doc_priv *doc;
1510 void __iomem *virtadr;
1511 unsigned char save_control;
1512 unsigned char tmp, tmpb, tmpc;
1513 int reg, len, numchips;
1516 virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1518 printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1522 /* It's not possible to cleanly detect the DiskOnChip - the
1523 * bootup procedure will put the device into reset mode, and
1524 * it's not possible to talk to it without actually writing
1525 * to the DOCControl register. So we store the current contents
1526 * of the DOCControl register's location, in case we later decide
1527 * that it's not a DiskOnChip, and want to put it back how we
1530 save_control = ReadDOC(virtadr, DOCControl);
1532 /* Reset the DiskOnChip ASIC */
1533 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1534 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1536 /* Enable the DiskOnChip ASIC */
1537 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1538 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1540 ChipID = ReadDOC(virtadr, ChipID);
1543 case DOC_ChipID_Doc2k:
1544 reg = DoC_2k_ECCStatus;
1546 case DOC_ChipID_DocMil:
1549 case DOC_ChipID_DocMilPlus16:
1550 case DOC_ChipID_DocMilPlus32:
1552 /* Possible Millennium Plus, need to do more checks */
1553 /* Possibly release from power down mode */
1554 for (tmp = 0; (tmp < 4); tmp++)
1555 ReadDOC(virtadr, Mplus_Power);
1557 /* Reset the Millennium Plus ASIC */
1558 tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1559 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1560 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1563 /* Enable the Millennium Plus ASIC */
1564 tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1565 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1566 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1569 ChipID = ReadDOC(virtadr, ChipID);
1572 case DOC_ChipID_DocMilPlus16:
1573 reg = DoC_Mplus_Toggle;
1575 case DOC_ChipID_DocMilPlus32:
1576 printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1587 /* Check the TOGGLE bit in the ECC register */
1588 tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1589 tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1590 tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1591 if ((tmp == tmpb) || (tmp != tmpc)) {
1592 printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1597 for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1598 unsigned char oldval;
1599 unsigned char newval;
1602 /* Use the alias resolution register to determine if this is
1603 in fact the same DOC aliased to a new address. If writes
1604 to one chip's alias resolution register change the value on
1605 the other chip, they're the same chip. */
1606 if (ChipID == DOC_ChipID_DocMilPlus16) {
1607 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1608 newval = ReadDOC(virtadr, Mplus_AliasResolution);
1610 oldval = ReadDOC(doc->virtadr, AliasResolution);
1611 newval = ReadDOC(virtadr, AliasResolution);
1613 if (oldval != newval)
1615 if (ChipID == DOC_ChipID_DocMilPlus16) {
1616 WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1617 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1618 WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
1620 WriteDOC(~newval, virtadr, AliasResolution);
1621 oldval = ReadDOC(doc->virtadr, AliasResolution);
1622 WriteDOC(newval, virtadr, AliasResolution); // restore it
1625 if (oldval == newval) {
1626 printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1631 printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1633 len = sizeof(struct mtd_info) +
1634 sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
1635 mtd = kzalloc(len, GFP_KERNEL);
1637 printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1642 nand = (struct nand_chip *) (mtd + 1);
1643 doc = (struct doc_priv *) (nand + 1);
1644 nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
1645 nand->bbt_md = nand->bbt_td + 1;
1648 mtd->owner = THIS_MODULE;
1651 nand->select_chip = doc200x_select_chip;
1652 nand->cmd_ctrl = doc200x_hwcontrol;
1653 nand->dev_ready = doc200x_dev_ready;
1654 nand->waitfunc = doc200x_wait;
1655 nand->block_bad = doc200x_block_bad;
1656 nand->ecc.hwctl = doc200x_enable_hwecc;
1657 nand->ecc.calculate = doc200x_calculate_ecc;
1658 nand->ecc.correct = doc200x_correct_data;
1660 nand->ecc.layout = &doc200x_oobinfo;
1661 nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1662 nand->ecc.size = 512;
1663 nand->ecc.bytes = 6;
1664 nand->options = NAND_USE_FLASH_BBT;
1666 doc->physadr = physadr;
1667 doc->virtadr = virtadr;
1668 doc->ChipID = ChipID;
1673 doc->nextdoc = doclist;
1675 if (ChipID == DOC_ChipID_Doc2k)
1676 numchips = doc2000_init(mtd);
1677 else if (ChipID == DOC_ChipID_DocMilPlus16)
1678 numchips = doc2001plus_init(mtd);
1680 numchips = doc2001_init(mtd);
1682 if ((ret = nand_scan(mtd, numchips))) {
1683 /* DBB note: i believe nand_release is necessary here, as
1684 buffers may have been allocated in nand_base. Check with
1686 /* nand_release will call del_mtd_device, but we haven't yet
1687 added it. This is handled without incident by
1688 del_mtd_device, as far as I can tell. */
1699 /* Put back the contents of the DOCControl register, in case it's not
1700 actually a DiskOnChip. */
1701 WriteDOC(save_control, virtadr, DOCControl);
1707 static void release_nanddoc(void)
1709 struct mtd_info *mtd, *nextmtd;
1710 struct nand_chip *nand;
1711 struct doc_priv *doc;
1713 for (mtd = doclist; mtd; mtd = nextmtd) {
1717 nextmtd = doc->nextdoc;
1719 iounmap(doc->virtadr);
1724 static int __init init_nanddoc(void)
1728 /* We could create the decoder on demand, if memory is a concern.
1729 * This way we have it handy, if an error happens
1731 * Symbolsize is 10 (bits)
1732 * Primitve polynomial is x^10+x^3+1
1733 * first consecutive root is 510
1734 * primitve element to generate roots = 1
1735 * generator polinomial degree = 4
1737 rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1739 printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1743 if (doc_config_location) {
1744 printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1745 ret = doc_probe(doc_config_location);
1749 for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1750 doc_probe(doc_locations[i]);
1753 /* No banner message any more. Print a message if no DiskOnChip
1754 found, so the user knows we at least tried. */
1756 printk(KERN_INFO "No valid DiskOnChip devices found\n");
1762 free_rs(rs_decoder);
1766 static void __exit cleanup_nanddoc(void)
1768 /* Cleanup the nand/DoC resources */
1771 /* Free the reed solomon resources */
1773 free_rs(rs_decoder);
1777 module_init(init_nanddoc);
1778 module_exit(cleanup_nanddoc);
1780 MODULE_LICENSE("GPL");
1781 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1782 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");