Merge branch 'devel'
[linux-2.6] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500pci
23         Abstract: rt2500pci device specific routines.
24         Supported chipsets: RT2560.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
38
39 /*
40  * Register access.
41  * All access to the CSR registers will go through the methods
42  * rt2x00pci_register_read and rt2x00pci_register_write.
43  * BBP and RF register require indirect register access,
44  * and use the CSR registers BBPCSR and RFCSR to achieve this.
45  * These indirect registers work with busy bits,
46  * and we will try maximal REGISTER_BUSY_COUNT times to access
47  * the register while taking a REGISTER_BUSY_DELAY us delay
48  * between each attampt. When the busy bit is still set at that time,
49  * the access attempt is considered to have failed,
50  * and we will print an error.
51  */
52 #define WAIT_FOR_BBP(__dev, __reg) \
53         rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
54 #define WAIT_FOR_RF(__dev, __reg) \
55         rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
56
57 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
58                                 const unsigned int word, const u8 value)
59 {
60         u32 reg;
61
62         mutex_lock(&rt2x00dev->csr_mutex);
63
64         /*
65          * Wait until the BBP becomes available, afterwards we
66          * can safely write the new data into the register.
67          */
68         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
69                 reg = 0;
70                 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
71                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
72                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
73                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
74
75                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
76         }
77
78         mutex_unlock(&rt2x00dev->csr_mutex);
79 }
80
81 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
82                                const unsigned int word, u8 *value)
83 {
84         u32 reg;
85
86         mutex_lock(&rt2x00dev->csr_mutex);
87
88         /*
89          * Wait until the BBP becomes available, afterwards we
90          * can safely write the read request into the register.
91          * After the data has been written, we wait until hardware
92          * returns the correct value, if at any time the register
93          * doesn't become available in time, reg will be 0xffffffff
94          * which means we return 0xff to the caller.
95          */
96         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
97                 reg = 0;
98                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
99                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
100                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
101
102                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
103
104                 WAIT_FOR_BBP(rt2x00dev, &reg);
105         }
106
107         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
108
109         mutex_unlock(&rt2x00dev->csr_mutex);
110 }
111
112 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
113                                const unsigned int word, const u32 value)
114 {
115         u32 reg;
116
117         if (!word)
118                 return;
119
120         mutex_lock(&rt2x00dev->csr_mutex);
121
122         /*
123          * Wait until the RF becomes available, afterwards we
124          * can safely write the new data into the register.
125          */
126         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
127                 reg = 0;
128                 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
129                 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
130                 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
131                 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
132
133                 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
134                 rt2x00_rf_write(rt2x00dev, word, value);
135         }
136
137         mutex_unlock(&rt2x00dev->csr_mutex);
138 }
139
140 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
141 {
142         struct rt2x00_dev *rt2x00dev = eeprom->data;
143         u32 reg;
144
145         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
146
147         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
148         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
149         eeprom->reg_data_clock =
150             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
151         eeprom->reg_chip_select =
152             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
153 }
154
155 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
156 {
157         struct rt2x00_dev *rt2x00dev = eeprom->data;
158         u32 reg = 0;
159
160         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
161         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
162         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
163                            !!eeprom->reg_data_clock);
164         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
165                            !!eeprom->reg_chip_select);
166
167         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
168 }
169
170 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
171 static const struct rt2x00debug rt2500pci_rt2x00debug = {
172         .owner  = THIS_MODULE,
173         .csr    = {
174                 .read           = rt2x00pci_register_read,
175                 .write          = rt2x00pci_register_write,
176                 .flags          = RT2X00DEBUGFS_OFFSET,
177                 .word_base      = CSR_REG_BASE,
178                 .word_size      = sizeof(u32),
179                 .word_count     = CSR_REG_SIZE / sizeof(u32),
180         },
181         .eeprom = {
182                 .read           = rt2x00_eeprom_read,
183                 .write          = rt2x00_eeprom_write,
184                 .word_base      = EEPROM_BASE,
185                 .word_size      = sizeof(u16),
186                 .word_count     = EEPROM_SIZE / sizeof(u16),
187         },
188         .bbp    = {
189                 .read           = rt2500pci_bbp_read,
190                 .write          = rt2500pci_bbp_write,
191                 .word_base      = BBP_BASE,
192                 .word_size      = sizeof(u8),
193                 .word_count     = BBP_SIZE / sizeof(u8),
194         },
195         .rf     = {
196                 .read           = rt2x00_rf_read,
197                 .write          = rt2500pci_rf_write,
198                 .word_base      = RF_BASE,
199                 .word_size      = sizeof(u32),
200                 .word_count     = RF_SIZE / sizeof(u32),
201         },
202 };
203 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
204
205 #ifdef CONFIG_RT2X00_LIB_RFKILL
206 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
207 {
208         u32 reg;
209
210         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
211         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
212 }
213 #else
214 #define rt2500pci_rfkill_poll   NULL
215 #endif /* CONFIG_RT2X00_LIB_RFKILL */
216
217 #ifdef CONFIG_RT2X00_LIB_LEDS
218 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
219                                      enum led_brightness brightness)
220 {
221         struct rt2x00_led *led =
222             container_of(led_cdev, struct rt2x00_led, led_dev);
223         unsigned int enabled = brightness != LED_OFF;
224         u32 reg;
225
226         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
227
228         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
229                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
230         else if (led->type == LED_TYPE_ACTIVITY)
231                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
232
233         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
234 }
235
236 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
237                                unsigned long *delay_on,
238                                unsigned long *delay_off)
239 {
240         struct rt2x00_led *led =
241             container_of(led_cdev, struct rt2x00_led, led_dev);
242         u32 reg;
243
244         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
245         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
246         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
247         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
248
249         return 0;
250 }
251
252 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
253                                struct rt2x00_led *led,
254                                enum led_type type)
255 {
256         led->rt2x00dev = rt2x00dev;
257         led->type = type;
258         led->led_dev.brightness_set = rt2500pci_brightness_set;
259         led->led_dev.blink_set = rt2500pci_blink_set;
260         led->flags = LED_INITIALIZED;
261 }
262 #endif /* CONFIG_RT2X00_LIB_LEDS */
263
264 /*
265  * Configuration handlers.
266  */
267 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
268                                     const unsigned int filter_flags)
269 {
270         u32 reg;
271
272         /*
273          * Start configuration steps.
274          * Note that the version error will always be dropped
275          * and broadcast frames will always be accepted since
276          * there is no filter for it at this time.
277          */
278         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
279         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
280                            !(filter_flags & FIF_FCSFAIL));
281         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
282                            !(filter_flags & FIF_PLCPFAIL));
283         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
284                            !(filter_flags & FIF_CONTROL));
285         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
286                            !(filter_flags & FIF_PROMISC_IN_BSS));
287         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
288                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
289                            !rt2x00dev->intf_ap_count);
290         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
291         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
292                            !(filter_flags & FIF_ALLMULTI));
293         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
294         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
295 }
296
297 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
298                                   struct rt2x00_intf *intf,
299                                   struct rt2x00intf_conf *conf,
300                                   const unsigned int flags)
301 {
302         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
303         unsigned int bcn_preload;
304         u32 reg;
305
306         if (flags & CONFIG_UPDATE_TYPE) {
307                 /*
308                  * Enable beacon config
309                  */
310                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
311                 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
312                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
313                 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
314                 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
315
316                 /*
317                  * Enable synchronisation.
318                  */
319                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
320                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
321                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
322                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
323                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
324         }
325
326         if (flags & CONFIG_UPDATE_MAC)
327                 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
328                                               conf->mac, sizeof(conf->mac));
329
330         if (flags & CONFIG_UPDATE_BSSID)
331                 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
332                                               conf->bssid, sizeof(conf->bssid));
333 }
334
335 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
336                                  struct rt2x00lib_erp *erp)
337 {
338         int preamble_mask;
339         u32 reg;
340
341         /*
342          * When short preamble is enabled, we should set bit 0x08
343          */
344         preamble_mask = erp->short_preamble << 3;
345
346         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
347         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
348                            erp->ack_timeout);
349         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
350                            erp->ack_consume_time);
351         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
352
353         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
354         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
355         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
356         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
357         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
358
359         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
360         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
361         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
362         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
363         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
364
365         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
366         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
367         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
368         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
369         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
370
371         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
372         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
373         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
374         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
375         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
376
377         rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
378
379         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
380         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
381         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
382
383         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
384         rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
385         rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
386         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
387
388         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
389         rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
390         rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
391         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
392 }
393
394 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
395                                  struct antenna_setup *ant)
396 {
397         u32 reg;
398         u8 r14;
399         u8 r2;
400
401         /*
402          * We should never come here because rt2x00lib is supposed
403          * to catch this and send us the correct antenna explicitely.
404          */
405         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
406                ant->tx == ANTENNA_SW_DIVERSITY);
407
408         rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
409         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
410         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
411
412         /*
413          * Configure the TX antenna.
414          */
415         switch (ant->tx) {
416         case ANTENNA_A:
417                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
418                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
419                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
420                 break;
421         case ANTENNA_B:
422         default:
423                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
424                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
425                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
426                 break;
427         }
428
429         /*
430          * Configure the RX antenna.
431          */
432         switch (ant->rx) {
433         case ANTENNA_A:
434                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
435                 break;
436         case ANTENNA_B:
437         default:
438                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
439                 break;
440         }
441
442         /*
443          * RT2525E and RT5222 need to flip TX I/Q
444          */
445         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
446             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
447                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
448                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
449                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
450
451                 /*
452                  * RT2525E does not need RX I/Q Flip.
453                  */
454                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
455                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
456         } else {
457                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
458                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
459         }
460
461         rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
462         rt2500pci_bbp_write(rt2x00dev, 14, r14);
463         rt2500pci_bbp_write(rt2x00dev, 2, r2);
464 }
465
466 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
467                                      struct rf_channel *rf, const int txpower)
468 {
469         u8 r70;
470
471         /*
472          * Set TXpower.
473          */
474         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
475
476         /*
477          * Switch on tuning bits.
478          * For RT2523 devices we do not need to update the R1 register.
479          */
480         if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
481                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
482         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
483
484         /*
485          * For RT2525 we should first set the channel to half band higher.
486          */
487         if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
488                 static const u32 vals[] = {
489                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
490                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
491                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
492                         0x00080d2e, 0x00080d3a
493                 };
494
495                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
496                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
497                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
498                 if (rf->rf4)
499                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
500         }
501
502         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
503         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
504         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
505         if (rf->rf4)
506                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
507
508         /*
509          * Channel 14 requires the Japan filter bit to be set.
510          */
511         r70 = 0x46;
512         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
513         rt2500pci_bbp_write(rt2x00dev, 70, r70);
514
515         msleep(1);
516
517         /*
518          * Switch off tuning bits.
519          * For RT2523 devices we do not need to update the R1 register.
520          */
521         if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
522                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
523                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
524         }
525
526         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
527         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
528
529         /*
530          * Clear false CRC during channel switch.
531          */
532         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
533 }
534
535 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
536                                      const int txpower)
537 {
538         u32 rf3;
539
540         rt2x00_rf_read(rt2x00dev, 3, &rf3);
541         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
542         rt2500pci_rf_write(rt2x00dev, 3, rf3);
543 }
544
545 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
546                                          struct rt2x00lib_conf *libconf)
547 {
548         u32 reg;
549
550         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
551         rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
552                            libconf->conf->long_frame_max_tx_count);
553         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
554                            libconf->conf->short_frame_max_tx_count);
555         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
556 }
557
558 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
559                                       struct rt2x00lib_conf *libconf)
560 {
561         u32 reg;
562
563         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
564         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
565         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
566         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
567
568         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
569         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
570                            libconf->conf->beacon_int * 16);
571         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
572                            libconf->conf->beacon_int * 16);
573         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
574 }
575
576 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
577                              struct rt2x00lib_conf *libconf,
578                              const unsigned int flags)
579 {
580         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
581                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
582                                          libconf->conf->power_level);
583         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
584             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
585                 rt2500pci_config_txpower(rt2x00dev,
586                                          libconf->conf->power_level);
587         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
588                 rt2500pci_config_retry_limit(rt2x00dev, libconf);
589         if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
590                 rt2500pci_config_duration(rt2x00dev, libconf);
591 }
592
593 /*
594  * Link tuning
595  */
596 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
597                                  struct link_qual *qual)
598 {
599         u32 reg;
600
601         /*
602          * Update FCS error count from register.
603          */
604         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
605         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
606
607         /*
608          * Update False CCA count from register.
609          */
610         rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
611         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
612 }
613
614 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
615 {
616         rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
617         rt2x00dev->link.vgc_level = 0x48;
618 }
619
620 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
621 {
622         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
623         u8 r17;
624
625         /*
626          * To prevent collisions with MAC ASIC on chipsets
627          * up to version C the link tuning should halt after 20
628          * seconds while being associated.
629          */
630         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
631             rt2x00dev->intf_associated &&
632             rt2x00dev->link.count > 20)
633                 return;
634
635         rt2500pci_bbp_read(rt2x00dev, 17, &r17);
636
637         /*
638          * Chipset versions C and lower should directly continue
639          * to the dynamic CCA tuning. Chipset version D and higher
640          * should go straight to dynamic CCA tuning when they
641          * are not associated.
642          */
643         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
644             !rt2x00dev->intf_associated)
645                 goto dynamic_cca_tune;
646
647         /*
648          * A too low RSSI will cause too much false CCA which will
649          * then corrupt the R17 tuning. To remidy this the tuning should
650          * be stopped (While making sure the R17 value will not exceed limits)
651          */
652         if (rssi < -80 && rt2x00dev->link.count > 20) {
653                 if (r17 >= 0x41) {
654                         r17 = rt2x00dev->link.vgc_level;
655                         rt2500pci_bbp_write(rt2x00dev, 17, r17);
656                 }
657                 return;
658         }
659
660         /*
661          * Special big-R17 for short distance
662          */
663         if (rssi >= -58) {
664                 if (r17 != 0x50)
665                         rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
666                 return;
667         }
668
669         /*
670          * Special mid-R17 for middle distance
671          */
672         if (rssi >= -74) {
673                 if (r17 != 0x41)
674                         rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
675                 return;
676         }
677
678         /*
679          * Leave short or middle distance condition, restore r17
680          * to the dynamic tuning range.
681          */
682         if (r17 >= 0x41) {
683                 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
684                 return;
685         }
686
687 dynamic_cca_tune:
688
689         /*
690          * R17 is inside the dynamic tuning range,
691          * start tuning the link based on the false cca counter.
692          */
693         if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
694                 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
695                 rt2x00dev->link.vgc_level = r17;
696         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
697                 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
698                 rt2x00dev->link.vgc_level = r17;
699         }
700 }
701
702 /*
703  * Initialization functions.
704  */
705 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
706 {
707         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
708         u32 word;
709
710         if (entry->queue->qid == QID_RX) {
711                 rt2x00_desc_read(entry_priv->desc, 0, &word);
712
713                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
714         } else {
715                 rt2x00_desc_read(entry_priv->desc, 0, &word);
716
717                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
718                         rt2x00_get_field32(word, TXD_W0_VALID));
719         }
720 }
721
722 static void rt2500pci_clear_entry(struct queue_entry *entry)
723 {
724         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
725         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
726         u32 word;
727
728         if (entry->queue->qid == QID_RX) {
729                 rt2x00_desc_read(entry_priv->desc, 1, &word);
730                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
731                 rt2x00_desc_write(entry_priv->desc, 1, word);
732
733                 rt2x00_desc_read(entry_priv->desc, 0, &word);
734                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
735                 rt2x00_desc_write(entry_priv->desc, 0, word);
736         } else {
737                 rt2x00_desc_read(entry_priv->desc, 0, &word);
738                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
739                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
740                 rt2x00_desc_write(entry_priv->desc, 0, word);
741         }
742 }
743
744 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
745 {
746         struct queue_entry_priv_pci *entry_priv;
747         u32 reg;
748
749         /*
750          * Initialize registers.
751          */
752         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
753         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
754         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
755         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
756         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
757         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
758
759         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
760         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
761         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
762                            entry_priv->desc_dma);
763         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
764
765         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
766         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
767         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
768                            entry_priv->desc_dma);
769         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
770
771         entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
772         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
773         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
774                            entry_priv->desc_dma);
775         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
776
777         entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
778         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
779         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
780                            entry_priv->desc_dma);
781         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
782
783         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
784         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
785         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
786         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
787
788         entry_priv = rt2x00dev->rx->entries[0].priv_data;
789         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
790         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
791                            entry_priv->desc_dma);
792         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
793
794         return 0;
795 }
796
797 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
798 {
799         u32 reg;
800
801         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
802         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
803         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
804         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
805
806         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
807         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
808         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
809         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
810         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
811
812         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
813         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
814                            rt2x00dev->rx->data_size / 128);
815         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
816
817         /*
818          * Always use CWmin and CWmax set in descriptor.
819          */
820         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
821         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
822         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
823
824         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
825         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
826         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
827         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
828         rt2x00_set_field32(&reg, CSR14_TCFP, 0);
829         rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
830         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
831         rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
832         rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
833         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
834
835         rt2x00pci_register_write(rt2x00dev, CNT3, 0);
836
837         rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
838         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
839         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
840         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
841         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
842         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
843         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
844         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
845         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
846         rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
847
848         rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
849         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
850         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
851         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
852         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
853         rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
854
855         rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
856         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
857         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
858         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
859         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
860         rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
861
862         rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
863         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
864         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
865         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
866         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
867         rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
868
869         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
870         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
871         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
872         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
873         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
874         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
875         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
876         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
877         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
878         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
879
880         rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
881         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
882         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
883         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
884         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
885         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
886         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
887         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
888         rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
889
890         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
891
892         rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
893         rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
894
895         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
896                 return -EBUSY;
897
898         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
899         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
900
901         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
902         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
903         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
904
905         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
906         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
907         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
908         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
909         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
910         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
911         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
912         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
913
914         rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
915
916         rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
917
918         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
919         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
920         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
921         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
922         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
923
924         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
925         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
926         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
927         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
928
929         /*
930          * We must clear the FCS and FIFO error count.
931          * These registers are cleared on read,
932          * so we may pass a useless variable to store the value.
933          */
934         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
935         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
936
937         return 0;
938 }
939
940 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
941 {
942         unsigned int i;
943         u8 value;
944
945         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
946                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
947                 if ((value != 0xff) && (value != 0x00))
948                         return 0;
949                 udelay(REGISTER_BUSY_DELAY);
950         }
951
952         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
953         return -EACCES;
954 }
955
956 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
957 {
958         unsigned int i;
959         u16 eeprom;
960         u8 reg_id;
961         u8 value;
962
963         if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
964                 return -EACCES;
965
966         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
967         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
968         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
969         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
970         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
971         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
972         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
973         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
974         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
975         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
976         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
977         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
978         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
979         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
980         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
981         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
982         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
983         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
984         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
985         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
986         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
987         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
988         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
989         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
990         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
991         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
992         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
993         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
994         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
995         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
996
997         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
998                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
999
1000                 if (eeprom != 0xffff && eeprom != 0x0000) {
1001                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1002                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1003                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1004                 }
1005         }
1006
1007         return 0;
1008 }
1009
1010 /*
1011  * Device state switch handlers.
1012  */
1013 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1014                                 enum dev_state state)
1015 {
1016         u32 reg;
1017
1018         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1019         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1020                            (state == STATE_RADIO_RX_OFF) ||
1021                            (state == STATE_RADIO_RX_OFF_LINK));
1022         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1023 }
1024
1025 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1026                                  enum dev_state state)
1027 {
1028         int mask = (state == STATE_RADIO_IRQ_OFF);
1029         u32 reg;
1030
1031         /*
1032          * When interrupts are being enabled, the interrupt registers
1033          * should clear the register to assure a clean state.
1034          */
1035         if (state == STATE_RADIO_IRQ_ON) {
1036                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1037                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1038         }
1039
1040         /*
1041          * Only toggle the interrupts bits we are going to use.
1042          * Non-checked interrupt bits are disabled by default.
1043          */
1044         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1045         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1046         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1047         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1048         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1049         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1050         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1051 }
1052
1053 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1054 {
1055         /*
1056          * Initialize all registers.
1057          */
1058         if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1059                      rt2500pci_init_registers(rt2x00dev) ||
1060                      rt2500pci_init_bbp(rt2x00dev)))
1061                 return -EIO;
1062
1063         return 0;
1064 }
1065
1066 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1067 {
1068         u32 reg;
1069
1070         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1071
1072         /*
1073          * Disable synchronisation.
1074          */
1075         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1076
1077         /*
1078          * Cancel RX and TX.
1079          */
1080         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1081         rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1082         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1083 }
1084
1085 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1086                                enum dev_state state)
1087 {
1088         u32 reg;
1089         unsigned int i;
1090         char put_to_sleep;
1091         char bbp_state;
1092         char rf_state;
1093
1094         put_to_sleep = (state != STATE_AWAKE);
1095
1096         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1097         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1098         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1099         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1100         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1101         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1102
1103         /*
1104          * Device is not guaranteed to be in the requested state yet.
1105          * We must wait until the register indicates that the
1106          * device has entered the correct state.
1107          */
1108         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1109                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1110                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1111                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1112                 if (bbp_state == state && rf_state == state)
1113                         return 0;
1114                 msleep(10);
1115         }
1116
1117         return -EBUSY;
1118 }
1119
1120 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1121                                       enum dev_state state)
1122 {
1123         int retval = 0;
1124
1125         switch (state) {
1126         case STATE_RADIO_ON:
1127                 retval = rt2500pci_enable_radio(rt2x00dev);
1128                 break;
1129         case STATE_RADIO_OFF:
1130                 rt2500pci_disable_radio(rt2x00dev);
1131                 break;
1132         case STATE_RADIO_RX_ON:
1133         case STATE_RADIO_RX_ON_LINK:
1134         case STATE_RADIO_RX_OFF:
1135         case STATE_RADIO_RX_OFF_LINK:
1136                 rt2500pci_toggle_rx(rt2x00dev, state);
1137                 break;
1138         case STATE_RADIO_IRQ_ON:
1139         case STATE_RADIO_IRQ_OFF:
1140                 rt2500pci_toggle_irq(rt2x00dev, state);
1141                 break;
1142         case STATE_DEEP_SLEEP:
1143         case STATE_SLEEP:
1144         case STATE_STANDBY:
1145         case STATE_AWAKE:
1146                 retval = rt2500pci_set_state(rt2x00dev, state);
1147                 break;
1148         default:
1149                 retval = -ENOTSUPP;
1150                 break;
1151         }
1152
1153         if (unlikely(retval))
1154                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1155                       state, retval);
1156
1157         return retval;
1158 }
1159
1160 /*
1161  * TX descriptor initialization
1162  */
1163 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1164                                     struct sk_buff *skb,
1165                                     struct txentry_desc *txdesc)
1166 {
1167         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1168         struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1169         __le32 *txd = skbdesc->desc;
1170         u32 word;
1171
1172         /*
1173          * Start writing the descriptor words.
1174          */
1175         rt2x00_desc_read(entry_priv->desc, 1, &word);
1176         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1177         rt2x00_desc_write(entry_priv->desc, 1, word);
1178
1179         rt2x00_desc_read(txd, 2, &word);
1180         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1181         rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1182         rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1183         rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1184         rt2x00_desc_write(txd, 2, word);
1185
1186         rt2x00_desc_read(txd, 3, &word);
1187         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1188         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1189         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1190         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1191         rt2x00_desc_write(txd, 3, word);
1192
1193         rt2x00_desc_read(txd, 10, &word);
1194         rt2x00_set_field32(&word, TXD_W10_RTS,
1195                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1196         rt2x00_desc_write(txd, 10, word);
1197
1198         rt2x00_desc_read(txd, 0, &word);
1199         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1200         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1201         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1202                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1203         rt2x00_set_field32(&word, TXD_W0_ACK,
1204                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1205         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1206                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1207         rt2x00_set_field32(&word, TXD_W0_OFDM,
1208                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1209         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1210         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1211         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1212                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1213         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1214         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1215         rt2x00_desc_write(txd, 0, word);
1216 }
1217
1218 /*
1219  * TX data initialization
1220  */
1221 static void rt2500pci_write_beacon(struct queue_entry *entry)
1222 {
1223         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1224         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1225         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1226         u32 word;
1227         u32 reg;
1228
1229         /*
1230          * Disable beaconing while we are reloading the beacon data,
1231          * otherwise we might be sending out invalid data.
1232          */
1233         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1234         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1235         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1236         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1237         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1238
1239         /*
1240          * Replace rt2x00lib allocated descriptor with the
1241          * pointer to the _real_ hardware descriptor.
1242          * After that, map the beacon to DMA and update the
1243          * descriptor.
1244          */
1245         memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
1246         skbdesc->desc = entry_priv->desc;
1247
1248         rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1249
1250         rt2x00_desc_read(entry_priv->desc, 1, &word);
1251         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1252         rt2x00_desc_write(entry_priv->desc, 1, word);
1253 }
1254
1255 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1256                                     const enum data_queue_qid queue)
1257 {
1258         u32 reg;
1259
1260         if (queue == QID_BEACON) {
1261                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1262                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1263                         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1264                         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1265                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1266                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1267                 }
1268                 return;
1269         }
1270
1271         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1272         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1273         rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1274         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1275         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1276 }
1277
1278 /*
1279  * RX control handlers
1280  */
1281 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1282                                   struct rxdone_entry_desc *rxdesc)
1283 {
1284         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1285         u32 word0;
1286         u32 word2;
1287
1288         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1289         rt2x00_desc_read(entry_priv->desc, 2, &word2);
1290
1291         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1292                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1293         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1294                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1295
1296         /*
1297          * Obtain the status about this packet.
1298          * When frame was received with an OFDM bitrate,
1299          * the signal is the PLCP value. If it was received with
1300          * a CCK bitrate the signal is the rate in 100kbit/s.
1301          */
1302         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1303         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1304             entry->queue->rt2x00dev->rssi_offset;
1305         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1306
1307         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1308                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1309         else
1310                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1311         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1312                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1313 }
1314
1315 /*
1316  * Interrupt functions.
1317  */
1318 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1319                              const enum data_queue_qid queue_idx)
1320 {
1321         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1322         struct queue_entry_priv_pci *entry_priv;
1323         struct queue_entry *entry;
1324         struct txdone_entry_desc txdesc;
1325         u32 word;
1326
1327         while (!rt2x00queue_empty(queue)) {
1328                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1329                 entry_priv = entry->priv_data;
1330                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1331
1332                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1333                     !rt2x00_get_field32(word, TXD_W0_VALID))
1334                         break;
1335
1336                 /*
1337                  * Obtain the status about this packet.
1338                  */
1339                 txdesc.flags = 0;
1340                 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1341                 case 0: /* Success */
1342                 case 1: /* Success with retry */
1343                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1344                         break;
1345                 case 2: /* Failure, excessive retries */
1346                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1347                         /* Don't break, this is a failed frame! */
1348                 default: /* Failure */
1349                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1350                 }
1351                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1352
1353                 rt2x00lib_txdone(entry, &txdesc);
1354         }
1355 }
1356
1357 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1358 {
1359         struct rt2x00_dev *rt2x00dev = dev_instance;
1360         u32 reg;
1361
1362         /*
1363          * Get the interrupt sources & saved to local variable.
1364          * Write register value back to clear pending interrupts.
1365          */
1366         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1367         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1368
1369         if (!reg)
1370                 return IRQ_NONE;
1371
1372         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1373                 return IRQ_HANDLED;
1374
1375         /*
1376          * Handle interrupts, walk through all bits
1377          * and run the tasks, the bits are checked in order of
1378          * priority.
1379          */
1380
1381         /*
1382          * 1 - Beacon timer expired interrupt.
1383          */
1384         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1385                 rt2x00lib_beacondone(rt2x00dev);
1386
1387         /*
1388          * 2 - Rx ring done interrupt.
1389          */
1390         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1391                 rt2x00pci_rxdone(rt2x00dev);
1392
1393         /*
1394          * 3 - Atim ring transmit done interrupt.
1395          */
1396         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1397                 rt2500pci_txdone(rt2x00dev, QID_ATIM);
1398
1399         /*
1400          * 4 - Priority ring transmit done interrupt.
1401          */
1402         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1403                 rt2500pci_txdone(rt2x00dev, QID_AC_BE);
1404
1405         /*
1406          * 5 - Tx ring transmit done interrupt.
1407          */
1408         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1409                 rt2500pci_txdone(rt2x00dev, QID_AC_BK);
1410
1411         return IRQ_HANDLED;
1412 }
1413
1414 /*
1415  * Device probe functions.
1416  */
1417 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1418 {
1419         struct eeprom_93cx6 eeprom;
1420         u32 reg;
1421         u16 word;
1422         u8 *mac;
1423
1424         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1425
1426         eeprom.data = rt2x00dev;
1427         eeprom.register_read = rt2500pci_eepromregister_read;
1428         eeprom.register_write = rt2500pci_eepromregister_write;
1429         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1430             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1431         eeprom.reg_data_in = 0;
1432         eeprom.reg_data_out = 0;
1433         eeprom.reg_data_clock = 0;
1434         eeprom.reg_chip_select = 0;
1435
1436         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1437                                EEPROM_SIZE / sizeof(u16));
1438
1439         /*
1440          * Start validation of the data that has been read.
1441          */
1442         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1443         if (!is_valid_ether_addr(mac)) {
1444                 random_ether_addr(mac);
1445                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1446         }
1447
1448         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1449         if (word == 0xffff) {
1450                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1451                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1452                                    ANTENNA_SW_DIVERSITY);
1453                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1454                                    ANTENNA_SW_DIVERSITY);
1455                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1456                                    LED_MODE_DEFAULT);
1457                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1458                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1459                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1460                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1461                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1462         }
1463
1464         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1465         if (word == 0xffff) {
1466                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1467                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1468                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1469                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1470                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1471         }
1472
1473         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1474         if (word == 0xffff) {
1475                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1476                                    DEFAULT_RSSI_OFFSET);
1477                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1478                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1479         }
1480
1481         return 0;
1482 }
1483
1484 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1485 {
1486         u32 reg;
1487         u16 value;
1488         u16 eeprom;
1489
1490         /*
1491          * Read EEPROM word for configuration.
1492          */
1493         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1494
1495         /*
1496          * Identify RF chipset.
1497          */
1498         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1499         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1500         rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1501
1502         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1503             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1504             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1505             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1506             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1507             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1508                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1509                 return -ENODEV;
1510         }
1511
1512         /*
1513          * Identify default antenna configuration.
1514          */
1515         rt2x00dev->default_ant.tx =
1516             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1517         rt2x00dev->default_ant.rx =
1518             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1519
1520         /*
1521          * Store led mode, for correct led behaviour.
1522          */
1523 #ifdef CONFIG_RT2X00_LIB_LEDS
1524         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1525
1526         rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1527         if (value == LED_MODE_TXRX_ACTIVITY)
1528                 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1529                                    LED_TYPE_ACTIVITY);
1530 #endif /* CONFIG_RT2X00_LIB_LEDS */
1531
1532         /*
1533          * Detect if this device has an hardware controlled radio.
1534          */
1535 #ifdef CONFIG_RT2X00_LIB_RFKILL
1536         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1537                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1538 #endif /* CONFIG_RT2X00_LIB_RFKILL */
1539
1540         /*
1541          * Check if the BBP tuning should be enabled.
1542          */
1543         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1544
1545         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1546                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1547
1548         /*
1549          * Read the RSSI <-> dBm offset information.
1550          */
1551         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1552         rt2x00dev->rssi_offset =
1553             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1554
1555         return 0;
1556 }
1557
1558 /*
1559  * RF value list for RF2522
1560  * Supports: 2.4 GHz
1561  */
1562 static const struct rf_channel rf_vals_bg_2522[] = {
1563         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1564         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1565         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1566         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1567         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1568         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1569         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1570         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1571         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1572         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1573         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1574         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1575         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1576         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1577 };
1578
1579 /*
1580  * RF value list for RF2523
1581  * Supports: 2.4 GHz
1582  */
1583 static const struct rf_channel rf_vals_bg_2523[] = {
1584         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1585         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1586         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1587         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1588         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1589         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1590         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1591         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1592         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1593         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1594         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1595         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1596         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1597         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1598 };
1599
1600 /*
1601  * RF value list for RF2524
1602  * Supports: 2.4 GHz
1603  */
1604 static const struct rf_channel rf_vals_bg_2524[] = {
1605         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1606         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1607         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1608         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1609         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1610         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1611         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1612         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1613         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1614         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1615         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1616         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1617         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1618         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1619 };
1620
1621 /*
1622  * RF value list for RF2525
1623  * Supports: 2.4 GHz
1624  */
1625 static const struct rf_channel rf_vals_bg_2525[] = {
1626         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1627         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1628         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1629         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1630         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1631         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1632         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1633         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1634         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1635         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1636         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1637         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1638         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1639         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1640 };
1641
1642 /*
1643  * RF value list for RF2525e
1644  * Supports: 2.4 GHz
1645  */
1646 static const struct rf_channel rf_vals_bg_2525e[] = {
1647         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1648         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1649         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1650         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1651         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1652         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1653         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1654         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1655         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1656         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1657         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1658         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1659         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1660         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1661 };
1662
1663 /*
1664  * RF value list for RF5222
1665  * Supports: 2.4 GHz & 5.2 GHz
1666  */
1667 static const struct rf_channel rf_vals_5222[] = {
1668         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1669         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1670         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1671         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1672         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1673         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1674         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1675         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1676         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1677         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1678         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1679         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1680         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1681         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1682
1683         /* 802.11 UNI / HyperLan 2 */
1684         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1685         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1686         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1687         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1688         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1689         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1690         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1691         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1692
1693         /* 802.11 HyperLan 2 */
1694         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1695         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1696         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1697         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1698         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1699         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1700         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1701         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1702         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1703         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1704
1705         /* 802.11 UNII */
1706         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1707         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1708         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1709         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1710         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1711 };
1712
1713 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1714 {
1715         struct hw_mode_spec *spec = &rt2x00dev->spec;
1716         struct channel_info *info;
1717         char *tx_power;
1718         unsigned int i;
1719
1720         /*
1721          * Initialize all hw fields.
1722          */
1723         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1724                                IEEE80211_HW_SIGNAL_DBM;
1725
1726         rt2x00dev->hw->extra_tx_headroom = 0;
1727
1728         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1729         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1730                                 rt2x00_eeprom_addr(rt2x00dev,
1731                                                    EEPROM_MAC_ADDR_0));
1732
1733         /*
1734          * Initialize hw_mode information.
1735          */
1736         spec->supported_bands = SUPPORT_BAND_2GHZ;
1737         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1738
1739         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1740                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1741                 spec->channels = rf_vals_bg_2522;
1742         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1743                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1744                 spec->channels = rf_vals_bg_2523;
1745         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1746                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1747                 spec->channels = rf_vals_bg_2524;
1748         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1749                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1750                 spec->channels = rf_vals_bg_2525;
1751         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1752                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1753                 spec->channels = rf_vals_bg_2525e;
1754         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1755                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1756                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1757                 spec->channels = rf_vals_5222;
1758         }
1759
1760         /*
1761          * Create channel information array
1762          */
1763         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1764         if (!info)
1765                 return -ENOMEM;
1766
1767         spec->channels_info = info;
1768
1769         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1770         for (i = 0; i < 14; i++)
1771                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1772
1773         if (spec->num_channels > 14) {
1774                 for (i = 14; i < spec->num_channels; i++)
1775                         info[i].tx_power1 = DEFAULT_TXPOWER;
1776         }
1777
1778         return 0;
1779 }
1780
1781 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1782 {
1783         int retval;
1784
1785         /*
1786          * Allocate eeprom data.
1787          */
1788         retval = rt2500pci_validate_eeprom(rt2x00dev);
1789         if (retval)
1790                 return retval;
1791
1792         retval = rt2500pci_init_eeprom(rt2x00dev);
1793         if (retval)
1794                 return retval;
1795
1796         /*
1797          * Initialize hw specifications.
1798          */
1799         retval = rt2500pci_probe_hw_mode(rt2x00dev);
1800         if (retval)
1801                 return retval;
1802
1803         /*
1804          * This device requires the atim queue and DMA-mapped skbs.
1805          */
1806         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1807         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1808
1809         /*
1810          * Set the rssi offset.
1811          */
1812         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1813
1814         return 0;
1815 }
1816
1817 /*
1818  * IEEE80211 stack callback functions.
1819  */
1820 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1821 {
1822         struct rt2x00_dev *rt2x00dev = hw->priv;
1823         u64 tsf;
1824         u32 reg;
1825
1826         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1827         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1828         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1829         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1830
1831         return tsf;
1832 }
1833
1834 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1835 {
1836         struct rt2x00_dev *rt2x00dev = hw->priv;
1837         u32 reg;
1838
1839         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1840         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1841 }
1842
1843 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1844         .tx                     = rt2x00mac_tx,
1845         .start                  = rt2x00mac_start,
1846         .stop                   = rt2x00mac_stop,
1847         .add_interface          = rt2x00mac_add_interface,
1848         .remove_interface       = rt2x00mac_remove_interface,
1849         .config                 = rt2x00mac_config,
1850         .config_interface       = rt2x00mac_config_interface,
1851         .configure_filter       = rt2x00mac_configure_filter,
1852         .get_stats              = rt2x00mac_get_stats,
1853         .bss_info_changed       = rt2x00mac_bss_info_changed,
1854         .conf_tx                = rt2x00mac_conf_tx,
1855         .get_tx_stats           = rt2x00mac_get_tx_stats,
1856         .get_tsf                = rt2500pci_get_tsf,
1857         .tx_last_beacon         = rt2500pci_tx_last_beacon,
1858 };
1859
1860 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1861         .irq_handler            = rt2500pci_interrupt,
1862         .probe_hw               = rt2500pci_probe_hw,
1863         .initialize             = rt2x00pci_initialize,
1864         .uninitialize           = rt2x00pci_uninitialize,
1865         .get_entry_state        = rt2500pci_get_entry_state,
1866         .clear_entry            = rt2500pci_clear_entry,
1867         .set_device_state       = rt2500pci_set_device_state,
1868         .rfkill_poll            = rt2500pci_rfkill_poll,
1869         .link_stats             = rt2500pci_link_stats,
1870         .reset_tuner            = rt2500pci_reset_tuner,
1871         .link_tuner             = rt2500pci_link_tuner,
1872         .write_tx_desc          = rt2500pci_write_tx_desc,
1873         .write_tx_data          = rt2x00pci_write_tx_data,
1874         .write_beacon           = rt2500pci_write_beacon,
1875         .kick_tx_queue          = rt2500pci_kick_tx_queue,
1876         .fill_rxdone            = rt2500pci_fill_rxdone,
1877         .config_filter          = rt2500pci_config_filter,
1878         .config_intf            = rt2500pci_config_intf,
1879         .config_erp             = rt2500pci_config_erp,
1880         .config_ant             = rt2500pci_config_ant,
1881         .config                 = rt2500pci_config,
1882 };
1883
1884 static const struct data_queue_desc rt2500pci_queue_rx = {
1885         .entry_num              = RX_ENTRIES,
1886         .data_size              = DATA_FRAME_SIZE,
1887         .desc_size              = RXD_DESC_SIZE,
1888         .priv_size              = sizeof(struct queue_entry_priv_pci),
1889 };
1890
1891 static const struct data_queue_desc rt2500pci_queue_tx = {
1892         .entry_num              = TX_ENTRIES,
1893         .data_size              = DATA_FRAME_SIZE,
1894         .desc_size              = TXD_DESC_SIZE,
1895         .priv_size              = sizeof(struct queue_entry_priv_pci),
1896 };
1897
1898 static const struct data_queue_desc rt2500pci_queue_bcn = {
1899         .entry_num              = BEACON_ENTRIES,
1900         .data_size              = MGMT_FRAME_SIZE,
1901         .desc_size              = TXD_DESC_SIZE,
1902         .priv_size              = sizeof(struct queue_entry_priv_pci),
1903 };
1904
1905 static const struct data_queue_desc rt2500pci_queue_atim = {
1906         .entry_num              = ATIM_ENTRIES,
1907         .data_size              = DATA_FRAME_SIZE,
1908         .desc_size              = TXD_DESC_SIZE,
1909         .priv_size              = sizeof(struct queue_entry_priv_pci),
1910 };
1911
1912 static const struct rt2x00_ops rt2500pci_ops = {
1913         .name           = KBUILD_MODNAME,
1914         .max_sta_intf   = 1,
1915         .max_ap_intf    = 1,
1916         .eeprom_size    = EEPROM_SIZE,
1917         .rf_size        = RF_SIZE,
1918         .tx_queues      = NUM_TX_QUEUES,
1919         .rx             = &rt2500pci_queue_rx,
1920         .tx             = &rt2500pci_queue_tx,
1921         .bcn            = &rt2500pci_queue_bcn,
1922         .atim           = &rt2500pci_queue_atim,
1923         .lib            = &rt2500pci_rt2x00_ops,
1924         .hw             = &rt2500pci_mac80211_ops,
1925 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1926         .debugfs        = &rt2500pci_rt2x00debug,
1927 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1928 };
1929
1930 /*
1931  * RT2500pci module information.
1932  */
1933 static struct pci_device_id rt2500pci_device_table[] = {
1934         { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1935         { 0, }
1936 };
1937
1938 MODULE_AUTHOR(DRV_PROJECT);
1939 MODULE_VERSION(DRV_VERSION);
1940 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1941 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1942 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1943 MODULE_LICENSE("GPL");
1944
1945 static struct pci_driver rt2500pci_driver = {
1946         .name           = KBUILD_MODNAME,
1947         .id_table       = rt2500pci_device_table,
1948         .probe          = rt2x00pci_probe,
1949         .remove         = __devexit_p(rt2x00pci_remove),
1950         .suspend        = rt2x00pci_suspend,
1951         .resume         = rt2x00pci_resume,
1952 };
1953
1954 static int __init rt2500pci_init(void)
1955 {
1956         return pci_register_driver(&rt2500pci_driver);
1957 }
1958
1959 static void __exit rt2500pci_exit(void)
1960 {
1961         pci_unregister_driver(&rt2500pci_driver);
1962 }
1963
1964 module_init(rt2500pci_init);
1965 module_exit(rt2500pci_exit);