rt2x00: Restrict firmware file lengths
[linux-2.6] / drivers / net / wireless / rt2x00 / rt73usb.c
1 /*
2         Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt73usb
23         Abstract: rt73usb device specific routines.
24         Supported chipsets: rt2571W & rt2671.
25  */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/usb.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00usb.h"
37 #include "rt73usb.h"
38
39 /*
40  * Allow hardware encryption to be disabled.
41  */
42 static int modparam_nohwcrypt = 0;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45
46 /*
47  * Register access.
48  * All access to the CSR registers will go through the methods
49  * rt2x00usb_register_read and rt2x00usb_register_write.
50  * BBP and RF register require indirect register access,
51  * and use the CSR registers BBPCSR and RFCSR to achieve this.
52  * These indirect registers work with busy bits,
53  * and we will try maximal REGISTER_BUSY_COUNT times to access
54  * the register while taking a REGISTER_BUSY_DELAY us delay
55  * between each attampt. When the busy bit is still set at that time,
56  * the access attempt is considered to have failed,
57  * and we will print an error.
58  * The _lock versions must be used if you already hold the csr_mutex
59  */
60 #define WAIT_FOR_BBP(__dev, __reg) \
61         rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
62 #define WAIT_FOR_RF(__dev, __reg) \
63         rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
64
65 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
66                               const unsigned int word, const u8 value)
67 {
68         u32 reg;
69
70         mutex_lock(&rt2x00dev->csr_mutex);
71
72         /*
73          * Wait until the BBP becomes available, afterwards we
74          * can safely write the new data into the register.
75          */
76         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
77                 reg = 0;
78                 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
79                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
80                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
81                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
82
83                 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
84         }
85
86         mutex_unlock(&rt2x00dev->csr_mutex);
87 }
88
89 static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
90                              const unsigned int word, u8 *value)
91 {
92         u32 reg;
93
94         mutex_lock(&rt2x00dev->csr_mutex);
95
96         /*
97          * Wait until the BBP becomes available, afterwards we
98          * can safely write the read request into the register.
99          * After the data has been written, we wait until hardware
100          * returns the correct value, if at any time the register
101          * doesn't become available in time, reg will be 0xffffffff
102          * which means we return 0xff to the caller.
103          */
104         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
105                 reg = 0;
106                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
107                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
108                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
109
110                 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
111
112                 WAIT_FOR_BBP(rt2x00dev, &reg);
113         }
114
115         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
116
117         mutex_unlock(&rt2x00dev->csr_mutex);
118 }
119
120 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
121                              const unsigned int word, const u32 value)
122 {
123         u32 reg;
124
125         if (!word)
126                 return;
127
128         mutex_lock(&rt2x00dev->csr_mutex);
129
130         /*
131          * Wait until the RF becomes available, afterwards we
132          * can safely write the new data into the register.
133          */
134         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
135                 reg = 0;
136                 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
137                 /*
138                  * RF5225 and RF2527 contain 21 bits per RF register value,
139                  * all others contain 20 bits.
140                  */
141                 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
142                                    20 + (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
143                                          rt2x00_rf(&rt2x00dev->chip, RF2527)));
144                 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
145                 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
146
147                 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
148                 rt2x00_rf_write(rt2x00dev, word, value);
149         }
150
151         mutex_unlock(&rt2x00dev->csr_mutex);
152 }
153
154 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
155 static const struct rt2x00debug rt73usb_rt2x00debug = {
156         .owner  = THIS_MODULE,
157         .csr    = {
158                 .read           = rt2x00usb_register_read,
159                 .write          = rt2x00usb_register_write,
160                 .flags          = RT2X00DEBUGFS_OFFSET,
161                 .word_base      = CSR_REG_BASE,
162                 .word_size      = sizeof(u32),
163                 .word_count     = CSR_REG_SIZE / sizeof(u32),
164         },
165         .eeprom = {
166                 .read           = rt2x00_eeprom_read,
167                 .write          = rt2x00_eeprom_write,
168                 .word_base      = EEPROM_BASE,
169                 .word_size      = sizeof(u16),
170                 .word_count     = EEPROM_SIZE / sizeof(u16),
171         },
172         .bbp    = {
173                 .read           = rt73usb_bbp_read,
174                 .write          = rt73usb_bbp_write,
175                 .word_base      = BBP_BASE,
176                 .word_size      = sizeof(u8),
177                 .word_count     = BBP_SIZE / sizeof(u8),
178         },
179         .rf     = {
180                 .read           = rt2x00_rf_read,
181                 .write          = rt73usb_rf_write,
182                 .word_base      = RF_BASE,
183                 .word_size      = sizeof(u32),
184                 .word_count     = RF_SIZE / sizeof(u32),
185         },
186 };
187 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
188
189 #ifdef CONFIG_RT2X00_LIB_RFKILL
190 static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
191 {
192         u32 reg;
193
194         rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
195         return rt2x00_get_field32(reg, MAC_CSR13_BIT7);
196 }
197 #else
198 #define rt73usb_rfkill_poll     NULL
199 #endif /* CONFIG_RT2X00_LIB_RFKILL */
200
201 #ifdef CONFIG_RT2X00_LIB_LEDS
202 static void rt73usb_brightness_set(struct led_classdev *led_cdev,
203                                    enum led_brightness brightness)
204 {
205         struct rt2x00_led *led =
206            container_of(led_cdev, struct rt2x00_led, led_dev);
207         unsigned int enabled = brightness != LED_OFF;
208         unsigned int a_mode =
209             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
210         unsigned int bg_mode =
211             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
212
213         if (led->type == LED_TYPE_RADIO) {
214                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
215                                    MCU_LEDCS_RADIO_STATUS, enabled);
216
217                 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
218                                             0, led->rt2x00dev->led_mcu_reg,
219                                             REGISTER_TIMEOUT);
220         } else if (led->type == LED_TYPE_ASSOC) {
221                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
222                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
223                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
224                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
225
226                 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
227                                             0, led->rt2x00dev->led_mcu_reg,
228                                             REGISTER_TIMEOUT);
229         } else if (led->type == LED_TYPE_QUALITY) {
230                 /*
231                  * The brightness is divided into 6 levels (0 - 5),
232                  * this means we need to convert the brightness
233                  * argument into the matching level within that range.
234                  */
235                 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
236                                             brightness / (LED_FULL / 6),
237                                             led->rt2x00dev->led_mcu_reg,
238                                             REGISTER_TIMEOUT);
239         }
240 }
241
242 static int rt73usb_blink_set(struct led_classdev *led_cdev,
243                              unsigned long *delay_on,
244                              unsigned long *delay_off)
245 {
246         struct rt2x00_led *led =
247             container_of(led_cdev, struct rt2x00_led, led_dev);
248         u32 reg;
249
250         rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, &reg);
251         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
252         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
253         rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
254
255         return 0;
256 }
257
258 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
259                              struct rt2x00_led *led,
260                              enum led_type type)
261 {
262         led->rt2x00dev = rt2x00dev;
263         led->type = type;
264         led->led_dev.brightness_set = rt73usb_brightness_set;
265         led->led_dev.blink_set = rt73usb_blink_set;
266         led->flags = LED_INITIALIZED;
267 }
268 #endif /* CONFIG_RT2X00_LIB_LEDS */
269
270 /*
271  * Configuration handlers.
272  */
273 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
274                                      struct rt2x00lib_crypto *crypto,
275                                      struct ieee80211_key_conf *key)
276 {
277         struct hw_key_entry key_entry;
278         struct rt2x00_field32 field;
279         int timeout;
280         u32 mask;
281         u32 reg;
282
283         if (crypto->cmd == SET_KEY) {
284                 /*
285                  * rt2x00lib can't determine the correct free
286                  * key_idx for shared keys. We have 1 register
287                  * with key valid bits. The goal is simple, read
288                  * the register, if that is full we have no slots
289                  * left.
290                  * Note that each BSS is allowed to have up to 4
291                  * shared keys, so put a mask over the allowed
292                  * entries.
293                  */
294                 mask = (0xf << crypto->bssidx);
295
296                 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
297                 reg &= mask;
298
299                 if (reg && reg == mask)
300                         return -ENOSPC;
301
302                 key->hw_key_idx += reg ? ffz(reg) : 0;
303
304                 /*
305                  * Upload key to hardware
306                  */
307                 memcpy(key_entry.key, crypto->key,
308                        sizeof(key_entry.key));
309                 memcpy(key_entry.tx_mic, crypto->tx_mic,
310                        sizeof(key_entry.tx_mic));
311                 memcpy(key_entry.rx_mic, crypto->rx_mic,
312                        sizeof(key_entry.rx_mic));
313
314                 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
315                 timeout = REGISTER_TIMEOUT32(sizeof(key_entry));
316                 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
317                                                     USB_VENDOR_REQUEST_OUT, reg,
318                                                     &key_entry,
319                                                     sizeof(key_entry),
320                                                     timeout);
321
322                 /*
323                  * The cipher types are stored over 2 registers.
324                  * bssidx 0 and 1 keys are stored in SEC_CSR1 and
325                  * bssidx 1 and 2 keys are stored in SEC_CSR5.
326                  * Using the correct defines correctly will cause overhead,
327                  * so just calculate the correct offset.
328                  */
329                 if (key->hw_key_idx < 8) {
330                         field.bit_offset = (3 * key->hw_key_idx);
331                         field.bit_mask = 0x7 << field.bit_offset;
332
333                         rt2x00usb_register_read(rt2x00dev, SEC_CSR1, &reg);
334                         rt2x00_set_field32(&reg, field, crypto->cipher);
335                         rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
336                 } else {
337                         field.bit_offset = (3 * (key->hw_key_idx - 8));
338                         field.bit_mask = 0x7 << field.bit_offset;
339
340                         rt2x00usb_register_read(rt2x00dev, SEC_CSR5, &reg);
341                         rt2x00_set_field32(&reg, field, crypto->cipher);
342                         rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
343                 }
344
345                 /*
346                  * The driver does not support the IV/EIV generation
347                  * in hardware. However it doesn't support the IV/EIV
348                  * inside the ieee80211 frame either, but requires it
349                  * to be provided seperately for the descriptor.
350                  * rt2x00lib will cut the IV/EIV data out of all frames
351                  * given to us by mac80211, but we must tell mac80211
352                  * to generate the IV/EIV data.
353                  */
354                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
355         }
356
357         /*
358          * SEC_CSR0 contains only single-bit fields to indicate
359          * a particular key is valid. Because using the FIELD32()
360          * defines directly will cause a lot of overhead we use
361          * a calculation to determine the correct bit directly.
362          */
363         mask = 1 << key->hw_key_idx;
364
365         rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
366         if (crypto->cmd == SET_KEY)
367                 reg |= mask;
368         else if (crypto->cmd == DISABLE_KEY)
369                 reg &= ~mask;
370         rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
371
372         return 0;
373 }
374
375 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
376                                        struct rt2x00lib_crypto *crypto,
377                                        struct ieee80211_key_conf *key)
378 {
379         struct hw_pairwise_ta_entry addr_entry;
380         struct hw_key_entry key_entry;
381         int timeout;
382         u32 mask;
383         u32 reg;
384
385         if (crypto->cmd == SET_KEY) {
386                 /*
387                  * rt2x00lib can't determine the correct free
388                  * key_idx for pairwise keys. We have 2 registers
389                  * with key valid bits. The goal is simple, read
390                  * the first register, if that is full move to
391                  * the next register.
392                  * When both registers are full, we drop the key,
393                  * otherwise we use the first invalid entry.
394                  */
395                 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
396                 if (reg && reg == ~0) {
397                         key->hw_key_idx = 32;
398                         rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
399                         if (reg && reg == ~0)
400                                 return -ENOSPC;
401                 }
402
403                 key->hw_key_idx += reg ? ffz(reg) : 0;
404
405                 /*
406                  * Upload key to hardware
407                  */
408                 memcpy(key_entry.key, crypto->key,
409                        sizeof(key_entry.key));
410                 memcpy(key_entry.tx_mic, crypto->tx_mic,
411                        sizeof(key_entry.tx_mic));
412                 memcpy(key_entry.rx_mic, crypto->rx_mic,
413                        sizeof(key_entry.rx_mic));
414
415                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
416                 timeout = REGISTER_TIMEOUT32(sizeof(key_entry));
417                 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
418                                                     USB_VENDOR_REQUEST_OUT, reg,
419                                                     &key_entry,
420                                                     sizeof(key_entry),
421                                                     timeout);
422
423                 /*
424                  * Send the address and cipher type to the hardware register.
425                  * This data fits within the CSR cache size, so we can use
426                  * rt2x00usb_register_multiwrite() directly.
427                  */
428                 memset(&addr_entry, 0, sizeof(addr_entry));
429                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
430                 addr_entry.cipher = crypto->cipher;
431
432                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
433                 rt2x00usb_register_multiwrite(rt2x00dev, reg,
434                                             &addr_entry, sizeof(addr_entry));
435
436                 /*
437                  * Enable pairwise lookup table for given BSS idx,
438                  * without this received frames will not be decrypted
439                  * by the hardware.
440                  */
441                 rt2x00usb_register_read(rt2x00dev, SEC_CSR4, &reg);
442                 reg |= (1 << crypto->bssidx);
443                 rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
444
445                 /*
446                  * The driver does not support the IV/EIV generation
447                  * in hardware. However it doesn't support the IV/EIV
448                  * inside the ieee80211 frame either, but requires it
449                  * to be provided seperately for the descriptor.
450                  * rt2x00lib will cut the IV/EIV data out of all frames
451                  * given to us by mac80211, but we must tell mac80211
452                  * to generate the IV/EIV data.
453                  */
454                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
455         }
456
457         /*
458          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
459          * a particular key is valid. Because using the FIELD32()
460          * defines directly will cause a lot of overhead we use
461          * a calculation to determine the correct bit directly.
462          */
463         if (key->hw_key_idx < 32) {
464                 mask = 1 << key->hw_key_idx;
465
466                 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
467                 if (crypto->cmd == SET_KEY)
468                         reg |= mask;
469                 else if (crypto->cmd == DISABLE_KEY)
470                         reg &= ~mask;
471                 rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
472         } else {
473                 mask = 1 << (key->hw_key_idx - 32);
474
475                 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
476                 if (crypto->cmd == SET_KEY)
477                         reg |= mask;
478                 else if (crypto->cmd == DISABLE_KEY)
479                         reg &= ~mask;
480                 rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
481         }
482
483         return 0;
484 }
485
486 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
487                                   const unsigned int filter_flags)
488 {
489         u32 reg;
490
491         /*
492          * Start configuration steps.
493          * Note that the version error will always be dropped
494          * and broadcast frames will always be accepted since
495          * there is no filter for it at this time.
496          */
497         rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
498         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
499                            !(filter_flags & FIF_FCSFAIL));
500         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
501                            !(filter_flags & FIF_PLCPFAIL));
502         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
503                            !(filter_flags & FIF_CONTROL));
504         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
505                            !(filter_flags & FIF_PROMISC_IN_BSS));
506         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
507                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
508                            !rt2x00dev->intf_ap_count);
509         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
510         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
511                            !(filter_flags & FIF_ALLMULTI));
512         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
513         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
514                            !(filter_flags & FIF_CONTROL));
515         rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
516 }
517
518 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
519                                 struct rt2x00_intf *intf,
520                                 struct rt2x00intf_conf *conf,
521                                 const unsigned int flags)
522 {
523         unsigned int beacon_base;
524         u32 reg;
525
526         if (flags & CONFIG_UPDATE_TYPE) {
527                 /*
528                  * Clear current synchronisation setup.
529                  * For the Beacon base registers we only need to clear
530                  * the first byte since that byte contains the VALID and OWNER
531                  * bits which (when set to 0) will invalidate the entire beacon.
532                  */
533                 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
534                 rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
535
536                 /*
537                  * Enable synchronisation.
538                  */
539                 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
540                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
541                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
542                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
543                 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
544         }
545
546         if (flags & CONFIG_UPDATE_MAC) {
547                 reg = le32_to_cpu(conf->mac[1]);
548                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
549                 conf->mac[1] = cpu_to_le32(reg);
550
551                 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
552                                             conf->mac, sizeof(conf->mac));
553         }
554
555         if (flags & CONFIG_UPDATE_BSSID) {
556                 reg = le32_to_cpu(conf->bssid[1]);
557                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
558                 conf->bssid[1] = cpu_to_le32(reg);
559
560                 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
561                                             conf->bssid, sizeof(conf->bssid));
562         }
563 }
564
565 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
566                                struct rt2x00lib_erp *erp)
567 {
568         u32 reg;
569
570         rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
571         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
572         rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
573
574         rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
575         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
576                            !!erp->short_preamble);
577         rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
578
579         rt2x00usb_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
580
581         rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
582         rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
583         rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
584
585         rt2x00usb_register_read(rt2x00dev, MAC_CSR8, &reg);
586         rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
587         rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
588         rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
589         rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
590 }
591
592 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
593                                       struct antenna_setup *ant)
594 {
595         u8 r3;
596         u8 r4;
597         u8 r77;
598         u8 temp;
599
600         rt73usb_bbp_read(rt2x00dev, 3, &r3);
601         rt73usb_bbp_read(rt2x00dev, 4, &r4);
602         rt73usb_bbp_read(rt2x00dev, 77, &r77);
603
604         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
605
606         /*
607          * Configure the RX antenna.
608          */
609         switch (ant->rx) {
610         case ANTENNA_HW_DIVERSITY:
611                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
612                 temp = !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags)
613                        && (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
614                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
615                 break;
616         case ANTENNA_A:
617                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
618                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
619                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
620                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
621                 else
622                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
623                 break;
624         case ANTENNA_B:
625         default:
626                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
627                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
628                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
629                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
630                 else
631                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
632                 break;
633         }
634
635         rt73usb_bbp_write(rt2x00dev, 77, r77);
636         rt73usb_bbp_write(rt2x00dev, 3, r3);
637         rt73usb_bbp_write(rt2x00dev, 4, r4);
638 }
639
640 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
641                                       struct antenna_setup *ant)
642 {
643         u8 r3;
644         u8 r4;
645         u8 r77;
646
647         rt73usb_bbp_read(rt2x00dev, 3, &r3);
648         rt73usb_bbp_read(rt2x00dev, 4, &r4);
649         rt73usb_bbp_read(rt2x00dev, 77, &r77);
650
651         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
652         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
653                           !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
654
655         /*
656          * Configure the RX antenna.
657          */
658         switch (ant->rx) {
659         case ANTENNA_HW_DIVERSITY:
660                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
661                 break;
662         case ANTENNA_A:
663                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
664                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
665                 break;
666         case ANTENNA_B:
667         default:
668                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
669                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
670                 break;
671         }
672
673         rt73usb_bbp_write(rt2x00dev, 77, r77);
674         rt73usb_bbp_write(rt2x00dev, 3, r3);
675         rt73usb_bbp_write(rt2x00dev, 4, r4);
676 }
677
678 struct antenna_sel {
679         u8 word;
680         /*
681          * value[0] -> non-LNA
682          * value[1] -> LNA
683          */
684         u8 value[2];
685 };
686
687 static const struct antenna_sel antenna_sel_a[] = {
688         { 96,  { 0x58, 0x78 } },
689         { 104, { 0x38, 0x48 } },
690         { 75,  { 0xfe, 0x80 } },
691         { 86,  { 0xfe, 0x80 } },
692         { 88,  { 0xfe, 0x80 } },
693         { 35,  { 0x60, 0x60 } },
694         { 97,  { 0x58, 0x58 } },
695         { 98,  { 0x58, 0x58 } },
696 };
697
698 static const struct antenna_sel antenna_sel_bg[] = {
699         { 96,  { 0x48, 0x68 } },
700         { 104, { 0x2c, 0x3c } },
701         { 75,  { 0xfe, 0x80 } },
702         { 86,  { 0xfe, 0x80 } },
703         { 88,  { 0xfe, 0x80 } },
704         { 35,  { 0x50, 0x50 } },
705         { 97,  { 0x48, 0x48 } },
706         { 98,  { 0x48, 0x48 } },
707 };
708
709 static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
710                                struct antenna_setup *ant)
711 {
712         const struct antenna_sel *sel;
713         unsigned int lna;
714         unsigned int i;
715         u32 reg;
716
717         /*
718          * We should never come here because rt2x00lib is supposed
719          * to catch this and send us the correct antenna explicitely.
720          */
721         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
722                ant->tx == ANTENNA_SW_DIVERSITY);
723
724         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
725                 sel = antenna_sel_a;
726                 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
727         } else {
728                 sel = antenna_sel_bg;
729                 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
730         }
731
732         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
733                 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
734
735         rt2x00usb_register_read(rt2x00dev, PHY_CSR0, &reg);
736
737         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
738                            (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
739         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
740                            (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
741
742         rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
743
744         if (rt2x00_rf(&rt2x00dev->chip, RF5226) ||
745             rt2x00_rf(&rt2x00dev->chip, RF5225))
746                 rt73usb_config_antenna_5x(rt2x00dev, ant);
747         else if (rt2x00_rf(&rt2x00dev->chip, RF2528) ||
748                  rt2x00_rf(&rt2x00dev->chip, RF2527))
749                 rt73usb_config_antenna_2x(rt2x00dev, ant);
750 }
751
752 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
753                                     struct rt2x00lib_conf *libconf)
754 {
755         u16 eeprom;
756         short lna_gain = 0;
757
758         if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
759                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
760                         lna_gain += 14;
761
762                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
763                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
764         } else {
765                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
766                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
767         }
768
769         rt2x00dev->lna_gain = lna_gain;
770 }
771
772 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
773                                    struct rf_channel *rf, const int txpower)
774 {
775         u8 r3;
776         u8 r94;
777         u8 smart;
778
779         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
780         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
781
782         smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
783                   rt2x00_rf(&rt2x00dev->chip, RF2527));
784
785         rt73usb_bbp_read(rt2x00dev, 3, &r3);
786         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
787         rt73usb_bbp_write(rt2x00dev, 3, r3);
788
789         r94 = 6;
790         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
791                 r94 += txpower - MAX_TXPOWER;
792         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
793                 r94 += txpower;
794         rt73usb_bbp_write(rt2x00dev, 94, r94);
795
796         rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
797         rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
798         rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
799         rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
800
801         rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
802         rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
803         rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
804         rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
805
806         rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
807         rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
808         rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
809         rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
810
811         udelay(10);
812 }
813
814 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
815                                    const int txpower)
816 {
817         struct rf_channel rf;
818
819         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
820         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
821         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
822         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
823
824         rt73usb_config_channel(rt2x00dev, &rf, txpower);
825 }
826
827 static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
828                                        struct rt2x00lib_conf *libconf)
829 {
830         u32 reg;
831
832         rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
833         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
834                            libconf->conf->long_frame_max_tx_count);
835         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
836                            libconf->conf->short_frame_max_tx_count);
837         rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
838 }
839
840 static void rt73usb_config_duration(struct rt2x00_dev *rt2x00dev,
841                                     struct rt2x00lib_conf *libconf)
842 {
843         u32 reg;
844
845         rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
846         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
847         rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
848
849         rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
850         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
851         rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
852
853         rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
854         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
855                            libconf->conf->beacon_int * 16);
856         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
857 }
858
859 static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
860                                 struct rt2x00lib_conf *libconf)
861 {
862         enum dev_state state =
863             (libconf->conf->flags & IEEE80211_CONF_PS) ?
864                 STATE_SLEEP : STATE_AWAKE;
865         u32 reg;
866
867         if (state == STATE_SLEEP) {
868                 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
869                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
870                                    libconf->conf->beacon_int - 10);
871                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
872                                    libconf->conf->listen_interval - 1);
873                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
874
875                 /* We must first disable autowake before it can be enabled */
876                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
877                 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
878
879                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
880                 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
881
882                 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
883                                             USB_MODE_SLEEP, REGISTER_TIMEOUT);
884         } else {
885                 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
886                                             USB_MODE_WAKEUP, REGISTER_TIMEOUT);
887
888                 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
889                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
890                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
891                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
892                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
893                 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
894         }
895 }
896
897 static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
898                            struct rt2x00lib_conf *libconf,
899                            const unsigned int flags)
900 {
901         /* Always recalculate LNA gain before changing configuration */
902         rt73usb_config_lna_gain(rt2x00dev, libconf);
903
904         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
905                 rt73usb_config_channel(rt2x00dev, &libconf->rf,
906                                        libconf->conf->power_level);
907         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
908             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
909                 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
910         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
911                 rt73usb_config_retry_limit(rt2x00dev, libconf);
912         if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
913                 rt73usb_config_duration(rt2x00dev, libconf);
914         if (flags & IEEE80211_CONF_CHANGE_PS)
915                 rt73usb_config_ps(rt2x00dev, libconf);
916 }
917
918 /*
919  * Link tuning
920  */
921 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
922                                struct link_qual *qual)
923 {
924         u32 reg;
925
926         /*
927          * Update FCS error count from register.
928          */
929         rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
930         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
931
932         /*
933          * Update False CCA count from register.
934          */
935         rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
936         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
937 }
938
939 static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
940                                    struct link_qual *qual, u8 vgc_level)
941 {
942         if (qual->vgc_level != vgc_level) {
943                 rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
944                 qual->vgc_level = vgc_level;
945                 qual->vgc_level_reg = vgc_level;
946         }
947 }
948
949 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
950                                 struct link_qual *qual)
951 {
952         rt73usb_set_vgc(rt2x00dev, qual, 0x20);
953 }
954
955 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
956                                struct link_qual *qual, const u32 count)
957 {
958         u8 up_bound;
959         u8 low_bound;
960
961         /*
962          * Determine r17 bounds.
963          */
964         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
965                 low_bound = 0x28;
966                 up_bound = 0x48;
967
968                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
969                         low_bound += 0x10;
970                         up_bound += 0x10;
971                 }
972         } else {
973                 if (qual->rssi > -82) {
974                         low_bound = 0x1c;
975                         up_bound = 0x40;
976                 } else if (qual->rssi > -84) {
977                         low_bound = 0x1c;
978                         up_bound = 0x20;
979                 } else {
980                         low_bound = 0x1c;
981                         up_bound = 0x1c;
982                 }
983
984                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
985                         low_bound += 0x14;
986                         up_bound += 0x10;
987                 }
988         }
989
990         /*
991          * If we are not associated, we should go straight to the
992          * dynamic CCA tuning.
993          */
994         if (!rt2x00dev->intf_associated)
995                 goto dynamic_cca_tune;
996
997         /*
998          * Special big-R17 for very short distance
999          */
1000         if (qual->rssi > -35) {
1001                 rt73usb_set_vgc(rt2x00dev, qual, 0x60);
1002                 return;
1003         }
1004
1005         /*
1006          * Special big-R17 for short distance
1007          */
1008         if (qual->rssi >= -58) {
1009                 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
1010                 return;
1011         }
1012
1013         /*
1014          * Special big-R17 for middle-short distance
1015          */
1016         if (qual->rssi >= -66) {
1017                 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1018                 return;
1019         }
1020
1021         /*
1022          * Special mid-R17 for middle distance
1023          */
1024         if (qual->rssi >= -74) {
1025                 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1026                 return;
1027         }
1028
1029         /*
1030          * Special case: Change up_bound based on the rssi.
1031          * Lower up_bound when rssi is weaker then -74 dBm.
1032          */
1033         up_bound -= 2 * (-74 - qual->rssi);
1034         if (low_bound > up_bound)
1035                 up_bound = low_bound;
1036
1037         if (qual->vgc_level > up_bound) {
1038                 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
1039                 return;
1040         }
1041
1042 dynamic_cca_tune:
1043
1044         /*
1045          * r17 does not yet exceed upper limit, continue and base
1046          * the r17 tuning on the false CCA count.
1047          */
1048         if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1049                 rt73usb_set_vgc(rt2x00dev, qual,
1050                                 min_t(u8, qual->vgc_level + 4, up_bound));
1051         else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1052                 rt73usb_set_vgc(rt2x00dev, qual,
1053                                 max_t(u8, qual->vgc_level - 4, low_bound));
1054 }
1055
1056 /*
1057  * Firmware functions
1058  */
1059 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1060 {
1061         return FIRMWARE_RT2571;
1062 }
1063
1064 static u16 rt73usb_get_firmware_crc(const void *data, const size_t len)
1065 {
1066         u16 crc;
1067
1068         /*
1069          * Use the crc itu-t algorithm.
1070          * The last 2 bytes in the firmware array are the crc checksum itself,
1071          * this means that we should never pass those 2 bytes to the crc
1072          * algorithm.
1073          */
1074         crc = crc_itu_t(0, data, len - 2);
1075         crc = crc_itu_t_byte(crc, 0);
1076         crc = crc_itu_t_byte(crc, 0);
1077
1078         return crc;
1079 }
1080
1081 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
1082                                  const size_t len)
1083 {
1084         unsigned int i;
1085         int status;
1086         u32 reg;
1087
1088         if (len != 2048) {
1089                 ERROR(rt2x00dev, "Invalid firmware file length (len=%zu)\n", len);
1090                 return -ENOENT;
1091         }
1092
1093         /*
1094          * Wait for stable hardware.
1095          */
1096         for (i = 0; i < 100; i++) {
1097                 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1098                 if (reg)
1099                         break;
1100                 msleep(1);
1101         }
1102
1103         if (!reg) {
1104                 ERROR(rt2x00dev, "Unstable hardware.\n");
1105                 return -EBUSY;
1106         }
1107
1108         /*
1109          * Write firmware to device.
1110          */
1111         rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
1112                                             USB_VENDOR_REQUEST_OUT,
1113                                             FIRMWARE_IMAGE_BASE,
1114                                             data, len,
1115                                             REGISTER_TIMEOUT32(len));
1116
1117         /*
1118          * Send firmware request to device to load firmware,
1119          * we need to specify a long timeout time.
1120          */
1121         status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1122                                              0, USB_MODE_FIRMWARE,
1123                                              REGISTER_TIMEOUT_FIRMWARE);
1124         if (status < 0) {
1125                 ERROR(rt2x00dev, "Failed to write Firmware to device.\n");
1126                 return status;
1127         }
1128
1129         return 0;
1130 }
1131
1132 /*
1133  * Initialization functions.
1134  */
1135 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1136 {
1137         u32 reg;
1138
1139         rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1140         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1141         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1142         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1143         rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1144
1145         rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
1146         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1147         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1148         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1149         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1150         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1151         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1152         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1153         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1154         rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1155
1156         /*
1157          * CCK TXD BBP registers
1158          */
1159         rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1160         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1161         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1162         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1163         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1164         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1165         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1166         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1167         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1168         rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1169
1170         /*
1171          * OFDM TXD BBP registers
1172          */
1173         rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, &reg);
1174         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1175         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1176         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1177         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1178         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1179         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1180         rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1181
1182         rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
1183         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1184         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1185         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1186         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1187         rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1188
1189         rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
1190         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1191         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1192         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1193         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1194         rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1195
1196         rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1197         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1198         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1199         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1200         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1201         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1202         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1203         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1204
1205         rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1206
1207         rt2x00usb_register_read(rt2x00dev, MAC_CSR6, &reg);
1208         rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1209         rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
1210
1211         rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1212
1213         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1214                 return -EBUSY;
1215
1216         rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1217
1218         /*
1219          * Invalidate all Shared Keys (SEC_CSR0),
1220          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1221          */
1222         rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1223         rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1224         rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1225
1226         reg = 0x000023b0;
1227         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
1228             rt2x00_rf(&rt2x00dev->chip, RF2527))
1229                 rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1230         rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
1231
1232         rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1233         rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1234         rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1235
1236         rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
1237         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1238         rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
1239
1240         /*
1241          * Clear all beacons
1242          * For the Beacon base registers we only need to clear
1243          * the first byte since that byte contains the VALID and OWNER
1244          * bits which (when set to 0) will invalidate the entire beacon.
1245          */
1246         rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1247         rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1248         rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1249         rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1250
1251         /*
1252          * We must clear the error counters.
1253          * These registers are cleared on read,
1254          * so we may pass a useless variable to store the value.
1255          */
1256         rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
1257         rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
1258         rt2x00usb_register_read(rt2x00dev, STA_CSR2, &reg);
1259
1260         /*
1261          * Reset MAC and BBP registers.
1262          */
1263         rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1264         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1265         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1266         rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1267
1268         rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1269         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1270         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1271         rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1272
1273         rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1274         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1275         rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1276
1277         return 0;
1278 }
1279
1280 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1281 {
1282         unsigned int i;
1283         u8 value;
1284
1285         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1286                 rt73usb_bbp_read(rt2x00dev, 0, &value);
1287                 if ((value != 0xff) && (value != 0x00))
1288                         return 0;
1289                 udelay(REGISTER_BUSY_DELAY);
1290         }
1291
1292         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1293         return -EACCES;
1294 }
1295
1296 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1297 {
1298         unsigned int i;
1299         u16 eeprom;
1300         u8 reg_id;
1301         u8 value;
1302
1303         if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1304                 return -EACCES;
1305
1306         rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1307         rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1308         rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1309         rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1310         rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1311         rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1312         rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1313         rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1314         rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1315         rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1316         rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1317         rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1318         rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1319         rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1320         rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1321         rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1322         rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1323         rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1324         rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1325         rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1326         rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1327         rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1328         rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1329         rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1330         rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1331
1332         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1333                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1334
1335                 if (eeprom != 0xffff && eeprom != 0x0000) {
1336                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1337                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1338                         rt73usb_bbp_write(rt2x00dev, reg_id, value);
1339                 }
1340         }
1341
1342         return 0;
1343 }
1344
1345 /*
1346  * Device state switch handlers.
1347  */
1348 static void rt73usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
1349                               enum dev_state state)
1350 {
1351         u32 reg;
1352
1353         rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1354         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1355                            (state == STATE_RADIO_RX_OFF) ||
1356                            (state == STATE_RADIO_RX_OFF_LINK));
1357         rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1358 }
1359
1360 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1361 {
1362         /*
1363          * Initialize all registers.
1364          */
1365         if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1366                      rt73usb_init_bbp(rt2x00dev)))
1367                 return -EIO;
1368
1369         return 0;
1370 }
1371
1372 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1373 {
1374         rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1375
1376         /*
1377          * Disable synchronisation.
1378          */
1379         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1380
1381         rt2x00usb_disable_radio(rt2x00dev);
1382 }
1383
1384 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1385 {
1386         u32 reg;
1387         unsigned int i;
1388         char put_to_sleep;
1389
1390         put_to_sleep = (state != STATE_AWAKE);
1391
1392         rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1393         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1394         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1395         rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1396
1397         /*
1398          * Device is not guaranteed to be in the requested state yet.
1399          * We must wait until the register indicates that the
1400          * device has entered the correct state.
1401          */
1402         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1403                 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1404                 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1405                 if (state == !put_to_sleep)
1406                         return 0;
1407                 msleep(10);
1408         }
1409
1410         return -EBUSY;
1411 }
1412
1413 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1414                                     enum dev_state state)
1415 {
1416         int retval = 0;
1417
1418         switch (state) {
1419         case STATE_RADIO_ON:
1420                 retval = rt73usb_enable_radio(rt2x00dev);
1421                 break;
1422         case STATE_RADIO_OFF:
1423                 rt73usb_disable_radio(rt2x00dev);
1424                 break;
1425         case STATE_RADIO_RX_ON:
1426         case STATE_RADIO_RX_ON_LINK:
1427         case STATE_RADIO_RX_OFF:
1428         case STATE_RADIO_RX_OFF_LINK:
1429                 rt73usb_toggle_rx(rt2x00dev, state);
1430                 break;
1431         case STATE_RADIO_IRQ_ON:
1432         case STATE_RADIO_IRQ_OFF:
1433                 /* No support, but no error either */
1434                 break;
1435         case STATE_DEEP_SLEEP:
1436         case STATE_SLEEP:
1437         case STATE_STANDBY:
1438         case STATE_AWAKE:
1439                 retval = rt73usb_set_state(rt2x00dev, state);
1440                 break;
1441         default:
1442                 retval = -ENOTSUPP;
1443                 break;
1444         }
1445
1446         if (unlikely(retval))
1447                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1448                       state, retval);
1449
1450         return retval;
1451 }
1452
1453 /*
1454  * TX descriptor initialization
1455  */
1456 static void rt73usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1457                                   struct sk_buff *skb,
1458                                   struct txentry_desc *txdesc)
1459 {
1460         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1461         __le32 *txd = skbdesc->desc;
1462         u32 word;
1463
1464         /*
1465          * Start writing the descriptor words.
1466          */
1467         rt2x00_desc_read(txd, 1, &word);
1468         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1469         rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1470         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1471         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1472         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1473         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1474                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1475         rt2x00_desc_write(txd, 1, word);
1476
1477         rt2x00_desc_read(txd, 2, &word);
1478         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1479         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1480         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1481         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1482         rt2x00_desc_write(txd, 2, word);
1483
1484         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1485                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1486                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1487         }
1488
1489         rt2x00_desc_read(txd, 5, &word);
1490         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1491                            TXPOWER_TO_DEV(rt2x00dev->tx_power));
1492         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1493         rt2x00_desc_write(txd, 5, word);
1494
1495         rt2x00_desc_read(txd, 0, &word);
1496         rt2x00_set_field32(&word, TXD_W0_BURST,
1497                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1498         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1499         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1500                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1501         rt2x00_set_field32(&word, TXD_W0_ACK,
1502                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1503         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1504                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1505         rt2x00_set_field32(&word, TXD_W0_OFDM,
1506                            (txdesc->rate_mode == RATE_MODE_OFDM));
1507         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1508         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1509                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1510         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1511                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1512         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1513                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1514         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1515         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1516         rt2x00_set_field32(&word, TXD_W0_BURST2,
1517                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1518         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1519         rt2x00_desc_write(txd, 0, word);
1520 }
1521
1522 /*
1523  * TX data initialization
1524  */
1525 static void rt73usb_write_beacon(struct queue_entry *entry)
1526 {
1527         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1528         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1529         unsigned int beacon_base;
1530         u32 reg;
1531
1532         /*
1533          * Add the descriptor in front of the skb.
1534          */
1535         skb_push(entry->skb, entry->queue->desc_size);
1536         memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
1537         skbdesc->desc = entry->skb->data;
1538
1539         /*
1540          * Disable beaconing while we are reloading the beacon data,
1541          * otherwise we might be sending out invalid data.
1542          */
1543         rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1544         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1545         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1546         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1547         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1548
1549         /*
1550          * Write entire beacon with descriptor to register.
1551          */
1552         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1553         rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
1554                                             USB_VENDOR_REQUEST_OUT, beacon_base,
1555                                             entry->skb->data, entry->skb->len,
1556                                             REGISTER_TIMEOUT32(entry->skb->len));
1557
1558         /*
1559          * Clean up the beacon skb.
1560          */
1561         dev_kfree_skb(entry->skb);
1562         entry->skb = NULL;
1563 }
1564
1565 static int rt73usb_get_tx_data_len(struct queue_entry *entry)
1566 {
1567         int length;
1568
1569         /*
1570          * The length _must_ be a multiple of 4,
1571          * but it must _not_ be a multiple of the USB packet size.
1572          */
1573         length = roundup(entry->skb->len, 4);
1574         length += (4 * !(length % entry->queue->usb_maxpacket));
1575
1576         return length;
1577 }
1578
1579 static void rt73usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1580                                   const enum data_queue_qid queue)
1581 {
1582         u32 reg;
1583
1584         if (queue != QID_BEACON) {
1585                 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1586                 return;
1587         }
1588
1589         /*
1590          * For Wi-Fi faily generated beacons between participating stations.
1591          * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1592          */
1593         rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1594
1595         rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1596         if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1597                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1598                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1599                 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1600                 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1601         }
1602 }
1603
1604 /*
1605  * RX control handlers
1606  */
1607 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1608 {
1609         u8 offset = rt2x00dev->lna_gain;
1610         u8 lna;
1611
1612         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1613         switch (lna) {
1614         case 3:
1615                 offset += 90;
1616                 break;
1617         case 2:
1618                 offset += 74;
1619                 break;
1620         case 1:
1621                 offset += 64;
1622                 break;
1623         default:
1624                 return 0;
1625         }
1626
1627         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1628                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1629                         if (lna == 3 || lna == 2)
1630                                 offset += 10;
1631                 } else {
1632                         if (lna == 3)
1633                                 offset += 6;
1634                         else if (lna == 2)
1635                                 offset += 8;
1636                 }
1637         }
1638
1639         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1640 }
1641
1642 static void rt73usb_fill_rxdone(struct queue_entry *entry,
1643                                 struct rxdone_entry_desc *rxdesc)
1644 {
1645         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1646         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1647         __le32 *rxd = (__le32 *)entry->skb->data;
1648         u32 word0;
1649         u32 word1;
1650
1651         /*
1652          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1653          * frame data in rt2x00usb.
1654          */
1655         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1656         rxd = (__le32 *)skbdesc->desc;
1657
1658         /*
1659          * It is now safe to read the descriptor on all architectures.
1660          */
1661         rt2x00_desc_read(rxd, 0, &word0);
1662         rt2x00_desc_read(rxd, 1, &word1);
1663
1664         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1665                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1666
1667         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1668                 rxdesc->cipher =
1669                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1670                 rxdesc->cipher_status =
1671                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1672         }
1673
1674         if (rxdesc->cipher != CIPHER_NONE) {
1675                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1676                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1677                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1678
1679                 _rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1680                 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1681
1682                 /*
1683                  * Hardware has stripped IV/EIV data from 802.11 frame during
1684                  * decryption. It has provided the data seperately but rt2x00lib
1685                  * should decide if it should be reinserted.
1686                  */
1687                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1688
1689                 /*
1690                  * FIXME: Legacy driver indicates that the frame does
1691                  * contain the Michael Mic. Unfortunately, in rt2x00
1692                  * the MIC seems to be missing completely...
1693                  */
1694                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1695
1696                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1697                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1698                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1699                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1700         }
1701
1702         /*
1703          * Obtain the status about this packet.
1704          * When frame was received with an OFDM bitrate,
1705          * the signal is the PLCP value. If it was received with
1706          * a CCK bitrate the signal is the rate in 100kbit/s.
1707          */
1708         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1709         rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1710         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1711
1712         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1713                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1714         else
1715                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1716         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1717                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1718
1719         /*
1720          * Set skb pointers, and update frame information.
1721          */
1722         skb_pull(entry->skb, entry->queue->desc_size);
1723         skb_trim(entry->skb, rxdesc->size);
1724 }
1725
1726 /*
1727  * Device probe functions.
1728  */
1729 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1730 {
1731         u16 word;
1732         u8 *mac;
1733         s8 value;
1734
1735         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1736
1737         /*
1738          * Start validation of the data that has been read.
1739          */
1740         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1741         if (!is_valid_ether_addr(mac)) {
1742                 random_ether_addr(mac);
1743                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1744         }
1745
1746         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1747         if (word == 0xffff) {
1748                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1749                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1750                                    ANTENNA_B);
1751                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1752                                    ANTENNA_B);
1753                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1754                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1755                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1756                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1757                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1758                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1759         }
1760
1761         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1762         if (word == 0xffff) {
1763                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1764                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1765                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1766         }
1767
1768         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1769         if (word == 0xffff) {
1770                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1771                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1772                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1773                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1774                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1775                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1776                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1777                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1778                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1779                                    LED_MODE_DEFAULT);
1780                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1781                 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1782         }
1783
1784         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1785         if (word == 0xffff) {
1786                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1787                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1788                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1789                 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1790         }
1791
1792         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1793         if (word == 0xffff) {
1794                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1795                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1796                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1797                 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1798         } else {
1799                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1800                 if (value < -10 || value > 10)
1801                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1802                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1803                 if (value < -10 || value > 10)
1804                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1805                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1806         }
1807
1808         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1809         if (word == 0xffff) {
1810                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1811                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1812                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1813                 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1814         } else {
1815                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1816                 if (value < -10 || value > 10)
1817                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1818                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1819                 if (value < -10 || value > 10)
1820                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1821                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1822         }
1823
1824         return 0;
1825 }
1826
1827 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1828 {
1829         u32 reg;
1830         u16 value;
1831         u16 eeprom;
1832
1833         /*
1834          * Read EEPROM word for configuration.
1835          */
1836         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1837
1838         /*
1839          * Identify RF chipset.
1840          */
1841         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1842         rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1843         rt2x00_set_chip(rt2x00dev, RT2571, value, reg);
1844
1845         if (!rt2x00_check_rev(&rt2x00dev->chip, 0x25730)) {
1846                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1847                 return -ENODEV;
1848         }
1849
1850         if (!rt2x00_rf(&rt2x00dev->chip, RF5226) &&
1851             !rt2x00_rf(&rt2x00dev->chip, RF2528) &&
1852             !rt2x00_rf(&rt2x00dev->chip, RF5225) &&
1853             !rt2x00_rf(&rt2x00dev->chip, RF2527)) {
1854                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1855                 return -ENODEV;
1856         }
1857
1858         /*
1859          * Identify default antenna configuration.
1860          */
1861         rt2x00dev->default_ant.tx =
1862             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1863         rt2x00dev->default_ant.rx =
1864             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1865
1866         /*
1867          * Read the Frame type.
1868          */
1869         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1870                 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
1871
1872         /*
1873          * Detect if this device has an hardware controlled radio.
1874          */
1875 #ifdef CONFIG_RT2X00_LIB_RFKILL
1876         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1877                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1878 #endif /* CONFIG_RT2X00_LIB_RFKILL */
1879
1880         /*
1881          * Read frequency offset.
1882          */
1883         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1884         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1885
1886         /*
1887          * Read external LNA informations.
1888          */
1889         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1890
1891         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1892                 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
1893                 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
1894         }
1895
1896         /*
1897          * Store led settings, for correct led behaviour.
1898          */
1899 #ifdef CONFIG_RT2X00_LIB_LEDS
1900         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1901
1902         rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1903         rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1904         if (value == LED_MODE_SIGNAL_STRENGTH)
1905                 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1906                                  LED_TYPE_QUALITY);
1907
1908         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1909         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1910                            rt2x00_get_field16(eeprom,
1911                                               EEPROM_LED_POLARITY_GPIO_0));
1912         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1913                            rt2x00_get_field16(eeprom,
1914                                               EEPROM_LED_POLARITY_GPIO_1));
1915         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1916                            rt2x00_get_field16(eeprom,
1917                                               EEPROM_LED_POLARITY_GPIO_2));
1918         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1919                            rt2x00_get_field16(eeprom,
1920                                               EEPROM_LED_POLARITY_GPIO_3));
1921         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1922                            rt2x00_get_field16(eeprom,
1923                                               EEPROM_LED_POLARITY_GPIO_4));
1924         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1925                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1926         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1927                            rt2x00_get_field16(eeprom,
1928                                               EEPROM_LED_POLARITY_RDY_G));
1929         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1930                            rt2x00_get_field16(eeprom,
1931                                               EEPROM_LED_POLARITY_RDY_A));
1932 #endif /* CONFIG_RT2X00_LIB_LEDS */
1933
1934         return 0;
1935 }
1936
1937 /*
1938  * RF value list for RF2528
1939  * Supports: 2.4 GHz
1940  */
1941 static const struct rf_channel rf_vals_bg_2528[] = {
1942         { 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1943         { 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1944         { 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1945         { 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1946         { 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1947         { 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1948         { 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1949         { 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1950         { 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1951         { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1952         { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1953         { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1954         { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1955         { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1956 };
1957
1958 /*
1959  * RF value list for RF5226
1960  * Supports: 2.4 GHz & 5.2 GHz
1961  */
1962 static const struct rf_channel rf_vals_5226[] = {
1963         { 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1964         { 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1965         { 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1966         { 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1967         { 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1968         { 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1969         { 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1970         { 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1971         { 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1972         { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1973         { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1974         { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1975         { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1976         { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1977
1978         /* 802.11 UNI / HyperLan 2 */
1979         { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
1980         { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
1981         { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
1982         { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
1983         { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
1984         { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
1985         { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
1986         { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
1987
1988         /* 802.11 HyperLan 2 */
1989         { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
1990         { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
1991         { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
1992         { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
1993         { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
1994         { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
1995         { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
1996         { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
1997         { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
1998         { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
1999
2000         /* 802.11 UNII */
2001         { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
2002         { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
2003         { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
2004         { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
2005         { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
2006         { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
2007
2008         /* MMAC(Japan)J52 ch 34,38,42,46 */
2009         { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
2010         { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
2011         { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
2012         { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
2013 };
2014
2015 /*
2016  * RF value list for RF5225 & RF2527
2017  * Supports: 2.4 GHz & 5.2 GHz
2018  */
2019 static const struct rf_channel rf_vals_5225_2527[] = {
2020         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2021         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2022         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2023         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2024         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2025         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2026         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2027         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2028         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2029         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2030         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2031         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2032         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2033         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2034
2035         /* 802.11 UNI / HyperLan 2 */
2036         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2037         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2038         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2039         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2040         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2041         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2042         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2043         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2044
2045         /* 802.11 HyperLan 2 */
2046         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2047         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2048         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2049         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2050         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2051         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2052         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2053         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2054         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2055         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2056
2057         /* 802.11 UNII */
2058         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2059         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2060         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2061         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2062         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2063         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2064
2065         /* MMAC(Japan)J52 ch 34,38,42,46 */
2066         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2067         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2068         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2069         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2070 };
2071
2072
2073 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2074 {
2075         struct hw_mode_spec *spec = &rt2x00dev->spec;
2076         struct channel_info *info;
2077         char *tx_power;
2078         unsigned int i;
2079
2080         /*
2081          * Initialize all hw fields.
2082          */
2083         rt2x00dev->hw->flags =
2084             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2085             IEEE80211_HW_SIGNAL_DBM |
2086             IEEE80211_HW_SUPPORTS_PS |
2087             IEEE80211_HW_PS_NULLFUNC_STACK;
2088         rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
2089
2090         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2091         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2092                                 rt2x00_eeprom_addr(rt2x00dev,
2093                                                    EEPROM_MAC_ADDR_0));
2094
2095         /*
2096          * Initialize hw_mode information.
2097          */
2098         spec->supported_bands = SUPPORT_BAND_2GHZ;
2099         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2100
2101         if (rt2x00_rf(&rt2x00dev->chip, RF2528)) {
2102                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2103                 spec->channels = rf_vals_bg_2528;
2104         } else if (rt2x00_rf(&rt2x00dev->chip, RF5226)) {
2105                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2106                 spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2107                 spec->channels = rf_vals_5226;
2108         } else if (rt2x00_rf(&rt2x00dev->chip, RF2527)) {
2109                 spec->num_channels = 14;
2110                 spec->channels = rf_vals_5225_2527;
2111         } else if (rt2x00_rf(&rt2x00dev->chip, RF5225)) {
2112                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2113                 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2114                 spec->channels = rf_vals_5225_2527;
2115         }
2116
2117         /*
2118          * Create channel information array
2119          */
2120         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2121         if (!info)
2122                 return -ENOMEM;
2123
2124         spec->channels_info = info;
2125
2126         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2127         for (i = 0; i < 14; i++)
2128                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2129
2130         if (spec->num_channels > 14) {
2131                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2132                 for (i = 14; i < spec->num_channels; i++)
2133                         info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2134         }
2135
2136         return 0;
2137 }
2138
2139 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2140 {
2141         int retval;
2142
2143         /*
2144          * Allocate eeprom data.
2145          */
2146         retval = rt73usb_validate_eeprom(rt2x00dev);
2147         if (retval)
2148                 return retval;
2149
2150         retval = rt73usb_init_eeprom(rt2x00dev);
2151         if (retval)
2152                 return retval;
2153
2154         /*
2155          * Initialize hw specifications.
2156          */
2157         retval = rt73usb_probe_hw_mode(rt2x00dev);
2158         if (retval)
2159                 return retval;
2160
2161         /*
2162          * This device requires firmware.
2163          */
2164         __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2165         __set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
2166         if (!modparam_nohwcrypt)
2167                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2168
2169         /*
2170          * Set the rssi offset.
2171          */
2172         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2173
2174         return 0;
2175 }
2176
2177 /*
2178  * IEEE80211 stack callback functions.
2179  */
2180 static int rt73usb_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2181                            const struct ieee80211_tx_queue_params *params)
2182 {
2183         struct rt2x00_dev *rt2x00dev = hw->priv;
2184         struct data_queue *queue;
2185         struct rt2x00_field32 field;
2186         int retval;
2187         u32 reg;
2188         u32 offset;
2189
2190         /*
2191          * First pass the configuration through rt2x00lib, that will
2192          * update the queue settings and validate the input. After that
2193          * we are free to update the registers based on the value
2194          * in the queue parameter.
2195          */
2196         retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2197         if (retval)
2198                 return retval;
2199
2200         /*
2201          * We only need to perform additional register initialization
2202          * for WMM queues/
2203          */
2204         if (queue_idx >= 4)
2205                 return 0;
2206
2207         queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2208
2209         /* Update WMM TXOP register */
2210         offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2211         field.bit_offset = (queue_idx & 1) * 16;
2212         field.bit_mask = 0xffff << field.bit_offset;
2213
2214         rt2x00usb_register_read(rt2x00dev, offset, &reg);
2215         rt2x00_set_field32(&reg, field, queue->txop);
2216         rt2x00usb_register_write(rt2x00dev, offset, reg);
2217
2218         /* Update WMM registers */
2219         field.bit_offset = queue_idx * 4;
2220         field.bit_mask = 0xf << field.bit_offset;
2221
2222         rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, &reg);
2223         rt2x00_set_field32(&reg, field, queue->aifs);
2224         rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2225
2226         rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, &reg);
2227         rt2x00_set_field32(&reg, field, queue->cw_min);
2228         rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2229
2230         rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, &reg);
2231         rt2x00_set_field32(&reg, field, queue->cw_max);
2232         rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2233
2234         return 0;
2235 }
2236
2237 #if 0
2238 /*
2239  * Mac80211 demands get_tsf must be atomic.
2240  * This is not possible for rt73usb since all register access
2241  * functions require sleeping. Untill mac80211 no longer needs
2242  * get_tsf to be atomic, this function should be disabled.
2243  */
2244 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw)
2245 {
2246         struct rt2x00_dev *rt2x00dev = hw->priv;
2247         u64 tsf;
2248         u32 reg;
2249
2250         rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, &reg);
2251         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2252         rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, &reg);
2253         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2254
2255         return tsf;
2256 }
2257 #else
2258 #define rt73usb_get_tsf NULL
2259 #endif
2260
2261 static const struct ieee80211_ops rt73usb_mac80211_ops = {
2262         .tx                     = rt2x00mac_tx,
2263         .start                  = rt2x00mac_start,
2264         .stop                   = rt2x00mac_stop,
2265         .add_interface          = rt2x00mac_add_interface,
2266         .remove_interface       = rt2x00mac_remove_interface,
2267         .config                 = rt2x00mac_config,
2268         .config_interface       = rt2x00mac_config_interface,
2269         .configure_filter       = rt2x00mac_configure_filter,
2270         .set_key                = rt2x00mac_set_key,
2271         .get_stats              = rt2x00mac_get_stats,
2272         .bss_info_changed       = rt2x00mac_bss_info_changed,
2273         .conf_tx                = rt73usb_conf_tx,
2274         .get_tx_stats           = rt2x00mac_get_tx_stats,
2275         .get_tsf                = rt73usb_get_tsf,
2276 };
2277
2278 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2279         .probe_hw               = rt73usb_probe_hw,
2280         .get_firmware_name      = rt73usb_get_firmware_name,
2281         .get_firmware_crc       = rt73usb_get_firmware_crc,
2282         .load_firmware          = rt73usb_load_firmware,
2283         .initialize             = rt2x00usb_initialize,
2284         .uninitialize           = rt2x00usb_uninitialize,
2285         .clear_entry            = rt2x00usb_clear_entry,
2286         .set_device_state       = rt73usb_set_device_state,
2287         .rfkill_poll            = rt73usb_rfkill_poll,
2288         .link_stats             = rt73usb_link_stats,
2289         .reset_tuner            = rt73usb_reset_tuner,
2290         .link_tuner             = rt73usb_link_tuner,
2291         .write_tx_desc          = rt73usb_write_tx_desc,
2292         .write_tx_data          = rt2x00usb_write_tx_data,
2293         .write_beacon           = rt73usb_write_beacon,
2294         .get_tx_data_len        = rt73usb_get_tx_data_len,
2295         .kick_tx_queue          = rt73usb_kick_tx_queue,
2296         .fill_rxdone            = rt73usb_fill_rxdone,
2297         .config_shared_key      = rt73usb_config_shared_key,
2298         .config_pairwise_key    = rt73usb_config_pairwise_key,
2299         .config_filter          = rt73usb_config_filter,
2300         .config_intf            = rt73usb_config_intf,
2301         .config_erp             = rt73usb_config_erp,
2302         .config_ant             = rt73usb_config_ant,
2303         .config                 = rt73usb_config,
2304 };
2305
2306 static const struct data_queue_desc rt73usb_queue_rx = {
2307         .entry_num              = RX_ENTRIES,
2308         .data_size              = DATA_FRAME_SIZE,
2309         .desc_size              = RXD_DESC_SIZE,
2310         .priv_size              = sizeof(struct queue_entry_priv_usb),
2311 };
2312
2313 static const struct data_queue_desc rt73usb_queue_tx = {
2314         .entry_num              = TX_ENTRIES,
2315         .data_size              = DATA_FRAME_SIZE,
2316         .desc_size              = TXD_DESC_SIZE,
2317         .priv_size              = sizeof(struct queue_entry_priv_usb),
2318 };
2319
2320 static const struct data_queue_desc rt73usb_queue_bcn = {
2321         .entry_num              = 4 * BEACON_ENTRIES,
2322         .data_size              = MGMT_FRAME_SIZE,
2323         .desc_size              = TXINFO_SIZE,
2324         .priv_size              = sizeof(struct queue_entry_priv_usb),
2325 };
2326
2327 static const struct rt2x00_ops rt73usb_ops = {
2328         .name           = KBUILD_MODNAME,
2329         .max_sta_intf   = 1,
2330         .max_ap_intf    = 4,
2331         .eeprom_size    = EEPROM_SIZE,
2332         .rf_size        = RF_SIZE,
2333         .tx_queues      = NUM_TX_QUEUES,
2334         .rx             = &rt73usb_queue_rx,
2335         .tx             = &rt73usb_queue_tx,
2336         .bcn            = &rt73usb_queue_bcn,
2337         .lib            = &rt73usb_rt2x00_ops,
2338         .hw             = &rt73usb_mac80211_ops,
2339 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2340         .debugfs        = &rt73usb_rt2x00debug,
2341 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2342 };
2343
2344 /*
2345  * rt73usb module information.
2346  */
2347 static struct usb_device_id rt73usb_device_table[] = {
2348         /* AboCom */
2349         { USB_DEVICE(0x07b8, 0xb21d), USB_DEVICE_DATA(&rt73usb_ops) },
2350         /* Askey */
2351         { USB_DEVICE(0x1690, 0x0722), USB_DEVICE_DATA(&rt73usb_ops) },
2352         /* ASUS */
2353         { USB_DEVICE(0x0b05, 0x1723), USB_DEVICE_DATA(&rt73usb_ops) },
2354         { USB_DEVICE(0x0b05, 0x1724), USB_DEVICE_DATA(&rt73usb_ops) },
2355         /* Belkin */
2356         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt73usb_ops) },
2357         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt73usb_ops) },
2358         { USB_DEVICE(0x050d, 0x905b), USB_DEVICE_DATA(&rt73usb_ops) },
2359         { USB_DEVICE(0x050d, 0x905c), USB_DEVICE_DATA(&rt73usb_ops) },
2360         /* Billionton */
2361         { USB_DEVICE(0x1631, 0xc019), USB_DEVICE_DATA(&rt73usb_ops) },
2362         /* Buffalo */
2363         { USB_DEVICE(0x0411, 0x00f4), USB_DEVICE_DATA(&rt73usb_ops) },
2364         /* CNet */
2365         { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt73usb_ops) },
2366         { USB_DEVICE(0x1371, 0x9032), USB_DEVICE_DATA(&rt73usb_ops) },
2367         /* Conceptronic */
2368         { USB_DEVICE(0x14b2, 0x3c22), USB_DEVICE_DATA(&rt73usb_ops) },
2369         /* Corega */
2370         { USB_DEVICE(0x07aa, 0x002e), USB_DEVICE_DATA(&rt73usb_ops) },
2371         /* D-Link */
2372         { USB_DEVICE(0x07d1, 0x3c03), USB_DEVICE_DATA(&rt73usb_ops) },
2373         { USB_DEVICE(0x07d1, 0x3c04), USB_DEVICE_DATA(&rt73usb_ops) },
2374         { USB_DEVICE(0x07d1, 0x3c06), USB_DEVICE_DATA(&rt73usb_ops) },
2375         { USB_DEVICE(0x07d1, 0x3c07), USB_DEVICE_DATA(&rt73usb_ops) },
2376         /* Gemtek */
2377         { USB_DEVICE(0x15a9, 0x0004), USB_DEVICE_DATA(&rt73usb_ops) },
2378         /* Gigabyte */
2379         { USB_DEVICE(0x1044, 0x8008), USB_DEVICE_DATA(&rt73usb_ops) },
2380         { USB_DEVICE(0x1044, 0x800a), USB_DEVICE_DATA(&rt73usb_ops) },
2381         /* Huawei-3Com */
2382         { USB_DEVICE(0x1472, 0x0009), USB_DEVICE_DATA(&rt73usb_ops) },
2383         /* Hercules */
2384         { USB_DEVICE(0x06f8, 0xe010), USB_DEVICE_DATA(&rt73usb_ops) },
2385         { USB_DEVICE(0x06f8, 0xe020), USB_DEVICE_DATA(&rt73usb_ops) },
2386         /* Linksys */
2387         { USB_DEVICE(0x13b1, 0x0020), USB_DEVICE_DATA(&rt73usb_ops) },
2388         { USB_DEVICE(0x13b1, 0x0023), USB_DEVICE_DATA(&rt73usb_ops) },
2389         { USB_DEVICE(0x13b1, 0x0028), USB_DEVICE_DATA(&rt73usb_ops) },
2390         /* MSI */
2391         { USB_DEVICE(0x0db0, 0x6877), USB_DEVICE_DATA(&rt73usb_ops) },
2392         { USB_DEVICE(0x0db0, 0x6874), USB_DEVICE_DATA(&rt73usb_ops) },
2393         { USB_DEVICE(0x0db0, 0xa861), USB_DEVICE_DATA(&rt73usb_ops) },
2394         { USB_DEVICE(0x0db0, 0xa874), USB_DEVICE_DATA(&rt73usb_ops) },
2395         /* Ralink */
2396         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt73usb_ops) },
2397         { USB_DEVICE(0x148f, 0x2671), USB_DEVICE_DATA(&rt73usb_ops) },
2398         /* Qcom */
2399         { USB_DEVICE(0x18e8, 0x6196), USB_DEVICE_DATA(&rt73usb_ops) },
2400         { USB_DEVICE(0x18e8, 0x6229), USB_DEVICE_DATA(&rt73usb_ops) },
2401         { USB_DEVICE(0x18e8, 0x6238), USB_DEVICE_DATA(&rt73usb_ops) },
2402         /* Senao */
2403         { USB_DEVICE(0x1740, 0x7100), USB_DEVICE_DATA(&rt73usb_ops) },
2404         /* Sitecom */
2405         { USB_DEVICE(0x0df6, 0x9712), USB_DEVICE_DATA(&rt73usb_ops) },
2406         { USB_DEVICE(0x0df6, 0x90ac), USB_DEVICE_DATA(&rt73usb_ops) },
2407         /* Surecom */
2408         { USB_DEVICE(0x0769, 0x31f3), USB_DEVICE_DATA(&rt73usb_ops) },
2409         /* Planex */
2410         { USB_DEVICE(0x2019, 0xab01), USB_DEVICE_DATA(&rt73usb_ops) },
2411         { USB_DEVICE(0x2019, 0xab50), USB_DEVICE_DATA(&rt73usb_ops) },
2412         { 0, }
2413 };
2414
2415 MODULE_AUTHOR(DRV_PROJECT);
2416 MODULE_VERSION(DRV_VERSION);
2417 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2418 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2419 MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2420 MODULE_FIRMWARE(FIRMWARE_RT2571);
2421 MODULE_LICENSE("GPL");
2422
2423 static struct usb_driver rt73usb_driver = {
2424         .name           = KBUILD_MODNAME,
2425         .id_table       = rt73usb_device_table,
2426         .probe          = rt2x00usb_probe,
2427         .disconnect     = rt2x00usb_disconnect,
2428         .suspend        = rt2x00usb_suspend,
2429         .resume         = rt2x00usb_resume,
2430 };
2431
2432 static int __init rt73usb_init(void)
2433 {
2434         return usb_register(&rt73usb_driver);
2435 }
2436
2437 static void __exit rt73usb_exit(void)
2438 {
2439         usb_deregister(&rt73usb_driver);
2440 }
2441
2442 module_init(rt73usb_init);
2443 module_exit(rt73usb_exit);