Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[linux-2.6] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reinit_locked(struct e1000_adapter *adapter);
41 extern void e1000_reset(struct e1000_adapter *adapter);
42 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
43 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
44 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
46 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
47 extern void e1000_update_stats(struct e1000_adapter *adapter);
48
49
50 struct e1000_stats {
51         char stat_string[ETH_GSTRING_LEN];
52         int sizeof_stat;
53         int stat_offset;
54 };
55
56 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
57                       offsetof(struct e1000_adapter, m)
58 static const struct e1000_stats e1000_gstrings_stats[] = {
59         { "rx_packets", E1000_STAT(stats.gprc) },
60         { "tx_packets", E1000_STAT(stats.gptc) },
61         { "rx_bytes", E1000_STAT(stats.gorcl) },
62         { "tx_bytes", E1000_STAT(stats.gotcl) },
63         { "rx_broadcast", E1000_STAT(stats.bprc) },
64         { "tx_broadcast", E1000_STAT(stats.bptc) },
65         { "rx_multicast", E1000_STAT(stats.mprc) },
66         { "tx_multicast", E1000_STAT(stats.mptc) },
67         { "rx_errors", E1000_STAT(stats.rxerrc) },
68         { "tx_errors", E1000_STAT(stats.txerrc) },
69         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
70         { "multicast", E1000_STAT(stats.mprc) },
71         { "collisions", E1000_STAT(stats.colc) },
72         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
73         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
74         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
75         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
76         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
77         { "rx_missed_errors", E1000_STAT(stats.mpc) },
78         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
79         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
80         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
81         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
82         { "tx_window_errors", E1000_STAT(stats.latecol) },
83         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
84         { "tx_deferred_ok", E1000_STAT(stats.dc) },
85         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
86         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
87         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
88         { "tx_restart_queue", E1000_STAT(restart_queue) },
89         { "rx_long_length_errors", E1000_STAT(stats.roc) },
90         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
91         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
92         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
93         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
94         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
95         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
96         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
97         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
98         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
99         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
100         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
101         { "rx_header_split", E1000_STAT(rx_hdr_split) },
102         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
103 };
104
105 #define E1000_QUEUE_STATS_LEN 0
106 #define E1000_GLOBAL_STATS_LEN  \
107         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
108 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
109 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
110         "Register test  (offline)", "Eeprom test    (offline)",
111         "Interrupt test (offline)", "Loopback test  (offline)",
112         "Link test   (on/offline)"
113 };
114 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
115
116 static int
117 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
118 {
119         struct e1000_adapter *adapter = netdev_priv(netdev);
120         struct e1000_hw *hw = &adapter->hw;
121
122         if (hw->media_type == e1000_media_type_copper) {
123
124                 ecmd->supported = (SUPPORTED_10baseT_Half |
125                                    SUPPORTED_10baseT_Full |
126                                    SUPPORTED_100baseT_Half |
127                                    SUPPORTED_100baseT_Full |
128                                    SUPPORTED_1000baseT_Full|
129                                    SUPPORTED_Autoneg |
130                                    SUPPORTED_TP);
131                 if (hw->phy_type == e1000_phy_ife)
132                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
133                 ecmd->advertising = ADVERTISED_TP;
134
135                 if (hw->autoneg == 1) {
136                         ecmd->advertising |= ADVERTISED_Autoneg;
137                         /* the e1000 autoneg seems to match ethtool nicely */
138                         ecmd->advertising |= hw->autoneg_advertised;
139                 }
140
141                 ecmd->port = PORT_TP;
142                 ecmd->phy_address = hw->phy_addr;
143
144                 if (hw->mac_type == e1000_82543)
145                         ecmd->transceiver = XCVR_EXTERNAL;
146                 else
147                         ecmd->transceiver = XCVR_INTERNAL;
148
149         } else {
150                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
151                                      SUPPORTED_FIBRE |
152                                      SUPPORTED_Autoneg);
153
154                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
155                                      ADVERTISED_FIBRE |
156                                      ADVERTISED_Autoneg);
157
158                 ecmd->port = PORT_FIBRE;
159
160                 if (hw->mac_type >= e1000_82545)
161                         ecmd->transceiver = XCVR_INTERNAL;
162                 else
163                         ecmd->transceiver = XCVR_EXTERNAL;
164         }
165
166         if (netif_carrier_ok(adapter->netdev)) {
167
168                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
169                                                    &adapter->link_duplex);
170                 ecmd->speed = adapter->link_speed;
171
172                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
173                  *          and HALF_DUPLEX != DUPLEX_HALF */
174
175                 if (adapter->link_duplex == FULL_DUPLEX)
176                         ecmd->duplex = DUPLEX_FULL;
177                 else
178                         ecmd->duplex = DUPLEX_HALF;
179         } else {
180                 ecmd->speed = -1;
181                 ecmd->duplex = -1;
182         }
183
184         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
185                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
186         return 0;
187 }
188
189 static int
190 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
191 {
192         struct e1000_adapter *adapter = netdev_priv(netdev);
193         struct e1000_hw *hw = &adapter->hw;
194
195         /* When SoL/IDER sessions are active, autoneg/speed/duplex
196          * cannot be changed */
197         if (e1000_check_phy_reset_block(hw)) {
198                 DPRINTK(DRV, ERR, "Cannot change link characteristics "
199                         "when SoL/IDER is active.\n");
200                 return -EINVAL;
201         }
202
203         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
204                 msleep(1);
205
206         if (ecmd->autoneg == AUTONEG_ENABLE) {
207                 hw->autoneg = 1;
208                 if (hw->media_type == e1000_media_type_fiber)
209                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
210                                      ADVERTISED_FIBRE |
211                                      ADVERTISED_Autoneg;
212                 else
213                         hw->autoneg_advertised = ecmd->advertising |
214                                                  ADVERTISED_TP |
215                                                  ADVERTISED_Autoneg;
216                 ecmd->advertising = hw->autoneg_advertised;
217         } else
218                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
219                         clear_bit(__E1000_RESETTING, &adapter->flags);
220                         return -EINVAL;
221                 }
222
223         /* reset the link */
224
225         if (netif_running(adapter->netdev)) {
226                 e1000_down(adapter);
227                 e1000_up(adapter);
228         } else
229                 e1000_reset(adapter);
230
231         clear_bit(__E1000_RESETTING, &adapter->flags);
232         return 0;
233 }
234
235 static void
236 e1000_get_pauseparam(struct net_device *netdev,
237                      struct ethtool_pauseparam *pause)
238 {
239         struct e1000_adapter *adapter = netdev_priv(netdev);
240         struct e1000_hw *hw = &adapter->hw;
241
242         pause->autoneg =
243                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
244
245         if (hw->fc == E1000_FC_RX_PAUSE)
246                 pause->rx_pause = 1;
247         else if (hw->fc == E1000_FC_TX_PAUSE)
248                 pause->tx_pause = 1;
249         else if (hw->fc == E1000_FC_FULL) {
250                 pause->rx_pause = 1;
251                 pause->tx_pause = 1;
252         }
253 }
254
255 static int
256 e1000_set_pauseparam(struct net_device *netdev,
257                      struct ethtool_pauseparam *pause)
258 {
259         struct e1000_adapter *adapter = netdev_priv(netdev);
260         struct e1000_hw *hw = &adapter->hw;
261         int retval = 0;
262
263         adapter->fc_autoneg = pause->autoneg;
264
265         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
266                 msleep(1);
267
268         if (pause->rx_pause && pause->tx_pause)
269                 hw->fc = E1000_FC_FULL;
270         else if (pause->rx_pause && !pause->tx_pause)
271                 hw->fc = E1000_FC_RX_PAUSE;
272         else if (!pause->rx_pause && pause->tx_pause)
273                 hw->fc = E1000_FC_TX_PAUSE;
274         else if (!pause->rx_pause && !pause->tx_pause)
275                 hw->fc = E1000_FC_NONE;
276
277         hw->original_fc = hw->fc;
278
279         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
280                 if (netif_running(adapter->netdev)) {
281                         e1000_down(adapter);
282                         e1000_up(adapter);
283                 } else
284                         e1000_reset(adapter);
285         } else
286                 retval = ((hw->media_type == e1000_media_type_fiber) ?
287                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
288
289         clear_bit(__E1000_RESETTING, &adapter->flags);
290         return retval;
291 }
292
293 static uint32_t
294 e1000_get_rx_csum(struct net_device *netdev)
295 {
296         struct e1000_adapter *adapter = netdev_priv(netdev);
297         return adapter->rx_csum;
298 }
299
300 static int
301 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
302 {
303         struct e1000_adapter *adapter = netdev_priv(netdev);
304         adapter->rx_csum = data;
305
306         if (netif_running(netdev))
307                 e1000_reinit_locked(adapter);
308         else
309                 e1000_reset(adapter);
310         return 0;
311 }
312
313 static uint32_t
314 e1000_get_tx_csum(struct net_device *netdev)
315 {
316         return (netdev->features & NETIF_F_HW_CSUM) != 0;
317 }
318
319 static int
320 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
321 {
322         struct e1000_adapter *adapter = netdev_priv(netdev);
323
324         if (adapter->hw.mac_type < e1000_82543) {
325                 if (!data)
326                         return -EINVAL;
327                 return 0;
328         }
329
330         if (data)
331                 netdev->features |= NETIF_F_HW_CSUM;
332         else
333                 netdev->features &= ~NETIF_F_HW_CSUM;
334
335         return 0;
336 }
337
338 #ifdef NETIF_F_TSO
339 static int
340 e1000_set_tso(struct net_device *netdev, uint32_t data)
341 {
342         struct e1000_adapter *adapter = netdev_priv(netdev);
343         if ((adapter->hw.mac_type < e1000_82544) ||
344             (adapter->hw.mac_type == e1000_82547))
345                 return data ? -EINVAL : 0;
346
347         if (data)
348                 netdev->features |= NETIF_F_TSO;
349         else
350                 netdev->features &= ~NETIF_F_TSO;
351
352 #ifdef NETIF_F_TSO6
353         if (data)
354                 netdev->features |= NETIF_F_TSO6;
355         else
356                 netdev->features &= ~NETIF_F_TSO6;
357 #endif
358
359         DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
360         adapter->tso_force = TRUE;
361         return 0;
362 }
363 #endif /* NETIF_F_TSO */
364
365 static uint32_t
366 e1000_get_msglevel(struct net_device *netdev)
367 {
368         struct e1000_adapter *adapter = netdev_priv(netdev);
369         return adapter->msg_enable;
370 }
371
372 static void
373 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
374 {
375         struct e1000_adapter *adapter = netdev_priv(netdev);
376         adapter->msg_enable = data;
377 }
378
379 static int
380 e1000_get_regs_len(struct net_device *netdev)
381 {
382 #define E1000_REGS_LEN 32
383         return E1000_REGS_LEN * sizeof(uint32_t);
384 }
385
386 static void
387 e1000_get_regs(struct net_device *netdev,
388                struct ethtool_regs *regs, void *p)
389 {
390         struct e1000_adapter *adapter = netdev_priv(netdev);
391         struct e1000_hw *hw = &adapter->hw;
392         uint32_t *regs_buff = p;
393         uint16_t phy_data;
394
395         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
396
397         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
398
399         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
400         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
401
402         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
403         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
404         regs_buff[4]  = E1000_READ_REG(hw, RDH);
405         regs_buff[5]  = E1000_READ_REG(hw, RDT);
406         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
407
408         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
409         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
410         regs_buff[9]  = E1000_READ_REG(hw, TDH);
411         regs_buff[10] = E1000_READ_REG(hw, TDT);
412         regs_buff[11] = E1000_READ_REG(hw, TIDV);
413
414         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
415         if (hw->phy_type == e1000_phy_igp) {
416                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
417                                     IGP01E1000_PHY_AGC_A);
418                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
419                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
420                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
421                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
422                                     IGP01E1000_PHY_AGC_B);
423                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
424                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
425                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
426                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
427                                     IGP01E1000_PHY_AGC_C);
428                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
429                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
430                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
431                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
432                                     IGP01E1000_PHY_AGC_D);
433                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
434                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
435                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
436                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
437                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
438                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
439                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
440                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
441                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
442                                     IGP01E1000_PHY_PCS_INIT_REG);
443                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
444                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
445                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
446                 regs_buff[20] = 0; /* polarity correction enabled (always) */
447                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
448                 regs_buff[23] = regs_buff[18]; /* mdix mode */
449                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
450         } else {
451                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
452                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
453                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
454                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
455                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
456                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
457                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
458                 regs_buff[18] = regs_buff[13]; /* cable polarity */
459                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
460                 regs_buff[20] = regs_buff[17]; /* polarity correction */
461                 /* phy receive errors */
462                 regs_buff[22] = adapter->phy_stats.receive_errors;
463                 regs_buff[23] = regs_buff[13]; /* mdix mode */
464         }
465         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
466         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
467         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
468         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
469         if (hw->mac_type >= e1000_82540 &&
470             hw->mac_type < e1000_82571 &&
471             hw->media_type == e1000_media_type_copper) {
472                 regs_buff[26] = E1000_READ_REG(hw, MANC);
473         }
474 }
475
476 static int
477 e1000_get_eeprom_len(struct net_device *netdev)
478 {
479         struct e1000_adapter *adapter = netdev_priv(netdev);
480         return adapter->hw.eeprom.word_size * 2;
481 }
482
483 static int
484 e1000_get_eeprom(struct net_device *netdev,
485                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
486 {
487         struct e1000_adapter *adapter = netdev_priv(netdev);
488         struct e1000_hw *hw = &adapter->hw;
489         uint16_t *eeprom_buff;
490         int first_word, last_word;
491         int ret_val = 0;
492         uint16_t i;
493
494         if (eeprom->len == 0)
495                 return -EINVAL;
496
497         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
498
499         first_word = eeprom->offset >> 1;
500         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
501
502         eeprom_buff = kmalloc(sizeof(uint16_t) *
503                         (last_word - first_word + 1), GFP_KERNEL);
504         if (!eeprom_buff)
505                 return -ENOMEM;
506
507         if (hw->eeprom.type == e1000_eeprom_spi)
508                 ret_val = e1000_read_eeprom(hw, first_word,
509                                             last_word - first_word + 1,
510                                             eeprom_buff);
511         else {
512                 for (i = 0; i < last_word - first_word + 1; i++)
513                         if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
514                                                         &eeprom_buff[i])))
515                                 break;
516         }
517
518         /* Device's eeprom is always little-endian, word addressable */
519         for (i = 0; i < last_word - first_word + 1; i++)
520                 le16_to_cpus(&eeprom_buff[i]);
521
522         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
523                         eeprom->len);
524         kfree(eeprom_buff);
525
526         return ret_val;
527 }
528
529 static int
530 e1000_set_eeprom(struct net_device *netdev,
531                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
532 {
533         struct e1000_adapter *adapter = netdev_priv(netdev);
534         struct e1000_hw *hw = &adapter->hw;
535         uint16_t *eeprom_buff;
536         void *ptr;
537         int max_len, first_word, last_word, ret_val = 0;
538         uint16_t i;
539
540         if (eeprom->len == 0)
541                 return -EOPNOTSUPP;
542
543         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
544                 return -EFAULT;
545
546         max_len = hw->eeprom.word_size * 2;
547
548         first_word = eeprom->offset >> 1;
549         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
550         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
551         if (!eeprom_buff)
552                 return -ENOMEM;
553
554         ptr = (void *)eeprom_buff;
555
556         if (eeprom->offset & 1) {
557                 /* need read/modify/write of first changed EEPROM word */
558                 /* only the second byte of the word is being modified */
559                 ret_val = e1000_read_eeprom(hw, first_word, 1,
560                                             &eeprom_buff[0]);
561                 ptr++;
562         }
563         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
564                 /* need read/modify/write of last changed EEPROM word */
565                 /* only the first byte of the word is being modified */
566                 ret_val = e1000_read_eeprom(hw, last_word, 1,
567                                   &eeprom_buff[last_word - first_word]);
568         }
569
570         /* Device's eeprom is always little-endian, word addressable */
571         for (i = 0; i < last_word - first_word + 1; i++)
572                 le16_to_cpus(&eeprom_buff[i]);
573
574         memcpy(ptr, bytes, eeprom->len);
575
576         for (i = 0; i < last_word - first_word + 1; i++)
577                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
578
579         ret_val = e1000_write_eeprom(hw, first_word,
580                                      last_word - first_word + 1, eeprom_buff);
581
582         /* Update the checksum over the first part of the EEPROM if needed
583          * and flush shadow RAM for 82573 conrollers */
584         if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
585                                 (hw->mac_type == e1000_82573)))
586                 e1000_update_eeprom_checksum(hw);
587
588         kfree(eeprom_buff);
589         return ret_val;
590 }
591
592 static void
593 e1000_get_drvinfo(struct net_device *netdev,
594                        struct ethtool_drvinfo *drvinfo)
595 {
596         struct e1000_adapter *adapter = netdev_priv(netdev);
597         char firmware_version[32];
598         uint16_t eeprom_data;
599
600         strncpy(drvinfo->driver,  e1000_driver_name, 32);
601         strncpy(drvinfo->version, e1000_driver_version, 32);
602
603         /* EEPROM image version # is reported as firmware version # for
604          * 8257{1|2|3} controllers */
605         e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
606         switch (adapter->hw.mac_type) {
607         case e1000_82571:
608         case e1000_82572:
609         case e1000_82573:
610         case e1000_80003es2lan:
611         case e1000_ich8lan:
612                 sprintf(firmware_version, "%d.%d-%d",
613                         (eeprom_data & 0xF000) >> 12,
614                         (eeprom_data & 0x0FF0) >> 4,
615                         eeprom_data & 0x000F);
616                 break;
617         default:
618                 sprintf(firmware_version, "N/A");
619         }
620
621         strncpy(drvinfo->fw_version, firmware_version, 32);
622         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
623         drvinfo->n_stats = E1000_STATS_LEN;
624         drvinfo->testinfo_len = E1000_TEST_LEN;
625         drvinfo->regdump_len = e1000_get_regs_len(netdev);
626         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
627 }
628
629 static void
630 e1000_get_ringparam(struct net_device *netdev,
631                     struct ethtool_ringparam *ring)
632 {
633         struct e1000_adapter *adapter = netdev_priv(netdev);
634         e1000_mac_type mac_type = adapter->hw.mac_type;
635         struct e1000_tx_ring *txdr = adapter->tx_ring;
636         struct e1000_rx_ring *rxdr = adapter->rx_ring;
637
638         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
639                 E1000_MAX_82544_RXD;
640         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
641                 E1000_MAX_82544_TXD;
642         ring->rx_mini_max_pending = 0;
643         ring->rx_jumbo_max_pending = 0;
644         ring->rx_pending = rxdr->count;
645         ring->tx_pending = txdr->count;
646         ring->rx_mini_pending = 0;
647         ring->rx_jumbo_pending = 0;
648 }
649
650 static int
651 e1000_set_ringparam(struct net_device *netdev,
652                     struct ethtool_ringparam *ring)
653 {
654         struct e1000_adapter *adapter = netdev_priv(netdev);
655         e1000_mac_type mac_type = adapter->hw.mac_type;
656         struct e1000_tx_ring *txdr, *tx_old;
657         struct e1000_rx_ring *rxdr, *rx_old;
658         int i, err, tx_ring_size, rx_ring_size;
659
660         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
661                 return -EINVAL;
662
663         tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
664         rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
665
666         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
667                 msleep(1);
668
669         if (netif_running(adapter->netdev))
670                 e1000_down(adapter);
671
672         tx_old = adapter->tx_ring;
673         rx_old = adapter->rx_ring;
674
675         err = -ENOMEM;
676         txdr = kzalloc(tx_ring_size, GFP_KERNEL);
677         if (!txdr)
678                 goto err_alloc_tx;
679
680         rxdr = kzalloc(rx_ring_size, GFP_KERNEL);
681         if (!rxdr)
682                 goto err_alloc_rx;
683
684         adapter->tx_ring = txdr;
685         adapter->rx_ring = rxdr;
686
687         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
688         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
689                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
690         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
691
692         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
693         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
694                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
695         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
696
697         for (i = 0; i < adapter->num_tx_queues; i++)
698                 txdr[i].count = txdr->count;
699         for (i = 0; i < adapter->num_rx_queues; i++)
700                 rxdr[i].count = rxdr->count;
701
702         if (netif_running(adapter->netdev)) {
703                 /* Try to get new resources before deleting old */
704                 if ((err = e1000_setup_all_rx_resources(adapter)))
705                         goto err_setup_rx;
706                 if ((err = e1000_setup_all_tx_resources(adapter)))
707                         goto err_setup_tx;
708
709                 /* save the new, restore the old in order to free it,
710                  * then restore the new back again */
711
712                 adapter->rx_ring = rx_old;
713                 adapter->tx_ring = tx_old;
714                 e1000_free_all_rx_resources(adapter);
715                 e1000_free_all_tx_resources(adapter);
716                 kfree(tx_old);
717                 kfree(rx_old);
718                 adapter->rx_ring = rxdr;
719                 adapter->tx_ring = txdr;
720                 if ((err = e1000_up(adapter)))
721                         goto err_setup;
722         }
723
724         clear_bit(__E1000_RESETTING, &adapter->flags);
725         return 0;
726 err_setup_tx:
727         e1000_free_all_rx_resources(adapter);
728 err_setup_rx:
729         adapter->rx_ring = rx_old;
730         adapter->tx_ring = tx_old;
731         kfree(rxdr);
732 err_alloc_rx:
733         kfree(txdr);
734 err_alloc_tx:
735         e1000_up(adapter);
736 err_setup:
737         clear_bit(__E1000_RESETTING, &adapter->flags);
738         return err;
739 }
740
741 #define REG_PATTERN_TEST(R, M, W)                                              \
742 {                                                                              \
743         uint32_t pat, value;                                                   \
744         uint32_t test[] =                                                      \
745                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
746         for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
747                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
748                 value = E1000_READ_REG(&adapter->hw, R);                       \
749                 if (value != (test[pat] & W & M)) {                             \
750                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
751                                 "0x%08X expected 0x%08X\n",                    \
752                                 E1000_##R, value, (test[pat] & W & M));        \
753                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
754                                 E1000_82542_##R : E1000_##R;                   \
755                         return 1;                                              \
756                 }                                                              \
757         }                                                                      \
758 }
759
760 #define REG_SET_AND_CHECK(R, M, W)                                             \
761 {                                                                              \
762         uint32_t value;                                                        \
763         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
764         value = E1000_READ_REG(&adapter->hw, R);                               \
765         if ((W & M) != (value & M)) {                                          \
766                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
767                         "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
768                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
769                         E1000_82542_##R : E1000_##R;                           \
770                 return 1;                                                      \
771         }                                                                      \
772 }
773
774 static int
775 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
776 {
777         uint32_t value, before, after;
778         uint32_t i, toggle;
779
780         /* The status register is Read Only, so a write should fail.
781          * Some bits that get toggled are ignored.
782          */
783         switch (adapter->hw.mac_type) {
784         /* there are several bits on newer hardware that are r/w */
785         case e1000_82571:
786         case e1000_82572:
787         case e1000_80003es2lan:
788                 toggle = 0x7FFFF3FF;
789                 break;
790         case e1000_82573:
791         case e1000_ich8lan:
792                 toggle = 0x7FFFF033;
793                 break;
794         default:
795                 toggle = 0xFFFFF833;
796                 break;
797         }
798
799         before = E1000_READ_REG(&adapter->hw, STATUS);
800         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
801         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
802         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
803         if (value != after) {
804                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
805                         "0x%08X expected: 0x%08X\n", after, value);
806                 *data = 1;
807                 return 1;
808         }
809         /* restore previous status */
810         E1000_WRITE_REG(&adapter->hw, STATUS, before);
811
812         if (adapter->hw.mac_type != e1000_ich8lan) {
813                 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
814                 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
815                 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
816                 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
817         }
818
819         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
820         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
821         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
822         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
823         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
824         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
825         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
826         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
827         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
828         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
829
830         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
831
832         before = (adapter->hw.mac_type == e1000_ich8lan ?
833                   0x06C3B33E : 0x06DFB3FE);
834         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
835         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
836
837         if (adapter->hw.mac_type >= e1000_82543) {
838
839                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
840                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
841                 if (adapter->hw.mac_type != e1000_ich8lan)
842                         REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
843                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
844                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
845                 value = (adapter->hw.mac_type == e1000_ich8lan ?
846                          E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
847                 for (i = 0; i < value; i++) {
848                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
849                                          0xFFFFFFFF);
850                 }
851
852         } else {
853
854                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
855                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
856                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
857                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
858
859         }
860
861         value = (adapter->hw.mac_type == e1000_ich8lan ?
862                         E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
863         for (i = 0; i < value; i++)
864                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
865
866         *data = 0;
867         return 0;
868 }
869
870 static int
871 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
872 {
873         uint16_t temp;
874         uint16_t checksum = 0;
875         uint16_t i;
876
877         *data = 0;
878         /* Read and add up the contents of the EEPROM */
879         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
880                 if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
881                         *data = 1;
882                         break;
883                 }
884                 checksum += temp;
885         }
886
887         /* If Checksum is not Correct return error else test passed */
888         if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
889                 *data = 2;
890
891         return *data;
892 }
893
894 static irqreturn_t
895 e1000_test_intr(int irq, void *data)
896 {
897         struct net_device *netdev = (struct net_device *) data;
898         struct e1000_adapter *adapter = netdev_priv(netdev);
899
900         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
901
902         return IRQ_HANDLED;
903 }
904
905 static int
906 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
907 {
908         struct net_device *netdev = adapter->netdev;
909         uint32_t mask, i=0, shared_int = TRUE;
910         uint32_t irq = adapter->pdev->irq;
911
912         *data = 0;
913
914         /* NOTE: we don't test MSI interrupts here, yet */
915         /* Hook up test interrupt handler just for this test */
916         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
917                          netdev))
918                 shared_int = FALSE;
919         else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
920                  netdev->name, netdev)) {
921                 *data = 1;
922                 return -1;
923         }
924         DPRINTK(HW, INFO, "testing %s interrupt\n",
925                 (shared_int ? "shared" : "unshared"));
926
927         /* Disable all the interrupts */
928         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
929         msleep(10);
930
931         /* Test each interrupt */
932         for (; i < 10; i++) {
933
934                 if (adapter->hw.mac_type == e1000_ich8lan && i == 8)
935                         continue;
936
937                 /* Interrupt to test */
938                 mask = 1 << i;
939
940                 if (!shared_int) {
941                         /* Disable the interrupt to be reported in
942                          * the cause register and then force the same
943                          * interrupt and see if one gets posted.  If
944                          * an interrupt was posted to the bus, the
945                          * test failed.
946                          */
947                         adapter->test_icr = 0;
948                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
949                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
950                         msleep(10);
951
952                         if (adapter->test_icr & mask) {
953                                 *data = 3;
954                                 break;
955                         }
956                 }
957
958                 /* Enable the interrupt to be reported in
959                  * the cause register and then force the same
960                  * interrupt and see if one gets posted.  If
961                  * an interrupt was not posted to the bus, the
962                  * test failed.
963                  */
964                 adapter->test_icr = 0;
965                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
966                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
967                 msleep(10);
968
969                 if (!(adapter->test_icr & mask)) {
970                         *data = 4;
971                         break;
972                 }
973
974                 if (!shared_int) {
975                         /* Disable the other interrupts to be reported in
976                          * the cause register and then force the other
977                          * interrupts and see if any get posted.  If
978                          * an interrupt was posted to the bus, the
979                          * test failed.
980                          */
981                         adapter->test_icr = 0;
982                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
983                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
984                         msleep(10);
985
986                         if (adapter->test_icr) {
987                                 *data = 5;
988                                 break;
989                         }
990                 }
991         }
992
993         /* Disable all the interrupts */
994         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
995         msleep(10);
996
997         /* Unhook test interrupt handler */
998         free_irq(irq, netdev);
999
1000         return *data;
1001 }
1002
1003 static void
1004 e1000_free_desc_rings(struct e1000_adapter *adapter)
1005 {
1006         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1007         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1008         struct pci_dev *pdev = adapter->pdev;
1009         int i;
1010
1011         if (txdr->desc && txdr->buffer_info) {
1012                 for (i = 0; i < txdr->count; i++) {
1013                         if (txdr->buffer_info[i].dma)
1014                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
1015                                                  txdr->buffer_info[i].length,
1016                                                  PCI_DMA_TODEVICE);
1017                         if (txdr->buffer_info[i].skb)
1018                                 dev_kfree_skb(txdr->buffer_info[i].skb);
1019                 }
1020         }
1021
1022         if (rxdr->desc && rxdr->buffer_info) {
1023                 for (i = 0; i < rxdr->count; i++) {
1024                         if (rxdr->buffer_info[i].dma)
1025                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
1026                                                  rxdr->buffer_info[i].length,
1027                                                  PCI_DMA_FROMDEVICE);
1028                         if (rxdr->buffer_info[i].skb)
1029                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
1030                 }
1031         }
1032
1033         if (txdr->desc) {
1034                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
1035                 txdr->desc = NULL;
1036         }
1037         if (rxdr->desc) {
1038                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
1039                 rxdr->desc = NULL;
1040         }
1041
1042         kfree(txdr->buffer_info);
1043         txdr->buffer_info = NULL;
1044         kfree(rxdr->buffer_info);
1045         rxdr->buffer_info = NULL;
1046
1047         return;
1048 }
1049
1050 static int
1051 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1052 {
1053         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1054         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1055         struct pci_dev *pdev = adapter->pdev;
1056         uint32_t rctl;
1057         int size, i, ret_val;
1058
1059         /* Setup Tx descriptor ring and Tx buffers */
1060
1061         if (!txdr->count)
1062                 txdr->count = E1000_DEFAULT_TXD;
1063
1064         size = txdr->count * sizeof(struct e1000_buffer);
1065         if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1066                 ret_val = 1;
1067                 goto err_nomem;
1068         }
1069         memset(txdr->buffer_info, 0, size);
1070
1071         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1072         E1000_ROUNDUP(txdr->size, 4096);
1073         if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
1074                 ret_val = 2;
1075                 goto err_nomem;
1076         }
1077         memset(txdr->desc, 0, txdr->size);
1078         txdr->next_to_use = txdr->next_to_clean = 0;
1079
1080         E1000_WRITE_REG(&adapter->hw, TDBAL,
1081                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1082         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1083         E1000_WRITE_REG(&adapter->hw, TDLEN,
1084                         txdr->count * sizeof(struct e1000_tx_desc));
1085         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1086         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1087         E1000_WRITE_REG(&adapter->hw, TCTL,
1088                         E1000_TCTL_PSP | E1000_TCTL_EN |
1089                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1090                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1091
1092         for (i = 0; i < txdr->count; i++) {
1093                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1094                 struct sk_buff *skb;
1095                 unsigned int size = 1024;
1096
1097                 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1098                         ret_val = 3;
1099                         goto err_nomem;
1100                 }
1101                 skb_put(skb, size);
1102                 txdr->buffer_info[i].skb = skb;
1103                 txdr->buffer_info[i].length = skb->len;
1104                 txdr->buffer_info[i].dma =
1105                         pci_map_single(pdev, skb->data, skb->len,
1106                                        PCI_DMA_TODEVICE);
1107                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1108                 tx_desc->lower.data = cpu_to_le32(skb->len);
1109                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1110                                                    E1000_TXD_CMD_IFCS |
1111                                                    E1000_TXD_CMD_RPS);
1112                 tx_desc->upper.data = 0;
1113         }
1114
1115         /* Setup Rx descriptor ring and Rx buffers */
1116
1117         if (!rxdr->count)
1118                 rxdr->count = E1000_DEFAULT_RXD;
1119
1120         size = rxdr->count * sizeof(struct e1000_buffer);
1121         if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1122                 ret_val = 4;
1123                 goto err_nomem;
1124         }
1125         memset(rxdr->buffer_info, 0, size);
1126
1127         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1128         if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1129                 ret_val = 5;
1130                 goto err_nomem;
1131         }
1132         memset(rxdr->desc, 0, rxdr->size);
1133         rxdr->next_to_use = rxdr->next_to_clean = 0;
1134
1135         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1136         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1137         E1000_WRITE_REG(&adapter->hw, RDBAL,
1138                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1139         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1140         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1141         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1142         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1143         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1144                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1145                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1146         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1147
1148         for (i = 0; i < rxdr->count; i++) {
1149                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1150                 struct sk_buff *skb;
1151
1152                 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1153                                 GFP_KERNEL))) {
1154                         ret_val = 6;
1155                         goto err_nomem;
1156                 }
1157                 skb_reserve(skb, NET_IP_ALIGN);
1158                 rxdr->buffer_info[i].skb = skb;
1159                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1160                 rxdr->buffer_info[i].dma =
1161                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1162                                        PCI_DMA_FROMDEVICE);
1163                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1164                 memset(skb->data, 0x00, skb->len);
1165         }
1166
1167         return 0;
1168
1169 err_nomem:
1170         e1000_free_desc_rings(adapter);
1171         return ret_val;
1172 }
1173
1174 static void
1175 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1176 {
1177         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1178         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1179         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1180         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1181         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1182 }
1183
1184 static void
1185 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1186 {
1187         uint16_t phy_reg;
1188
1189         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1190          * Extended PHY Specific Control Register to 25MHz clock.  This
1191          * value defaults back to a 2.5MHz clock when the PHY is reset.
1192          */
1193         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1194         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1195         e1000_write_phy_reg(&adapter->hw,
1196                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1197
1198         /* In addition, because of the s/w reset above, we need to enable
1199          * CRS on TX.  This must be set for both full and half duplex
1200          * operation.
1201          */
1202         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1203         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1204         e1000_write_phy_reg(&adapter->hw,
1205                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1206 }
1207
1208 static int
1209 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1210 {
1211         uint32_t ctrl_reg;
1212         uint16_t phy_reg;
1213
1214         /* Setup the Device Control Register for PHY loopback test. */
1215
1216         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1217         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1218                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1219                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1220                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1221                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1222
1223         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1224
1225         /* Read the PHY Specific Control Register (0x10) */
1226         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1227
1228         /* Clear Auto-Crossover bits in PHY Specific Control Register
1229          * (bits 6:5).
1230          */
1231         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1232         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1233
1234         /* Perform software reset on the PHY */
1235         e1000_phy_reset(&adapter->hw);
1236
1237         /* Have to setup TX_CLK and TX_CRS after software reset */
1238         e1000_phy_reset_clk_and_crs(adapter);
1239
1240         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1241
1242         /* Wait for reset to complete. */
1243         udelay(500);
1244
1245         /* Have to setup TX_CLK and TX_CRS after software reset */
1246         e1000_phy_reset_clk_and_crs(adapter);
1247
1248         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1249         e1000_phy_disable_receiver(adapter);
1250
1251         /* Set the loopback bit in the PHY control register. */
1252         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1253         phy_reg |= MII_CR_LOOPBACK;
1254         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1255
1256         /* Setup TX_CLK and TX_CRS one more time. */
1257         e1000_phy_reset_clk_and_crs(adapter);
1258
1259         /* Check Phy Configuration */
1260         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1261         if (phy_reg != 0x4100)
1262                  return 9;
1263
1264         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1265         if (phy_reg != 0x0070)
1266                 return 10;
1267
1268         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1269         if (phy_reg != 0x001A)
1270                 return 11;
1271
1272         return 0;
1273 }
1274
1275 static int
1276 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1277 {
1278         uint32_t ctrl_reg = 0;
1279         uint32_t stat_reg = 0;
1280
1281         adapter->hw.autoneg = FALSE;
1282
1283         if (adapter->hw.phy_type == e1000_phy_m88) {
1284                 /* Auto-MDI/MDIX Off */
1285                 e1000_write_phy_reg(&adapter->hw,
1286                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1287                 /* reset to update Auto-MDI/MDIX */
1288                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1289                 /* autoneg off */
1290                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1291         } else if (adapter->hw.phy_type == e1000_phy_gg82563)
1292                 e1000_write_phy_reg(&adapter->hw,
1293                                     GG82563_PHY_KMRN_MODE_CTRL,
1294                                     0x1CC);
1295
1296         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1297
1298         if (adapter->hw.phy_type == e1000_phy_ife) {
1299                 /* force 100, set loopback */
1300                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x6100);
1301
1302                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1303                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1304                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1305                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1306                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1307                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1308         } else {
1309                 /* force 1000, set loopback */
1310                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1311
1312                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1313                 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1314                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1315                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1316                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1317                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1318                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1319         }
1320
1321         if (adapter->hw.media_type == e1000_media_type_copper &&
1322            adapter->hw.phy_type == e1000_phy_m88)
1323                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1324         else {
1325                 /* Set the ILOS bit on the fiber Nic is half
1326                  * duplex link is detected. */
1327                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1328                 if ((stat_reg & E1000_STATUS_FD) == 0)
1329                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1330         }
1331
1332         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1333
1334         /* Disable the receiver on the PHY so when a cable is plugged in, the
1335          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1336          */
1337         if (adapter->hw.phy_type == e1000_phy_m88)
1338                 e1000_phy_disable_receiver(adapter);
1339
1340         udelay(500);
1341
1342         return 0;
1343 }
1344
1345 static int
1346 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1347 {
1348         uint16_t phy_reg = 0;
1349         uint16_t count = 0;
1350
1351         switch (adapter->hw.mac_type) {
1352         case e1000_82543:
1353                 if (adapter->hw.media_type == e1000_media_type_copper) {
1354                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1355                          * Some PHY registers get corrupted at random, so
1356                          * attempt this 10 times.
1357                          */
1358                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1359                               count++ < 10);
1360                         if (count < 11)
1361                                 return 0;
1362                 }
1363                 break;
1364
1365         case e1000_82544:
1366         case e1000_82540:
1367         case e1000_82545:
1368         case e1000_82545_rev_3:
1369         case e1000_82546:
1370         case e1000_82546_rev_3:
1371         case e1000_82541:
1372         case e1000_82541_rev_2:
1373         case e1000_82547:
1374         case e1000_82547_rev_2:
1375         case e1000_82571:
1376         case e1000_82572:
1377         case e1000_82573:
1378         case e1000_80003es2lan:
1379         case e1000_ich8lan:
1380                 return e1000_integrated_phy_loopback(adapter);
1381                 break;
1382
1383         default:
1384                 /* Default PHY loopback work is to read the MII
1385                  * control register and assert bit 14 (loopback mode).
1386                  */
1387                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1388                 phy_reg |= MII_CR_LOOPBACK;
1389                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1390                 return 0;
1391                 break;
1392         }
1393
1394         return 8;
1395 }
1396
1397 static int
1398 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1399 {
1400         struct e1000_hw *hw = &adapter->hw;
1401         uint32_t rctl;
1402
1403         if (hw->media_type == e1000_media_type_fiber ||
1404             hw->media_type == e1000_media_type_internal_serdes) {
1405                 switch (hw->mac_type) {
1406                 case e1000_82545:
1407                 case e1000_82546:
1408                 case e1000_82545_rev_3:
1409                 case e1000_82546_rev_3:
1410                         return e1000_set_phy_loopback(adapter);
1411                         break;
1412                 case e1000_82571:
1413                 case e1000_82572:
1414 #define E1000_SERDES_LB_ON 0x410
1415                         e1000_set_phy_loopback(adapter);
1416                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1417                         msleep(10);
1418                         return 0;
1419                         break;
1420                 default:
1421                         rctl = E1000_READ_REG(hw, RCTL);
1422                         rctl |= E1000_RCTL_LBM_TCVR;
1423                         E1000_WRITE_REG(hw, RCTL, rctl);
1424                         return 0;
1425                 }
1426         } else if (hw->media_type == e1000_media_type_copper)
1427                 return e1000_set_phy_loopback(adapter);
1428
1429         return 7;
1430 }
1431
1432 static void
1433 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1434 {
1435         struct e1000_hw *hw = &adapter->hw;
1436         uint32_t rctl;
1437         uint16_t phy_reg;
1438
1439         rctl = E1000_READ_REG(hw, RCTL);
1440         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1441         E1000_WRITE_REG(hw, RCTL, rctl);
1442
1443         switch (hw->mac_type) {
1444         case e1000_82571:
1445         case e1000_82572:
1446                 if (hw->media_type == e1000_media_type_fiber ||
1447                     hw->media_type == e1000_media_type_internal_serdes) {
1448 #define E1000_SERDES_LB_OFF 0x400
1449                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1450                         msleep(10);
1451                         break;
1452                 }
1453                 /* Fall Through */
1454         case e1000_82545:
1455         case e1000_82546:
1456         case e1000_82545_rev_3:
1457         case e1000_82546_rev_3:
1458         default:
1459                 hw->autoneg = TRUE;
1460                 if (hw->phy_type == e1000_phy_gg82563)
1461                         e1000_write_phy_reg(hw,
1462                                             GG82563_PHY_KMRN_MODE_CTRL,
1463                                             0x180);
1464                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1465                 if (phy_reg & MII_CR_LOOPBACK) {
1466                         phy_reg &= ~MII_CR_LOOPBACK;
1467                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1468                         e1000_phy_reset(hw);
1469                 }
1470                 break;
1471         }
1472 }
1473
1474 static void
1475 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1476 {
1477         memset(skb->data, 0xFF, frame_size);
1478         frame_size &= ~1;
1479         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1480         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1481         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1482 }
1483
1484 static int
1485 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1486 {
1487         frame_size &= ~1;
1488         if (*(skb->data + 3) == 0xFF) {
1489                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1490                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1491                         return 0;
1492                 }
1493         }
1494         return 13;
1495 }
1496
1497 static int
1498 e1000_run_loopback_test(struct e1000_adapter *adapter)
1499 {
1500         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1501         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1502         struct pci_dev *pdev = adapter->pdev;
1503         int i, j, k, l, lc, good_cnt, ret_val=0;
1504         unsigned long time;
1505
1506         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1507
1508         /* Calculate the loop count based on the largest descriptor ring
1509          * The idea is to wrap the largest ring a number of times using 64
1510          * send/receive pairs during each loop
1511          */
1512
1513         if (rxdr->count <= txdr->count)
1514                 lc = ((txdr->count / 64) * 2) + 1;
1515         else
1516                 lc = ((rxdr->count / 64) * 2) + 1;
1517
1518         k = l = 0;
1519         for (j = 0; j <= lc; j++) { /* loop count loop */
1520                 for (i = 0; i < 64; i++) { /* send the packets */
1521                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1522                                         1024);
1523                         pci_dma_sync_single_for_device(pdev,
1524                                         txdr->buffer_info[k].dma,
1525                                         txdr->buffer_info[k].length,
1526                                         PCI_DMA_TODEVICE);
1527                         if (unlikely(++k == txdr->count)) k = 0;
1528                 }
1529                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1530                 msleep(200);
1531                 time = jiffies; /* set the start time for the receive */
1532                 good_cnt = 0;
1533                 do { /* receive the sent packets */
1534                         pci_dma_sync_single_for_cpu(pdev,
1535                                         rxdr->buffer_info[l].dma,
1536                                         rxdr->buffer_info[l].length,
1537                                         PCI_DMA_FROMDEVICE);
1538
1539                         ret_val = e1000_check_lbtest_frame(
1540                                         rxdr->buffer_info[l].skb,
1541                                         1024);
1542                         if (!ret_val)
1543                                 good_cnt++;
1544                         if (unlikely(++l == rxdr->count)) l = 0;
1545                         /* time + 20 msecs (200 msecs on 2.4) is more than
1546                          * enough time to complete the receives, if it's
1547                          * exceeded, break and error off
1548                          */
1549                 } while (good_cnt < 64 && jiffies < (time + 20));
1550                 if (good_cnt != 64) {
1551                         ret_val = 13; /* ret_val is the same as mis-compare */
1552                         break;
1553                 }
1554                 if (jiffies >= (time + 2)) {
1555                         ret_val = 14; /* error code for time out error */
1556                         break;
1557                 }
1558         } /* end loop count loop */
1559         return ret_val;
1560 }
1561
1562 static int
1563 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1564 {
1565         /* PHY loopback cannot be performed if SoL/IDER
1566          * sessions are active */
1567         if (e1000_check_phy_reset_block(&adapter->hw)) {
1568                 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1569                         "when SoL/IDER is active.\n");
1570                 *data = 0;
1571                 goto out;
1572         }
1573
1574         if ((*data = e1000_setup_desc_rings(adapter)))
1575                 goto out;
1576         if ((*data = e1000_setup_loopback_test(adapter)))
1577                 goto err_loopback;
1578         *data = e1000_run_loopback_test(adapter);
1579         e1000_loopback_cleanup(adapter);
1580
1581 err_loopback:
1582         e1000_free_desc_rings(adapter);
1583 out:
1584         return *data;
1585 }
1586
1587 static int
1588 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1589 {
1590         *data = 0;
1591         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1592                 int i = 0;
1593                 adapter->hw.serdes_link_down = TRUE;
1594
1595                 /* On some blade server designs, link establishment
1596                  * could take as long as 2-3 minutes */
1597                 do {
1598                         e1000_check_for_link(&adapter->hw);
1599                         if (adapter->hw.serdes_link_down == FALSE)
1600                                 return *data;
1601                         msleep(20);
1602                 } while (i++ < 3750);
1603
1604                 *data = 1;
1605         } else {
1606                 e1000_check_for_link(&adapter->hw);
1607                 if (adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1608                         msleep(4000);
1609
1610                 if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1611                         *data = 1;
1612                 }
1613         }
1614         return *data;
1615 }
1616
1617 static int
1618 e1000_diag_test_count(struct net_device *netdev)
1619 {
1620         return E1000_TEST_LEN;
1621 }
1622
1623 extern void e1000_power_up_phy(struct e1000_adapter *);
1624
1625 static void
1626 e1000_diag_test(struct net_device *netdev,
1627                    struct ethtool_test *eth_test, uint64_t *data)
1628 {
1629         struct e1000_adapter *adapter = netdev_priv(netdev);
1630         boolean_t if_running = netif_running(netdev);
1631
1632         set_bit(__E1000_TESTING, &adapter->flags);
1633         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1634                 /* Offline tests */
1635
1636                 /* save speed, duplex, autoneg settings */
1637                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1638                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1639                 uint8_t autoneg = adapter->hw.autoneg;
1640
1641                 DPRINTK(HW, INFO, "offline testing starting\n");
1642
1643                 /* Link test performed before hardware reset so autoneg doesn't
1644                  * interfere with test result */
1645                 if (e1000_link_test(adapter, &data[4]))
1646                         eth_test->flags |= ETH_TEST_FL_FAILED;
1647
1648                 if (if_running)
1649                         /* indicate we're in test mode */
1650                         dev_close(netdev);
1651                 else
1652                         e1000_reset(adapter);
1653
1654                 if (e1000_reg_test(adapter, &data[0]))
1655                         eth_test->flags |= ETH_TEST_FL_FAILED;
1656
1657                 e1000_reset(adapter);
1658                 if (e1000_eeprom_test(adapter, &data[1]))
1659                         eth_test->flags |= ETH_TEST_FL_FAILED;
1660
1661                 e1000_reset(adapter);
1662                 if (e1000_intr_test(adapter, &data[2]))
1663                         eth_test->flags |= ETH_TEST_FL_FAILED;
1664
1665                 e1000_reset(adapter);
1666                 /* make sure the phy is powered up */
1667                 e1000_power_up_phy(adapter);
1668                 if (e1000_loopback_test(adapter, &data[3]))
1669                         eth_test->flags |= ETH_TEST_FL_FAILED;
1670
1671                 /* restore speed, duplex, autoneg settings */
1672                 adapter->hw.autoneg_advertised = autoneg_advertised;
1673                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1674                 adapter->hw.autoneg = autoneg;
1675
1676                 e1000_reset(adapter);
1677                 clear_bit(__E1000_TESTING, &adapter->flags);
1678                 if (if_running)
1679                         dev_open(netdev);
1680         } else {
1681                 DPRINTK(HW, INFO, "online testing starting\n");
1682                 /* Online tests */
1683                 if (e1000_link_test(adapter, &data[4]))
1684                         eth_test->flags |= ETH_TEST_FL_FAILED;
1685
1686                 /* Online tests aren't run; pass by default */
1687                 data[0] = 0;
1688                 data[1] = 0;
1689                 data[2] = 0;
1690                 data[3] = 0;
1691
1692                 clear_bit(__E1000_TESTING, &adapter->flags);
1693         }
1694         msleep_interruptible(4 * 1000);
1695 }
1696
1697 static int e1000_wol_exclusion(struct e1000_adapter *adapter, struct ethtool_wolinfo *wol)
1698 {
1699         struct e1000_hw *hw = &adapter->hw;
1700         int retval = 1; /* fail by default */
1701
1702         switch (hw->device_id) {
1703         case E1000_DEV_ID_82542:
1704         case E1000_DEV_ID_82543GC_FIBER:
1705         case E1000_DEV_ID_82543GC_COPPER:
1706         case E1000_DEV_ID_82544EI_FIBER:
1707         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1708         case E1000_DEV_ID_82545EM_FIBER:
1709         case E1000_DEV_ID_82545EM_COPPER:
1710         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1711         case E1000_DEV_ID_82546GB_PCIE:
1712                 /* these don't support WoL at all */
1713                 wol->supported = 0;
1714                 break;
1715         case E1000_DEV_ID_82546EB_FIBER:
1716         case E1000_DEV_ID_82546GB_FIBER:
1717         case E1000_DEV_ID_82571EB_FIBER:
1718         case E1000_DEV_ID_82571EB_SERDES:
1719         case E1000_DEV_ID_82571EB_COPPER:
1720                 /* Wake events not supported on port B */
1721                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1722                         wol->supported = 0;
1723                         break;
1724                 }
1725                 /* return success for non excluded adapter ports */
1726                 retval = 0;
1727                 break;
1728         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1729         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1730         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1731                 /* quad port adapters only support WoL on port A */
1732                 if (!adapter->quad_port_a) {
1733                         wol->supported = 0;
1734                         break;
1735                 }
1736                 /* return success for non excluded adapter ports */
1737                 retval = 0;
1738                 break;
1739         default:
1740                 /* dual port cards only support WoL on port A from now on
1741                  * unless it was enabled in the eeprom for port B
1742                  * so exclude FUNC_1 ports from having WoL enabled */
1743                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1 &&
1744                     !adapter->eeprom_wol) {
1745                         wol->supported = 0;
1746                         break;
1747                 }
1748
1749                 retval = 0;
1750         }
1751
1752         return retval;
1753 }
1754
1755 static void
1756 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1757 {
1758         struct e1000_adapter *adapter = netdev_priv(netdev);
1759
1760         wol->supported = WAKE_UCAST | WAKE_MCAST |
1761                          WAKE_BCAST | WAKE_MAGIC;
1762         wol->wolopts = 0;
1763
1764         /* this function will set ->supported = 0 and return 1 if wol is not
1765          * supported by this hardware */
1766         if (e1000_wol_exclusion(adapter, wol))
1767                 return;
1768
1769         /* apply any specific unsupported masks here */
1770         switch (adapter->hw.device_id) {
1771         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1772                 /* KSP3 does not suppport UCAST wake-ups */
1773                 wol->supported &= ~WAKE_UCAST;
1774
1775                 if (adapter->wol & E1000_WUFC_EX)
1776                         DPRINTK(DRV, ERR, "Interface does not support "
1777                         "directed (unicast) frame wake-up packets\n");
1778                 break;
1779         default:
1780                 break;
1781         }
1782
1783         if (adapter->wol & E1000_WUFC_EX)
1784                 wol->wolopts |= WAKE_UCAST;
1785         if (adapter->wol & E1000_WUFC_MC)
1786                 wol->wolopts |= WAKE_MCAST;
1787         if (adapter->wol & E1000_WUFC_BC)
1788                 wol->wolopts |= WAKE_BCAST;
1789         if (adapter->wol & E1000_WUFC_MAG)
1790                 wol->wolopts |= WAKE_MAGIC;
1791
1792         return;
1793 }
1794
1795 static int
1796 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1797 {
1798         struct e1000_adapter *adapter = netdev_priv(netdev);
1799         struct e1000_hw *hw = &adapter->hw;
1800
1801         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1802                 return -EOPNOTSUPP;
1803
1804         if (e1000_wol_exclusion(adapter, wol))
1805                 return wol->wolopts ? -EOPNOTSUPP : 0;
1806
1807         switch (hw->device_id) {
1808         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1809                 if (wol->wolopts & WAKE_UCAST) {
1810                         DPRINTK(DRV, ERR, "Interface does not support "
1811                         "directed (unicast) frame wake-up packets\n");
1812                         return -EOPNOTSUPP;
1813                 }
1814                 break;
1815         default:
1816                 break;
1817         }
1818
1819         /* these settings will always override what we currently have */
1820         adapter->wol = 0;
1821
1822         if (wol->wolopts & WAKE_UCAST)
1823                 adapter->wol |= E1000_WUFC_EX;
1824         if (wol->wolopts & WAKE_MCAST)
1825                 adapter->wol |= E1000_WUFC_MC;
1826         if (wol->wolopts & WAKE_BCAST)
1827                 adapter->wol |= E1000_WUFC_BC;
1828         if (wol->wolopts & WAKE_MAGIC)
1829                 adapter->wol |= E1000_WUFC_MAG;
1830
1831         return 0;
1832 }
1833
1834 /* toggle LED 4 times per second = 2 "blinks" per second */
1835 #define E1000_ID_INTERVAL       (HZ/4)
1836
1837 /* bit defines for adapter->led_status */
1838 #define E1000_LED_ON            0
1839
1840 static void
1841 e1000_led_blink_callback(unsigned long data)
1842 {
1843         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1844
1845         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1846                 e1000_led_off(&adapter->hw);
1847         else
1848                 e1000_led_on(&adapter->hw);
1849
1850         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1851 }
1852
1853 static int
1854 e1000_phys_id(struct net_device *netdev, uint32_t data)
1855 {
1856         struct e1000_adapter *adapter = netdev_priv(netdev);
1857
1858         if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1859                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1860
1861         if (adapter->hw.mac_type < e1000_82571) {
1862                 if (!adapter->blink_timer.function) {
1863                         init_timer(&adapter->blink_timer);
1864                         adapter->blink_timer.function = e1000_led_blink_callback;
1865                         adapter->blink_timer.data = (unsigned long) adapter;
1866                 }
1867                 e1000_setup_led(&adapter->hw);
1868                 mod_timer(&adapter->blink_timer, jiffies);
1869                 msleep_interruptible(data * 1000);
1870                 del_timer_sync(&adapter->blink_timer);
1871         } else if (adapter->hw.phy_type == e1000_phy_ife) {
1872                 if (!adapter->blink_timer.function) {
1873                         init_timer(&adapter->blink_timer);
1874                         adapter->blink_timer.function = e1000_led_blink_callback;
1875                         adapter->blink_timer.data = (unsigned long) adapter;
1876                 }
1877                 mod_timer(&adapter->blink_timer, jiffies);
1878                 msleep_interruptible(data * 1000);
1879                 del_timer_sync(&adapter->blink_timer);
1880                 e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
1881         } else {
1882                 e1000_blink_led_start(&adapter->hw);
1883                 msleep_interruptible(data * 1000);
1884         }
1885
1886         e1000_led_off(&adapter->hw);
1887         clear_bit(E1000_LED_ON, &adapter->led_status);
1888         e1000_cleanup_led(&adapter->hw);
1889
1890         return 0;
1891 }
1892
1893 static int
1894 e1000_nway_reset(struct net_device *netdev)
1895 {
1896         struct e1000_adapter *adapter = netdev_priv(netdev);
1897         if (netif_running(netdev))
1898                 e1000_reinit_locked(adapter);
1899         return 0;
1900 }
1901
1902 static int
1903 e1000_get_stats_count(struct net_device *netdev)
1904 {
1905         return E1000_STATS_LEN;
1906 }
1907
1908 static void
1909 e1000_get_ethtool_stats(struct net_device *netdev,
1910                 struct ethtool_stats *stats, uint64_t *data)
1911 {
1912         struct e1000_adapter *adapter = netdev_priv(netdev);
1913         int i;
1914
1915         e1000_update_stats(adapter);
1916         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1917                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1918                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1919                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1920         }
1921 /*      BUG_ON(i != E1000_STATS_LEN); */
1922 }
1923
1924 static void
1925 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1926 {
1927         uint8_t *p = data;
1928         int i;
1929
1930         switch (stringset) {
1931         case ETH_SS_TEST:
1932                 memcpy(data, *e1000_gstrings_test,
1933                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1934                 break;
1935         case ETH_SS_STATS:
1936                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1937                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1938                                ETH_GSTRING_LEN);
1939                         p += ETH_GSTRING_LEN;
1940                 }
1941 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1942                 break;
1943         }
1944 }
1945
1946 static const struct ethtool_ops e1000_ethtool_ops = {
1947         .get_settings           = e1000_get_settings,
1948         .set_settings           = e1000_set_settings,
1949         .get_drvinfo            = e1000_get_drvinfo,
1950         .get_regs_len           = e1000_get_regs_len,
1951         .get_regs               = e1000_get_regs,
1952         .get_wol                = e1000_get_wol,
1953         .set_wol                = e1000_set_wol,
1954         .get_msglevel           = e1000_get_msglevel,
1955         .set_msglevel           = e1000_set_msglevel,
1956         .nway_reset             = e1000_nway_reset,
1957         .get_link               = ethtool_op_get_link,
1958         .get_eeprom_len         = e1000_get_eeprom_len,
1959         .get_eeprom             = e1000_get_eeprom,
1960         .set_eeprom             = e1000_set_eeprom,
1961         .get_ringparam          = e1000_get_ringparam,
1962         .set_ringparam          = e1000_set_ringparam,
1963         .get_pauseparam         = e1000_get_pauseparam,
1964         .set_pauseparam         = e1000_set_pauseparam,
1965         .get_rx_csum            = e1000_get_rx_csum,
1966         .set_rx_csum            = e1000_set_rx_csum,
1967         .get_tx_csum            = e1000_get_tx_csum,
1968         .set_tx_csum            = e1000_set_tx_csum,
1969         .get_sg                 = ethtool_op_get_sg,
1970         .set_sg                 = ethtool_op_set_sg,
1971 #ifdef NETIF_F_TSO
1972         .get_tso                = ethtool_op_get_tso,
1973         .set_tso                = e1000_set_tso,
1974 #endif
1975         .self_test_count        = e1000_diag_test_count,
1976         .self_test              = e1000_diag_test,
1977         .get_strings            = e1000_get_strings,
1978         .phys_id                = e1000_phys_id,
1979         .get_stats_count        = e1000_get_stats_count,
1980         .get_ethtool_stats      = e1000_get_ethtool_stats,
1981         .get_perm_addr          = ethtool_op_get_perm_addr,
1982 };
1983
1984 void e1000_set_ethtool_ops(struct net_device *netdev)
1985 {
1986         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1987 }