Merge branch 'for-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/dvrabel/uwb
[linux-2.6] / drivers / mtd / onenand / onenand_base.c
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2007 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  *  Credits:
8  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
9  *      auto-placement support, read-while load support, various fixes
10  *      Copyright (C) Nokia Corporation, 2007
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/interrupt.h>
23 #include <linux/jiffies.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/onenand.h>
26 #include <linux/mtd/partitions.h>
27
28 #include <asm/io.h>
29
30 /**
31  * onenand_oob_64 - oob info for large (2KB) page
32  */
33 static struct nand_ecclayout onenand_oob_64 = {
34         .eccbytes       = 20,
35         .eccpos         = {
36                 8, 9, 10, 11, 12,
37                 24, 25, 26, 27, 28,
38                 40, 41, 42, 43, 44,
39                 56, 57, 58, 59, 60,
40                 },
41         .oobfree        = {
42                 {2, 3}, {14, 2}, {18, 3}, {30, 2},
43                 {34, 3}, {46, 2}, {50, 3}, {62, 2}
44         }
45 };
46
47 /**
48  * onenand_oob_32 - oob info for middle (1KB) page
49  */
50 static struct nand_ecclayout onenand_oob_32 = {
51         .eccbytes       = 10,
52         .eccpos         = {
53                 8, 9, 10, 11, 12,
54                 24, 25, 26, 27, 28,
55                 },
56         .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
57 };
58
59 static const unsigned char ffchars[] = {
60         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
61         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
62         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
63         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
64         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
65         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
66         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
67         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
68 };
69
70 /**
71  * onenand_readw - [OneNAND Interface] Read OneNAND register
72  * @param addr          address to read
73  *
74  * Read OneNAND register
75  */
76 static unsigned short onenand_readw(void __iomem *addr)
77 {
78         return readw(addr);
79 }
80
81 /**
82  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
83  * @param value         value to write
84  * @param addr          address to write
85  *
86  * Write OneNAND register with value
87  */
88 static void onenand_writew(unsigned short value, void __iomem *addr)
89 {
90         writew(value, addr);
91 }
92
93 /**
94  * onenand_block_address - [DEFAULT] Get block address
95  * @param this          onenand chip data structure
96  * @param block         the block
97  * @return              translated block address if DDP, otherwise same
98  *
99  * Setup Start Address 1 Register (F100h)
100  */
101 static int onenand_block_address(struct onenand_chip *this, int block)
102 {
103         /* Device Flash Core select, NAND Flash Block Address */
104         if (block & this->density_mask)
105                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
106
107         return block;
108 }
109
110 /**
111  * onenand_bufferram_address - [DEFAULT] Get bufferram address
112  * @param this          onenand chip data structure
113  * @param block         the block
114  * @return              set DBS value if DDP, otherwise 0
115  *
116  * Setup Start Address 2 Register (F101h) for DDP
117  */
118 static int onenand_bufferram_address(struct onenand_chip *this, int block)
119 {
120         /* Device BufferRAM Select */
121         if (block & this->density_mask)
122                 return ONENAND_DDP_CHIP1;
123
124         return ONENAND_DDP_CHIP0;
125 }
126
127 /**
128  * onenand_page_address - [DEFAULT] Get page address
129  * @param page          the page address
130  * @param sector        the sector address
131  * @return              combined page and sector address
132  *
133  * Setup Start Address 8 Register (F107h)
134  */
135 static int onenand_page_address(int page, int sector)
136 {
137         /* Flash Page Address, Flash Sector Address */
138         int fpa, fsa;
139
140         fpa = page & ONENAND_FPA_MASK;
141         fsa = sector & ONENAND_FSA_MASK;
142
143         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
144 }
145
146 /**
147  * onenand_buffer_address - [DEFAULT] Get buffer address
148  * @param dataram1      DataRAM index
149  * @param sectors       the sector address
150  * @param count         the number of sectors
151  * @return              the start buffer value
152  *
153  * Setup Start Buffer Register (F200h)
154  */
155 static int onenand_buffer_address(int dataram1, int sectors, int count)
156 {
157         int bsa, bsc;
158
159         /* BufferRAM Sector Address */
160         bsa = sectors & ONENAND_BSA_MASK;
161
162         if (dataram1)
163                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
164         else
165                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
166
167         /* BufferRAM Sector Count */
168         bsc = count & ONENAND_BSC_MASK;
169
170         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
171 }
172
173 /**
174  * onenand_get_density - [DEFAULT] Get OneNAND density
175  * @param dev_id        OneNAND device ID
176  *
177  * Get OneNAND density from device ID
178  */
179 static inline int onenand_get_density(int dev_id)
180 {
181         int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
182         return (density & ONENAND_DEVICE_DENSITY_MASK);
183 }
184
185 /**
186  * onenand_command - [DEFAULT] Send command to OneNAND device
187  * @param mtd           MTD device structure
188  * @param cmd           the command to be sent
189  * @param addr          offset to read from or write to
190  * @param len           number of bytes to read or write
191  *
192  * Send command to OneNAND device. This function is used for middle/large page
193  * devices (1KB/2KB Bytes per page)
194  */
195 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
196 {
197         struct onenand_chip *this = mtd->priv;
198         int value, block, page;
199
200         /* Address translation */
201         switch (cmd) {
202         case ONENAND_CMD_UNLOCK:
203         case ONENAND_CMD_LOCK:
204         case ONENAND_CMD_LOCK_TIGHT:
205         case ONENAND_CMD_UNLOCK_ALL:
206                 block = -1;
207                 page = -1;
208                 break;
209
210         case ONENAND_CMD_ERASE:
211         case ONENAND_CMD_BUFFERRAM:
212         case ONENAND_CMD_OTP_ACCESS:
213                 block = (int) (addr >> this->erase_shift);
214                 page = -1;
215                 break;
216
217         default:
218                 block = (int) (addr >> this->erase_shift);
219                 page = (int) (addr >> this->page_shift);
220
221                 if (ONENAND_IS_2PLANE(this)) {
222                         /* Make the even block number */
223                         block &= ~1;
224                         /* Is it the odd plane? */
225                         if (addr & this->writesize)
226                                 block++;
227                         page >>= 1;
228                 }
229                 page &= this->page_mask;
230                 break;
231         }
232
233         /* NOTE: The setting order of the registers is very important! */
234         if (cmd == ONENAND_CMD_BUFFERRAM) {
235                 /* Select DataRAM for DDP */
236                 value = onenand_bufferram_address(this, block);
237                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
238
239                 if (ONENAND_IS_2PLANE(this))
240                         /* It is always BufferRAM0 */
241                         ONENAND_SET_BUFFERRAM0(this);
242                 else
243                         /* Switch to the next data buffer */
244                         ONENAND_SET_NEXT_BUFFERRAM(this);
245
246                 return 0;
247         }
248
249         if (block != -1) {
250                 /* Write 'DFS, FBA' of Flash */
251                 value = onenand_block_address(this, block);
252                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
253
254                 /* Select DataRAM for DDP */
255                 value = onenand_bufferram_address(this, block);
256                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
257         }
258
259         if (page != -1) {
260                 /* Now we use page size operation */
261                 int sectors = 4, count = 4;
262                 int dataram;
263
264                 switch (cmd) {
265                 case ONENAND_CMD_READ:
266                 case ONENAND_CMD_READOOB:
267                         dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
268                         break;
269
270                 default:
271                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
272                                 cmd = ONENAND_CMD_2X_PROG;
273                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
274                         break;
275                 }
276
277                 /* Write 'FPA, FSA' of Flash */
278                 value = onenand_page_address(page, sectors);
279                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
280
281                 /* Write 'BSA, BSC' of DataRAM */
282                 value = onenand_buffer_address(dataram, sectors, count);
283                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
284         }
285
286         /* Interrupt clear */
287         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
288
289         /* Write command */
290         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
291
292         return 0;
293 }
294
295 /**
296  * onenand_wait - [DEFAULT] wait until the command is done
297  * @param mtd           MTD device structure
298  * @param state         state to select the max. timeout value
299  *
300  * Wait for command done. This applies to all OneNAND command
301  * Read can take up to 30us, erase up to 2ms and program up to 350us
302  * according to general OneNAND specs
303  */
304 static int onenand_wait(struct mtd_info *mtd, int state)
305 {
306         struct onenand_chip * this = mtd->priv;
307         unsigned long timeout;
308         unsigned int flags = ONENAND_INT_MASTER;
309         unsigned int interrupt = 0;
310         unsigned int ctrl;
311
312         /* The 20 msec is enough */
313         timeout = jiffies + msecs_to_jiffies(20);
314         while (time_before(jiffies, timeout)) {
315                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
316
317                 if (interrupt & flags)
318                         break;
319
320                 if (state != FL_READING)
321                         cond_resched();
322         }
323         /* To get correct interrupt status in timeout case */
324         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
325
326         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
327
328         /*
329          * In the Spec. it checks the controller status first
330          * However if you get the correct information in case of
331          * power off recovery (POR) test, it should read ECC status first
332          */
333         if (interrupt & ONENAND_INT_READ) {
334                 int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
335                 if (ecc) {
336                         if (ecc & ONENAND_ECC_2BIT_ALL) {
337                                 printk(KERN_ERR "onenand_wait: ECC error = 0x%04x\n", ecc);
338                                 mtd->ecc_stats.failed++;
339                                 return -EBADMSG;
340                         } else if (ecc & ONENAND_ECC_1BIT_ALL) {
341                                 printk(KERN_INFO "onenand_wait: correctable ECC error = 0x%04x\n", ecc);
342                                 mtd->ecc_stats.corrected++;
343                         }
344                 }
345         } else if (state == FL_READING) {
346                 printk(KERN_ERR "onenand_wait: read timeout! ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
347                 return -EIO;
348         }
349
350         /* If there's controller error, it's a real error */
351         if (ctrl & ONENAND_CTRL_ERROR) {
352                 printk(KERN_ERR "onenand_wait: controller error = 0x%04x\n",
353                         ctrl);
354                 if (ctrl & ONENAND_CTRL_LOCK)
355                         printk(KERN_ERR "onenand_wait: it's locked error.\n");
356                 return -EIO;
357         }
358
359         return 0;
360 }
361
362 /*
363  * onenand_interrupt - [DEFAULT] onenand interrupt handler
364  * @param irq           onenand interrupt number
365  * @param dev_id        interrupt data
366  *
367  * complete the work
368  */
369 static irqreturn_t onenand_interrupt(int irq, void *data)
370 {
371         struct onenand_chip *this = data;
372
373         /* To handle shared interrupt */
374         if (!this->complete.done)
375                 complete(&this->complete);
376
377         return IRQ_HANDLED;
378 }
379
380 /*
381  * onenand_interrupt_wait - [DEFAULT] wait until the command is done
382  * @param mtd           MTD device structure
383  * @param state         state to select the max. timeout value
384  *
385  * Wait for command done.
386  */
387 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
388 {
389         struct onenand_chip *this = mtd->priv;
390
391         wait_for_completion(&this->complete);
392
393         return onenand_wait(mtd, state);
394 }
395
396 /*
397  * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
398  * @param mtd           MTD device structure
399  * @param state         state to select the max. timeout value
400  *
401  * Try interrupt based wait (It is used one-time)
402  */
403 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
404 {
405         struct onenand_chip *this = mtd->priv;
406         unsigned long remain, timeout;
407
408         /* We use interrupt wait first */
409         this->wait = onenand_interrupt_wait;
410
411         timeout = msecs_to_jiffies(100);
412         remain = wait_for_completion_timeout(&this->complete, timeout);
413         if (!remain) {
414                 printk(KERN_INFO "OneNAND: There's no interrupt. "
415                                 "We use the normal wait\n");
416
417                 /* Release the irq */
418                 free_irq(this->irq, this);
419
420                 this->wait = onenand_wait;
421         }
422
423         return onenand_wait(mtd, state);
424 }
425
426 /*
427  * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
428  * @param mtd           MTD device structure
429  *
430  * There's two method to wait onenand work
431  * 1. polling - read interrupt status register
432  * 2. interrupt - use the kernel interrupt method
433  */
434 static void onenand_setup_wait(struct mtd_info *mtd)
435 {
436         struct onenand_chip *this = mtd->priv;
437         int syscfg;
438
439         init_completion(&this->complete);
440
441         if (this->irq <= 0) {
442                 this->wait = onenand_wait;
443                 return;
444         }
445
446         if (request_irq(this->irq, &onenand_interrupt,
447                                 IRQF_SHARED, "onenand", this)) {
448                 /* If we can't get irq, use the normal wait */
449                 this->wait = onenand_wait;
450                 return;
451         }
452
453         /* Enable interrupt */
454         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
455         syscfg |= ONENAND_SYS_CFG1_IOBE;
456         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
457
458         this->wait = onenand_try_interrupt_wait;
459 }
460
461 /**
462  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
463  * @param mtd           MTD data structure
464  * @param area          BufferRAM area
465  * @return              offset given area
466  *
467  * Return BufferRAM offset given area
468  */
469 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
470 {
471         struct onenand_chip *this = mtd->priv;
472
473         if (ONENAND_CURRENT_BUFFERRAM(this)) {
474                 /* Note: the 'this->writesize' is a real page size */
475                 if (area == ONENAND_DATARAM)
476                         return this->writesize;
477                 if (area == ONENAND_SPARERAM)
478                         return mtd->oobsize;
479         }
480
481         return 0;
482 }
483
484 /**
485  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
486  * @param mtd           MTD data structure
487  * @param area          BufferRAM area
488  * @param buffer        the databuffer to put/get data
489  * @param offset        offset to read from or write to
490  * @param count         number of bytes to read/write
491  *
492  * Read the BufferRAM area
493  */
494 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
495                 unsigned char *buffer, int offset, size_t count)
496 {
497         struct onenand_chip *this = mtd->priv;
498         void __iomem *bufferram;
499
500         bufferram = this->base + area;
501
502         bufferram += onenand_bufferram_offset(mtd, area);
503
504         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
505                 unsigned short word;
506
507                 /* Align with word(16-bit) size */
508                 count--;
509
510                 /* Read word and save byte */
511                 word = this->read_word(bufferram + offset + count);
512                 buffer[count] = (word & 0xff);
513         }
514
515         memcpy(buffer, bufferram + offset, count);
516
517         return 0;
518 }
519
520 /**
521  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
522  * @param mtd           MTD data structure
523  * @param area          BufferRAM area
524  * @param buffer        the databuffer to put/get data
525  * @param offset        offset to read from or write to
526  * @param count         number of bytes to read/write
527  *
528  * Read the BufferRAM area with Sync. Burst Mode
529  */
530 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
531                 unsigned char *buffer, int offset, size_t count)
532 {
533         struct onenand_chip *this = mtd->priv;
534         void __iomem *bufferram;
535
536         bufferram = this->base + area;
537
538         bufferram += onenand_bufferram_offset(mtd, area);
539
540         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
541
542         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
543                 unsigned short word;
544
545                 /* Align with word(16-bit) size */
546                 count--;
547
548                 /* Read word and save byte */
549                 word = this->read_word(bufferram + offset + count);
550                 buffer[count] = (word & 0xff);
551         }
552
553         memcpy(buffer, bufferram + offset, count);
554
555         this->mmcontrol(mtd, 0);
556
557         return 0;
558 }
559
560 /**
561  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
562  * @param mtd           MTD data structure
563  * @param area          BufferRAM area
564  * @param buffer        the databuffer to put/get data
565  * @param offset        offset to read from or write to
566  * @param count         number of bytes to read/write
567  *
568  * Write the BufferRAM area
569  */
570 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
571                 const unsigned char *buffer, int offset, size_t count)
572 {
573         struct onenand_chip *this = mtd->priv;
574         void __iomem *bufferram;
575
576         bufferram = this->base + area;
577
578         bufferram += onenand_bufferram_offset(mtd, area);
579
580         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
581                 unsigned short word;
582                 int byte_offset;
583
584                 /* Align with word(16-bit) size */
585                 count--;
586
587                 /* Calculate byte access offset */
588                 byte_offset = offset + count;
589
590                 /* Read word and save byte */
591                 word = this->read_word(bufferram + byte_offset);
592                 word = (word & ~0xff) | buffer[count];
593                 this->write_word(word, bufferram + byte_offset);
594         }
595
596         memcpy(bufferram + offset, buffer, count);
597
598         return 0;
599 }
600
601 /**
602  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
603  * @param mtd           MTD data structure
604  * @param addr          address to check
605  * @return              blockpage address
606  *
607  * Get blockpage address at 2x program mode
608  */
609 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
610 {
611         struct onenand_chip *this = mtd->priv;
612         int blockpage, block, page;
613
614         /* Calculate the even block number */
615         block = (int) (addr >> this->erase_shift) & ~1;
616         /* Is it the odd plane? */
617         if (addr & this->writesize)
618                 block++;
619         page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
620         blockpage = (block << 7) | page;
621
622         return blockpage;
623 }
624
625 /**
626  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
627  * @param mtd           MTD data structure
628  * @param addr          address to check
629  * @return              1 if there are valid data, otherwise 0
630  *
631  * Check bufferram if there is data we required
632  */
633 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
634 {
635         struct onenand_chip *this = mtd->priv;
636         int blockpage, found = 0;
637         unsigned int i;
638
639         if (ONENAND_IS_2PLANE(this))
640                 blockpage = onenand_get_2x_blockpage(mtd, addr);
641         else
642                 blockpage = (int) (addr >> this->page_shift);
643
644         /* Is there valid data? */
645         i = ONENAND_CURRENT_BUFFERRAM(this);
646         if (this->bufferram[i].blockpage == blockpage)
647                 found = 1;
648         else {
649                 /* Check another BufferRAM */
650                 i = ONENAND_NEXT_BUFFERRAM(this);
651                 if (this->bufferram[i].blockpage == blockpage) {
652                         ONENAND_SET_NEXT_BUFFERRAM(this);
653                         found = 1;
654                 }
655         }
656
657         if (found && ONENAND_IS_DDP(this)) {
658                 /* Select DataRAM for DDP */
659                 int block = (int) (addr >> this->erase_shift);
660                 int value = onenand_bufferram_address(this, block);
661                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
662         }
663
664         return found;
665 }
666
667 /**
668  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
669  * @param mtd           MTD data structure
670  * @param addr          address to update
671  * @param valid         valid flag
672  *
673  * Update BufferRAM information
674  */
675 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
676                 int valid)
677 {
678         struct onenand_chip *this = mtd->priv;
679         int blockpage;
680         unsigned int i;
681
682         if (ONENAND_IS_2PLANE(this))
683                 blockpage = onenand_get_2x_blockpage(mtd, addr);
684         else
685                 blockpage = (int) (addr >> this->page_shift);
686
687         /* Invalidate another BufferRAM */
688         i = ONENAND_NEXT_BUFFERRAM(this);
689         if (this->bufferram[i].blockpage == blockpage)
690                 this->bufferram[i].blockpage = -1;
691
692         /* Update BufferRAM */
693         i = ONENAND_CURRENT_BUFFERRAM(this);
694         if (valid)
695                 this->bufferram[i].blockpage = blockpage;
696         else
697                 this->bufferram[i].blockpage = -1;
698 }
699
700 /**
701  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
702  * @param mtd           MTD data structure
703  * @param addr          start address to invalidate
704  * @param len           length to invalidate
705  *
706  * Invalidate BufferRAM information
707  */
708 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
709                 unsigned int len)
710 {
711         struct onenand_chip *this = mtd->priv;
712         int i;
713         loff_t end_addr = addr + len;
714
715         /* Invalidate BufferRAM */
716         for (i = 0; i < MAX_BUFFERRAM; i++) {
717                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
718                 if (buf_addr >= addr && buf_addr < end_addr)
719                         this->bufferram[i].blockpage = -1;
720         }
721 }
722
723 /**
724  * onenand_get_device - [GENERIC] Get chip for selected access
725  * @param mtd           MTD device structure
726  * @param new_state     the state which is requested
727  *
728  * Get the device and lock it for exclusive access
729  */
730 static int onenand_get_device(struct mtd_info *mtd, int new_state)
731 {
732         struct onenand_chip *this = mtd->priv;
733         DECLARE_WAITQUEUE(wait, current);
734
735         /*
736          * Grab the lock and see if the device is available
737          */
738         while (1) {
739                 spin_lock(&this->chip_lock);
740                 if (this->state == FL_READY) {
741                         this->state = new_state;
742                         spin_unlock(&this->chip_lock);
743                         break;
744                 }
745                 if (new_state == FL_PM_SUSPENDED) {
746                         spin_unlock(&this->chip_lock);
747                         return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
748                 }
749                 set_current_state(TASK_UNINTERRUPTIBLE);
750                 add_wait_queue(&this->wq, &wait);
751                 spin_unlock(&this->chip_lock);
752                 schedule();
753                 remove_wait_queue(&this->wq, &wait);
754         }
755
756         return 0;
757 }
758
759 /**
760  * onenand_release_device - [GENERIC] release chip
761  * @param mtd           MTD device structure
762  *
763  * Deselect, release chip lock and wake up anyone waiting on the device
764  */
765 static void onenand_release_device(struct mtd_info *mtd)
766 {
767         struct onenand_chip *this = mtd->priv;
768
769         /* Release the chip */
770         spin_lock(&this->chip_lock);
771         this->state = FL_READY;
772         wake_up(&this->wq);
773         spin_unlock(&this->chip_lock);
774 }
775
776 /**
777  * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
778  * @param mtd           MTD device structure
779  * @param buf           destination address
780  * @param column        oob offset to read from
781  * @param thislen       oob length to read
782  */
783 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
784                                 int thislen)
785 {
786         struct onenand_chip *this = mtd->priv;
787         struct nand_oobfree *free;
788         int readcol = column;
789         int readend = column + thislen;
790         int lastgap = 0;
791         unsigned int i;
792         uint8_t *oob_buf = this->oob_buf;
793
794         free = this->ecclayout->oobfree;
795         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
796                 if (readcol >= lastgap)
797                         readcol += free->offset - lastgap;
798                 if (readend >= lastgap)
799                         readend += free->offset - lastgap;
800                 lastgap = free->offset + free->length;
801         }
802         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
803         free = this->ecclayout->oobfree;
804         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
805                 int free_end = free->offset + free->length;
806                 if (free->offset < readend && free_end > readcol) {
807                         int st = max_t(int,free->offset,readcol);
808                         int ed = min_t(int,free_end,readend);
809                         int n = ed - st;
810                         memcpy(buf, oob_buf + st, n);
811                         buf += n;
812                 } else if (column == 0)
813                         break;
814         }
815         return 0;
816 }
817
818 /**
819  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
820  * @param mtd           MTD device structure
821  * @param from          offset to read from
822  * @param ops:          oob operation description structure
823  *
824  * OneNAND read main and/or out-of-band data
825  */
826 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
827                                 struct mtd_oob_ops *ops)
828 {
829         struct onenand_chip *this = mtd->priv;
830         struct mtd_ecc_stats stats;
831         size_t len = ops->len;
832         size_t ooblen = ops->ooblen;
833         u_char *buf = ops->datbuf;
834         u_char *oobbuf = ops->oobbuf;
835         int read = 0, column, thislen;
836         int oobread = 0, oobcolumn, thisooblen, oobsize;
837         int ret = 0, boundary = 0;
838         int writesize = this->writesize;
839
840         DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
841
842         if (ops->mode == MTD_OOB_AUTO)
843                 oobsize = this->ecclayout->oobavail;
844         else
845                 oobsize = mtd->oobsize;
846
847         oobcolumn = from & (mtd->oobsize - 1);
848
849         /* Do not allow reads past end of device */
850         if ((from + len) > mtd->size) {
851                 printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
852                 ops->retlen = 0;
853                 ops->oobretlen = 0;
854                 return -EINVAL;
855         }
856
857         stats = mtd->ecc_stats;
858
859         /* Read-while-load method */
860
861         /* Do first load to bufferRAM */
862         if (read < len) {
863                 if (!onenand_check_bufferram(mtd, from)) {
864                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
865                         ret = this->wait(mtd, FL_READING);
866                         onenand_update_bufferram(mtd, from, !ret);
867                         if (ret == -EBADMSG)
868                                 ret = 0;
869                 }
870         }
871
872         thislen = min_t(int, writesize, len - read);
873         column = from & (writesize - 1);
874         if (column + thislen > writesize)
875                 thislen = writesize - column;
876
877         while (!ret) {
878                 /* If there is more to load then start next load */
879                 from += thislen;
880                 if (read + thislen < len) {
881                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
882                         /*
883                          * Chip boundary handling in DDP
884                          * Now we issued chip 1 read and pointed chip 1
885                          * bufferam so we have to point chip 0 bufferam.
886                          */
887                         if (ONENAND_IS_DDP(this) &&
888                             unlikely(from == (this->chipsize >> 1))) {
889                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
890                                 boundary = 1;
891                         } else
892                                 boundary = 0;
893                         ONENAND_SET_PREV_BUFFERRAM(this);
894                 }
895                 /* While load is going, read from last bufferRAM */
896                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
897
898                 /* Read oob area if needed */
899                 if (oobbuf) {
900                         thisooblen = oobsize - oobcolumn;
901                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
902
903                         if (ops->mode == MTD_OOB_AUTO)
904                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
905                         else
906                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
907                         oobread += thisooblen;
908                         oobbuf += thisooblen;
909                         oobcolumn = 0;
910                 }
911
912                 /* See if we are done */
913                 read += thislen;
914                 if (read == len)
915                         break;
916                 /* Set up for next read from bufferRAM */
917                 if (unlikely(boundary))
918                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
919                 ONENAND_SET_NEXT_BUFFERRAM(this);
920                 buf += thislen;
921                 thislen = min_t(int, writesize, len - read);
922                 column = 0;
923                 cond_resched();
924                 /* Now wait for load */
925                 ret = this->wait(mtd, FL_READING);
926                 onenand_update_bufferram(mtd, from, !ret);
927                 if (ret == -EBADMSG)
928                         ret = 0;
929         }
930
931         /*
932          * Return success, if no ECC failures, else -EBADMSG
933          * fs driver will take care of that, because
934          * retlen == desired len and result == -EBADMSG
935          */
936         ops->retlen = read;
937         ops->oobretlen = oobread;
938
939         if (ret)
940                 return ret;
941
942         if (mtd->ecc_stats.failed - stats.failed)
943                 return -EBADMSG;
944
945         return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
946 }
947
948 /**
949  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
950  * @param mtd           MTD device structure
951  * @param from          offset to read from
952  * @param ops:          oob operation description structure
953  *
954  * OneNAND read out-of-band data from the spare area
955  */
956 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
957                         struct mtd_oob_ops *ops)
958 {
959         struct onenand_chip *this = mtd->priv;
960         struct mtd_ecc_stats stats;
961         int read = 0, thislen, column, oobsize;
962         size_t len = ops->ooblen;
963         mtd_oob_mode_t mode = ops->mode;
964         u_char *buf = ops->oobbuf;
965         int ret = 0;
966
967         from += ops->ooboffs;
968
969         DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
970
971         /* Initialize return length value */
972         ops->oobretlen = 0;
973
974         if (mode == MTD_OOB_AUTO)
975                 oobsize = this->ecclayout->oobavail;
976         else
977                 oobsize = mtd->oobsize;
978
979         column = from & (mtd->oobsize - 1);
980
981         if (unlikely(column >= oobsize)) {
982                 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
983                 return -EINVAL;
984         }
985
986         /* Do not allow reads past end of device */
987         if (unlikely(from >= mtd->size ||
988                      column + len > ((mtd->size >> this->page_shift) -
989                                      (from >> this->page_shift)) * oobsize)) {
990                 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
991                 return -EINVAL;
992         }
993
994         stats = mtd->ecc_stats;
995
996         while (read < len) {
997                 cond_resched();
998
999                 thislen = oobsize - column;
1000                 thislen = min_t(int, thislen, len);
1001
1002                 this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
1003
1004                 onenand_update_bufferram(mtd, from, 0);
1005
1006                 ret = this->wait(mtd, FL_READING);
1007                 if (ret && ret != -EBADMSG) {
1008                         printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1009                         break;
1010                 }
1011
1012                 if (mode == MTD_OOB_AUTO)
1013                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
1014                 else
1015                         this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1016
1017                 read += thislen;
1018
1019                 if (read == len)
1020                         break;
1021
1022                 buf += thislen;
1023
1024                 /* Read more? */
1025                 if (read < len) {
1026                         /* Page size */
1027                         from += mtd->writesize;
1028                         column = 0;
1029                 }
1030         }
1031
1032         ops->oobretlen = read;
1033
1034         if (ret)
1035                 return ret;
1036
1037         if (mtd->ecc_stats.failed - stats.failed)
1038                 return -EBADMSG;
1039
1040         return 0;
1041 }
1042
1043 /**
1044  * onenand_read - [MTD Interface] Read data from flash
1045  * @param mtd           MTD device structure
1046  * @param from          offset to read from
1047  * @param len           number of bytes to read
1048  * @param retlen        pointer to variable to store the number of read bytes
1049  * @param buf           the databuffer to put data
1050  *
1051  * Read with ecc
1052 */
1053 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1054         size_t *retlen, u_char *buf)
1055 {
1056         struct mtd_oob_ops ops = {
1057                 .len    = len,
1058                 .ooblen = 0,
1059                 .datbuf = buf,
1060                 .oobbuf = NULL,
1061         };
1062         int ret;
1063
1064         onenand_get_device(mtd, FL_READING);
1065         ret = onenand_read_ops_nolock(mtd, from, &ops);
1066         onenand_release_device(mtd);
1067
1068         *retlen = ops.retlen;
1069         return ret;
1070 }
1071
1072 /**
1073  * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1074  * @param mtd:          MTD device structure
1075  * @param from:         offset to read from
1076  * @param ops:          oob operation description structure
1077
1078  * Read main and/or out-of-band
1079  */
1080 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1081                             struct mtd_oob_ops *ops)
1082 {
1083         int ret;
1084
1085         switch (ops->mode) {
1086         case MTD_OOB_PLACE:
1087         case MTD_OOB_AUTO:
1088                 break;
1089         case MTD_OOB_RAW:
1090                 /* Not implemented yet */
1091         default:
1092                 return -EINVAL;
1093         }
1094
1095         onenand_get_device(mtd, FL_READING);
1096         if (ops->datbuf)
1097                 ret = onenand_read_ops_nolock(mtd, from, ops);
1098         else
1099                 ret = onenand_read_oob_nolock(mtd, from, ops);
1100         onenand_release_device(mtd);
1101
1102         return ret;
1103 }
1104
1105 /**
1106  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1107  * @param mtd           MTD device structure
1108  * @param state         state to select the max. timeout value
1109  *
1110  * Wait for command done.
1111  */
1112 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1113 {
1114         struct onenand_chip *this = mtd->priv;
1115         unsigned long timeout;
1116         unsigned int interrupt;
1117         unsigned int ctrl;
1118
1119         /* The 20 msec is enough */
1120         timeout = jiffies + msecs_to_jiffies(20);
1121         while (time_before(jiffies, timeout)) {
1122                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1123                 if (interrupt & ONENAND_INT_MASTER)
1124                         break;
1125         }
1126         /* To get correct interrupt status in timeout case */
1127         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1128         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1129
1130         if (interrupt & ONENAND_INT_READ) {
1131                 int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
1132                 if (ecc & ONENAND_ECC_2BIT_ALL) {
1133                         printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1134                                 ", controller error 0x%04x\n", ecc, ctrl);
1135                         return ONENAND_BBT_READ_ERROR;
1136                 }
1137         } else {
1138                 printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1139                         "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1140                 return ONENAND_BBT_READ_FATAL_ERROR;
1141         }
1142
1143         /* Initial bad block case: 0x2400 or 0x0400 */
1144         if (ctrl & ONENAND_CTRL_ERROR) {
1145                 printk(KERN_DEBUG "onenand_bbt_wait: "
1146                         "controller error = 0x%04x\n", ctrl);
1147                 return ONENAND_BBT_READ_ERROR;
1148         }
1149
1150         return 0;
1151 }
1152
1153 /**
1154  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1155  * @param mtd           MTD device structure
1156  * @param from          offset to read from
1157  * @param ops           oob operation description structure
1158  *
1159  * OneNAND read out-of-band data from the spare area for bbt scan
1160  */
1161 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
1162                             struct mtd_oob_ops *ops)
1163 {
1164         struct onenand_chip *this = mtd->priv;
1165         int read = 0, thislen, column;
1166         int ret = 0;
1167         size_t len = ops->ooblen;
1168         u_char *buf = ops->oobbuf;
1169
1170         DEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1171
1172         /* Initialize return value */
1173         ops->oobretlen = 0;
1174
1175         /* Do not allow reads past end of device */
1176         if (unlikely((from + len) > mtd->size)) {
1177                 printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1178                 return ONENAND_BBT_READ_FATAL_ERROR;
1179         }
1180
1181         /* Grab the lock and see if the device is available */
1182         onenand_get_device(mtd, FL_READING);
1183
1184         column = from & (mtd->oobsize - 1);
1185
1186         while (read < len) {
1187                 cond_resched();
1188
1189                 thislen = mtd->oobsize - column;
1190                 thislen = min_t(int, thislen, len);
1191
1192                 this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
1193
1194                 onenand_update_bufferram(mtd, from, 0);
1195
1196                 ret = onenand_bbt_wait(mtd, FL_READING);
1197                 if (ret)
1198                         break;
1199
1200                 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1201                 read += thislen;
1202                 if (read == len)
1203                         break;
1204
1205                 buf += thislen;
1206
1207                 /* Read more? */
1208                 if (read < len) {
1209                         /* Update Page size */
1210                         from += this->writesize;
1211                         column = 0;
1212                 }
1213         }
1214
1215         /* Deselect and wake up anyone waiting on the device */
1216         onenand_release_device(mtd);
1217
1218         ops->oobretlen = read;
1219         return ret;
1220 }
1221
1222 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1223 /**
1224  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1225  * @param mtd           MTD device structure
1226  * @param buf           the databuffer to verify
1227  * @param to            offset to read from
1228  */
1229 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1230 {
1231         struct onenand_chip *this = mtd->priv;
1232         u_char *oob_buf = this->oob_buf;
1233         int status, i;
1234
1235         this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
1236         onenand_update_bufferram(mtd, to, 0);
1237         status = this->wait(mtd, FL_READING);
1238         if (status)
1239                 return status;
1240
1241         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1242         for (i = 0; i < mtd->oobsize; i++)
1243                 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1244                         return -EBADMSG;
1245
1246         return 0;
1247 }
1248
1249 /**
1250  * onenand_verify - [GENERIC] verify the chip contents after a write
1251  * @param mtd          MTD device structure
1252  * @param buf          the databuffer to verify
1253  * @param addr         offset to read from
1254  * @param len          number of bytes to read and compare
1255  */
1256 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1257 {
1258         struct onenand_chip *this = mtd->priv;
1259         void __iomem *dataram;
1260         int ret = 0;
1261         int thislen, column;
1262
1263         while (len != 0) {
1264                 thislen = min_t(int, this->writesize, len);
1265                 column = addr & (this->writesize - 1);
1266                 if (column + thislen > this->writesize)
1267                         thislen = this->writesize - column;
1268
1269                 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1270
1271                 onenand_update_bufferram(mtd, addr, 0);
1272
1273                 ret = this->wait(mtd, FL_READING);
1274                 if (ret)
1275                         return ret;
1276
1277                 onenand_update_bufferram(mtd, addr, 1);
1278
1279                 dataram = this->base + ONENAND_DATARAM;
1280                 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1281
1282                 if (memcmp(buf, dataram + column, thislen))
1283                         return -EBADMSG;
1284
1285                 len -= thislen;
1286                 buf += thislen;
1287                 addr += thislen;
1288         }
1289
1290         return 0;
1291 }
1292 #else
1293 #define onenand_verify(...)             (0)
1294 #define onenand_verify_oob(...)         (0)
1295 #endif
1296
1297 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1298
1299 static void onenand_panic_wait(struct mtd_info *mtd)
1300 {
1301         struct onenand_chip *this = mtd->priv;
1302         unsigned int interrupt;
1303         int i;
1304         
1305         for (i = 0; i < 2000; i++) {
1306                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1307                 if (interrupt & ONENAND_INT_MASTER)
1308                         break;
1309                 udelay(10);
1310         }
1311 }
1312
1313 /**
1314  * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1315  * @param mtd           MTD device structure
1316  * @param to            offset to write to
1317  * @param len           number of bytes to write
1318  * @param retlen        pointer to variable to store the number of written bytes
1319  * @param buf           the data to write
1320  *
1321  * Write with ECC
1322  */
1323 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1324                          size_t *retlen, const u_char *buf)
1325 {
1326         struct onenand_chip *this = mtd->priv;
1327         int column, subpage;
1328         int written = 0;
1329         int ret = 0;
1330
1331         if (this->state == FL_PM_SUSPENDED)
1332                 return -EBUSY;
1333
1334         /* Wait for any existing operation to clear */
1335         onenand_panic_wait(mtd);
1336
1337         DEBUG(MTD_DEBUG_LEVEL3, "onenand_panic_write: to = 0x%08x, len = %i\n",
1338               (unsigned int) to, (int) len);
1339
1340         /* Initialize retlen, in case of early exit */
1341         *retlen = 0;
1342
1343         /* Do not allow writes past end of device */
1344         if (unlikely((to + len) > mtd->size)) {
1345                 printk(KERN_ERR "onenand_panic_write: Attempt write to past end of device\n");
1346                 return -EINVAL;
1347         }
1348
1349         /* Reject writes, which are not page aligned */
1350         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1351                 printk(KERN_ERR "onenand_panic_write: Attempt to write not page aligned data\n");
1352                 return -EINVAL;
1353         }
1354
1355         column = to & (mtd->writesize - 1);
1356
1357         /* Loop until all data write */
1358         while (written < len) {
1359                 int thislen = min_t(int, mtd->writesize - column, len - written);
1360                 u_char *wbuf = (u_char *) buf;
1361
1362                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1363
1364                 /* Partial page write */
1365                 subpage = thislen < mtd->writesize;
1366                 if (subpage) {
1367                         memset(this->page_buf, 0xff, mtd->writesize);
1368                         memcpy(this->page_buf + column, buf, thislen);
1369                         wbuf = this->page_buf;
1370                 }
1371
1372                 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1373                 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1374
1375                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1376
1377                 onenand_panic_wait(mtd);
1378
1379                 /* In partial page write we don't update bufferram */
1380                 onenand_update_bufferram(mtd, to, !ret && !subpage);
1381                 if (ONENAND_IS_2PLANE(this)) {
1382                         ONENAND_SET_BUFFERRAM1(this);
1383                         onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1384                 }
1385
1386                 if (ret) {
1387                         printk(KERN_ERR "onenand_panic_write: write failed %d\n", ret);
1388                         break;
1389                 }
1390
1391                 written += thislen;
1392
1393                 if (written == len)
1394                         break;
1395
1396                 column = 0;
1397                 to += thislen;
1398                 buf += thislen;
1399         }
1400
1401         *retlen = written;
1402         return ret;
1403 }
1404
1405 /**
1406  * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1407  * @param mtd           MTD device structure
1408  * @param oob_buf       oob buffer
1409  * @param buf           source address
1410  * @param column        oob offset to write to
1411  * @param thislen       oob length to write
1412  */
1413 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1414                                   const u_char *buf, int column, int thislen)
1415 {
1416         struct onenand_chip *this = mtd->priv;
1417         struct nand_oobfree *free;
1418         int writecol = column;
1419         int writeend = column + thislen;
1420         int lastgap = 0;
1421         unsigned int i;
1422
1423         free = this->ecclayout->oobfree;
1424         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1425                 if (writecol >= lastgap)
1426                         writecol += free->offset - lastgap;
1427                 if (writeend >= lastgap)
1428                         writeend += free->offset - lastgap;
1429                 lastgap = free->offset + free->length;
1430         }
1431         free = this->ecclayout->oobfree;
1432         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1433                 int free_end = free->offset + free->length;
1434                 if (free->offset < writeend && free_end > writecol) {
1435                         int st = max_t(int,free->offset,writecol);
1436                         int ed = min_t(int,free_end,writeend);
1437                         int n = ed - st;
1438                         memcpy(oob_buf + st, buf, n);
1439                         buf += n;
1440                 } else if (column == 0)
1441                         break;
1442         }
1443         return 0;
1444 }
1445
1446 /**
1447  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1448  * @param mtd           MTD device structure
1449  * @param to            offset to write to
1450  * @param ops           oob operation description structure
1451  *
1452  * Write main and/or oob with ECC
1453  */
1454 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1455                                 struct mtd_oob_ops *ops)
1456 {
1457         struct onenand_chip *this = mtd->priv;
1458         int written = 0, column, thislen, subpage;
1459         int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1460         size_t len = ops->len;
1461         size_t ooblen = ops->ooblen;
1462         const u_char *buf = ops->datbuf;
1463         const u_char *oob = ops->oobbuf;
1464         u_char *oobbuf;
1465         int ret = 0;
1466
1467         DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1468
1469         /* Initialize retlen, in case of early exit */
1470         ops->retlen = 0;
1471         ops->oobretlen = 0;
1472
1473         /* Do not allow writes past end of device */
1474         if (unlikely((to + len) > mtd->size)) {
1475                 printk(KERN_ERR "onenand_write_ops_nolock: Attempt write to past end of device\n");
1476                 return -EINVAL;
1477         }
1478
1479         /* Reject writes, which are not page aligned */
1480         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1481                 printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1482                 return -EINVAL;
1483         }
1484
1485         if (ops->mode == MTD_OOB_AUTO)
1486                 oobsize = this->ecclayout->oobavail;
1487         else
1488                 oobsize = mtd->oobsize;
1489
1490         oobcolumn = to & (mtd->oobsize - 1);
1491
1492         column = to & (mtd->writesize - 1);
1493
1494         /* Loop until all data write */
1495         while (written < len) {
1496                 u_char *wbuf = (u_char *) buf;
1497
1498                 thislen = min_t(int, mtd->writesize - column, len - written);
1499                 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1500
1501                 cond_resched();
1502
1503                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1504
1505                 /* Partial page write */
1506                 subpage = thislen < mtd->writesize;
1507                 if (subpage) {
1508                         memset(this->page_buf, 0xff, mtd->writesize);
1509                         memcpy(this->page_buf + column, buf, thislen);
1510                         wbuf = this->page_buf;
1511                 }
1512
1513                 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1514
1515                 if (oob) {
1516                         oobbuf = this->oob_buf;
1517
1518                         /* We send data to spare ram with oobsize
1519                          * to prevent byte access */
1520                         memset(oobbuf, 0xff, mtd->oobsize);
1521                         if (ops->mode == MTD_OOB_AUTO)
1522                                 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1523                         else
1524                                 memcpy(oobbuf + oobcolumn, oob, thisooblen);
1525
1526                         oobwritten += thisooblen;
1527                         oob += thisooblen;
1528                         oobcolumn = 0;
1529                 } else
1530                         oobbuf = (u_char *) ffchars;
1531
1532                 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1533
1534                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1535
1536                 ret = this->wait(mtd, FL_WRITING);
1537
1538                 /* In partial page write we don't update bufferram */
1539                 onenand_update_bufferram(mtd, to, !ret && !subpage);
1540                 if (ONENAND_IS_2PLANE(this)) {
1541                         ONENAND_SET_BUFFERRAM1(this);
1542                         onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1543                 }
1544
1545                 if (ret) {
1546                         printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1547                         break;
1548                 }
1549
1550                 /* Only check verify write turn on */
1551                 ret = onenand_verify(mtd, buf, to, thislen);
1552                 if (ret) {
1553                         printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1554                         break;
1555                 }
1556
1557                 written += thislen;
1558
1559                 if (written == len)
1560                         break;
1561
1562                 column = 0;
1563                 to += thislen;
1564                 buf += thislen;
1565         }
1566
1567         ops->retlen = written;
1568
1569         return ret;
1570 }
1571
1572
1573 /**
1574  * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
1575  * @param mtd           MTD device structure
1576  * @param to            offset to write to
1577  * @param len           number of bytes to write
1578  * @param retlen        pointer to variable to store the number of written bytes
1579  * @param buf           the data to write
1580  * @param mode          operation mode
1581  *
1582  * OneNAND write out-of-band
1583  */
1584 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1585                                     struct mtd_oob_ops *ops)
1586 {
1587         struct onenand_chip *this = mtd->priv;
1588         int column, ret = 0, oobsize;
1589         int written = 0;
1590         u_char *oobbuf;
1591         size_t len = ops->ooblen;
1592         const u_char *buf = ops->oobbuf;
1593         mtd_oob_mode_t mode = ops->mode;
1594
1595         to += ops->ooboffs;
1596
1597         DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1598
1599         /* Initialize retlen, in case of early exit */
1600         ops->oobretlen = 0;
1601
1602         if (mode == MTD_OOB_AUTO)
1603                 oobsize = this->ecclayout->oobavail;
1604         else
1605                 oobsize = mtd->oobsize;
1606
1607         column = to & (mtd->oobsize - 1);
1608
1609         if (unlikely(column >= oobsize)) {
1610                 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1611                 return -EINVAL;
1612         }
1613
1614         /* For compatibility with NAND: Do not allow write past end of page */
1615         if (unlikely(column + len > oobsize)) {
1616                 printk(KERN_ERR "onenand_write_oob_nolock: "
1617                       "Attempt to write past end of page\n");
1618                 return -EINVAL;
1619         }
1620
1621         /* Do not allow reads past end of device */
1622         if (unlikely(to >= mtd->size ||
1623                      column + len > ((mtd->size >> this->page_shift) -
1624                                      (to >> this->page_shift)) * oobsize)) {
1625                 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1626                 return -EINVAL;
1627         }
1628
1629         oobbuf = this->oob_buf;
1630
1631         /* Loop until all data write */
1632         while (written < len) {
1633                 int thislen = min_t(int, oobsize, len - written);
1634
1635                 cond_resched();
1636
1637                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1638
1639                 /* We send data to spare ram with oobsize
1640                  * to prevent byte access */
1641                 memset(oobbuf, 0xff, mtd->oobsize);
1642                 if (mode == MTD_OOB_AUTO)
1643                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1644                 else
1645                         memcpy(oobbuf + column, buf, thislen);
1646                 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1647
1648                 this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
1649
1650                 onenand_update_bufferram(mtd, to, 0);
1651                 if (ONENAND_IS_2PLANE(this)) {
1652                         ONENAND_SET_BUFFERRAM1(this);
1653                         onenand_update_bufferram(mtd, to + this->writesize, 0);
1654                 }
1655
1656                 ret = this->wait(mtd, FL_WRITING);
1657                 if (ret) {
1658                         printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1659                         break;
1660                 }
1661
1662                 ret = onenand_verify_oob(mtd, oobbuf, to);
1663                 if (ret) {
1664                         printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1665                         break;
1666                 }
1667
1668                 written += thislen;
1669                 if (written == len)
1670                         break;
1671
1672                 to += mtd->writesize;
1673                 buf += thislen;
1674                 column = 0;
1675         }
1676
1677         ops->oobretlen = written;
1678
1679         return ret;
1680 }
1681
1682 /**
1683  * onenand_write - [MTD Interface] write buffer to FLASH
1684  * @param mtd           MTD device structure
1685  * @param to            offset to write to
1686  * @param len           number of bytes to write
1687  * @param retlen        pointer to variable to store the number of written bytes
1688  * @param buf           the data to write
1689  *
1690  * Write with ECC
1691  */
1692 static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1693         size_t *retlen, const u_char *buf)
1694 {
1695         struct mtd_oob_ops ops = {
1696                 .len    = len,
1697                 .ooblen = 0,
1698                 .datbuf = (u_char *) buf,
1699                 .oobbuf = NULL,
1700         };
1701         int ret;
1702
1703         onenand_get_device(mtd, FL_WRITING);
1704         ret = onenand_write_ops_nolock(mtd, to, &ops);
1705         onenand_release_device(mtd);
1706
1707         *retlen = ops.retlen;
1708         return ret;
1709 }
1710
1711 /**
1712  * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1713  * @param mtd:          MTD device structure
1714  * @param to:           offset to write
1715  * @param ops:          oob operation description structure
1716  */
1717 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1718                              struct mtd_oob_ops *ops)
1719 {
1720         int ret;
1721
1722         switch (ops->mode) {
1723         case MTD_OOB_PLACE:
1724         case MTD_OOB_AUTO:
1725                 break;
1726         case MTD_OOB_RAW:
1727                 /* Not implemented yet */
1728         default:
1729                 return -EINVAL;
1730         }
1731
1732         onenand_get_device(mtd, FL_WRITING);
1733         if (ops->datbuf)
1734                 ret = onenand_write_ops_nolock(mtd, to, ops);
1735         else
1736                 ret = onenand_write_oob_nolock(mtd, to, ops);
1737         onenand_release_device(mtd);
1738
1739         return ret;
1740 }
1741
1742 /**
1743  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1744  * @param mtd           MTD device structure
1745  * @param ofs           offset from device start
1746  * @param allowbbt      1, if its allowed to access the bbt area
1747  *
1748  * Check, if the block is bad. Either by reading the bad block table or
1749  * calling of the scan function.
1750  */
1751 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1752 {
1753         struct onenand_chip *this = mtd->priv;
1754         struct bbm_info *bbm = this->bbm;
1755
1756         /* Return info from the table */
1757         return bbm->isbad_bbt(mtd, ofs, allowbbt);
1758 }
1759
1760 /**
1761  * onenand_erase - [MTD Interface] erase block(s)
1762  * @param mtd           MTD device structure
1763  * @param instr         erase instruction
1764  *
1765  * Erase one ore more blocks
1766  */
1767 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1768 {
1769         struct onenand_chip *this = mtd->priv;
1770         unsigned int block_size;
1771         loff_t addr;
1772         int len;
1773         int ret = 0;
1774
1775         DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
1776
1777         block_size = (1 << this->erase_shift);
1778
1779         /* Start address must align on block boundary */
1780         if (unlikely(instr->addr & (block_size - 1))) {
1781                 printk(KERN_ERR "onenand_erase: Unaligned address\n");
1782                 return -EINVAL;
1783         }
1784
1785         /* Length must align on block boundary */
1786         if (unlikely(instr->len & (block_size - 1))) {
1787                 printk(KERN_ERR "onenand_erase: Length not block aligned\n");
1788                 return -EINVAL;
1789         }
1790
1791         /* Do not allow erase past end of device */
1792         if (unlikely((instr->len + instr->addr) > mtd->size)) {
1793                 printk(KERN_ERR "onenand_erase: Erase past end of device\n");
1794                 return -EINVAL;
1795         }
1796
1797         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1798
1799         /* Grab the lock and see if the device is available */
1800         onenand_get_device(mtd, FL_ERASING);
1801
1802         /* Loop throught the pages */
1803         len = instr->len;
1804         addr = instr->addr;
1805
1806         instr->state = MTD_ERASING;
1807
1808         while (len) {
1809                 cond_resched();
1810
1811                 /* Check if we have a bad block, we do not erase bad blocks */
1812                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
1813                         printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr);
1814                         instr->state = MTD_ERASE_FAILED;
1815                         goto erase_exit;
1816                 }
1817
1818                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1819
1820                 onenand_invalidate_bufferram(mtd, addr, block_size);
1821
1822                 ret = this->wait(mtd, FL_ERASING);
1823                 /* Check, if it is write protected */
1824                 if (ret) {
1825                         printk(KERN_ERR "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
1826                         instr->state = MTD_ERASE_FAILED;
1827                         instr->fail_addr = addr;
1828                         goto erase_exit;
1829                 }
1830
1831                 len -= block_size;
1832                 addr += block_size;
1833         }
1834
1835         instr->state = MTD_ERASE_DONE;
1836
1837 erase_exit:
1838
1839         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1840
1841         /* Deselect and wake up anyone waiting on the device */
1842         onenand_release_device(mtd);
1843
1844         /* Do call back function */
1845         if (!ret)
1846                 mtd_erase_callback(instr);
1847
1848         return ret;
1849 }
1850
1851 /**
1852  * onenand_sync - [MTD Interface] sync
1853  * @param mtd           MTD device structure
1854  *
1855  * Sync is actually a wait for chip ready function
1856  */
1857 static void onenand_sync(struct mtd_info *mtd)
1858 {
1859         DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1860
1861         /* Grab the lock and see if the device is available */
1862         onenand_get_device(mtd, FL_SYNCING);
1863
1864         /* Release it and go back */
1865         onenand_release_device(mtd);
1866 }
1867
1868 /**
1869  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1870  * @param mtd           MTD device structure
1871  * @param ofs           offset relative to mtd start
1872  *
1873  * Check whether the block is bad
1874  */
1875 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1876 {
1877         int ret;
1878
1879         /* Check for invalid offset */
1880         if (ofs > mtd->size)
1881                 return -EINVAL;
1882
1883         onenand_get_device(mtd, FL_READING);
1884         ret = onenand_block_isbad_nolock(mtd, ofs, 0);
1885         onenand_release_device(mtd);
1886         return ret;
1887 }
1888
1889 /**
1890  * onenand_default_block_markbad - [DEFAULT] mark a block bad
1891  * @param mtd           MTD device structure
1892  * @param ofs           offset from device start
1893  *
1894  * This is the default implementation, which can be overridden by
1895  * a hardware specific driver.
1896  */
1897 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1898 {
1899         struct onenand_chip *this = mtd->priv;
1900         struct bbm_info *bbm = this->bbm;
1901         u_char buf[2] = {0, 0};
1902         struct mtd_oob_ops ops = {
1903                 .mode = MTD_OOB_PLACE,
1904                 .ooblen = 2,
1905                 .oobbuf = buf,
1906                 .ooboffs = 0,
1907         };
1908         int block;
1909
1910         /* Get block number */
1911         block = ((int) ofs) >> bbm->bbt_erase_shift;
1912         if (bbm->bbt)
1913                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1914
1915         /* We write two bytes, so we dont have to mess with 16 bit access */
1916         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1917         return onenand_write_oob_nolock(mtd, ofs, &ops);
1918 }
1919
1920 /**
1921  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1922  * @param mtd           MTD device structure
1923  * @param ofs           offset relative to mtd start
1924  *
1925  * Mark the block as bad
1926  */
1927 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1928 {
1929         struct onenand_chip *this = mtd->priv;
1930         int ret;
1931
1932         ret = onenand_block_isbad(mtd, ofs);
1933         if (ret) {
1934                 /* If it was bad already, return success and do nothing */
1935                 if (ret > 0)
1936                         return 0;
1937                 return ret;
1938         }
1939
1940         onenand_get_device(mtd, FL_WRITING);
1941         ret = this->block_markbad(mtd, ofs);
1942         onenand_release_device(mtd);
1943         return ret;
1944 }
1945
1946 /**
1947  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1948  * @param mtd           MTD device structure
1949  * @param ofs           offset relative to mtd start
1950  * @param len           number of bytes to lock or unlock
1951  * @param cmd           lock or unlock command
1952  *
1953  * Lock or unlock one or more blocks
1954  */
1955 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1956 {
1957         struct onenand_chip *this = mtd->priv;
1958         int start, end, block, value, status;
1959         int wp_status_mask;
1960
1961         start = ofs >> this->erase_shift;
1962         end = len >> this->erase_shift;
1963
1964         if (cmd == ONENAND_CMD_LOCK)
1965                 wp_status_mask = ONENAND_WP_LS;
1966         else
1967                 wp_status_mask = ONENAND_WP_US;
1968
1969         /* Continuous lock scheme */
1970         if (this->options & ONENAND_HAS_CONT_LOCK) {
1971                 /* Set start block address */
1972                 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1973                 /* Set end block address */
1974                 this->write_word(start + end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1975                 /* Write lock command */
1976                 this->command(mtd, cmd, 0, 0);
1977
1978                 /* There's no return value */
1979                 this->wait(mtd, FL_LOCKING);
1980
1981                 /* Sanity check */
1982                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1983                     & ONENAND_CTRL_ONGO)
1984                         continue;
1985
1986                 /* Check lock status */
1987                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1988                 if (!(status & wp_status_mask))
1989                         printk(KERN_ERR "wp status = 0x%x\n", status);
1990
1991                 return 0;
1992         }
1993
1994         /* Block lock scheme */
1995         for (block = start; block < start + end; block++) {
1996                 /* Set block address */
1997                 value = onenand_block_address(this, block);
1998                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1999                 /* Select DataRAM for DDP */
2000                 value = onenand_bufferram_address(this, block);
2001                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2002                 /* Set start block address */
2003                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2004                 /* Write lock command */
2005                 this->command(mtd, cmd, 0, 0);
2006
2007                 /* There's no return value */
2008                 this->wait(mtd, FL_LOCKING);
2009
2010                 /* Sanity check */
2011                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2012                     & ONENAND_CTRL_ONGO)
2013                         continue;
2014
2015                 /* Check lock status */
2016                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2017                 if (!(status & wp_status_mask))
2018                         printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2019         }
2020
2021         return 0;
2022 }
2023
2024 /**
2025  * onenand_lock - [MTD Interface] Lock block(s)
2026  * @param mtd           MTD device structure
2027  * @param ofs           offset relative to mtd start
2028  * @param len           number of bytes to unlock
2029  *
2030  * Lock one or more blocks
2031  */
2032 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2033 {
2034         int ret;
2035
2036         onenand_get_device(mtd, FL_LOCKING);
2037         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2038         onenand_release_device(mtd);
2039         return ret;
2040 }
2041
2042 /**
2043  * onenand_unlock - [MTD Interface] Unlock block(s)
2044  * @param mtd           MTD device structure
2045  * @param ofs           offset relative to mtd start
2046  * @param len           number of bytes to unlock
2047  *
2048  * Unlock one or more blocks
2049  */
2050 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2051 {
2052         int ret;
2053
2054         onenand_get_device(mtd, FL_LOCKING);
2055         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2056         onenand_release_device(mtd);
2057         return ret;
2058 }
2059
2060 /**
2061  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2062  * @param this          onenand chip data structure
2063  *
2064  * Check lock status
2065  */
2066 static int onenand_check_lock_status(struct onenand_chip *this)
2067 {
2068         unsigned int value, block, status;
2069         unsigned int end;
2070
2071         end = this->chipsize >> this->erase_shift;
2072         for (block = 0; block < end; block++) {
2073                 /* Set block address */
2074                 value = onenand_block_address(this, block);
2075                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2076                 /* Select DataRAM for DDP */
2077                 value = onenand_bufferram_address(this, block);
2078                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2079                 /* Set start block address */
2080                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2081
2082                 /* Check lock status */
2083                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2084                 if (!(status & ONENAND_WP_US)) {
2085                         printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2086                         return 0;
2087                 }
2088         }
2089
2090         return 1;
2091 }
2092
2093 /**
2094  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2095  * @param mtd           MTD device structure
2096  *
2097  * Unlock all blocks
2098  */
2099 static void onenand_unlock_all(struct mtd_info *mtd)
2100 {
2101         struct onenand_chip *this = mtd->priv;
2102         loff_t ofs = 0;
2103         size_t len = this->chipsize;
2104
2105         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2106                 /* Set start block address */
2107                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2108                 /* Write unlock command */
2109                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2110
2111                 /* There's no return value */
2112                 this->wait(mtd, FL_LOCKING);
2113
2114                 /* Sanity check */
2115                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2116                     & ONENAND_CTRL_ONGO)
2117                         continue;
2118
2119                 /* Check lock status */
2120                 if (onenand_check_lock_status(this))
2121                         return;
2122
2123                 /* Workaround for all block unlock in DDP */
2124                 if (ONENAND_IS_DDP(this)) {
2125                         /* All blocks on another chip */
2126                         ofs = this->chipsize >> 1;
2127                         len = this->chipsize >> 1;
2128                 }
2129         }
2130
2131         onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2132 }
2133
2134 #ifdef CONFIG_MTD_ONENAND_OTP
2135
2136 /* Interal OTP operation */
2137 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2138                 size_t *retlen, u_char *buf);
2139
2140 /**
2141  * do_otp_read - [DEFAULT] Read OTP block area
2142  * @param mtd           MTD device structure
2143  * @param from          The offset to read
2144  * @param len           number of bytes to read
2145  * @param retlen        pointer to variable to store the number of readbytes
2146  * @param buf           the databuffer to put/get data
2147  *
2148  * Read OTP block area.
2149  */
2150 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2151                 size_t *retlen, u_char *buf)
2152 {
2153         struct onenand_chip *this = mtd->priv;
2154         struct mtd_oob_ops ops = {
2155                 .len    = len,
2156                 .ooblen = 0,
2157                 .datbuf = buf,
2158                 .oobbuf = NULL,
2159         };
2160         int ret;
2161
2162         /* Enter OTP access mode */
2163         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2164         this->wait(mtd, FL_OTPING);
2165
2166         ret = onenand_read_ops_nolock(mtd, from, &ops);
2167
2168         /* Exit OTP access mode */
2169         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2170         this->wait(mtd, FL_RESETING);
2171
2172         return ret;
2173 }
2174
2175 /**
2176  * do_otp_write - [DEFAULT] Write OTP block area
2177  * @param mtd           MTD device structure
2178  * @param to            The offset to write
2179  * @param len           number of bytes to write
2180  * @param retlen        pointer to variable to store the number of write bytes
2181  * @param buf           the databuffer to put/get data
2182  *
2183  * Write OTP block area.
2184  */
2185 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2186                 size_t *retlen, u_char *buf)
2187 {
2188         struct onenand_chip *this = mtd->priv;
2189         unsigned char *pbuf = buf;
2190         int ret;
2191         struct mtd_oob_ops ops;
2192
2193         /* Force buffer page aligned */
2194         if (len < mtd->writesize) {
2195                 memcpy(this->page_buf, buf, len);
2196                 memset(this->page_buf + len, 0xff, mtd->writesize - len);
2197                 pbuf = this->page_buf;
2198                 len = mtd->writesize;
2199         }
2200
2201         /* Enter OTP access mode */
2202         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2203         this->wait(mtd, FL_OTPING);
2204
2205         ops.len = len;
2206         ops.ooblen = 0;
2207         ops.datbuf = pbuf;
2208         ops.oobbuf = NULL;
2209         ret = onenand_write_ops_nolock(mtd, to, &ops);
2210         *retlen = ops.retlen;
2211
2212         /* Exit OTP access mode */
2213         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2214         this->wait(mtd, FL_RESETING);
2215
2216         return ret;
2217 }
2218
2219 /**
2220  * do_otp_lock - [DEFAULT] Lock OTP block area
2221  * @param mtd           MTD device structure
2222  * @param from          The offset to lock
2223  * @param len           number of bytes to lock
2224  * @param retlen        pointer to variable to store the number of lock bytes
2225  * @param buf           the databuffer to put/get data
2226  *
2227  * Lock OTP block area.
2228  */
2229 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2230                 size_t *retlen, u_char *buf)
2231 {
2232         struct onenand_chip *this = mtd->priv;
2233         struct mtd_oob_ops ops = {
2234                 .mode = MTD_OOB_PLACE,
2235                 .ooblen = len,
2236                 .oobbuf = buf,
2237                 .ooboffs = 0,
2238         };
2239         int ret;
2240
2241         /* Enter OTP access mode */
2242         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2243         this->wait(mtd, FL_OTPING);
2244
2245         ret = onenand_write_oob_nolock(mtd, from, &ops);
2246
2247         *retlen = ops.oobretlen;
2248
2249         /* Exit OTP access mode */
2250         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2251         this->wait(mtd, FL_RESETING);
2252
2253         return ret;
2254 }
2255
2256 /**
2257  * onenand_otp_walk - [DEFAULT] Handle OTP operation
2258  * @param mtd           MTD device structure
2259  * @param from          The offset to read/write
2260  * @param len           number of bytes to read/write
2261  * @param retlen        pointer to variable to store the number of read bytes
2262  * @param buf           the databuffer to put/get data
2263  * @param action        do given action
2264  * @param mode          specify user and factory
2265  *
2266  * Handle OTP operation.
2267  */
2268 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2269                         size_t *retlen, u_char *buf,
2270                         otp_op_t action, int mode)
2271 {
2272         struct onenand_chip *this = mtd->priv;
2273         int otp_pages;
2274         int density;
2275         int ret = 0;
2276
2277         *retlen = 0;
2278
2279         density = onenand_get_density(this->device_id);
2280         if (density < ONENAND_DEVICE_DENSITY_512Mb)
2281                 otp_pages = 20;
2282         else
2283                 otp_pages = 10;
2284
2285         if (mode == MTD_OTP_FACTORY) {
2286                 from += mtd->writesize * otp_pages;
2287                 otp_pages = 64 - otp_pages;
2288         }
2289
2290         /* Check User/Factory boundary */
2291         if (((mtd->writesize * otp_pages) - (from + len)) < 0)
2292                 return 0;
2293
2294         onenand_get_device(mtd, FL_OTPING);
2295         while (len > 0 && otp_pages > 0) {
2296                 if (!action) {  /* OTP Info functions */
2297                         struct otp_info *otpinfo;
2298
2299                         len -= sizeof(struct otp_info);
2300                         if (len <= 0) {
2301                                 ret = -ENOSPC;
2302                                 break;
2303                         }
2304
2305                         otpinfo = (struct otp_info *) buf;
2306                         otpinfo->start = from;
2307                         otpinfo->length = mtd->writesize;
2308                         otpinfo->locked = 0;
2309
2310                         from += mtd->writesize;
2311                         buf += sizeof(struct otp_info);
2312                         *retlen += sizeof(struct otp_info);
2313                 } else {
2314                         size_t tmp_retlen;
2315                         int size = len;
2316
2317                         ret = action(mtd, from, len, &tmp_retlen, buf);
2318
2319                         buf += size;
2320                         len -= size;
2321                         *retlen += size;
2322
2323                         if (ret)
2324                                 break;
2325                 }
2326                 otp_pages--;
2327         }
2328         onenand_release_device(mtd);
2329
2330         return ret;
2331 }
2332
2333 /**
2334  * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
2335  * @param mtd           MTD device structure
2336  * @param buf           the databuffer to put/get data
2337  * @param len           number of bytes to read
2338  *
2339  * Read factory OTP info.
2340  */
2341 static int onenand_get_fact_prot_info(struct mtd_info *mtd,
2342                         struct otp_info *buf, size_t len)
2343 {
2344         size_t retlen;
2345         int ret;
2346
2347         ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
2348
2349         return ret ? : retlen;
2350 }
2351
2352 /**
2353  * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
2354  * @param mtd           MTD device structure
2355  * @param from          The offset to read
2356  * @param len           number of bytes to read
2357  * @param retlen        pointer to variable to store the number of read bytes
2358  * @param buf           the databuffer to put/get data
2359  *
2360  * Read factory OTP area.
2361  */
2362 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2363                         size_t len, size_t *retlen, u_char *buf)
2364 {
2365         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
2366 }
2367
2368 /**
2369  * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
2370  * @param mtd           MTD device structure
2371  * @param buf           the databuffer to put/get data
2372  * @param len           number of bytes to read
2373  *
2374  * Read user OTP info.
2375  */
2376 static int onenand_get_user_prot_info(struct mtd_info *mtd,
2377                         struct otp_info *buf, size_t len)
2378 {
2379         size_t retlen;
2380         int ret;
2381
2382         ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
2383
2384         return ret ? : retlen;
2385 }
2386
2387 /**
2388  * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
2389  * @param mtd           MTD device structure
2390  * @param from          The offset to read
2391  * @param len           number of bytes to read
2392  * @param retlen        pointer to variable to store the number of read bytes
2393  * @param buf           the databuffer to put/get data
2394  *
2395  * Read user OTP area.
2396  */
2397 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2398                         size_t len, size_t *retlen, u_char *buf)
2399 {
2400         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
2401 }
2402
2403 /**
2404  * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
2405  * @param mtd           MTD device structure
2406  * @param from          The offset to write
2407  * @param len           number of bytes to write
2408  * @param retlen        pointer to variable to store the number of write bytes
2409  * @param buf           the databuffer to put/get data
2410  *
2411  * Write user OTP area.
2412  */
2413 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2414                         size_t len, size_t *retlen, u_char *buf)
2415 {
2416         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
2417 }
2418
2419 /**
2420  * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
2421  * @param mtd           MTD device structure
2422  * @param from          The offset to lock
2423  * @param len           number of bytes to unlock
2424  *
2425  * Write lock mark on spare area in page 0 in OTP block
2426  */
2427 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
2428                         size_t len)
2429 {
2430         struct onenand_chip *this = mtd->priv;
2431         u_char *oob_buf = this->oob_buf;
2432         size_t retlen;
2433         int ret;
2434
2435         memset(oob_buf, 0xff, mtd->oobsize);
2436         /*
2437          * Note: OTP lock operation
2438          *       OTP block : 0xXXFC
2439          *       1st block : 0xXXF3 (If chip support)
2440          *       Both      : 0xXXF0 (If chip support)
2441          */
2442         oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;
2443
2444         /*
2445          * Write lock mark to 8th word of sector0 of page0 of the spare0.
2446          * We write 16 bytes spare area instead of 2 bytes.
2447          */
2448         from = 0;
2449         len = 16;
2450
2451         ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER);
2452
2453         return ret ? : retlen;
2454 }
2455 #endif  /* CONFIG_MTD_ONENAND_OTP */
2456
2457 /**
2458  * onenand_check_features - Check and set OneNAND features
2459  * @param mtd           MTD data structure
2460  *
2461  * Check and set OneNAND features
2462  * - lock scheme
2463  * - two plane
2464  */
2465 static void onenand_check_features(struct mtd_info *mtd)
2466 {
2467         struct onenand_chip *this = mtd->priv;
2468         unsigned int density, process;
2469
2470         /* Lock scheme depends on density and process */
2471         density = onenand_get_density(this->device_id);
2472         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2473
2474         /* Lock scheme */
2475         switch (density) {
2476         case ONENAND_DEVICE_DENSITY_4Gb:
2477                 this->options |= ONENAND_HAS_2PLANE;
2478
2479         case ONENAND_DEVICE_DENSITY_2Gb:
2480                 /* 2Gb DDP don't have 2 plane */
2481                 if (!ONENAND_IS_DDP(this))
2482                         this->options |= ONENAND_HAS_2PLANE;
2483                 this->options |= ONENAND_HAS_UNLOCK_ALL;
2484
2485         case ONENAND_DEVICE_DENSITY_1Gb:
2486                 /* A-Die has all block unlock */
2487                 if (process)
2488                         this->options |= ONENAND_HAS_UNLOCK_ALL;
2489                 break;
2490
2491         default:
2492                 /* Some OneNAND has continuous lock scheme */
2493                 if (!process)
2494                         this->options |= ONENAND_HAS_CONT_LOCK;
2495                 break;
2496         }
2497
2498         if (this->options & ONENAND_HAS_CONT_LOCK)
2499                 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2500         if (this->options & ONENAND_HAS_UNLOCK_ALL)
2501                 printk(KERN_DEBUG "Chip support all block unlock\n");
2502         if (this->options & ONENAND_HAS_2PLANE)
2503                 printk(KERN_DEBUG "Chip has 2 plane\n");
2504 }
2505
2506 /**
2507  * onenand_print_device_info - Print device & version ID
2508  * @param device        device ID
2509  * @param version       version ID
2510  *
2511  * Print device & version ID
2512  */
2513 static void onenand_print_device_info(int device, int version)
2514 {
2515         int vcc, demuxed, ddp, density;
2516
2517         vcc = device & ONENAND_DEVICE_VCC_MASK;
2518         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2519         ddp = device & ONENAND_DEVICE_IS_DDP;
2520         density = onenand_get_density(device);
2521         printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
2522                 demuxed ? "" : "Muxed ",
2523                 ddp ? "(DDP)" : "",
2524                 (16 << density),
2525                 vcc ? "2.65/3.3" : "1.8",
2526                 device);
2527         printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
2528 }
2529
2530 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2531         {ONENAND_MFR_SAMSUNG, "Samsung"},
2532 };
2533
2534 /**
2535  * onenand_check_maf - Check manufacturer ID
2536  * @param manuf         manufacturer ID
2537  *
2538  * Check manufacturer ID
2539  */
2540 static int onenand_check_maf(int manuf)
2541 {
2542         int size = ARRAY_SIZE(onenand_manuf_ids);
2543         char *name;
2544         int i;
2545
2546         for (i = 0; i < size; i++)
2547                 if (manuf == onenand_manuf_ids[i].id)
2548                         break;
2549
2550         if (i < size)
2551                 name = onenand_manuf_ids[i].name;
2552         else
2553                 name = "Unknown";
2554
2555         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2556
2557         return (i == size);
2558 }
2559
2560 /**
2561  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2562  * @param mtd           MTD device structure
2563  *
2564  * OneNAND detection method:
2565  *   Compare the values from command with ones from register
2566  */
2567 static int onenand_probe(struct mtd_info *mtd)
2568 {
2569         struct onenand_chip *this = mtd->priv;
2570         int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
2571         int density;
2572         int syscfg;
2573
2574         /* Save system configuration 1 */
2575         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2576         /* Clear Sync. Burst Read mode to read BootRAM */
2577         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1);
2578
2579         /* Send the command for reading device ID from BootRAM */
2580         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2581
2582         /* Read manufacturer and device IDs from BootRAM */
2583         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2584         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2585
2586         /* Reset OneNAND to read default register values */
2587         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2588         /* Wait reset */
2589         this->wait(mtd, FL_RESETING);
2590
2591         /* Restore system configuration 1 */
2592         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2593
2594         /* Check manufacturer ID */
2595         if (onenand_check_maf(bram_maf_id))
2596                 return -ENXIO;
2597
2598         /* Read manufacturer and device IDs from Register */
2599         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2600         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2601         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2602
2603         /* Check OneNAND device */
2604         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2605                 return -ENXIO;
2606
2607         /* Flash device information */
2608         onenand_print_device_info(dev_id, ver_id);
2609         this->device_id = dev_id;
2610         this->version_id = ver_id;
2611
2612         density = onenand_get_density(dev_id);
2613         this->chipsize = (16 << density) << 20;
2614         /* Set density mask. it is used for DDP */
2615         if (ONENAND_IS_DDP(this))
2616                 this->density_mask = (1 << (density + 6));
2617         else
2618                 this->density_mask = 0;
2619
2620         /* OneNAND page size & block size */
2621         /* The data buffer size is equal to page size */
2622         mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2623         mtd->oobsize = mtd->writesize >> 5;
2624         /* Pages per a block are always 64 in OneNAND */
2625         mtd->erasesize = mtd->writesize << 6;
2626
2627         this->erase_shift = ffs(mtd->erasesize) - 1;
2628         this->page_shift = ffs(mtd->writesize) - 1;
2629         this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
2630         /* It's real page size */
2631         this->writesize = mtd->writesize;
2632
2633         /* REVIST: Multichip handling */
2634
2635         mtd->size = this->chipsize;
2636
2637         /* Check OneNAND features */
2638         onenand_check_features(mtd);
2639
2640         /*
2641          * We emulate the 4KiB page and 256KiB erase block size
2642          * But oobsize is still 64 bytes.
2643          * It is only valid if you turn on 2X program support,
2644          * Otherwise it will be ignored by compiler.
2645          */
2646         if (ONENAND_IS_2PLANE(this)) {
2647                 mtd->writesize <<= 1;
2648                 mtd->erasesize <<= 1;
2649         }
2650
2651         return 0;
2652 }
2653
2654 /**
2655  * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
2656  * @param mtd           MTD device structure
2657  */
2658 static int onenand_suspend(struct mtd_info *mtd)
2659 {
2660         return onenand_get_device(mtd, FL_PM_SUSPENDED);
2661 }
2662
2663 /**
2664  * onenand_resume - [MTD Interface] Resume the OneNAND flash
2665  * @param mtd           MTD device structure
2666  */
2667 static void onenand_resume(struct mtd_info *mtd)
2668 {
2669         struct onenand_chip *this = mtd->priv;
2670
2671         if (this->state == FL_PM_SUSPENDED)
2672                 onenand_release_device(mtd);
2673         else
2674                 printk(KERN_ERR "resume() called for the chip which is not"
2675                                 "in suspended state\n");
2676 }
2677
2678 /**
2679  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2680  * @param mtd           MTD device structure
2681  * @param maxchips      Number of chips to scan for
2682  *
2683  * This fills out all the not initialized function pointers
2684  * with the defaults.
2685  * The flash ID is read and the mtd/chip structures are
2686  * filled with the appropriate values.
2687  */
2688 int onenand_scan(struct mtd_info *mtd, int maxchips)
2689 {
2690         int i;
2691         struct onenand_chip *this = mtd->priv;
2692
2693         if (!this->read_word)
2694                 this->read_word = onenand_readw;
2695         if (!this->write_word)
2696                 this->write_word = onenand_writew;
2697
2698         if (!this->command)
2699                 this->command = onenand_command;
2700         if (!this->wait)
2701                 onenand_setup_wait(mtd);
2702
2703         if (!this->read_bufferram)
2704                 this->read_bufferram = onenand_read_bufferram;
2705         if (!this->write_bufferram)
2706                 this->write_bufferram = onenand_write_bufferram;
2707
2708         if (!this->block_markbad)
2709                 this->block_markbad = onenand_default_block_markbad;
2710         if (!this->scan_bbt)
2711                 this->scan_bbt = onenand_default_bbt;
2712
2713         if (onenand_probe(mtd))
2714                 return -ENXIO;
2715
2716         /* Set Sync. Burst Read after probing */
2717         if (this->mmcontrol) {
2718                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2719                 this->read_bufferram = onenand_sync_read_bufferram;
2720         }
2721
2722         /* Allocate buffers, if necessary */
2723         if (!this->page_buf) {
2724                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2725                 if (!this->page_buf) {
2726                         printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2727                         return -ENOMEM;
2728                 }
2729                 this->options |= ONENAND_PAGEBUF_ALLOC;
2730         }
2731         if (!this->oob_buf) {
2732                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2733                 if (!this->oob_buf) {
2734                         printk(KERN_ERR "onenand_scan(): Can't allocate oob_buf\n");
2735                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
2736                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
2737                                 kfree(this->page_buf);
2738                         }
2739                         return -ENOMEM;
2740                 }
2741                 this->options |= ONENAND_OOBBUF_ALLOC;
2742         }
2743
2744         this->state = FL_READY;
2745         init_waitqueue_head(&this->wq);
2746         spin_lock_init(&this->chip_lock);
2747
2748         /*
2749          * Allow subpage writes up to oobsize.
2750          */
2751         switch (mtd->oobsize) {
2752         case 64:
2753                 this->ecclayout = &onenand_oob_64;
2754                 mtd->subpage_sft = 2;
2755                 break;
2756
2757         case 32:
2758                 this->ecclayout = &onenand_oob_32;
2759                 mtd->subpage_sft = 1;
2760                 break;
2761
2762         default:
2763                 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2764                         mtd->oobsize);
2765                 mtd->subpage_sft = 0;
2766                 /* To prevent kernel oops */
2767                 this->ecclayout = &onenand_oob_32;
2768                 break;
2769         }
2770
2771         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2772
2773         /*
2774          * The number of bytes available for a client to place data into
2775          * the out of band area
2776          */
2777         this->ecclayout->oobavail = 0;
2778         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
2779             this->ecclayout->oobfree[i].length; i++)
2780                 this->ecclayout->oobavail +=
2781                         this->ecclayout->oobfree[i].length;
2782         mtd->oobavail = this->ecclayout->oobavail;
2783
2784         mtd->ecclayout = this->ecclayout;
2785
2786         /* Fill in remaining MTD driver data */
2787         mtd->type = MTD_NANDFLASH;
2788         mtd->flags = MTD_CAP_NANDFLASH;
2789         mtd->erase = onenand_erase;
2790         mtd->point = NULL;
2791         mtd->unpoint = NULL;
2792         mtd->read = onenand_read;
2793         mtd->write = onenand_write;
2794         mtd->read_oob = onenand_read_oob;
2795         mtd->write_oob = onenand_write_oob;
2796         mtd->panic_write = onenand_panic_write;
2797 #ifdef CONFIG_MTD_ONENAND_OTP
2798         mtd->get_fact_prot_info = onenand_get_fact_prot_info;
2799         mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
2800         mtd->get_user_prot_info = onenand_get_user_prot_info;
2801         mtd->read_user_prot_reg = onenand_read_user_prot_reg;
2802         mtd->write_user_prot_reg = onenand_write_user_prot_reg;
2803         mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
2804 #endif
2805         mtd->sync = onenand_sync;
2806         mtd->lock = onenand_lock;
2807         mtd->unlock = onenand_unlock;
2808         mtd->suspend = onenand_suspend;
2809         mtd->resume = onenand_resume;
2810         mtd->block_isbad = onenand_block_isbad;
2811         mtd->block_markbad = onenand_block_markbad;
2812         mtd->owner = THIS_MODULE;
2813
2814         /* Unlock whole block */
2815         onenand_unlock_all(mtd);
2816
2817         return this->scan_bbt(mtd);
2818 }
2819
2820 /**
2821  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2822  * @param mtd           MTD device structure
2823  */
2824 void onenand_release(struct mtd_info *mtd)
2825 {
2826         struct onenand_chip *this = mtd->priv;
2827
2828 #ifdef CONFIG_MTD_PARTITIONS
2829         /* Deregister partitions */
2830         del_mtd_partitions (mtd);
2831 #endif
2832         /* Deregister the device */
2833         del_mtd_device (mtd);
2834
2835         /* Free bad block table memory, if allocated */
2836         if (this->bbm) {
2837                 struct bbm_info *bbm = this->bbm;
2838                 kfree(bbm->bbt);
2839                 kfree(this->bbm);
2840         }
2841         /* Buffers allocated by onenand_scan */
2842         if (this->options & ONENAND_PAGEBUF_ALLOC)
2843                 kfree(this->page_buf);
2844         if (this->options & ONENAND_OOBBUF_ALLOC)
2845                 kfree(this->oob_buf);
2846 }
2847
2848 EXPORT_SYMBOL_GPL(onenand_scan);
2849 EXPORT_SYMBOL_GPL(onenand_release);
2850
2851 MODULE_LICENSE("GPL");
2852 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
2853 MODULE_DESCRIPTION("Generic OneNAND flash driver code");