2 * linux/arch/arm/mach-aaec2000/core.c
4 * Code common to all AAEC-2000 machines
6 * Copyright (c) 2005 Nicolas Bellido Y Ortega
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/list.h>
18 #include <linux/errno.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <linux/timex.h>
22 #include <linux/signal.h>
24 #include <asm/hardware.h>
26 #include <asm/sizes.h>
27 #include <asm/hardware/amba.h>
29 #include <asm/mach/flash.h>
30 #include <asm/mach/irq.h>
31 #include <asm/mach/time.h>
32 #include <asm/mach/map.h>
40 * Static virtual address mappings are as follow:
42 * 0xf8000000-0xf8001ffff: Devices connected to APB bus
43 * 0xf8002000-0xf8003ffff: Devices connected to AHB bus
45 * Below 0xe8000000 is reserved for vm allocation.
47 * The machine specific code must provide the extra mapping beside the
48 * default mapping provided here.
50 static struct map_desc standard_io_desc[] __initdata = {
52 .virtual = VIO_APB_BASE,
53 .physical = __phys_to_pfn(PIO_APB_BASE),
54 .length = IO_APB_LENGTH,
57 .virtual = VIO_AHB_BASE,
58 .physical = __phys_to_pfn(PIO_AHB_BASE),
59 .length = IO_AHB_LENGTH,
64 void __init aaec2000_map_io(void)
66 iotable_init(standard_io_desc, ARRAY_SIZE(standard_io_desc));
70 * Interrupt handling routines
72 static void aaec2000_int_ack(unsigned int irq)
77 static void aaec2000_int_mask(unsigned int irq)
79 IRQ_INTENC |= (1 << irq);
82 static void aaec2000_int_unmask(unsigned int irq)
84 IRQ_INTENS |= (1 << irq);
87 static struct irqchip aaec2000_irq_chip = {
88 .ack = aaec2000_int_ack,
89 .mask = aaec2000_int_mask,
90 .unmask = aaec2000_int_unmask,
93 void __init aaec2000_init_irq(void)
97 for (i = 0; i < NR_IRQS; i++) {
98 set_irq_handler(i, do_level_IRQ);
99 set_irq_chip(i, &aaec2000_irq_chip);
100 set_irq_flags(i, IRQF_VALID);
103 /* Disable all interrupts */
104 IRQ_INTENC = 0xffffffff;
106 /* Clear any pending interrupts */
107 IRQ_INTSR = IRQ_INTSR;
113 /* IRQs are disabled before entering here from do_gettimeofday() */
114 static unsigned long aaec2000_gettimeoffset(void)
116 unsigned long ticks_to_match, elapsed, usec;
118 /* Get ticks before next timer match */
119 ticks_to_match = TIMER1_LOAD - TIMER1_VAL;
121 /* We need elapsed ticks since last match */
122 elapsed = LATCH - ticks_to_match;
124 /* Now, convert them to usec */
125 usec = (unsigned long)(elapsed * (tick_nsec / 1000))/LATCH;
130 /* We enter here with IRQs enabled */
132 aaec2000_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
134 /* TODO: Check timer accuracy */
135 write_seqlock(&xtime_lock);
140 write_sequnlock(&xtime_lock);
145 static struct irqaction aaec2000_timer_irq = {
146 .name = "AAEC-2000 Timer Tick",
147 .flags = SA_INTERRUPT | SA_TIMER,
148 .handler = aaec2000_timer_interrupt,
151 static void __init aaec2000_timer_init(void)
153 /* Disable timer 1 */
156 /* We have somehow to generate a 100Hz clock.
157 * We then use the 508KHz timer in periodic mode.
160 TIMER1_CLEAR = 1; /* Clear interrupt */
162 setup_irq(INT_TMR1_OFL, &aaec2000_timer_irq);
164 TIMER1_CTRL = TIMER_CTRL_ENABLE |
165 TIMER_CTRL_PERIODIC |
166 TIMER_CTRL_CLKSEL_508K;
169 struct sys_timer aaec2000_timer = {
170 .init = aaec2000_timer_init,
171 .offset = aaec2000_gettimeoffset,
174 static struct clcd_panel mach_clcd_panel;
176 static int aaec2000_clcd_setup(struct clcd_fb *fb)
180 fb->panel = &mach_clcd_panel;
182 fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, SZ_1M,
185 if (!fb->fb.screen_base) {
186 printk(KERN_ERR "CLCD: unable to map framebuffer\n");
190 fb->fb.fix.smem_start = dma;
191 fb->fb.fix.smem_len = SZ_1M;
196 static int aaec2000_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
198 return dma_mmap_writecombine(&fb->dev->dev, vma,
200 fb->fb.fix.smem_start,
201 fb->fb.fix.smem_len);
204 static void aaec2000_clcd_remove(struct clcd_fb *fb)
206 dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
207 fb->fb.screen_base, fb->fb.fix.smem_start);
210 static struct clcd_board clcd_plat_data = {
212 .check = clcdfb_check,
213 .decode = clcdfb_decode,
214 .setup = aaec2000_clcd_setup,
215 .mmap = aaec2000_clcd_mmap,
216 .remove = aaec2000_clcd_remove,
219 static struct amba_device clcd_device = {
222 .coherent_dma_mask = ~0,
223 .platform_data = &clcd_plat_data,
226 .start = AAEC_CLCD_PHYS,
227 .end = AAEC_CLCD_PHYS + SZ_4K - 1,
228 .flags = IORESOURCE_MEM,
230 .irq = { INT_LCD, NO_IRQ },
234 static struct amba_device *amba_devs[] __initdata = {
238 static struct clk aaec2000_clcd_clk = {
242 void __init aaec2000_set_clcd_plat_data(struct aaec2000_clcd_info *clcd)
244 clcd_plat_data.enable = clcd->enable;
245 clcd_plat_data.disable = clcd->disable;
246 memcpy(&mach_clcd_panel, &clcd->panel, sizeof(struct clcd_panel));
249 static struct flash_platform_data aaec2000_flash_data = {
250 .map_name = "cfi_probe",
254 static struct resource aaec2000_flash_resource = {
255 .start = AAEC_FLASH_BASE,
256 .end = AAEC_FLASH_BASE + AAEC_FLASH_SIZE,
257 .flags = IORESOURCE_MEM,
260 static struct platform_device aaec2000_flash_device = {
264 .platform_data = &aaec2000_flash_data,
267 .resource = &aaec2000_flash_resource,
270 static int __init aaec2000_init(void)
274 clk_register(&aaec2000_clcd_clk);
276 for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
277 struct amba_device *d = amba_devs[i];
278 amba_device_register(d, &iomem_resource);
281 platform_device_register(&aaec2000_flash_device);
285 arch_initcall(aaec2000_init);