rt2x00: Fix lock dependency errror
[linux-2.6] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mman.h>
29 #include <linux/a.out.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/smp_lock.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/swap.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/ptrace.h>
48 #include <linux/mount.h>
49 #include <linux/security.h>
50 #include <linux/syscalls.h>
51 #include <linux/rmap.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/cn_proc.h>
54 #include <linux/audit.h>
55
56 #include <asm/uaccess.h>
57 #include <asm/mmu_context.h>
58 #include <asm/tlb.h>
59
60 #ifdef CONFIG_KMOD
61 #include <linux/kmod.h>
62 #endif
63
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 int suid_dumpable = 0;
67
68 /* The maximal length of core_pattern is also specified in sysctl.c */
69
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
72
73 int register_binfmt(struct linux_binfmt * fmt)
74 {
75         if (!fmt)
76                 return -EINVAL;
77         write_lock(&binfmt_lock);
78         list_add(&fmt->lh, &formats);
79         write_unlock(&binfmt_lock);
80         return 0;       
81 }
82
83 EXPORT_SYMBOL(register_binfmt);
84
85 void unregister_binfmt(struct linux_binfmt * fmt)
86 {
87         write_lock(&binfmt_lock);
88         list_del(&fmt->lh);
89         write_unlock(&binfmt_lock);
90 }
91
92 EXPORT_SYMBOL(unregister_binfmt);
93
94 static inline void put_binfmt(struct linux_binfmt * fmt)
95 {
96         module_put(fmt->module);
97 }
98
99 /*
100  * Note that a shared library must be both readable and executable due to
101  * security reasons.
102  *
103  * Also note that we take the address to load from from the file itself.
104  */
105 asmlinkage long sys_uselib(const char __user * library)
106 {
107         struct file * file;
108         struct nameidata nd;
109         int error;
110
111         error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
112         if (error)
113                 goto out;
114
115         error = -EINVAL;
116         if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
117                 goto exit;
118
119         error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
120         if (error)
121                 goto exit;
122
123         file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
124         error = PTR_ERR(file);
125         if (IS_ERR(file))
126                 goto out;
127
128         error = -ENOEXEC;
129         if(file->f_op) {
130                 struct linux_binfmt * fmt;
131
132                 read_lock(&binfmt_lock);
133                 list_for_each_entry(fmt, &formats, lh) {
134                         if (!fmt->load_shlib)
135                                 continue;
136                         if (!try_module_get(fmt->module))
137                                 continue;
138                         read_unlock(&binfmt_lock);
139                         error = fmt->load_shlib(file);
140                         read_lock(&binfmt_lock);
141                         put_binfmt(fmt);
142                         if (error != -ENOEXEC)
143                                 break;
144                 }
145                 read_unlock(&binfmt_lock);
146         }
147         fput(file);
148 out:
149         return error;
150 exit:
151         release_open_intent(&nd);
152         path_put(&nd.path);
153         goto out;
154 }
155
156 #ifdef CONFIG_MMU
157
158 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
159                 int write)
160 {
161         struct page *page;
162         int ret;
163
164 #ifdef CONFIG_STACK_GROWSUP
165         if (write) {
166                 ret = expand_stack_downwards(bprm->vma, pos);
167                 if (ret < 0)
168                         return NULL;
169         }
170 #endif
171         ret = get_user_pages(current, bprm->mm, pos,
172                         1, write, 1, &page, NULL);
173         if (ret <= 0)
174                 return NULL;
175
176         if (write) {
177                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
178                 struct rlimit *rlim;
179
180                 /*
181                  * We've historically supported up to 32 pages (ARG_MAX)
182                  * of argument strings even with small stacks
183                  */
184                 if (size <= ARG_MAX)
185                         return page;
186
187                 /*
188                  * Limit to 1/4-th the stack size for the argv+env strings.
189                  * This ensures that:
190                  *  - the remaining binfmt code will not run out of stack space,
191                  *  - the program will have a reasonable amount of stack left
192                  *    to work from.
193                  */
194                 rlim = current->signal->rlim;
195                 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
196                         put_page(page);
197                         return NULL;
198                 }
199         }
200
201         return page;
202 }
203
204 static void put_arg_page(struct page *page)
205 {
206         put_page(page);
207 }
208
209 static void free_arg_page(struct linux_binprm *bprm, int i)
210 {
211 }
212
213 static void free_arg_pages(struct linux_binprm *bprm)
214 {
215 }
216
217 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
218                 struct page *page)
219 {
220         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
221 }
222
223 static int __bprm_mm_init(struct linux_binprm *bprm)
224 {
225         int err = -ENOMEM;
226         struct vm_area_struct *vma = NULL;
227         struct mm_struct *mm = bprm->mm;
228
229         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
230         if (!vma)
231                 goto err;
232
233         down_write(&mm->mmap_sem);
234         vma->vm_mm = mm;
235
236         /*
237          * Place the stack at the largest stack address the architecture
238          * supports. Later, we'll move this to an appropriate place. We don't
239          * use STACK_TOP because that can depend on attributes which aren't
240          * configured yet.
241          */
242         vma->vm_end = STACK_TOP_MAX;
243         vma->vm_start = vma->vm_end - PAGE_SIZE;
244
245         vma->vm_flags = VM_STACK_FLAGS;
246         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
247         err = insert_vm_struct(mm, vma);
248         if (err) {
249                 up_write(&mm->mmap_sem);
250                 goto err;
251         }
252
253         mm->stack_vm = mm->total_vm = 1;
254         up_write(&mm->mmap_sem);
255
256         bprm->p = vma->vm_end - sizeof(void *);
257
258         return 0;
259
260 err:
261         if (vma) {
262                 bprm->vma = NULL;
263                 kmem_cache_free(vm_area_cachep, vma);
264         }
265
266         return err;
267 }
268
269 static bool valid_arg_len(struct linux_binprm *bprm, long len)
270 {
271         return len <= MAX_ARG_STRLEN;
272 }
273
274 #else
275
276 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
277                 int write)
278 {
279         struct page *page;
280
281         page = bprm->page[pos / PAGE_SIZE];
282         if (!page && write) {
283                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
284                 if (!page)
285                         return NULL;
286                 bprm->page[pos / PAGE_SIZE] = page;
287         }
288
289         return page;
290 }
291
292 static void put_arg_page(struct page *page)
293 {
294 }
295
296 static void free_arg_page(struct linux_binprm *bprm, int i)
297 {
298         if (bprm->page[i]) {
299                 __free_page(bprm->page[i]);
300                 bprm->page[i] = NULL;
301         }
302 }
303
304 static void free_arg_pages(struct linux_binprm *bprm)
305 {
306         int i;
307
308         for (i = 0; i < MAX_ARG_PAGES; i++)
309                 free_arg_page(bprm, i);
310 }
311
312 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
313                 struct page *page)
314 {
315 }
316
317 static int __bprm_mm_init(struct linux_binprm *bprm)
318 {
319         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
320         return 0;
321 }
322
323 static bool valid_arg_len(struct linux_binprm *bprm, long len)
324 {
325         return len <= bprm->p;
326 }
327
328 #endif /* CONFIG_MMU */
329
330 /*
331  * Create a new mm_struct and populate it with a temporary stack
332  * vm_area_struct.  We don't have enough context at this point to set the stack
333  * flags, permissions, and offset, so we use temporary values.  We'll update
334  * them later in setup_arg_pages().
335  */
336 int bprm_mm_init(struct linux_binprm *bprm)
337 {
338         int err;
339         struct mm_struct *mm = NULL;
340
341         bprm->mm = mm = mm_alloc();
342         err = -ENOMEM;
343         if (!mm)
344                 goto err;
345
346         err = init_new_context(current, mm);
347         if (err)
348                 goto err;
349
350         err = __bprm_mm_init(bprm);
351         if (err)
352                 goto err;
353
354         return 0;
355
356 err:
357         if (mm) {
358                 bprm->mm = NULL;
359                 mmdrop(mm);
360         }
361
362         return err;
363 }
364
365 /*
366  * count() counts the number of strings in array ARGV.
367  */
368 static int count(char __user * __user * argv, int max)
369 {
370         int i = 0;
371
372         if (argv != NULL) {
373                 for (;;) {
374                         char __user * p;
375
376                         if (get_user(p, argv))
377                                 return -EFAULT;
378                         if (!p)
379                                 break;
380                         argv++;
381                         if(++i > max)
382                                 return -E2BIG;
383                         cond_resched();
384                 }
385         }
386         return i;
387 }
388
389 /*
390  * 'copy_strings()' copies argument/environment strings from the old
391  * processes's memory to the new process's stack.  The call to get_user_pages()
392  * ensures the destination page is created and not swapped out.
393  */
394 static int copy_strings(int argc, char __user * __user * argv,
395                         struct linux_binprm *bprm)
396 {
397         struct page *kmapped_page = NULL;
398         char *kaddr = NULL;
399         unsigned long kpos = 0;
400         int ret;
401
402         while (argc-- > 0) {
403                 char __user *str;
404                 int len;
405                 unsigned long pos;
406
407                 if (get_user(str, argv+argc) ||
408                                 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
409                         ret = -EFAULT;
410                         goto out;
411                 }
412
413                 if (!valid_arg_len(bprm, len)) {
414                         ret = -E2BIG;
415                         goto out;
416                 }
417
418                 /* We're going to work our way backwords. */
419                 pos = bprm->p;
420                 str += len;
421                 bprm->p -= len;
422
423                 while (len > 0) {
424                         int offset, bytes_to_copy;
425
426                         offset = pos % PAGE_SIZE;
427                         if (offset == 0)
428                                 offset = PAGE_SIZE;
429
430                         bytes_to_copy = offset;
431                         if (bytes_to_copy > len)
432                                 bytes_to_copy = len;
433
434                         offset -= bytes_to_copy;
435                         pos -= bytes_to_copy;
436                         str -= bytes_to_copy;
437                         len -= bytes_to_copy;
438
439                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
440                                 struct page *page;
441
442                                 page = get_arg_page(bprm, pos, 1);
443                                 if (!page) {
444                                         ret = -E2BIG;
445                                         goto out;
446                                 }
447
448                                 if (kmapped_page) {
449                                         flush_kernel_dcache_page(kmapped_page);
450                                         kunmap(kmapped_page);
451                                         put_arg_page(kmapped_page);
452                                 }
453                                 kmapped_page = page;
454                                 kaddr = kmap(kmapped_page);
455                                 kpos = pos & PAGE_MASK;
456                                 flush_arg_page(bprm, kpos, kmapped_page);
457                         }
458                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
459                                 ret = -EFAULT;
460                                 goto out;
461                         }
462                 }
463         }
464         ret = 0;
465 out:
466         if (kmapped_page) {
467                 flush_kernel_dcache_page(kmapped_page);
468                 kunmap(kmapped_page);
469                 put_arg_page(kmapped_page);
470         }
471         return ret;
472 }
473
474 /*
475  * Like copy_strings, but get argv and its values from kernel memory.
476  */
477 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
478 {
479         int r;
480         mm_segment_t oldfs = get_fs();
481         set_fs(KERNEL_DS);
482         r = copy_strings(argc, (char __user * __user *)argv, bprm);
483         set_fs(oldfs);
484         return r;
485 }
486 EXPORT_SYMBOL(copy_strings_kernel);
487
488 #ifdef CONFIG_MMU
489
490 /*
491  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
492  * the binfmt code determines where the new stack should reside, we shift it to
493  * its final location.  The process proceeds as follows:
494  *
495  * 1) Use shift to calculate the new vma endpoints.
496  * 2) Extend vma to cover both the old and new ranges.  This ensures the
497  *    arguments passed to subsequent functions are consistent.
498  * 3) Move vma's page tables to the new range.
499  * 4) Free up any cleared pgd range.
500  * 5) Shrink the vma to cover only the new range.
501  */
502 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
503 {
504         struct mm_struct *mm = vma->vm_mm;
505         unsigned long old_start = vma->vm_start;
506         unsigned long old_end = vma->vm_end;
507         unsigned long length = old_end - old_start;
508         unsigned long new_start = old_start - shift;
509         unsigned long new_end = old_end - shift;
510         struct mmu_gather *tlb;
511
512         BUG_ON(new_start > new_end);
513
514         /*
515          * ensure there are no vmas between where we want to go
516          * and where we are
517          */
518         if (vma != find_vma(mm, new_start))
519                 return -EFAULT;
520
521         /*
522          * cover the whole range: [new_start, old_end)
523          */
524         vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
525
526         /*
527          * move the page tables downwards, on failure we rely on
528          * process cleanup to remove whatever mess we made.
529          */
530         if (length != move_page_tables(vma, old_start,
531                                        vma, new_start, length))
532                 return -ENOMEM;
533
534         lru_add_drain();
535         tlb = tlb_gather_mmu(mm, 0);
536         if (new_end > old_start) {
537                 /*
538                  * when the old and new regions overlap clear from new_end.
539                  */
540                 free_pgd_range(&tlb, new_end, old_end, new_end,
541                         vma->vm_next ? vma->vm_next->vm_start : 0);
542         } else {
543                 /*
544                  * otherwise, clean from old_start; this is done to not touch
545                  * the address space in [new_end, old_start) some architectures
546                  * have constraints on va-space that make this illegal (IA64) -
547                  * for the others its just a little faster.
548                  */
549                 free_pgd_range(&tlb, old_start, old_end, new_end,
550                         vma->vm_next ? vma->vm_next->vm_start : 0);
551         }
552         tlb_finish_mmu(tlb, new_end, old_end);
553
554         /*
555          * shrink the vma to just the new range.
556          */
557         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
558
559         return 0;
560 }
561
562 #define EXTRA_STACK_VM_PAGES    20      /* random */
563
564 /*
565  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
566  * the stack is optionally relocated, and some extra space is added.
567  */
568 int setup_arg_pages(struct linux_binprm *bprm,
569                     unsigned long stack_top,
570                     int executable_stack)
571 {
572         unsigned long ret;
573         unsigned long stack_shift;
574         struct mm_struct *mm = current->mm;
575         struct vm_area_struct *vma = bprm->vma;
576         struct vm_area_struct *prev = NULL;
577         unsigned long vm_flags;
578         unsigned long stack_base;
579
580 #ifdef CONFIG_STACK_GROWSUP
581         /* Limit stack size to 1GB */
582         stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
583         if (stack_base > (1 << 30))
584                 stack_base = 1 << 30;
585
586         /* Make sure we didn't let the argument array grow too large. */
587         if (vma->vm_end - vma->vm_start > stack_base)
588                 return -ENOMEM;
589
590         stack_base = PAGE_ALIGN(stack_top - stack_base);
591
592         stack_shift = vma->vm_start - stack_base;
593         mm->arg_start = bprm->p - stack_shift;
594         bprm->p = vma->vm_end - stack_shift;
595 #else
596         stack_top = arch_align_stack(stack_top);
597         stack_top = PAGE_ALIGN(stack_top);
598         stack_shift = vma->vm_end - stack_top;
599
600         bprm->p -= stack_shift;
601         mm->arg_start = bprm->p;
602 #endif
603
604         if (bprm->loader)
605                 bprm->loader -= stack_shift;
606         bprm->exec -= stack_shift;
607
608         down_write(&mm->mmap_sem);
609         vm_flags = vma->vm_flags;
610
611         /*
612          * Adjust stack execute permissions; explicitly enable for
613          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
614          * (arch default) otherwise.
615          */
616         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
617                 vm_flags |= VM_EXEC;
618         else if (executable_stack == EXSTACK_DISABLE_X)
619                 vm_flags &= ~VM_EXEC;
620         vm_flags |= mm->def_flags;
621
622         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
623                         vm_flags);
624         if (ret)
625                 goto out_unlock;
626         BUG_ON(prev != vma);
627
628         /* Move stack pages down in memory. */
629         if (stack_shift) {
630                 ret = shift_arg_pages(vma, stack_shift);
631                 if (ret) {
632                         up_write(&mm->mmap_sem);
633                         return ret;
634                 }
635         }
636
637 #ifdef CONFIG_STACK_GROWSUP
638         stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
639 #else
640         stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
641 #endif
642         ret = expand_stack(vma, stack_base);
643         if (ret)
644                 ret = -EFAULT;
645
646 out_unlock:
647         up_write(&mm->mmap_sem);
648         return 0;
649 }
650 EXPORT_SYMBOL(setup_arg_pages);
651
652 #endif /* CONFIG_MMU */
653
654 struct file *open_exec(const char *name)
655 {
656         struct nameidata nd;
657         int err;
658         struct file *file;
659
660         err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
661         file = ERR_PTR(err);
662
663         if (!err) {
664                 struct inode *inode = nd.path.dentry->d_inode;
665                 file = ERR_PTR(-EACCES);
666                 if (S_ISREG(inode->i_mode)) {
667                         int err = vfs_permission(&nd, MAY_EXEC);
668                         file = ERR_PTR(err);
669                         if (!err) {
670                                 file = nameidata_to_filp(&nd,
671                                                         O_RDONLY|O_LARGEFILE);
672                                 if (!IS_ERR(file)) {
673                                         err = deny_write_access(file);
674                                         if (err) {
675                                                 fput(file);
676                                                 file = ERR_PTR(err);
677                                         }
678                                 }
679 out:
680                                 return file;
681                         }
682                 }
683                 release_open_intent(&nd);
684                 path_put(&nd.path);
685         }
686         goto out;
687 }
688
689 EXPORT_SYMBOL(open_exec);
690
691 int kernel_read(struct file *file, unsigned long offset,
692         char *addr, unsigned long count)
693 {
694         mm_segment_t old_fs;
695         loff_t pos = offset;
696         int result;
697
698         old_fs = get_fs();
699         set_fs(get_ds());
700         /* The cast to a user pointer is valid due to the set_fs() */
701         result = vfs_read(file, (void __user *)addr, count, &pos);
702         set_fs(old_fs);
703         return result;
704 }
705
706 EXPORT_SYMBOL(kernel_read);
707
708 static int exec_mmap(struct mm_struct *mm)
709 {
710         struct task_struct *tsk;
711         struct mm_struct * old_mm, *active_mm;
712
713         /* Notify parent that we're no longer interested in the old VM */
714         tsk = current;
715         old_mm = current->mm;
716         mm_release(tsk, old_mm);
717
718         if (old_mm) {
719                 /*
720                  * Make sure that if there is a core dump in progress
721                  * for the old mm, we get out and die instead of going
722                  * through with the exec.  We must hold mmap_sem around
723                  * checking core_waiters and changing tsk->mm.  The
724                  * core-inducing thread will increment core_waiters for
725                  * each thread whose ->mm == old_mm.
726                  */
727                 down_read(&old_mm->mmap_sem);
728                 if (unlikely(old_mm->core_waiters)) {
729                         up_read(&old_mm->mmap_sem);
730                         return -EINTR;
731                 }
732         }
733         task_lock(tsk);
734         active_mm = tsk->active_mm;
735         tsk->mm = mm;
736         tsk->active_mm = mm;
737         activate_mm(active_mm, mm);
738         task_unlock(tsk);
739         mm_update_next_owner(old_mm);
740         arch_pick_mmap_layout(mm);
741         if (old_mm) {
742                 up_read(&old_mm->mmap_sem);
743                 BUG_ON(active_mm != old_mm);
744                 mmput(old_mm);
745                 return 0;
746         }
747         mmdrop(active_mm);
748         return 0;
749 }
750
751 /*
752  * This function makes sure the current process has its own signal table,
753  * so that flush_signal_handlers can later reset the handlers without
754  * disturbing other processes.  (Other processes might share the signal
755  * table via the CLONE_SIGHAND option to clone().)
756  */
757 static int de_thread(struct task_struct *tsk)
758 {
759         struct signal_struct *sig = tsk->signal;
760         struct sighand_struct *oldsighand = tsk->sighand;
761         spinlock_t *lock = &oldsighand->siglock;
762         struct task_struct *leader = NULL;
763         int count;
764
765         if (thread_group_empty(tsk))
766                 goto no_thread_group;
767
768         /*
769          * Kill all other threads in the thread group.
770          */
771         spin_lock_irq(lock);
772         if (signal_group_exit(sig)) {
773                 /*
774                  * Another group action in progress, just
775                  * return so that the signal is processed.
776                  */
777                 spin_unlock_irq(lock);
778                 return -EAGAIN;
779         }
780         sig->group_exit_task = tsk;
781         zap_other_threads(tsk);
782
783         /* Account for the thread group leader hanging around: */
784         count = thread_group_leader(tsk) ? 1 : 2;
785         sig->notify_count = count;
786         while (atomic_read(&sig->count) > count) {
787                 __set_current_state(TASK_UNINTERRUPTIBLE);
788                 spin_unlock_irq(lock);
789                 schedule();
790                 spin_lock_irq(lock);
791         }
792         spin_unlock_irq(lock);
793
794         /*
795          * At this point all other threads have exited, all we have to
796          * do is to wait for the thread group leader to become inactive,
797          * and to assume its PID:
798          */
799         if (!thread_group_leader(tsk)) {
800                 leader = tsk->group_leader;
801
802                 sig->notify_count = -1; /* for exit_notify() */
803                 for (;;) {
804                         write_lock_irq(&tasklist_lock);
805                         if (likely(leader->exit_state))
806                                 break;
807                         __set_current_state(TASK_UNINTERRUPTIBLE);
808                         write_unlock_irq(&tasklist_lock);
809                         schedule();
810                 }
811
812                 if (unlikely(task_child_reaper(tsk) == leader))
813                         task_active_pid_ns(tsk)->child_reaper = tsk;
814                 /*
815                  * The only record we have of the real-time age of a
816                  * process, regardless of execs it's done, is start_time.
817                  * All the past CPU time is accumulated in signal_struct
818                  * from sister threads now dead.  But in this non-leader
819                  * exec, nothing survives from the original leader thread,
820                  * whose birth marks the true age of this process now.
821                  * When we take on its identity by switching to its PID, we
822                  * also take its birthdate (always earlier than our own).
823                  */
824                 tsk->start_time = leader->start_time;
825
826                 BUG_ON(!same_thread_group(leader, tsk));
827                 BUG_ON(has_group_leader_pid(tsk));
828                 /*
829                  * An exec() starts a new thread group with the
830                  * TGID of the previous thread group. Rehash the
831                  * two threads with a switched PID, and release
832                  * the former thread group leader:
833                  */
834
835                 /* Become a process group leader with the old leader's pid.
836                  * The old leader becomes a thread of the this thread group.
837                  * Note: The old leader also uses this pid until release_task
838                  *       is called.  Odd but simple and correct.
839                  */
840                 detach_pid(tsk, PIDTYPE_PID);
841                 tsk->pid = leader->pid;
842                 attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
843                 transfer_pid(leader, tsk, PIDTYPE_PGID);
844                 transfer_pid(leader, tsk, PIDTYPE_SID);
845                 list_replace_rcu(&leader->tasks, &tsk->tasks);
846
847                 tsk->group_leader = tsk;
848                 leader->group_leader = tsk;
849
850                 tsk->exit_signal = SIGCHLD;
851
852                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
853                 leader->exit_state = EXIT_DEAD;
854
855                 write_unlock_irq(&tasklist_lock);
856         }
857
858         sig->group_exit_task = NULL;
859         sig->notify_count = 0;
860
861 no_thread_group:
862         exit_itimers(sig);
863         flush_itimer_signals();
864         if (leader)
865                 release_task(leader);
866
867         if (atomic_read(&oldsighand->count) != 1) {
868                 struct sighand_struct *newsighand;
869                 /*
870                  * This ->sighand is shared with the CLONE_SIGHAND
871                  * but not CLONE_THREAD task, switch to the new one.
872                  */
873                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
874                 if (!newsighand)
875                         return -ENOMEM;
876
877                 atomic_set(&newsighand->count, 1);
878                 memcpy(newsighand->action, oldsighand->action,
879                        sizeof(newsighand->action));
880
881                 write_lock_irq(&tasklist_lock);
882                 spin_lock(&oldsighand->siglock);
883                 rcu_assign_pointer(tsk->sighand, newsighand);
884                 spin_unlock(&oldsighand->siglock);
885                 write_unlock_irq(&tasklist_lock);
886
887                 __cleanup_sighand(oldsighand);
888         }
889
890         BUG_ON(!thread_group_leader(tsk));
891         return 0;
892 }
893
894 /*
895  * These functions flushes out all traces of the currently running executable
896  * so that a new one can be started
897  */
898 static void flush_old_files(struct files_struct * files)
899 {
900         long j = -1;
901         struct fdtable *fdt;
902
903         spin_lock(&files->file_lock);
904         for (;;) {
905                 unsigned long set, i;
906
907                 j++;
908                 i = j * __NFDBITS;
909                 fdt = files_fdtable(files);
910                 if (i >= fdt->max_fds)
911                         break;
912                 set = fdt->close_on_exec->fds_bits[j];
913                 if (!set)
914                         continue;
915                 fdt->close_on_exec->fds_bits[j] = 0;
916                 spin_unlock(&files->file_lock);
917                 for ( ; set ; i++,set >>= 1) {
918                         if (set & 1) {
919                                 sys_close(i);
920                         }
921                 }
922                 spin_lock(&files->file_lock);
923
924         }
925         spin_unlock(&files->file_lock);
926 }
927
928 char *get_task_comm(char *buf, struct task_struct *tsk)
929 {
930         /* buf must be at least sizeof(tsk->comm) in size */
931         task_lock(tsk);
932         strncpy(buf, tsk->comm, sizeof(tsk->comm));
933         task_unlock(tsk);
934         return buf;
935 }
936
937 void set_task_comm(struct task_struct *tsk, char *buf)
938 {
939         task_lock(tsk);
940         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
941         task_unlock(tsk);
942 }
943
944 int flush_old_exec(struct linux_binprm * bprm)
945 {
946         char * name;
947         int i, ch, retval;
948         char tcomm[sizeof(current->comm)];
949
950         /*
951          * Make sure we have a private signal table and that
952          * we are unassociated from the previous thread group.
953          */
954         retval = de_thread(current);
955         if (retval)
956                 goto out;
957
958         set_mm_exe_file(bprm->mm, bprm->file);
959
960         /*
961          * Release all of the old mmap stuff
962          */
963         retval = exec_mmap(bprm->mm);
964         if (retval)
965                 goto out;
966
967         bprm->mm = NULL;                /* We're using it now */
968
969         /* This is the point of no return */
970         current->sas_ss_sp = current->sas_ss_size = 0;
971
972         if (current->euid == current->uid && current->egid == current->gid)
973                 set_dumpable(current->mm, 1);
974         else
975                 set_dumpable(current->mm, suid_dumpable);
976
977         name = bprm->filename;
978
979         /* Copies the binary name from after last slash */
980         for (i=0; (ch = *(name++)) != '\0';) {
981                 if (ch == '/')
982                         i = 0; /* overwrite what we wrote */
983                 else
984                         if (i < (sizeof(tcomm) - 1))
985                                 tcomm[i++] = ch;
986         }
987         tcomm[i] = '\0';
988         set_task_comm(current, tcomm);
989
990         current->flags &= ~PF_RANDOMIZE;
991         flush_thread();
992
993         /* Set the new mm task size. We have to do that late because it may
994          * depend on TIF_32BIT which is only updated in flush_thread() on
995          * some architectures like powerpc
996          */
997         current->mm->task_size = TASK_SIZE;
998
999         if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1000                 suid_keys(current);
1001                 set_dumpable(current->mm, suid_dumpable);
1002                 current->pdeath_signal = 0;
1003         } else if (file_permission(bprm->file, MAY_READ) ||
1004                         (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1005                 suid_keys(current);
1006                 set_dumpable(current->mm, suid_dumpable);
1007         }
1008
1009         /* An exec changes our domain. We are no longer part of the thread
1010            group */
1011
1012         current->self_exec_id++;
1013                         
1014         flush_signal_handlers(current, 0);
1015         flush_old_files(current->files);
1016
1017         return 0;
1018
1019 out:
1020         return retval;
1021 }
1022
1023 EXPORT_SYMBOL(flush_old_exec);
1024
1025 /* 
1026  * Fill the binprm structure from the inode. 
1027  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1028  */
1029 int prepare_binprm(struct linux_binprm *bprm)
1030 {
1031         int mode;
1032         struct inode * inode = bprm->file->f_path.dentry->d_inode;
1033         int retval;
1034
1035         mode = inode->i_mode;
1036         if (bprm->file->f_op == NULL)
1037                 return -EACCES;
1038
1039         bprm->e_uid = current->euid;
1040         bprm->e_gid = current->egid;
1041
1042         if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1043                 /* Set-uid? */
1044                 if (mode & S_ISUID) {
1045                         current->personality &= ~PER_CLEAR_ON_SETID;
1046                         bprm->e_uid = inode->i_uid;
1047                 }
1048
1049                 /* Set-gid? */
1050                 /*
1051                  * If setgid is set but no group execute bit then this
1052                  * is a candidate for mandatory locking, not a setgid
1053                  * executable.
1054                  */
1055                 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1056                         current->personality &= ~PER_CLEAR_ON_SETID;
1057                         bprm->e_gid = inode->i_gid;
1058                 }
1059         }
1060
1061         /* fill in binprm security blob */
1062         retval = security_bprm_set(bprm);
1063         if (retval)
1064                 return retval;
1065
1066         memset(bprm->buf,0,BINPRM_BUF_SIZE);
1067         return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1068 }
1069
1070 EXPORT_SYMBOL(prepare_binprm);
1071
1072 static int unsafe_exec(struct task_struct *p)
1073 {
1074         int unsafe = 0;
1075         if (p->ptrace & PT_PTRACED) {
1076                 if (p->ptrace & PT_PTRACE_CAP)
1077                         unsafe |= LSM_UNSAFE_PTRACE_CAP;
1078                 else
1079                         unsafe |= LSM_UNSAFE_PTRACE;
1080         }
1081         if (atomic_read(&p->fs->count) > 1 ||
1082             atomic_read(&p->files->count) > 1 ||
1083             atomic_read(&p->sighand->count) > 1)
1084                 unsafe |= LSM_UNSAFE_SHARE;
1085
1086         return unsafe;
1087 }
1088
1089 void compute_creds(struct linux_binprm *bprm)
1090 {
1091         int unsafe;
1092
1093         if (bprm->e_uid != current->uid) {
1094                 suid_keys(current);
1095                 current->pdeath_signal = 0;
1096         }
1097         exec_keys(current);
1098
1099         task_lock(current);
1100         unsafe = unsafe_exec(current);
1101         security_bprm_apply_creds(bprm, unsafe);
1102         task_unlock(current);
1103         security_bprm_post_apply_creds(bprm);
1104 }
1105 EXPORT_SYMBOL(compute_creds);
1106
1107 /*
1108  * Arguments are '\0' separated strings found at the location bprm->p
1109  * points to; chop off the first by relocating brpm->p to right after
1110  * the first '\0' encountered.
1111  */
1112 int remove_arg_zero(struct linux_binprm *bprm)
1113 {
1114         int ret = 0;
1115         unsigned long offset;
1116         char *kaddr;
1117         struct page *page;
1118
1119         if (!bprm->argc)
1120                 return 0;
1121
1122         do {
1123                 offset = bprm->p & ~PAGE_MASK;
1124                 page = get_arg_page(bprm, bprm->p, 0);
1125                 if (!page) {
1126                         ret = -EFAULT;
1127                         goto out;
1128                 }
1129                 kaddr = kmap_atomic(page, KM_USER0);
1130
1131                 for (; offset < PAGE_SIZE && kaddr[offset];
1132                                 offset++, bprm->p++)
1133                         ;
1134
1135                 kunmap_atomic(kaddr, KM_USER0);
1136                 put_arg_page(page);
1137
1138                 if (offset == PAGE_SIZE)
1139                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1140         } while (offset == PAGE_SIZE);
1141
1142         bprm->p++;
1143         bprm->argc--;
1144         ret = 0;
1145
1146 out:
1147         return ret;
1148 }
1149 EXPORT_SYMBOL(remove_arg_zero);
1150
1151 /*
1152  * cycle the list of binary formats handler, until one recognizes the image
1153  */
1154 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1155 {
1156         int try,retval;
1157         struct linux_binfmt *fmt;
1158 #if defined(__alpha__) && defined(CONFIG_ARCH_SUPPORTS_AOUT)
1159         /* handle /sbin/loader.. */
1160         {
1161             struct exec * eh = (struct exec *) bprm->buf;
1162
1163             if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1164                 (eh->fh.f_flags & 0x3000) == 0x3000)
1165             {
1166                 struct file * file;
1167                 unsigned long loader;
1168
1169                 allow_write_access(bprm->file);
1170                 fput(bprm->file);
1171                 bprm->file = NULL;
1172
1173                 loader = bprm->vma->vm_end - sizeof(void *);
1174
1175                 file = open_exec("/sbin/loader");
1176                 retval = PTR_ERR(file);
1177                 if (IS_ERR(file))
1178                         return retval;
1179
1180                 /* Remember if the application is TASO.  */
1181                 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1182
1183                 bprm->file = file;
1184                 bprm->loader = loader;
1185                 retval = prepare_binprm(bprm);
1186                 if (retval<0)
1187                         return retval;
1188                 /* should call search_binary_handler recursively here,
1189                    but it does not matter */
1190             }
1191         }
1192 #endif
1193         retval = security_bprm_check(bprm);
1194         if (retval)
1195                 return retval;
1196
1197         /* kernel module loader fixup */
1198         /* so we don't try to load run modprobe in kernel space. */
1199         set_fs(USER_DS);
1200
1201         retval = audit_bprm(bprm);
1202         if (retval)
1203                 return retval;
1204
1205         retval = -ENOENT;
1206         for (try=0; try<2; try++) {
1207                 read_lock(&binfmt_lock);
1208                 list_for_each_entry(fmt, &formats, lh) {
1209                         int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1210                         if (!fn)
1211                                 continue;
1212                         if (!try_module_get(fmt->module))
1213                                 continue;
1214                         read_unlock(&binfmt_lock);
1215                         retval = fn(bprm, regs);
1216                         if (retval >= 0) {
1217                                 put_binfmt(fmt);
1218                                 allow_write_access(bprm->file);
1219                                 if (bprm->file)
1220                                         fput(bprm->file);
1221                                 bprm->file = NULL;
1222                                 current->did_exec = 1;
1223                                 proc_exec_connector(current);
1224                                 return retval;
1225                         }
1226                         read_lock(&binfmt_lock);
1227                         put_binfmt(fmt);
1228                         if (retval != -ENOEXEC || bprm->mm == NULL)
1229                                 break;
1230                         if (!bprm->file) {
1231                                 read_unlock(&binfmt_lock);
1232                                 return retval;
1233                         }
1234                 }
1235                 read_unlock(&binfmt_lock);
1236                 if (retval != -ENOEXEC || bprm->mm == NULL) {
1237                         break;
1238 #ifdef CONFIG_KMOD
1239                 }else{
1240 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1241                         if (printable(bprm->buf[0]) &&
1242                             printable(bprm->buf[1]) &&
1243                             printable(bprm->buf[2]) &&
1244                             printable(bprm->buf[3]))
1245                                 break; /* -ENOEXEC */
1246                         request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1247 #endif
1248                 }
1249         }
1250         return retval;
1251 }
1252
1253 EXPORT_SYMBOL(search_binary_handler);
1254
1255 void free_bprm(struct linux_binprm *bprm)
1256 {
1257         free_arg_pages(bprm);
1258         kfree(bprm);
1259 }
1260
1261 /*
1262  * sys_execve() executes a new program.
1263  */
1264 int do_execve(char * filename,
1265         char __user *__user *argv,
1266         char __user *__user *envp,
1267         struct pt_regs * regs)
1268 {
1269         struct linux_binprm *bprm;
1270         struct file *file;
1271         struct files_struct *displaced;
1272         int retval;
1273
1274         retval = unshare_files(&displaced);
1275         if (retval)
1276                 goto out_ret;
1277
1278         retval = -ENOMEM;
1279         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1280         if (!bprm)
1281                 goto out_files;
1282
1283         file = open_exec(filename);
1284         retval = PTR_ERR(file);
1285         if (IS_ERR(file))
1286                 goto out_kfree;
1287
1288         sched_exec();
1289
1290         bprm->file = file;
1291         bprm->filename = filename;
1292         bprm->interp = filename;
1293
1294         retval = bprm_mm_init(bprm);
1295         if (retval)
1296                 goto out_file;
1297
1298         bprm->argc = count(argv, MAX_ARG_STRINGS);
1299         if ((retval = bprm->argc) < 0)
1300                 goto out_mm;
1301
1302         bprm->envc = count(envp, MAX_ARG_STRINGS);
1303         if ((retval = bprm->envc) < 0)
1304                 goto out_mm;
1305
1306         retval = security_bprm_alloc(bprm);
1307         if (retval)
1308                 goto out;
1309
1310         retval = prepare_binprm(bprm);
1311         if (retval < 0)
1312                 goto out;
1313
1314         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1315         if (retval < 0)
1316                 goto out;
1317
1318         bprm->exec = bprm->p;
1319         retval = copy_strings(bprm->envc, envp, bprm);
1320         if (retval < 0)
1321                 goto out;
1322
1323         retval = copy_strings(bprm->argc, argv, bprm);
1324         if (retval < 0)
1325                 goto out;
1326
1327         retval = search_binary_handler(bprm,regs);
1328         if (retval >= 0) {
1329                 /* execve success */
1330                 security_bprm_free(bprm);
1331                 acct_update_integrals(current);
1332                 free_bprm(bprm);
1333                 if (displaced)
1334                         put_files_struct(displaced);
1335                 return retval;
1336         }
1337
1338 out:
1339         if (bprm->security)
1340                 security_bprm_free(bprm);
1341
1342 out_mm:
1343         if (bprm->mm)
1344                 mmput (bprm->mm);
1345
1346 out_file:
1347         if (bprm->file) {
1348                 allow_write_access(bprm->file);
1349                 fput(bprm->file);
1350         }
1351 out_kfree:
1352         free_bprm(bprm);
1353
1354 out_files:
1355         if (displaced)
1356                 reset_files_struct(displaced);
1357 out_ret:
1358         return retval;
1359 }
1360
1361 int set_binfmt(struct linux_binfmt *new)
1362 {
1363         struct linux_binfmt *old = current->binfmt;
1364
1365         if (new) {
1366                 if (!try_module_get(new->module))
1367                         return -1;
1368         }
1369         current->binfmt = new;
1370         if (old)
1371                 module_put(old->module);
1372         return 0;
1373 }
1374
1375 EXPORT_SYMBOL(set_binfmt);
1376
1377 /* format_corename will inspect the pattern parameter, and output a
1378  * name into corename, which must have space for at least
1379  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1380  */
1381 static int format_corename(char *corename, const char *pattern, long signr)
1382 {
1383         const char *pat_ptr = pattern;
1384         char *out_ptr = corename;
1385         char *const out_end = corename + CORENAME_MAX_SIZE;
1386         int rc;
1387         int pid_in_pattern = 0;
1388         int ispipe = 0;
1389
1390         if (*pattern == '|')
1391                 ispipe = 1;
1392
1393         /* Repeat as long as we have more pattern to process and more output
1394            space */
1395         while (*pat_ptr) {
1396                 if (*pat_ptr != '%') {
1397                         if (out_ptr == out_end)
1398                                 goto out;
1399                         *out_ptr++ = *pat_ptr++;
1400                 } else {
1401                         switch (*++pat_ptr) {
1402                         case 0:
1403                                 goto out;
1404                         /* Double percent, output one percent */
1405                         case '%':
1406                                 if (out_ptr == out_end)
1407                                         goto out;
1408                                 *out_ptr++ = '%';
1409                                 break;
1410                         /* pid */
1411                         case 'p':
1412                                 pid_in_pattern = 1;
1413                                 rc = snprintf(out_ptr, out_end - out_ptr,
1414                                               "%d", task_tgid_vnr(current));
1415                                 if (rc > out_end - out_ptr)
1416                                         goto out;
1417                                 out_ptr += rc;
1418                                 break;
1419                         /* uid */
1420                         case 'u':
1421                                 rc = snprintf(out_ptr, out_end - out_ptr,
1422                                               "%d", current->uid);
1423                                 if (rc > out_end - out_ptr)
1424                                         goto out;
1425                                 out_ptr += rc;
1426                                 break;
1427                         /* gid */
1428                         case 'g':
1429                                 rc = snprintf(out_ptr, out_end - out_ptr,
1430                                               "%d", current->gid);
1431                                 if (rc > out_end - out_ptr)
1432                                         goto out;
1433                                 out_ptr += rc;
1434                                 break;
1435                         /* signal that caused the coredump */
1436                         case 's':
1437                                 rc = snprintf(out_ptr, out_end - out_ptr,
1438                                               "%ld", signr);
1439                                 if (rc > out_end - out_ptr)
1440                                         goto out;
1441                                 out_ptr += rc;
1442                                 break;
1443                         /* UNIX time of coredump */
1444                         case 't': {
1445                                 struct timeval tv;
1446                                 do_gettimeofday(&tv);
1447                                 rc = snprintf(out_ptr, out_end - out_ptr,
1448                                               "%lu", tv.tv_sec);
1449                                 if (rc > out_end - out_ptr)
1450                                         goto out;
1451                                 out_ptr += rc;
1452                                 break;
1453                         }
1454                         /* hostname */
1455                         case 'h':
1456                                 down_read(&uts_sem);
1457                                 rc = snprintf(out_ptr, out_end - out_ptr,
1458                                               "%s", utsname()->nodename);
1459                                 up_read(&uts_sem);
1460                                 if (rc > out_end - out_ptr)
1461                                         goto out;
1462                                 out_ptr += rc;
1463                                 break;
1464                         /* executable */
1465                         case 'e':
1466                                 rc = snprintf(out_ptr, out_end - out_ptr,
1467                                               "%s", current->comm);
1468                                 if (rc > out_end - out_ptr)
1469                                         goto out;
1470                                 out_ptr += rc;
1471                                 break;
1472                         /* core limit size */
1473                         case 'c':
1474                                 rc = snprintf(out_ptr, out_end - out_ptr,
1475                                               "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1476                                 if (rc > out_end - out_ptr)
1477                                         goto out;
1478                                 out_ptr += rc;
1479                                 break;
1480                         default:
1481                                 break;
1482                         }
1483                         ++pat_ptr;
1484                 }
1485         }
1486         /* Backward compatibility with core_uses_pid:
1487          *
1488          * If core_pattern does not include a %p (as is the default)
1489          * and core_uses_pid is set, then .%pid will be appended to
1490          * the filename. Do not do this for piped commands. */
1491         if (!ispipe && !pid_in_pattern
1492             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1493                 rc = snprintf(out_ptr, out_end - out_ptr,
1494                               ".%d", task_tgid_vnr(current));
1495                 if (rc > out_end - out_ptr)
1496                         goto out;
1497                 out_ptr += rc;
1498         }
1499 out:
1500         *out_ptr = 0;
1501         return ispipe;
1502 }
1503
1504 static void zap_process(struct task_struct *start)
1505 {
1506         struct task_struct *t;
1507
1508         start->signal->flags = SIGNAL_GROUP_EXIT;
1509         start->signal->group_stop_count = 0;
1510
1511         t = start;
1512         do {
1513                 if (t != current && t->mm) {
1514                         t->mm->core_waiters++;
1515                         sigaddset(&t->pending.signal, SIGKILL);
1516                         signal_wake_up(t, 1);
1517                 }
1518         } while ((t = next_thread(t)) != start);
1519 }
1520
1521 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1522                                 int exit_code)
1523 {
1524         struct task_struct *g, *p;
1525         unsigned long flags;
1526         int err = -EAGAIN;
1527
1528         spin_lock_irq(&tsk->sighand->siglock);
1529         if (!signal_group_exit(tsk->signal)) {
1530                 tsk->signal->group_exit_code = exit_code;
1531                 zap_process(tsk);
1532                 err = 0;
1533         }
1534         spin_unlock_irq(&tsk->sighand->siglock);
1535         if (err)
1536                 return err;
1537
1538         if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1539                 goto done;
1540
1541         rcu_read_lock();
1542         for_each_process(g) {
1543                 if (g == tsk->group_leader)
1544                         continue;
1545
1546                 p = g;
1547                 do {
1548                         if (p->mm) {
1549                                 if (p->mm == mm) {
1550                                         /*
1551                                          * p->sighand can't disappear, but
1552                                          * may be changed by de_thread()
1553                                          */
1554                                         lock_task_sighand(p, &flags);
1555                                         zap_process(p);
1556                                         unlock_task_sighand(p, &flags);
1557                                 }
1558                                 break;
1559                         }
1560                 } while ((p = next_thread(p)) != g);
1561         }
1562         rcu_read_unlock();
1563 done:
1564         return mm->core_waiters;
1565 }
1566
1567 static int coredump_wait(int exit_code)
1568 {
1569         struct task_struct *tsk = current;
1570         struct mm_struct *mm = tsk->mm;
1571         struct completion startup_done;
1572         struct completion *vfork_done;
1573         int core_waiters;
1574
1575         init_completion(&mm->core_done);
1576         init_completion(&startup_done);
1577         mm->core_startup_done = &startup_done;
1578
1579         core_waiters = zap_threads(tsk, mm, exit_code);
1580         up_write(&mm->mmap_sem);
1581
1582         if (unlikely(core_waiters < 0))
1583                 goto fail;
1584
1585         /*
1586          * Make sure nobody is waiting for us to release the VM,
1587          * otherwise we can deadlock when we wait on each other
1588          */
1589         vfork_done = tsk->vfork_done;
1590         if (vfork_done) {
1591                 tsk->vfork_done = NULL;
1592                 complete(vfork_done);
1593         }
1594
1595         if (core_waiters)
1596                 wait_for_completion(&startup_done);
1597 fail:
1598         BUG_ON(mm->core_waiters);
1599         return core_waiters;
1600 }
1601
1602 /*
1603  * set_dumpable converts traditional three-value dumpable to two flags and
1604  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1605  * these bits are not changed atomically.  So get_dumpable can observe the
1606  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1607  * return either old dumpable or new one by paying attention to the order of
1608  * modifying the bits.
1609  *
1610  * dumpable |   mm->flags (binary)
1611  * old  new | initial interim  final
1612  * ---------+-----------------------
1613  *  0    1  |   00      01      01
1614  *  0    2  |   00      10(*)   11
1615  *  1    0  |   01      00      00
1616  *  1    2  |   01      11      11
1617  *  2    0  |   11      10(*)   00
1618  *  2    1  |   11      11      01
1619  *
1620  * (*) get_dumpable regards interim value of 10 as 11.
1621  */
1622 void set_dumpable(struct mm_struct *mm, int value)
1623 {
1624         switch (value) {
1625         case 0:
1626                 clear_bit(MMF_DUMPABLE, &mm->flags);
1627                 smp_wmb();
1628                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1629                 break;
1630         case 1:
1631                 set_bit(MMF_DUMPABLE, &mm->flags);
1632                 smp_wmb();
1633                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1634                 break;
1635         case 2:
1636                 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1637                 smp_wmb();
1638                 set_bit(MMF_DUMPABLE, &mm->flags);
1639                 break;
1640         }
1641 }
1642
1643 int get_dumpable(struct mm_struct *mm)
1644 {
1645         int ret;
1646
1647         ret = mm->flags & 0x3;
1648         return (ret >= 2) ? 2 : ret;
1649 }
1650
1651 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1652 {
1653         char corename[CORENAME_MAX_SIZE + 1];
1654         struct mm_struct *mm = current->mm;
1655         struct linux_binfmt * binfmt;
1656         struct inode * inode;
1657         struct file * file;
1658         int retval = 0;
1659         int fsuid = current->fsuid;
1660         int flag = 0;
1661         int ispipe = 0;
1662         unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1663         char **helper_argv = NULL;
1664         int helper_argc = 0;
1665         char *delimit;
1666
1667         audit_core_dumps(signr);
1668
1669         binfmt = current->binfmt;
1670         if (!binfmt || !binfmt->core_dump)
1671                 goto fail;
1672         down_write(&mm->mmap_sem);
1673         /*
1674          * If another thread got here first, or we are not dumpable, bail out.
1675          */
1676         if (mm->core_waiters || !get_dumpable(mm)) {
1677                 up_write(&mm->mmap_sem);
1678                 goto fail;
1679         }
1680
1681         /*
1682          *      We cannot trust fsuid as being the "true" uid of the
1683          *      process nor do we know its entire history. We only know it
1684          *      was tainted so we dump it as root in mode 2.
1685          */
1686         if (get_dumpable(mm) == 2) {    /* Setuid core dump mode */
1687                 flag = O_EXCL;          /* Stop rewrite attacks */
1688                 current->fsuid = 0;     /* Dump root private */
1689         }
1690
1691         retval = coredump_wait(exit_code);
1692         if (retval < 0)
1693                 goto fail;
1694
1695         /*
1696          * Clear any false indication of pending signals that might
1697          * be seen by the filesystem code called to write the core file.
1698          */
1699         clear_thread_flag(TIF_SIGPENDING);
1700
1701         /*
1702          * lock_kernel() because format_corename() is controlled by sysctl, which
1703          * uses lock_kernel()
1704          */
1705         lock_kernel();
1706         ispipe = format_corename(corename, core_pattern, signr);
1707         unlock_kernel();
1708         /*
1709          * Don't bother to check the RLIMIT_CORE value if core_pattern points
1710          * to a pipe.  Since we're not writing directly to the filesystem
1711          * RLIMIT_CORE doesn't really apply, as no actual core file will be
1712          * created unless the pipe reader choses to write out the core file
1713          * at which point file size limits and permissions will be imposed
1714          * as it does with any other process
1715          */
1716         if ((!ispipe) && (core_limit < binfmt->min_coredump))
1717                 goto fail_unlock;
1718
1719         if (ispipe) {
1720                 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1721                 /* Terminate the string before the first option */
1722                 delimit = strchr(corename, ' ');
1723                 if (delimit)
1724                         *delimit = '\0';
1725                 delimit = strrchr(helper_argv[0], '/');
1726                 if (delimit)
1727                         delimit++;
1728                 else
1729                         delimit = helper_argv[0];
1730                 if (!strcmp(delimit, current->comm)) {
1731                         printk(KERN_NOTICE "Recursive core dump detected, "
1732                                         "aborting\n");
1733                         goto fail_unlock;
1734                 }
1735
1736                 core_limit = RLIM_INFINITY;
1737
1738                 /* SIGPIPE can happen, but it's just never processed */
1739                 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1740                                 &file)) {
1741                         printk(KERN_INFO "Core dump to %s pipe failed\n",
1742                                corename);
1743                         goto fail_unlock;
1744                 }
1745         } else
1746                 file = filp_open(corename,
1747                                  O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1748                                  0600);
1749         if (IS_ERR(file))
1750                 goto fail_unlock;
1751         inode = file->f_path.dentry->d_inode;
1752         if (inode->i_nlink > 1)
1753                 goto close_fail;        /* multiple links - don't dump */
1754         if (!ispipe && d_unhashed(file->f_path.dentry))
1755                 goto close_fail;
1756
1757         /* AK: actually i see no reason to not allow this for named pipes etc.,
1758            but keep the previous behaviour for now. */
1759         if (!ispipe && !S_ISREG(inode->i_mode))
1760                 goto close_fail;
1761         /*
1762          * Dont allow local users get cute and trick others to coredump
1763          * into their pre-created files:
1764          */
1765         if (inode->i_uid != current->fsuid)
1766                 goto close_fail;
1767         if (!file->f_op)
1768                 goto close_fail;
1769         if (!file->f_op->write)
1770                 goto close_fail;
1771         if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1772                 goto close_fail;
1773
1774         retval = binfmt->core_dump(signr, regs, file, core_limit);
1775
1776         if (retval)
1777                 current->signal->group_exit_code |= 0x80;
1778 close_fail:
1779         filp_close(file, NULL);
1780 fail_unlock:
1781         if (helper_argv)
1782                 argv_free(helper_argv);
1783
1784         current->fsuid = fsuid;
1785         complete_all(&mm->core_done);
1786 fail:
1787         return retval;
1788 }