Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6
[linux-2.6] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/hpet.h>
8 #include <linux/init.h>
9 #include <linux/cpu.h>
10 #include <linux/pm.h>
11 #include <linux/io.h>
12
13 #include <asm/fixmap.h>
14 #include <asm/i8253.h>
15 #include <asm/hpet.h>
16
17 #define HPET_MASK                       CLOCKSOURCE_MASK(32)
18 #define HPET_SHIFT                      22
19
20 /* FSEC = 10^-15
21    NSEC = 10^-9 */
22 #define FSEC_PER_NSEC                   1000000L
23
24 #define HPET_DEV_USED_BIT               2
25 #define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID                  0x8
27 #define HPET_DEV_FSB_CAP                0x1000
28 #define HPET_DEV_PERI_CAP               0x2000
29
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31
32 /*
33  * HPET address is set in acpi/boot.c, when an ACPI entry exists
34  */
35 unsigned long                           hpet_address;
36 unsigned long                           hpet_num_timers;
37 static void __iomem                     *hpet_virt_address;
38
39 struct hpet_dev {
40         struct clock_event_device       evt;
41         unsigned int                    num;
42         int                             cpu;
43         unsigned int                    irq;
44         unsigned int                    flags;
45         char                            name[10];
46 };
47
48 unsigned long hpet_readl(unsigned long a)
49 {
50         return readl(hpet_virt_address + a);
51 }
52
53 static inline void hpet_writel(unsigned long d, unsigned long a)
54 {
55         writel(d, hpet_virt_address + a);
56 }
57
58 #ifdef CONFIG_X86_64
59 #include <asm/pgtable.h>
60 #endif
61
62 static inline void hpet_set_mapping(void)
63 {
64         hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
65 #ifdef CONFIG_X86_64
66         __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
67 #endif
68 }
69
70 static inline void hpet_clear_mapping(void)
71 {
72         iounmap(hpet_virt_address);
73         hpet_virt_address = NULL;
74 }
75
76 /*
77  * HPET command line enable / disable
78  */
79 static int boot_hpet_disable;
80 int hpet_force_user;
81
82 static int __init hpet_setup(char *str)
83 {
84         if (str) {
85                 if (!strncmp("disable", str, 7))
86                         boot_hpet_disable = 1;
87                 if (!strncmp("force", str, 5))
88                         hpet_force_user = 1;
89         }
90         return 1;
91 }
92 __setup("hpet=", hpet_setup);
93
94 static int __init disable_hpet(char *str)
95 {
96         boot_hpet_disable = 1;
97         return 1;
98 }
99 __setup("nohpet", disable_hpet);
100
101 static inline int is_hpet_capable(void)
102 {
103         return !boot_hpet_disable && hpet_address;
104 }
105
106 /*
107  * HPET timer interrupt enable / disable
108  */
109 static int hpet_legacy_int_enabled;
110
111 /**
112  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
113  */
114 int is_hpet_enabled(void)
115 {
116         return is_hpet_capable() && hpet_legacy_int_enabled;
117 }
118 EXPORT_SYMBOL_GPL(is_hpet_enabled);
119
120 /*
121  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
122  * timer 0 and timer 1 in case of RTC emulation.
123  */
124 #ifdef CONFIG_HPET
125
126 static void hpet_reserve_msi_timers(struct hpet_data *hd);
127
128 static void hpet_reserve_platform_timers(unsigned long id)
129 {
130         struct hpet __iomem *hpet = hpet_virt_address;
131         struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
132         unsigned int nrtimers, i;
133         struct hpet_data hd;
134
135         nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
136
137         memset(&hd, 0, sizeof(hd));
138         hd.hd_phys_address      = hpet_address;
139         hd.hd_address           = hpet;
140         hd.hd_nirqs             = nrtimers;
141         hpet_reserve_timer(&hd, 0);
142
143 #ifdef CONFIG_HPET_EMULATE_RTC
144         hpet_reserve_timer(&hd, 1);
145 #endif
146
147         /*
148          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
149          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
150          * don't bother configuring *any* comparator interrupts.
151          */
152         hd.hd_irq[0] = HPET_LEGACY_8254;
153         hd.hd_irq[1] = HPET_LEGACY_RTC;
154
155         for (i = 2; i < nrtimers; timer++, i++) {
156                 hd.hd_irq[i] = (readl(&timer->hpet_config) &
157                         Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
158         }
159
160         hpet_reserve_msi_timers(&hd);
161
162         hpet_alloc(&hd);
163
164 }
165 #else
166 static void hpet_reserve_platform_timers(unsigned long id) { }
167 #endif
168
169 /*
170  * Common hpet info
171  */
172 static unsigned long hpet_period;
173
174 static void hpet_legacy_set_mode(enum clock_event_mode mode,
175                           struct clock_event_device *evt);
176 static int hpet_legacy_next_event(unsigned long delta,
177                            struct clock_event_device *evt);
178
179 /*
180  * The hpet clock event device
181  */
182 static struct clock_event_device hpet_clockevent = {
183         .name           = "hpet",
184         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
185         .set_mode       = hpet_legacy_set_mode,
186         .set_next_event = hpet_legacy_next_event,
187         .shift          = 32,
188         .irq            = 0,
189         .rating         = 50,
190 };
191
192 static void hpet_start_counter(void)
193 {
194         unsigned long cfg = hpet_readl(HPET_CFG);
195
196         cfg &= ~HPET_CFG_ENABLE;
197         hpet_writel(cfg, HPET_CFG);
198         hpet_writel(0, HPET_COUNTER);
199         hpet_writel(0, HPET_COUNTER + 4);
200         cfg |= HPET_CFG_ENABLE;
201         hpet_writel(cfg, HPET_CFG);
202 }
203
204 static void hpet_resume_device(void)
205 {
206         force_hpet_resume();
207 }
208
209 static void hpet_restart_counter(void)
210 {
211         hpet_resume_device();
212         hpet_start_counter();
213 }
214
215 static void hpet_enable_legacy_int(void)
216 {
217         unsigned long cfg = hpet_readl(HPET_CFG);
218
219         cfg |= HPET_CFG_LEGACY;
220         hpet_writel(cfg, HPET_CFG);
221         hpet_legacy_int_enabled = 1;
222 }
223
224 static void hpet_legacy_clockevent_register(void)
225 {
226         /* Start HPET legacy interrupts */
227         hpet_enable_legacy_int();
228
229         /*
230          * The mult factor is defined as (include/linux/clockchips.h)
231          *  mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
232          * hpet_period is in units of femtoseconds (per cycle), so
233          *  mult/2^shift = cyc/ns = 10^6/hpet_period
234          *  mult = (10^6 * 2^shift)/hpet_period
235          *  mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
236          */
237         hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
238                                       hpet_period, hpet_clockevent.shift);
239         /* Calculate the min / max delta */
240         hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
241                                                            &hpet_clockevent);
242         /* 5 usec minimum reprogramming delta. */
243         hpet_clockevent.min_delta_ns = 5000;
244
245         /*
246          * Start hpet with the boot cpu mask and make it
247          * global after the IO_APIC has been initialized.
248          */
249         hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
250         clockevents_register_device(&hpet_clockevent);
251         global_clock_event = &hpet_clockevent;
252         printk(KERN_DEBUG "hpet clockevent registered\n");
253 }
254
255 static int hpet_setup_msi_irq(unsigned int irq);
256
257 static void hpet_set_mode(enum clock_event_mode mode,
258                           struct clock_event_device *evt, int timer)
259 {
260         unsigned long cfg, cmp, now;
261         uint64_t delta;
262
263         switch (mode) {
264         case CLOCK_EVT_MODE_PERIODIC:
265                 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
266                 delta >>= evt->shift;
267                 now = hpet_readl(HPET_COUNTER);
268                 cmp = now + (unsigned long) delta;
269                 cfg = hpet_readl(HPET_Tn_CFG(timer));
270                 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
271                        HPET_TN_SETVAL | HPET_TN_32BIT;
272                 hpet_writel(cfg, HPET_Tn_CFG(timer));
273                 /*
274                  * The first write after writing TN_SETVAL to the
275                  * config register sets the counter value, the second
276                  * write sets the period.
277                  */
278                 hpet_writel(cmp, HPET_Tn_CMP(timer));
279                 udelay(1);
280                 hpet_writel((unsigned long) delta, HPET_Tn_CMP(timer));
281                 break;
282
283         case CLOCK_EVT_MODE_ONESHOT:
284                 cfg = hpet_readl(HPET_Tn_CFG(timer));
285                 cfg &= ~HPET_TN_PERIODIC;
286                 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
287                 hpet_writel(cfg, HPET_Tn_CFG(timer));
288                 break;
289
290         case CLOCK_EVT_MODE_UNUSED:
291         case CLOCK_EVT_MODE_SHUTDOWN:
292                 cfg = hpet_readl(HPET_Tn_CFG(timer));
293                 cfg &= ~HPET_TN_ENABLE;
294                 hpet_writel(cfg, HPET_Tn_CFG(timer));
295                 break;
296
297         case CLOCK_EVT_MODE_RESUME:
298                 if (timer == 0) {
299                         hpet_enable_legacy_int();
300                 } else {
301                         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
302                         hpet_setup_msi_irq(hdev->irq);
303                         disable_irq(hdev->irq);
304                         irq_set_affinity(hdev->irq, cpumask_of_cpu(hdev->cpu));
305                         enable_irq(hdev->irq);
306                 }
307                 break;
308         }
309 }
310
311 static int hpet_next_event(unsigned long delta,
312                            struct clock_event_device *evt, int timer)
313 {
314         u32 cnt;
315
316         cnt = hpet_readl(HPET_COUNTER);
317         cnt += (u32) delta;
318         hpet_writel(cnt, HPET_Tn_CMP(timer));
319
320         /*
321          * We need to read back the CMP register to make sure that
322          * what we wrote hit the chip before we compare it to the
323          * counter.
324          */
325         WARN_ON_ONCE((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt);
326
327         return (s32)((u32)hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
328 }
329
330 static void hpet_legacy_set_mode(enum clock_event_mode mode,
331                         struct clock_event_device *evt)
332 {
333         hpet_set_mode(mode, evt, 0);
334 }
335
336 static int hpet_legacy_next_event(unsigned long delta,
337                         struct clock_event_device *evt)
338 {
339         return hpet_next_event(delta, evt, 0);
340 }
341
342 /*
343  * HPET MSI Support
344  */
345 #ifdef CONFIG_PCI_MSI
346
347 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
348 static struct hpet_dev  *hpet_devs;
349
350 void hpet_msi_unmask(unsigned int irq)
351 {
352         struct hpet_dev *hdev = get_irq_data(irq);
353         unsigned long cfg;
354
355         /* unmask it */
356         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
357         cfg |= HPET_TN_FSB;
358         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
359 }
360
361 void hpet_msi_mask(unsigned int irq)
362 {
363         unsigned long cfg;
364         struct hpet_dev *hdev = get_irq_data(irq);
365
366         /* mask it */
367         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
368         cfg &= ~HPET_TN_FSB;
369         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
370 }
371
372 void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
373 {
374         struct hpet_dev *hdev = get_irq_data(irq);
375
376         hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
377         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
378 }
379
380 void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
381 {
382         struct hpet_dev *hdev = get_irq_data(irq);
383
384         msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
385         msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
386         msg->address_hi = 0;
387 }
388
389 static void hpet_msi_set_mode(enum clock_event_mode mode,
390                                 struct clock_event_device *evt)
391 {
392         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
393         hpet_set_mode(mode, evt, hdev->num);
394 }
395
396 static int hpet_msi_next_event(unsigned long delta,
397                                 struct clock_event_device *evt)
398 {
399         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
400         return hpet_next_event(delta, evt, hdev->num);
401 }
402
403 static int hpet_setup_msi_irq(unsigned int irq)
404 {
405         if (arch_setup_hpet_msi(irq)) {
406                 destroy_irq(irq);
407                 return -EINVAL;
408         }
409         return 0;
410 }
411
412 static int hpet_assign_irq(struct hpet_dev *dev)
413 {
414         unsigned int irq;
415
416         irq = create_irq();
417         if (!irq)
418                 return -EINVAL;
419
420         set_irq_data(irq, dev);
421
422         if (hpet_setup_msi_irq(irq))
423                 return -EINVAL;
424
425         dev->irq = irq;
426         return 0;
427 }
428
429 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
430 {
431         struct hpet_dev *dev = (struct hpet_dev *)data;
432         struct clock_event_device *hevt = &dev->evt;
433
434         if (!hevt->event_handler) {
435                 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
436                                 dev->num);
437                 return IRQ_HANDLED;
438         }
439
440         hevt->event_handler(hevt);
441         return IRQ_HANDLED;
442 }
443
444 static int hpet_setup_irq(struct hpet_dev *dev)
445 {
446
447         if (request_irq(dev->irq, hpet_interrupt_handler,
448                         IRQF_DISABLED|IRQF_NOBALANCING, dev->name, dev))
449                 return -1;
450
451         disable_irq(dev->irq);
452         irq_set_affinity(dev->irq, cpumask_of_cpu(dev->cpu));
453         enable_irq(dev->irq);
454
455         printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
456                          dev->name, dev->irq);
457
458         return 0;
459 }
460
461 /* This should be called in specific @cpu */
462 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
463 {
464         struct clock_event_device *evt = &hdev->evt;
465         uint64_t hpet_freq;
466
467         WARN_ON(cpu != smp_processor_id());
468         if (!(hdev->flags & HPET_DEV_VALID))
469                 return;
470
471         if (hpet_setup_msi_irq(hdev->irq))
472                 return;
473
474         hdev->cpu = cpu;
475         per_cpu(cpu_hpet_dev, cpu) = hdev;
476         evt->name = hdev->name;
477         hpet_setup_irq(hdev);
478         evt->irq = hdev->irq;
479
480         evt->rating = 110;
481         evt->features = CLOCK_EVT_FEAT_ONESHOT;
482         if (hdev->flags & HPET_DEV_PERI_CAP)
483                 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
484
485         evt->set_mode = hpet_msi_set_mode;
486         evt->set_next_event = hpet_msi_next_event;
487         evt->shift = 32;
488
489         /*
490          * The period is a femto seconds value. We need to calculate the
491          * scaled math multiplication factor for nanosecond to hpet tick
492          * conversion.
493          */
494         hpet_freq = 1000000000000000ULL;
495         do_div(hpet_freq, hpet_period);
496         evt->mult = div_sc((unsigned long) hpet_freq,
497                                       NSEC_PER_SEC, evt->shift);
498         /* Calculate the max delta */
499         evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
500         /* 5 usec minimum reprogramming delta. */
501         evt->min_delta_ns = 5000;
502
503         evt->cpumask = cpumask_of_cpu(hdev->cpu);
504         clockevents_register_device(evt);
505 }
506
507 #ifdef CONFIG_HPET
508 /* Reserve at least one timer for userspace (/dev/hpet) */
509 #define RESERVE_TIMERS 1
510 #else
511 #define RESERVE_TIMERS 0
512 #endif
513
514 static void hpet_msi_capability_lookup(unsigned int start_timer)
515 {
516         unsigned int id;
517         unsigned int num_timers;
518         unsigned int num_timers_used = 0;
519         int i;
520
521         id = hpet_readl(HPET_ID);
522
523         num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
524         num_timers++; /* Value read out starts from 0 */
525
526         hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
527         if (!hpet_devs)
528                 return;
529
530         hpet_num_timers = num_timers;
531
532         for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
533                 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
534                 unsigned long cfg = hpet_readl(HPET_Tn_CFG(i));
535
536                 /* Only consider HPET timer with MSI support */
537                 if (!(cfg & HPET_TN_FSB_CAP))
538                         continue;
539
540                 hdev->flags = 0;
541                 if (cfg & HPET_TN_PERIODIC_CAP)
542                         hdev->flags |= HPET_DEV_PERI_CAP;
543                 hdev->num = i;
544
545                 sprintf(hdev->name, "hpet%d", i);
546                 if (hpet_assign_irq(hdev))
547                         continue;
548
549                 hdev->flags |= HPET_DEV_FSB_CAP;
550                 hdev->flags |= HPET_DEV_VALID;
551                 num_timers_used++;
552                 if (num_timers_used == num_possible_cpus())
553                         break;
554         }
555
556         printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
557                 num_timers, num_timers_used);
558 }
559
560 #ifdef CONFIG_HPET
561 static void hpet_reserve_msi_timers(struct hpet_data *hd)
562 {
563         int i;
564
565         if (!hpet_devs)
566                 return;
567
568         for (i = 0; i < hpet_num_timers; i++) {
569                 struct hpet_dev *hdev = &hpet_devs[i];
570
571                 if (!(hdev->flags & HPET_DEV_VALID))
572                         continue;
573
574                 hd->hd_irq[hdev->num] = hdev->irq;
575                 hpet_reserve_timer(hd, hdev->num);
576         }
577 }
578 #endif
579
580 static struct hpet_dev *hpet_get_unused_timer(void)
581 {
582         int i;
583
584         if (!hpet_devs)
585                 return NULL;
586
587         for (i = 0; i < hpet_num_timers; i++) {
588                 struct hpet_dev *hdev = &hpet_devs[i];
589
590                 if (!(hdev->flags & HPET_DEV_VALID))
591                         continue;
592                 if (test_and_set_bit(HPET_DEV_USED_BIT,
593                         (unsigned long *)&hdev->flags))
594                         continue;
595                 return hdev;
596         }
597         return NULL;
598 }
599
600 struct hpet_work_struct {
601         struct delayed_work work;
602         struct completion complete;
603 };
604
605 static void hpet_work(struct work_struct *w)
606 {
607         struct hpet_dev *hdev;
608         int cpu = smp_processor_id();
609         struct hpet_work_struct *hpet_work;
610
611         hpet_work = container_of(w, struct hpet_work_struct, work.work);
612
613         hdev = hpet_get_unused_timer();
614         if (hdev)
615                 init_one_hpet_msi_clockevent(hdev, cpu);
616
617         complete(&hpet_work->complete);
618 }
619
620 static int hpet_cpuhp_notify(struct notifier_block *n,
621                 unsigned long action, void *hcpu)
622 {
623         unsigned long cpu = (unsigned long)hcpu;
624         struct hpet_work_struct work;
625         struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
626
627         switch (action & 0xf) {
628         case CPU_ONLINE:
629                 INIT_DELAYED_WORK(&work.work, hpet_work);
630                 init_completion(&work.complete);
631                 /* FIXME: add schedule_work_on() */
632                 schedule_delayed_work_on(cpu, &work.work, 0);
633                 wait_for_completion(&work.complete);
634                 break;
635         case CPU_DEAD:
636                 if (hdev) {
637                         free_irq(hdev->irq, hdev);
638                         hdev->flags &= ~HPET_DEV_USED;
639                         per_cpu(cpu_hpet_dev, cpu) = NULL;
640                 }
641                 break;
642         }
643         return NOTIFY_OK;
644 }
645 #else
646
647 static int hpet_setup_msi_irq(unsigned int irq)
648 {
649         return 0;
650 }
651 static void hpet_msi_capability_lookup(unsigned int start_timer)
652 {
653         return;
654 }
655
656 #ifdef CONFIG_HPET
657 static void hpet_reserve_msi_timers(struct hpet_data *hd)
658 {
659         return;
660 }
661 #endif
662
663 static int hpet_cpuhp_notify(struct notifier_block *n,
664                 unsigned long action, void *hcpu)
665 {
666         return NOTIFY_OK;
667 }
668
669 #endif
670
671 /*
672  * Clock source related code
673  */
674 static cycle_t read_hpet(void)
675 {
676         return (cycle_t)hpet_readl(HPET_COUNTER);
677 }
678
679 #ifdef CONFIG_X86_64
680 static cycle_t __vsyscall_fn vread_hpet(void)
681 {
682         return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
683 }
684 #endif
685
686 static struct clocksource clocksource_hpet = {
687         .name           = "hpet",
688         .rating         = 250,
689         .read           = read_hpet,
690         .mask           = HPET_MASK,
691         .shift          = HPET_SHIFT,
692         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
693         .resume         = hpet_restart_counter,
694 #ifdef CONFIG_X86_64
695         .vread          = vread_hpet,
696 #endif
697 };
698
699 static int hpet_clocksource_register(void)
700 {
701         u64 start, now;
702         cycle_t t1;
703
704         /* Start the counter */
705         hpet_start_counter();
706
707         /* Verify whether hpet counter works */
708         t1 = read_hpet();
709         rdtscll(start);
710
711         /*
712          * We don't know the TSC frequency yet, but waiting for
713          * 200000 TSC cycles is safe:
714          * 4 GHz == 50us
715          * 1 GHz == 200us
716          */
717         do {
718                 rep_nop();
719                 rdtscll(now);
720         } while ((now - start) < 200000UL);
721
722         if (t1 == read_hpet()) {
723                 printk(KERN_WARNING
724                        "HPET counter not counting. HPET disabled\n");
725                 return -ENODEV;
726         }
727
728         /*
729          * The definition of mult is (include/linux/clocksource.h)
730          * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
731          * so we first need to convert hpet_period to ns/cyc units:
732          *  mult/2^shift = ns/cyc = hpet_period/10^6
733          *  mult = (hpet_period * 2^shift)/10^6
734          *  mult = (hpet_period << shift)/FSEC_PER_NSEC
735          */
736         clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
737
738         clocksource_register(&clocksource_hpet);
739
740         return 0;
741 }
742
743 /**
744  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
745  */
746 int __init hpet_enable(void)
747 {
748         unsigned long id;
749         int i;
750
751         if (!is_hpet_capable())
752                 return 0;
753
754         hpet_set_mapping();
755
756         /*
757          * Read the period and check for a sane value:
758          */
759         hpet_period = hpet_readl(HPET_PERIOD);
760
761         /*
762          * AMD SB700 based systems with spread spectrum enabled use a
763          * SMM based HPET emulation to provide proper frequency
764          * setting. The SMM code is initialized with the first HPET
765          * register access and takes some time to complete. During
766          * this time the config register reads 0xffffffff. We check
767          * for max. 1000 loops whether the config register reads a non
768          * 0xffffffff value to make sure that HPET is up and running
769          * before we go further. A counting loop is safe, as the HPET
770          * access takes thousands of CPU cycles. On non SB700 based
771          * machines this check is only done once and has no side
772          * effects.
773          */
774         for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
775                 if (i == 1000) {
776                         printk(KERN_WARNING
777                                "HPET config register value = 0xFFFFFFFF. "
778                                "Disabling HPET\n");
779                         goto out_nohpet;
780                 }
781         }
782
783         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
784                 goto out_nohpet;
785
786         /*
787          * Read the HPET ID register to retrieve the IRQ routing
788          * information and the number of channels
789          */
790         id = hpet_readl(HPET_ID);
791
792 #ifdef CONFIG_HPET_EMULATE_RTC
793         /*
794          * The legacy routing mode needs at least two channels, tick timer
795          * and the rtc emulation channel.
796          */
797         if (!(id & HPET_ID_NUMBER))
798                 goto out_nohpet;
799 #endif
800
801         if (hpet_clocksource_register())
802                 goto out_nohpet;
803
804         if (id & HPET_ID_LEGSUP) {
805                 hpet_legacy_clockevent_register();
806                 hpet_msi_capability_lookup(2);
807                 return 1;
808         }
809         hpet_msi_capability_lookup(0);
810         return 0;
811
812 out_nohpet:
813         hpet_clear_mapping();
814         boot_hpet_disable = 1;
815         return 0;
816 }
817
818 /*
819  * Needs to be late, as the reserve_timer code calls kalloc !
820  *
821  * Not a problem on i386 as hpet_enable is called from late_time_init,
822  * but on x86_64 it is necessary !
823  */
824 static __init int hpet_late_init(void)
825 {
826         int cpu;
827
828         if (boot_hpet_disable)
829                 return -ENODEV;
830
831         if (!hpet_address) {
832                 if (!force_hpet_address)
833                         return -ENODEV;
834
835                 hpet_address = force_hpet_address;
836                 hpet_enable();
837                 if (!hpet_virt_address)
838                         return -ENODEV;
839         }
840
841         hpet_reserve_platform_timers(hpet_readl(HPET_ID));
842
843         for_each_online_cpu(cpu) {
844                 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
845         }
846
847         /* This notifier should be called after workqueue is ready */
848         hotcpu_notifier(hpet_cpuhp_notify, -20);
849
850         return 0;
851 }
852 fs_initcall(hpet_late_init);
853
854 void hpet_disable(void)
855 {
856         if (is_hpet_capable()) {
857                 unsigned long cfg = hpet_readl(HPET_CFG);
858
859                 if (hpet_legacy_int_enabled) {
860                         cfg &= ~HPET_CFG_LEGACY;
861                         hpet_legacy_int_enabled = 0;
862                 }
863                 cfg &= ~HPET_CFG_ENABLE;
864                 hpet_writel(cfg, HPET_CFG);
865         }
866 }
867
868 #ifdef CONFIG_HPET_EMULATE_RTC
869
870 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
871  * is enabled, we support RTC interrupt functionality in software.
872  * RTC has 3 kinds of interrupts:
873  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
874  *    is updated
875  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
876  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
877  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
878  * (1) and (2) above are implemented using polling at a frequency of
879  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
880  * overhead. (DEFAULT_RTC_INT_FREQ)
881  * For (3), we use interrupts at 64Hz or user specified periodic
882  * frequency, whichever is higher.
883  */
884 #include <linux/mc146818rtc.h>
885 #include <linux/rtc.h>
886 #include <asm/rtc.h>
887
888 #define DEFAULT_RTC_INT_FREQ    64
889 #define DEFAULT_RTC_SHIFT       6
890 #define RTC_NUM_INTS            1
891
892 static unsigned long hpet_rtc_flags;
893 static int hpet_prev_update_sec;
894 static struct rtc_time hpet_alarm_time;
895 static unsigned long hpet_pie_count;
896 static unsigned long hpet_t1_cmp;
897 static unsigned long hpet_default_delta;
898 static unsigned long hpet_pie_delta;
899 static unsigned long hpet_pie_limit;
900
901 static rtc_irq_handler irq_handler;
902
903 /*
904  * Registers a IRQ handler.
905  */
906 int hpet_register_irq_handler(rtc_irq_handler handler)
907 {
908         if (!is_hpet_enabled())
909                 return -ENODEV;
910         if (irq_handler)
911                 return -EBUSY;
912
913         irq_handler = handler;
914
915         return 0;
916 }
917 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
918
919 /*
920  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
921  * and does cleanup.
922  */
923 void hpet_unregister_irq_handler(rtc_irq_handler handler)
924 {
925         if (!is_hpet_enabled())
926                 return;
927
928         irq_handler = NULL;
929         hpet_rtc_flags = 0;
930 }
931 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
932
933 /*
934  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
935  * is not supported by all HPET implementations for timer 1.
936  *
937  * hpet_rtc_timer_init() is called when the rtc is initialized.
938  */
939 int hpet_rtc_timer_init(void)
940 {
941         unsigned long cfg, cnt, delta, flags;
942
943         if (!is_hpet_enabled())
944                 return 0;
945
946         if (!hpet_default_delta) {
947                 uint64_t clc;
948
949                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
950                 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
951                 hpet_default_delta = (unsigned long) clc;
952         }
953
954         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
955                 delta = hpet_default_delta;
956         else
957                 delta = hpet_pie_delta;
958
959         local_irq_save(flags);
960
961         cnt = delta + hpet_readl(HPET_COUNTER);
962         hpet_writel(cnt, HPET_T1_CMP);
963         hpet_t1_cmp = cnt;
964
965         cfg = hpet_readl(HPET_T1_CFG);
966         cfg &= ~HPET_TN_PERIODIC;
967         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
968         hpet_writel(cfg, HPET_T1_CFG);
969
970         local_irq_restore(flags);
971
972         return 1;
973 }
974 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
975
976 /*
977  * The functions below are called from rtc driver.
978  * Return 0 if HPET is not being used.
979  * Otherwise do the necessary changes and return 1.
980  */
981 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
982 {
983         if (!is_hpet_enabled())
984                 return 0;
985
986         hpet_rtc_flags &= ~bit_mask;
987         return 1;
988 }
989 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
990
991 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
992 {
993         unsigned long oldbits = hpet_rtc_flags;
994
995         if (!is_hpet_enabled())
996                 return 0;
997
998         hpet_rtc_flags |= bit_mask;
999
1000         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1001                 hpet_prev_update_sec = -1;
1002
1003         if (!oldbits)
1004                 hpet_rtc_timer_init();
1005
1006         return 1;
1007 }
1008 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1009
1010 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1011                         unsigned char sec)
1012 {
1013         if (!is_hpet_enabled())
1014                 return 0;
1015
1016         hpet_alarm_time.tm_hour = hrs;
1017         hpet_alarm_time.tm_min = min;
1018         hpet_alarm_time.tm_sec = sec;
1019
1020         return 1;
1021 }
1022 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1023
1024 int hpet_set_periodic_freq(unsigned long freq)
1025 {
1026         uint64_t clc;
1027
1028         if (!is_hpet_enabled())
1029                 return 0;
1030
1031         if (freq <= DEFAULT_RTC_INT_FREQ)
1032                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1033         else {
1034                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1035                 do_div(clc, freq);
1036                 clc >>= hpet_clockevent.shift;
1037                 hpet_pie_delta = (unsigned long) clc;
1038         }
1039         return 1;
1040 }
1041 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1042
1043 int hpet_rtc_dropped_irq(void)
1044 {
1045         return is_hpet_enabled();
1046 }
1047 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1048
1049 static void hpet_rtc_timer_reinit(void)
1050 {
1051         unsigned long cfg, delta;
1052         int lost_ints = -1;
1053
1054         if (unlikely(!hpet_rtc_flags)) {
1055                 cfg = hpet_readl(HPET_T1_CFG);
1056                 cfg &= ~HPET_TN_ENABLE;
1057                 hpet_writel(cfg, HPET_T1_CFG);
1058                 return;
1059         }
1060
1061         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1062                 delta = hpet_default_delta;
1063         else
1064                 delta = hpet_pie_delta;
1065
1066         /*
1067          * Increment the comparator value until we are ahead of the
1068          * current count.
1069          */
1070         do {
1071                 hpet_t1_cmp += delta;
1072                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1073                 lost_ints++;
1074         } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
1075
1076         if (lost_ints) {
1077                 if (hpet_rtc_flags & RTC_PIE)
1078                         hpet_pie_count += lost_ints;
1079                 if (printk_ratelimit())
1080                         printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1081                                 lost_ints);
1082         }
1083 }
1084
1085 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1086 {
1087         struct rtc_time curr_time;
1088         unsigned long rtc_int_flag = 0;
1089
1090         hpet_rtc_timer_reinit();
1091         memset(&curr_time, 0, sizeof(struct rtc_time));
1092
1093         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1094                 get_rtc_time(&curr_time);
1095
1096         if (hpet_rtc_flags & RTC_UIE &&
1097             curr_time.tm_sec != hpet_prev_update_sec) {
1098                 if (hpet_prev_update_sec >= 0)
1099                         rtc_int_flag = RTC_UF;
1100                 hpet_prev_update_sec = curr_time.tm_sec;
1101         }
1102
1103         if (hpet_rtc_flags & RTC_PIE &&
1104             ++hpet_pie_count >= hpet_pie_limit) {
1105                 rtc_int_flag |= RTC_PF;
1106                 hpet_pie_count = 0;
1107         }
1108
1109         if (hpet_rtc_flags & RTC_AIE &&
1110             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1111             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1112             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1113                         rtc_int_flag |= RTC_AF;
1114
1115         if (rtc_int_flag) {
1116                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1117                 if (irq_handler)
1118                         irq_handler(rtc_int_flag, dev_id);
1119         }
1120         return IRQ_HANDLED;
1121 }
1122 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1123 #endif