2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 2003-2005 Silicon Graphics, Inc. All Rights Reserved.
9 #include <linux/types.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <asm/sn/sn_sal.h>
13 #include <asm/sn/addrs.h>
14 #include <asm/sn/io.h>
15 #include <asm/sn/pcidev.h>
16 #include <asm/sn/pcibus_provider_defs.h>
17 #include <asm/sn/tioce_provider.h>
20 * Bus address ranges for the 5 flavors of TIOCE DMA
23 #define TIOCE_D64_MIN 0x8000000000000000UL
24 #define TIOCE_D64_MAX 0xffffffffffffffffUL
25 #define TIOCE_D64_ADDR(a) ((a) >= TIOCE_D64_MIN)
27 #define TIOCE_D32_MIN 0x0000000080000000UL
28 #define TIOCE_D32_MAX 0x00000000ffffffffUL
29 #define TIOCE_D32_ADDR(a) ((a) >= TIOCE_D32_MIN && (a) <= TIOCE_D32_MAX)
31 #define TIOCE_M32_MIN 0x0000000000000000UL
32 #define TIOCE_M32_MAX 0x000000007fffffffUL
33 #define TIOCE_M32_ADDR(a) ((a) >= TIOCE_M32_MIN && (a) <= TIOCE_M32_MAX)
35 #define TIOCE_M40_MIN 0x0000004000000000UL
36 #define TIOCE_M40_MAX 0x0000007fffffffffUL
37 #define TIOCE_M40_ADDR(a) ((a) >= TIOCE_M40_MIN && (a) <= TIOCE_M40_MAX)
39 #define TIOCE_M40S_MIN 0x0000008000000000UL
40 #define TIOCE_M40S_MAX 0x000000ffffffffffUL
41 #define TIOCE_M40S_ADDR(a) ((a) >= TIOCE_M40S_MIN && (a) <= TIOCE_M40S_MAX)
44 * ATE manipulation macros.
47 #define ATE_PAGESHIFT(ps) (__ffs(ps))
48 #define ATE_PAGEMASK(ps) ((ps)-1)
50 #define ATE_PAGE(x, ps) ((x) >> ATE_PAGESHIFT(ps))
51 #define ATE_NPAGES(start, len, pagesize) \
52 (ATE_PAGE((start)+(len)-1, pagesize) - ATE_PAGE(start, pagesize) + 1)
54 #define ATE_VALID(ate) ((ate) & (1UL << 63))
55 #define ATE_MAKE(addr, ps) (((addr) & ~ATE_PAGEMASK(ps)) | (1UL << 63))
58 * Flavors of ate-based mapping supported by tioce_alloc_map()
61 #define TIOCE_ATE_M32 1
62 #define TIOCE_ATE_M40 2
63 #define TIOCE_ATE_M40S 3
65 #define KB(x) ((x) << 10)
66 #define MB(x) ((x) << 20)
67 #define GB(x) ((x) << 30)
70 * tioce_dma_d64 - create a DMA mapping using 64-bit direct mode
71 * @ct_addr: system coretalk address
73 * Map @ct_addr into 64-bit CE bus space. No device context is necessary
74 * and no CE mapping are consumed.
76 * Bits 53:0 come from the coretalk address. The remaining bits are set as
79 * 63 - must be 1 to indicate d64 mode to CE hardware
80 * 62 - barrier bit ... controlled with tioce_dma_barrier()
81 * 61 - 0 since this is not an MSI transaction
82 * 60:54 - reserved, MBZ
85 tioce_dma_d64(unsigned long ct_addr)
89 bus_addr = ct_addr | (1UL << 63);
95 * pcidev_to_tioce - return misc ce related pointers given a pci_dev
96 * @pci_dev: pci device context
97 * @base: ptr to store struct tioce_mmr * for the CE holding this device
98 * @kernel: ptr to store struct tioce_kernel * for the CE holding this device
99 * @port: ptr to store the CE port number that this device is on
101 * Return pointers to various CE-related structures for the CE upstream of
105 pcidev_to_tioce(struct pci_dev *pdev, struct tioce **base,
106 struct tioce_kernel **kernel, int *port)
108 struct pcidev_info *pcidev_info;
109 struct tioce_common *ce_common;
110 struct tioce_kernel *ce_kernel;
112 pcidev_info = SN_PCIDEV_INFO(pdev);
113 ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
114 ce_kernel = (struct tioce_kernel *)ce_common->ce_kernel_private;
117 *base = (struct tioce *)ce_common->ce_pcibus.bs_base;
122 * we use port as a zero-based value internally, even though the
123 * documentation is 1-based.
127 (pdev->bus->number < ce_kernel->ce_port1_secondary) ? 0 : 1;
131 * tioce_alloc_map - Given a coretalk address, map it to pcie bus address
132 * space using one of the various ATE-based address modes.
133 * @ce_kern: tioce context
134 * @type: map mode to use
135 * @port: 0-based port that the requesting device is downstream of
136 * @ct_addr: the coretalk address to map
137 * @len: number of bytes to map
139 * Given the addressing type, set up various paramaters that define the
140 * ATE pool to use. Search for a contiguous block of entries to cover the
141 * length, and if enough resources exist, fill in the ATE's and construct a
142 * tioce_dmamap struct to track the mapping.
145 tioce_alloc_map(struct tioce_kernel *ce_kern, int type, int port,
146 uint64_t ct_addr, int len)
155 uint64_t *ate_shadow;
158 struct tioce *ce_mmr;
160 struct tioce_dmamap *map;
162 ce_mmr = (struct tioce *)ce_kern->ce_common->ce_pcibus.bs_base;
167 * The first 64 entries of the ate3240 pool are dedicated to
168 * super-page (TIOCE_ATE_M40S) mode.
171 entries = TIOCE_NUM_M3240_ATES - 64;
172 ate_shadow = ce_kern->ce_ate3240_shadow;
173 ate_reg = ce_mmr->ce_ure_ate3240;
174 pagesize = ce_kern->ce_ate3240_pagesize;
175 bus_base = TIOCE_M32_MIN;
179 entries = TIOCE_NUM_M40_ATES;
180 ate_shadow = ce_kern->ce_ate40_shadow;
181 ate_reg = ce_mmr->ce_ure_ate40;
183 bus_base = TIOCE_M40_MIN;
187 * ate3240 entries 0-31 are dedicated to port1 super-page
188 * mappings. ate3240 entries 32-63 are dedicated to port2.
192 ate_shadow = ce_kern->ce_ate3240_shadow;
193 ate_reg = ce_mmr->ce_ure_ate3240;
195 bus_base = TIOCE_M40S_MIN;
201 nates = ATE_NPAGES(ct_addr, len, pagesize);
205 last = first + entries - nates;
206 for (i = first; i <= last; i++) {
207 if (ATE_VALID(ate_shadow[i]))
210 for (j = i; j < i + nates; j++)
211 if (ATE_VALID(ate_shadow[j]))
221 map = kzalloc(sizeof(struct tioce_dmamap), GFP_ATOMIC);
226 for (j = 0; j < nates; j++) {
229 ate = ATE_MAKE(addr, pagesize);
230 ate_shadow[i + j] = ate;
231 writeq(ate, &ate_reg[i + j]);
236 map->nbytes = nates * pagesize;
237 map->ct_start = ct_addr & ~ATE_PAGEMASK(pagesize);
238 map->pci_start = bus_base + (i * pagesize);
239 map->ate_hw = &ate_reg[i];
240 map->ate_shadow = &ate_shadow[i];
241 map->ate_count = nates;
243 list_add(&map->ce_dmamap_list, &ce_kern->ce_dmamap_list);
245 return (map->pci_start + (ct_addr - map->ct_start));
249 * tioce_dma_d32 - create a DMA mapping using 32-bit direct mode
250 * @pdev: linux pci_dev representing the function
251 * @paddr: system physical address
253 * Map @paddr into 32-bit bus space of the CE associated with @pcidev_info.
256 tioce_dma_d32(struct pci_dev *pdev, uint64_t ct_addr)
260 struct tioce *ce_mmr;
261 struct tioce_kernel *ce_kern;
266 ct_upper = ct_addr & ~0x3fffffffUL;
267 ct_lower = ct_addr & 0x3fffffffUL;
269 pcidev_to_tioce(pdev, &ce_mmr, &ce_kern, &port);
271 if (ce_kern->ce_port[port].dirmap_refcnt == 0) {
274 ce_kern->ce_port[port].dirmap_shadow = ct_upper;
275 writeq(ct_upper, &ce_mmr->ce_ure_dir_map[port]);
276 tmp = ce_mmr->ce_ure_dir_map[port];
279 dma_ok = (ce_kern->ce_port[port].dirmap_shadow == ct_upper);
282 ce_kern->ce_port[port].dirmap_refcnt++;
283 bus_addr = TIOCE_D32_MIN + ct_lower;
291 * tioce_dma_barrier - swizzle a TIOCE bus address to include or exclude
293 * @bus_addr: bus address to swizzle
295 * Given a TIOCE bus address, set the appropriate bit to indicate barrier
299 tioce_dma_barrier(uint64_t bus_addr, int on)
301 uint64_t barrier_bit;
303 /* barrier not supported in M40/M40S mode */
304 if (TIOCE_M40_ADDR(bus_addr) || TIOCE_M40S_ADDR(bus_addr))
307 if (TIOCE_D64_ADDR(bus_addr))
308 barrier_bit = (1UL << 62);
309 else /* must be m32 or d32 */
310 barrier_bit = (1UL << 30);
312 return (on) ? (bus_addr | barrier_bit) : (bus_addr & ~barrier_bit);
316 * tioce_dma_unmap - release CE mapping resources
317 * @pdev: linux pci_dev representing the function
318 * @bus_addr: bus address returned by an earlier tioce_dma_map
319 * @dir: mapping direction (unused)
321 * Locate mapping resources associated with @bus_addr and release them.
322 * For mappings created using the direct modes there are no resources
326 tioce_dma_unmap(struct pci_dev *pdev, dma_addr_t bus_addr, int dir)
330 struct tioce_kernel *ce_kern;
331 struct tioce *ce_mmr;
334 bus_addr = tioce_dma_barrier(bus_addr, 0);
335 pcidev_to_tioce(pdev, &ce_mmr, &ce_kern, &port);
337 /* nothing to do for D64 */
339 if (TIOCE_D64_ADDR(bus_addr))
342 spin_lock_irqsave(&ce_kern->ce_lock, flags);
344 if (TIOCE_D32_ADDR(bus_addr)) {
345 if (--ce_kern->ce_port[port].dirmap_refcnt == 0) {
346 ce_kern->ce_port[port].dirmap_shadow = 0;
347 writeq(0, &ce_mmr->ce_ure_dir_map[port]);
350 struct tioce_dmamap *map;
352 list_for_each_entry(map, &ce_kern->ce_dmamap_list,
356 last = map->pci_start + map->nbytes - 1;
357 if (bus_addr >= map->pci_start && bus_addr <= last)
361 if (&map->ce_dmamap_list == &ce_kern->ce_dmamap_list) {
363 "%s: %s - no map found for bus_addr 0x%lx\n",
364 __FUNCTION__, pci_name(pdev), bus_addr);
365 } else if (--map->refcnt == 0) {
366 for (i = 0; i < map->ate_count; i++) {
367 map->ate_shadow[i] = 0;
371 list_del(&map->ce_dmamap_list);
376 spin_unlock_irqrestore(&ce_kern->ce_lock, flags);
380 * tioce_do_dma_map - map pages for PCI DMA
381 * @pdev: linux pci_dev representing the function
382 * @paddr: host physical address to map
383 * @byte_count: bytes to map
385 * This is the main wrapper for mapping host physical pages to CE PCI space.
386 * The mapping mode used is based on the device's dma_mask.
389 tioce_do_dma_map(struct pci_dev *pdev, uint64_t paddr, size_t byte_count,
394 uint64_t mapaddr = 0;
395 struct tioce_kernel *ce_kern;
396 struct tioce_dmamap *map;
400 dma_mask = (barrier) ? pdev->dev.coherent_dma_mask : pdev->dma_mask;
402 /* cards must be able to address at least 31 bits */
403 if (dma_mask < 0x7fffffffUL)
406 ct_addr = PHYS_TO_TIODMA(paddr);
409 * If the device can generate 64 bit addresses, create a D64 map.
410 * Since this should never fail, bypass the rest of the checks.
412 if (dma_mask == ~0UL) {
413 mapaddr = tioce_dma_d64(ct_addr);
417 pcidev_to_tioce(pdev, NULL, &ce_kern, &port);
419 spin_lock_irqsave(&ce_kern->ce_lock, flags);
422 * D64 didn't work ... See if we have an existing map that covers
423 * this address range. Must account for devices dma_mask here since
424 * an existing map might have been done in a mode using more pci
425 * address bits than this device can support.
427 list_for_each_entry(map, &ce_kern->ce_dmamap_list, ce_dmamap_list) {
430 last = map->ct_start + map->nbytes - 1;
431 if (ct_addr >= map->ct_start &&
432 ct_addr + byte_count - 1 <= last &&
433 map->pci_start <= dma_mask) {
435 mapaddr = map->pci_start + (ct_addr - map->ct_start);
441 * If we don't have a map yet, and the card can generate 40
442 * bit addresses, try the M40/M40S modes. Note these modes do not
443 * support a barrier bit, so if we need a consistent map these
446 if (!mapaddr && !barrier && dma_mask >= 0xffffffffffUL) {
448 * We have two options for 40-bit mappings: 16GB "super" ATE's
449 * and 64MB "regular" ATE's. We'll try both if needed for a
450 * given mapping but which one we try first depends on the
451 * size. For requests >64MB, prefer to use a super page with
452 * regular as the fallback. Otherwise, try in the reverse order.
455 if (byte_count > MB(64)) {
456 mapaddr = tioce_alloc_map(ce_kern, TIOCE_ATE_M40S,
457 port, ct_addr, byte_count);
460 tioce_alloc_map(ce_kern, TIOCE_ATE_M40, -1,
461 ct_addr, byte_count);
463 mapaddr = tioce_alloc_map(ce_kern, TIOCE_ATE_M40, -1,
464 ct_addr, byte_count);
467 tioce_alloc_map(ce_kern, TIOCE_ATE_M40S,
468 port, ct_addr, byte_count);
473 * 32-bit direct is the next mode to try
475 if (!mapaddr && dma_mask >= 0xffffffffUL)
476 mapaddr = tioce_dma_d32(pdev, ct_addr);
479 * Last resort, try 32-bit ATE-based map.
483 tioce_alloc_map(ce_kern, TIOCE_ATE_M32, -1, ct_addr,
486 spin_unlock_irqrestore(&ce_kern->ce_lock, flags);
489 if (mapaddr & barrier)
490 mapaddr = tioce_dma_barrier(mapaddr, 1);
496 * tioce_dma - standard pci dma map interface
497 * @pdev: pci device requesting the map
498 * @paddr: system physical address to map into pci space
499 * @byte_count: # bytes to map
501 * Simply call tioce_do_dma_map() to create a map with the barrier bit clear
505 tioce_dma(struct pci_dev *pdev, uint64_t paddr, size_t byte_count)
507 return tioce_do_dma_map(pdev, paddr, byte_count, 0);
511 * tioce_dma_consistent - consistent pci dma map interface
512 * @pdev: pci device requesting the map
513 * @paddr: system physical address to map into pci space
514 * @byte_count: # bytes to map
516 * Simply call tioce_do_dma_map() to create a map with the barrier bit set
519 tioce_dma_consistent(struct pci_dev *pdev, uint64_t paddr, size_t byte_count)
521 return tioce_do_dma_map(pdev, paddr, byte_count, 1);
525 * tioce_error_intr_handler - SGI TIO CE error interrupt handler
527 * @arg: pointer to tioce_common struct for the given CE
530 * Handle a CE error interrupt. Simply a wrapper around a SAL call which
531 * defers processing to the SGI prom.
532 */ static irqreturn_t
533 tioce_error_intr_handler(int irq, void *arg, struct pt_regs *pt)
535 struct tioce_common *soft = arg;
536 struct ia64_sal_retval ret_stuff;
537 ret_stuff.status = 0;
540 SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_ERROR_INTERRUPT,
541 soft->ce_pcibus.bs_persist_segment,
542 soft->ce_pcibus.bs_persist_busnum, 0, 0, 0, 0, 0);
548 * tioce_kern_init - init kernel structures related to a given TIOCE
549 * @tioce_common: ptr to a cached tioce_common struct that originated in prom
550 */ static struct tioce_kernel *
551 tioce_kern_init(struct tioce_common *tioce_common)
555 struct tioce *tioce_mmr;
556 struct tioce_kernel *tioce_kern;
558 tioce_kern = kzalloc(sizeof(struct tioce_kernel), GFP_KERNEL);
563 tioce_kern->ce_common = tioce_common;
564 spin_lock_init(&tioce_kern->ce_lock);
565 INIT_LIST_HEAD(&tioce_kern->ce_dmamap_list);
566 tioce_common->ce_kernel_private = (uint64_t) tioce_kern;
569 * Determine the secondary bus number of the port2 logical PPB.
570 * This is used to decide whether a given pci device resides on
571 * port1 or port2. Note: We don't have enough plumbing set up
572 * here to use pci_read_config_xxx() so use the raw_pci_ops vector.
575 raw_pci_ops->read(tioce_common->ce_pcibus.bs_persist_segment,
576 tioce_common->ce_pcibus.bs_persist_busnum,
577 PCI_DEVFN(2, 0), PCI_SECONDARY_BUS, 1, &tmp);
578 tioce_kern->ce_port1_secondary = (uint8_t) tmp;
581 * Set PMU pagesize to the largest size available, and zero out
585 tioce_mmr = (struct tioce *)tioce_common->ce_pcibus.bs_base;
586 __sn_clrq_relaxed(&tioce_mmr->ce_ure_page_map, CE_URE_PAGESIZE_MASK);
587 __sn_setq_relaxed(&tioce_mmr->ce_ure_page_map, CE_URE_256K_PAGESIZE);
588 tioce_kern->ce_ate3240_pagesize = KB(256);
590 for (i = 0; i < TIOCE_NUM_M40_ATES; i++) {
591 tioce_kern->ce_ate40_shadow[i] = 0;
592 writeq(0, &tioce_mmr->ce_ure_ate40[i]);
595 for (i = 0; i < TIOCE_NUM_M3240_ATES; i++) {
596 tioce_kern->ce_ate3240_shadow[i] = 0;
597 writeq(0, &tioce_mmr->ce_ure_ate3240[i]);
604 * tioce_force_interrupt - implement altix force_interrupt() backend for CE
605 * @sn_irq_info: sn asic irq that we need an interrupt generated for
607 * Given an sn_irq_info struct, set the proper bit in ce_adm_force_int to
608 * force a secondary interrupt to be generated. This is to work around an
609 * asic issue where there is a small window of opportunity for a legacy device
610 * interrupt to be lost.
613 tioce_force_interrupt(struct sn_irq_info *sn_irq_info)
615 struct pcidev_info *pcidev_info;
616 struct tioce_common *ce_common;
617 struct tioce *ce_mmr;
618 uint64_t force_int_val;
620 if (!sn_irq_info->irq_bridge)
623 if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_TIOCE)
626 pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
630 ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
631 ce_mmr = (struct tioce *)ce_common->ce_pcibus.bs_base;
634 * irq_int_bit is originally set up by prom, and holds the interrupt
635 * bit shift (not mask) as defined by the bit definitions in the
636 * ce_adm_int mmr. These shifts are not the same for the
637 * ce_adm_force_int register, so do an explicit mapping here to make
641 switch (sn_irq_info->irq_int_bit) {
642 case CE_ADM_INT_PCIE_PORT1_DEV_A_SHFT:
643 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_A_SHFT;
645 case CE_ADM_INT_PCIE_PORT1_DEV_B_SHFT:
646 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_B_SHFT;
648 case CE_ADM_INT_PCIE_PORT1_DEV_C_SHFT:
649 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_C_SHFT;
651 case CE_ADM_INT_PCIE_PORT1_DEV_D_SHFT:
652 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_D_SHFT;
654 case CE_ADM_INT_PCIE_PORT2_DEV_A_SHFT:
655 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_A_SHFT;
657 case CE_ADM_INT_PCIE_PORT2_DEV_B_SHFT:
658 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_B_SHFT;
660 case CE_ADM_INT_PCIE_PORT2_DEV_C_SHFT:
661 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_C_SHFT;
663 case CE_ADM_INT_PCIE_PORT2_DEV_D_SHFT:
664 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_D_SHFT;
669 writeq(force_int_val, &ce_mmr->ce_adm_force_int);
673 * tioce_target_interrupt - implement set_irq_affinity for tioce resident
674 * functions. Note: only applies to line interrupts, not MSI's.
676 * @sn_irq_info: SN IRQ context
678 * Given an sn_irq_info, set the associated CE device's interrupt destination
679 * register. Since the interrupt destination registers are on a per-ce-slot
680 * basis, this will retarget line interrupts for all functions downstream of
684 tioce_target_interrupt(struct sn_irq_info *sn_irq_info)
686 struct pcidev_info *pcidev_info;
687 struct tioce_common *ce_common;
688 struct tioce *ce_mmr;
692 pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
696 ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
697 ce_mmr = (struct tioce *)ce_common->ce_pcibus.bs_base;
699 bit = sn_irq_info->irq_int_bit;
701 __sn_setq_relaxed(&ce_mmr->ce_adm_int_mask, (1UL << bit));
702 vector = (uint64_t)sn_irq_info->irq_irq << INTR_VECTOR_SHFT;
703 vector |= sn_irq_info->irq_xtalkaddr;
704 writeq(vector, &ce_mmr->ce_adm_int_dest[bit]);
705 __sn_clrq_relaxed(&ce_mmr->ce_adm_int_mask, (1UL << bit));
707 tioce_force_interrupt(sn_irq_info);
711 * tioce_bus_fixup - perform final PCI fixup for a TIO CE bus
712 * @prom_bussoft: Common prom/kernel struct representing the bus
714 * Replicates the tioce_common pointed to by @prom_bussoft in kernel
715 * space. Allocates and initializes a kernel-only area for a given CE,
716 * and sets up an irq for handling CE error interrupts.
718 * On successful setup, returns the kernel version of tioce_common back to
722 tioce_bus_fixup(struct pcibus_bussoft *prom_bussoft, struct pci_controller *controller)
724 struct tioce_common *tioce_common;
727 * Allocate kernel bus soft and copy from prom.
730 tioce_common = kzalloc(sizeof(struct tioce_common), GFP_KERNEL);
734 memcpy(tioce_common, prom_bussoft, sizeof(struct tioce_common));
735 tioce_common->ce_pcibus.bs_base |= __IA64_UNCACHED_OFFSET;
737 if (tioce_kern_init(tioce_common) == NULL) {
742 if (request_irq(SGI_PCIASIC_ERROR,
743 tioce_error_intr_handler,
744 SA_SHIRQ, "TIOCE error", (void *)tioce_common))
746 "%s: Unable to get irq %d. "
747 "Error interrupts won't be routed for "
748 "TIOCE bus %04x:%02x\n",
749 __FUNCTION__, SGI_PCIASIC_ERROR,
750 tioce_common->ce_pcibus.bs_persist_segment,
751 tioce_common->ce_pcibus.bs_persist_busnum);
756 static struct sn_pcibus_provider tioce_pci_interfaces = {
757 .dma_map = tioce_dma,
758 .dma_map_consistent = tioce_dma_consistent,
759 .dma_unmap = tioce_dma_unmap,
760 .bus_fixup = tioce_bus_fixup,
761 .force_interrupt = tioce_force_interrupt,
762 .target_interrupt = tioce_target_interrupt
766 * tioce_init_provider - init SN PCI provider ops for TIO CE
769 tioce_init_provider(void)
771 sn_pci_provider[PCIIO_ASIC_TYPE_TIOCE] = &tioce_pci_interfaces;