2 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
3 * Copyright (C) 2003 Red Hat <alan@redhat.com>
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
26 #include <asm/byteorder.h>
28 #include <asm/uaccess.h>
32 * Conventional PIO operations for ATA devices
35 static u8 ide_inb (unsigned long port)
37 return (u8) inb(port);
40 static void ide_outb (u8 val, unsigned long port)
45 static void ide_outbsync(ide_hwif_t *hwif, u8 addr, unsigned long port)
50 void default_hwif_iops (ide_hwif_t *hwif)
52 hwif->OUTB = ide_outb;
53 hwif->OUTBSYNC = ide_outbsync;
58 * MMIO operations, typically used for SATA controllers
61 static u8 ide_mm_inb (unsigned long port)
63 return (u8) readb((void __iomem *) port);
66 static void ide_mm_outb (u8 value, unsigned long port)
68 writeb(value, (void __iomem *) port);
71 static void ide_mm_outbsync(ide_hwif_t *hwif, u8 value, unsigned long port)
73 writeb(value, (void __iomem *) port);
76 void default_hwif_mmiops (ide_hwif_t *hwif)
78 hwif->OUTB = ide_mm_outb;
79 /* Most systems will need to override OUTBSYNC, alas however
80 this one is controller specific! */
81 hwif->OUTBSYNC = ide_mm_outbsync;
82 hwif->INB = ide_mm_inb;
85 EXPORT_SYMBOL(default_hwif_mmiops);
87 void SELECT_DRIVE (ide_drive_t *drive)
89 ide_hwif_t *hwif = drive->hwif;
90 const struct ide_port_ops *port_ops = hwif->port_ops;
92 if (port_ops && port_ops->selectproc)
93 port_ops->selectproc(drive);
95 hwif->OUTB(drive->select.all, hwif->io_ports.device_addr);
98 void SELECT_MASK(ide_drive_t *drive, int mask)
100 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
102 if (port_ops && port_ops->maskproc)
103 port_ops->maskproc(drive, mask);
106 static void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
108 ide_hwif_t *hwif = drive->hwif;
109 struct ide_io_ports *io_ports = &hwif->io_ports;
110 struct ide_taskfile *tf = &task->tf;
111 void (*tf_outb)(u8 addr, unsigned long port);
112 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
113 u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
116 tf_outb = ide_mm_outb;
120 if (task->tf_flags & IDE_TFLAG_FLAGGED)
123 if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
124 u16 data = (tf->hob_data << 8) | tf->data;
127 writew(data, (void __iomem *)io_ports->data_addr);
129 outw(data, io_ports->data_addr);
132 if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
133 tf_outb(tf->hob_feature, io_ports->feature_addr);
134 if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
135 tf_outb(tf->hob_nsect, io_ports->nsect_addr);
136 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
137 tf_outb(tf->hob_lbal, io_ports->lbal_addr);
138 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
139 tf_outb(tf->hob_lbam, io_ports->lbam_addr);
140 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
141 tf_outb(tf->hob_lbah, io_ports->lbah_addr);
143 if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
144 tf_outb(tf->feature, io_ports->feature_addr);
145 if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
146 tf_outb(tf->nsect, io_ports->nsect_addr);
147 if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
148 tf_outb(tf->lbal, io_ports->lbal_addr);
149 if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
150 tf_outb(tf->lbam, io_ports->lbam_addr);
151 if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
152 tf_outb(tf->lbah, io_ports->lbah_addr);
154 if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
155 tf_outb((tf->device & HIHI) | drive->select.all,
156 io_ports->device_addr);
159 static void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
161 ide_hwif_t *hwif = drive->hwif;
162 struct ide_io_ports *io_ports = &hwif->io_ports;
163 struct ide_taskfile *tf = &task->tf;
164 void (*tf_outb)(u8 addr, unsigned long port);
165 u8 (*tf_inb)(unsigned long port);
166 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
169 tf_outb = ide_mm_outb;
176 if (task->tf_flags & IDE_TFLAG_IN_DATA) {
180 data = readw((void __iomem *)io_ports->data_addr);
182 data = inw(io_ports->data_addr);
184 tf->data = data & 0xff;
185 tf->hob_data = (data >> 8) & 0xff;
188 /* be sure we're looking at the low order bits */
189 tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
191 if (task->tf_flags & IDE_TFLAG_IN_NSECT)
192 tf->nsect = tf_inb(io_ports->nsect_addr);
193 if (task->tf_flags & IDE_TFLAG_IN_LBAL)
194 tf->lbal = tf_inb(io_ports->lbal_addr);
195 if (task->tf_flags & IDE_TFLAG_IN_LBAM)
196 tf->lbam = tf_inb(io_ports->lbam_addr);
197 if (task->tf_flags & IDE_TFLAG_IN_LBAH)
198 tf->lbah = tf_inb(io_ports->lbah_addr);
199 if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
200 tf->device = tf_inb(io_ports->device_addr);
202 if (task->tf_flags & IDE_TFLAG_LBA48) {
203 tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
205 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
206 tf->hob_feature = tf_inb(io_ports->feature_addr);
207 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
208 tf->hob_nsect = tf_inb(io_ports->nsect_addr);
209 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
210 tf->hob_lbal = tf_inb(io_ports->lbal_addr);
211 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
212 tf->hob_lbam = tf_inb(io_ports->lbam_addr);
213 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
214 tf->hob_lbah = tf_inb(io_ports->lbah_addr);
219 * Some localbus EIDE interfaces require a special access sequence
220 * when using 32-bit I/O instructions to transfer data. We call this
221 * the "vlb_sync" sequence, which consists of three successive reads
222 * of the sector count register location, with interrupts disabled
223 * to ensure that the reads all happen together.
225 static void ata_vlb_sync(unsigned long port)
233 * This is used for most PIO data transfers *from* the IDE interface
235 * These routines will round up any request for an odd number of bytes,
236 * so if an odd len is specified, be sure that there's at least one
237 * extra byte allocated for the buffer.
239 static void ata_input_data(ide_drive_t *drive, struct request *rq,
240 void *buf, unsigned int len)
242 ide_hwif_t *hwif = drive->hwif;
243 struct ide_io_ports *io_ports = &hwif->io_ports;
244 unsigned long data_addr = io_ports->data_addr;
245 u8 io_32bit = drive->io_32bit;
246 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
251 unsigned long uninitialized_var(flags);
253 if ((io_32bit & 2) && !mmio) {
254 local_irq_save(flags);
255 ata_vlb_sync(io_ports->nsect_addr);
259 __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
261 insl(data_addr, buf, len / 4);
263 if ((io_32bit & 2) && !mmio)
264 local_irq_restore(flags);
266 if ((len & 3) >= 2) {
268 __ide_mm_insw((void __iomem *)data_addr,
269 (u8 *)buf + (len & ~3), 1);
271 insw(data_addr, (u8 *)buf + (len & ~3), 1);
275 __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
277 insw(data_addr, buf, len / 2);
282 * This is used for most PIO data transfers *to* the IDE interface
284 static void ata_output_data(ide_drive_t *drive, struct request *rq,
285 void *buf, unsigned int len)
287 ide_hwif_t *hwif = drive->hwif;
288 struct ide_io_ports *io_ports = &hwif->io_ports;
289 unsigned long data_addr = io_ports->data_addr;
290 u8 io_32bit = drive->io_32bit;
291 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
294 unsigned long uninitialized_var(flags);
296 if ((io_32bit & 2) && !mmio) {
297 local_irq_save(flags);
298 ata_vlb_sync(io_ports->nsect_addr);
302 __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
304 outsl(data_addr, buf, len / 4);
306 if ((io_32bit & 2) && !mmio)
307 local_irq_restore(flags);
309 if ((len & 3) >= 2) {
311 __ide_mm_outsw((void __iomem *)data_addr,
312 (u8 *)buf + (len & ~3), 1);
314 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
318 __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
320 outsw(data_addr, buf, len / 2);
324 void default_hwif_transport(ide_hwif_t *hwif)
326 hwif->tf_load = ide_tf_load;
327 hwif->tf_read = ide_tf_read;
329 hwif->input_data = ata_input_data;
330 hwif->output_data = ata_output_data;
333 void ide_fix_driveid (struct hd_driveid *id)
335 #ifndef __LITTLE_ENDIAN
340 id->config = __le16_to_cpu(id->config);
341 id->cyls = __le16_to_cpu(id->cyls);
342 id->reserved2 = __le16_to_cpu(id->reserved2);
343 id->heads = __le16_to_cpu(id->heads);
344 id->track_bytes = __le16_to_cpu(id->track_bytes);
345 id->sector_bytes = __le16_to_cpu(id->sector_bytes);
346 id->sectors = __le16_to_cpu(id->sectors);
347 id->vendor0 = __le16_to_cpu(id->vendor0);
348 id->vendor1 = __le16_to_cpu(id->vendor1);
349 id->vendor2 = __le16_to_cpu(id->vendor2);
350 stringcast = (u16 *)&id->serial_no[0];
351 for (i = 0; i < (20/2); i++)
352 stringcast[i] = __le16_to_cpu(stringcast[i]);
353 id->buf_type = __le16_to_cpu(id->buf_type);
354 id->buf_size = __le16_to_cpu(id->buf_size);
355 id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
356 stringcast = (u16 *)&id->fw_rev[0];
357 for (i = 0; i < (8/2); i++)
358 stringcast[i] = __le16_to_cpu(stringcast[i]);
359 stringcast = (u16 *)&id->model[0];
360 for (i = 0; i < (40/2); i++)
361 stringcast[i] = __le16_to_cpu(stringcast[i]);
362 id->dword_io = __le16_to_cpu(id->dword_io);
363 id->reserved50 = __le16_to_cpu(id->reserved50);
364 id->field_valid = __le16_to_cpu(id->field_valid);
365 id->cur_cyls = __le16_to_cpu(id->cur_cyls);
366 id->cur_heads = __le16_to_cpu(id->cur_heads);
367 id->cur_sectors = __le16_to_cpu(id->cur_sectors);
368 id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
369 id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
370 id->lba_capacity = __le32_to_cpu(id->lba_capacity);
371 id->dma_1word = __le16_to_cpu(id->dma_1word);
372 id->dma_mword = __le16_to_cpu(id->dma_mword);
373 id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
374 id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
375 id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
376 id->eide_pio = __le16_to_cpu(id->eide_pio);
377 id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
378 for (i = 0; i < 2; ++i)
379 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
380 for (i = 0; i < 4; ++i)
381 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
382 id->queue_depth = __le16_to_cpu(id->queue_depth);
383 for (i = 0; i < 4; ++i)
384 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
385 id->major_rev_num = __le16_to_cpu(id->major_rev_num);
386 id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
387 id->command_set_1 = __le16_to_cpu(id->command_set_1);
388 id->command_set_2 = __le16_to_cpu(id->command_set_2);
389 id->cfsse = __le16_to_cpu(id->cfsse);
390 id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
391 id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
392 id->csf_default = __le16_to_cpu(id->csf_default);
393 id->dma_ultra = __le16_to_cpu(id->dma_ultra);
394 id->trseuc = __le16_to_cpu(id->trseuc);
395 id->trsEuc = __le16_to_cpu(id->trsEuc);
396 id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
397 id->mprc = __le16_to_cpu(id->mprc);
398 id->hw_config = __le16_to_cpu(id->hw_config);
399 id->acoustic = __le16_to_cpu(id->acoustic);
400 id->msrqs = __le16_to_cpu(id->msrqs);
401 id->sxfert = __le16_to_cpu(id->sxfert);
402 id->sal = __le16_to_cpu(id->sal);
403 id->spg = __le32_to_cpu(id->spg);
404 id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
405 for (i = 0; i < 22; i++)
406 id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
407 id->last_lun = __le16_to_cpu(id->last_lun);
408 id->word127 = __le16_to_cpu(id->word127);
409 id->dlf = __le16_to_cpu(id->dlf);
410 id->csfo = __le16_to_cpu(id->csfo);
411 for (i = 0; i < 26; i++)
412 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
413 id->word156 = __le16_to_cpu(id->word156);
414 for (i = 0; i < 3; i++)
415 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
416 id->cfa_power = __le16_to_cpu(id->cfa_power);
417 for (i = 0; i < 14; i++)
418 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
419 for (i = 0; i < 31; i++)
420 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
421 for (i = 0; i < 48; i++)
422 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
423 id->integrity_word = __le16_to_cpu(id->integrity_word);
425 # error "Please fix <asm/byteorder.h>"
431 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
432 * removing leading/trailing blanks and compressing internal blanks.
433 * It is primarily used to tidy up the model name/number fields as
434 * returned by the WIN_[P]IDENTIFY commands.
437 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
439 u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
442 /* convert from big-endian to host byte order */
443 for (p = end ; p != s;) {
444 unsigned short *pp = (unsigned short *) (p -= 2);
448 /* strip leading blanks */
449 while (s != end && *s == ' ')
451 /* compress internal blanks and strip trailing blanks */
452 while (s != end && *s) {
453 if (*s++ != ' ' || (s != end && *s && *s != ' '))
456 /* wipe out trailing garbage */
461 EXPORT_SYMBOL(ide_fixstring);
464 * Needed for PCI irq sharing
466 int drive_is_ready (ide_drive_t *drive)
468 ide_hwif_t *hwif = HWIF(drive);
471 if (drive->waiting_for_dma)
472 return hwif->dma_ops->dma_test_irq(drive);
475 /* need to guarantee 400ns since last command was issued */
480 * We do a passive status test under shared PCI interrupts on
481 * cards that truly share the ATA side interrupt, but may also share
482 * an interrupt with another pci card/device. We make no assumptions
483 * about possible isa-pnp and pci-pnp issues yet.
485 if (hwif->io_ports.ctl_addr)
486 stat = ide_read_altstatus(drive);
488 /* Note: this may clear a pending IRQ!! */
489 stat = ide_read_status(drive);
491 if (stat & BUSY_STAT)
492 /* drive busy: definitely not interrupting */
495 /* drive ready: *might* be interrupting */
499 EXPORT_SYMBOL(drive_is_ready);
502 * This routine busy-waits for the drive status to be not "busy".
503 * It then checks the status for all of the "good" bits and none
504 * of the "bad" bits, and if all is okay it returns 0. All other
505 * cases return error -- caller may then invoke ide_error().
507 * This routine should get fixed to not hog the cpu during extra long waits..
508 * That could be done by busy-waiting for the first jiffy or two, and then
509 * setting a timer to wake up at half second intervals thereafter,
510 * until timeout is achieved, before timing out.
512 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
518 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
519 stat = ide_read_status(drive);
521 if (stat & BUSY_STAT) {
522 local_irq_set(flags);
524 while ((stat = ide_read_status(drive)) & BUSY_STAT) {
525 if (time_after(jiffies, timeout)) {
527 * One last read after the timeout in case
528 * heavy interrupt load made us not make any
529 * progress during the timeout..
531 stat = ide_read_status(drive);
532 if (!(stat & BUSY_STAT))
535 local_irq_restore(flags);
540 local_irq_restore(flags);
543 * Allow status to settle, then read it again.
544 * A few rare drives vastly violate the 400ns spec here,
545 * so we'll wait up to 10usec for a "good" status
546 * rather than expensively fail things immediately.
547 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
549 for (i = 0; i < 10; i++) {
551 stat = ide_read_status(drive);
553 if (OK_STAT(stat, good, bad)) {
563 * In case of error returns error value after doing "*startstop = ide_error()".
564 * The caller should return the updated value of "startstop" in this case,
565 * "startstop" is unchanged when the function returns 0.
567 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
572 /* bail early if we've exceeded max_failures */
573 if (drive->max_failures && (drive->failures > drive->max_failures)) {
574 *startstop = ide_stopped;
578 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
581 char *s = (err == -EBUSY) ? "status timeout" : "status error";
582 *startstop = ide_error(drive, s, stat);
588 EXPORT_SYMBOL(ide_wait_stat);
591 * ide_in_drive_list - look for drive in black/white list
592 * @id: drive identifier
593 * @drive_table: list to inspect
595 * Look for a drive in the blacklist and the whitelist tables
596 * Returns 1 if the drive is found in the table.
599 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
601 for ( ; drive_table->id_model; drive_table++)
602 if ((!strcmp(drive_table->id_model, id->model)) &&
603 (!drive_table->id_firmware ||
604 strstr(id->fw_rev, drive_table->id_firmware)))
609 EXPORT_SYMBOL_GPL(ide_in_drive_list);
612 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
613 * We list them here and depend on the device side cable detection for them.
615 * Some optical devices with the buggy firmwares have the same problem.
617 static const struct drive_list_entry ivb_list[] = {
618 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
619 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
620 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
621 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
622 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
623 { "TSSTcorp CDDVDW SH-S202H" , "SB00" },
624 { "TSSTcorp CDDVDW SH-S202H" , "SB01" },
629 * All hosts that use the 80c ribbon must use!
630 * The name is derived from upper byte of word 93 and the 80c ribbon.
632 u8 eighty_ninty_three (ide_drive_t *drive)
634 ide_hwif_t *hwif = drive->hwif;
635 struct hd_driveid *id = drive->id;
636 int ivb = ide_in_drive_list(id, ivb_list);
638 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
642 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
645 if (ide_dev_is_sata(id) && !ivb)
648 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
653 * - change master/slave IDENTIFY order
654 * - force bit13 (80c cable present) check also for !ivb devices
655 * (unless the slave device is pre-ATA3)
657 if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
661 if (drive->udma33_warned == 1)
664 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
665 "limiting max speed to UDMA33\n",
667 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
669 drive->udma33_warned = 1;
674 int ide_driveid_update(ide_drive_t *drive)
676 ide_hwif_t *hwif = drive->hwif;
677 struct hd_driveid *id;
678 unsigned long timeout, flags;
682 * Re-read drive->id for possible DMA mode
683 * change (copied from ide-probe.c)
686 SELECT_MASK(drive, 1);
687 ide_set_irq(drive, 0);
689 hwif->OUTBSYNC(hwif, WIN_IDENTIFY, hwif->io_ports.command_addr);
690 timeout = jiffies + WAIT_WORSTCASE;
692 if (time_after(jiffies, timeout)) {
693 SELECT_MASK(drive, 0);
694 return 0; /* drive timed-out */
697 msleep(50); /* give drive a breather */
698 stat = ide_read_altstatus(drive);
699 } while (stat & BUSY_STAT);
701 msleep(50); /* wait for IRQ and DRQ_STAT */
702 stat = ide_read_status(drive);
704 if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
705 SELECT_MASK(drive, 0);
706 printk("%s: CHECK for good STATUS\n", drive->name);
709 local_irq_save(flags);
710 SELECT_MASK(drive, 0);
711 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
713 local_irq_restore(flags);
716 hwif->input_data(drive, NULL, id, SECTOR_SIZE);
717 (void)ide_read_status(drive); /* clear drive IRQ */
719 local_irq_restore(flags);
722 drive->id->dma_ultra = id->dma_ultra;
723 drive->id->dma_mword = id->dma_mword;
724 drive->id->dma_1word = id->dma_1word;
725 /* anything more ? */
728 if (drive->using_dma && ide_id_dma_bug(drive))
735 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
737 ide_hwif_t *hwif = drive->hwif;
738 struct ide_io_ports *io_ports = &hwif->io_ports;
742 #ifdef CONFIG_BLK_DEV_IDEDMA
743 if (hwif->dma_ops) /* check if host supports DMA */
744 hwif->dma_ops->dma_host_set(drive, 0);
747 /* Skip setting PIO flow-control modes on pre-EIDE drives */
748 if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
752 * Don't use ide_wait_cmd here - it will
753 * attempt to set_geometry and recalibrate,
754 * but for some reason these don't work at
755 * this point (lost interrupt).
758 * Select the drive, and issue the SETFEATURES command
760 disable_irq_nosync(hwif->irq);
763 * FIXME: we race against the running IRQ here if
764 * this is called from non IRQ context. If we use
765 * disable_irq() we hang on the error path. Work
771 SELECT_MASK(drive, 0);
773 ide_set_irq(drive, 0);
774 hwif->OUTB(speed, io_ports->nsect_addr);
775 hwif->OUTB(SETFEATURES_XFER, io_ports->feature_addr);
776 hwif->OUTBSYNC(hwif, WIN_SETFEATURES, io_ports->command_addr);
777 if (drive->quirk_list == 2)
778 ide_set_irq(drive, 1);
780 error = __ide_wait_stat(drive, drive->ready_stat,
781 BUSY_STAT|DRQ_STAT|ERR_STAT,
784 SELECT_MASK(drive, 0);
786 enable_irq(hwif->irq);
789 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
793 drive->id->dma_ultra &= ~0xFF00;
794 drive->id->dma_mword &= ~0x0F00;
795 drive->id->dma_1word &= ~0x0F00;
798 #ifdef CONFIG_BLK_DEV_IDEDMA
799 if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
801 hwif->dma_ops->dma_host_set(drive, 1);
802 else if (hwif->dma_ops) /* check if host supports DMA */
803 ide_dma_off_quietly(drive);
807 case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
808 case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
809 case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
810 case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
811 case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
812 case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
813 case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
814 case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
815 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
816 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
817 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
818 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
819 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
820 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
823 if (!drive->init_speed)
824 drive->init_speed = speed;
825 drive->current_speed = speed;
830 * This should get invoked any time we exit the driver to
831 * wait for an interrupt response from a drive. handler() points
832 * at the appropriate code to handle the next interrupt, and a
833 * timer is started to prevent us from waiting forever in case
834 * something goes wrong (see the ide_timer_expiry() handler later on).
836 * See also ide_execute_command
838 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
839 unsigned int timeout, ide_expiry_t *expiry)
841 ide_hwgroup_t *hwgroup = HWGROUP(drive);
843 BUG_ON(hwgroup->handler);
844 hwgroup->handler = handler;
845 hwgroup->expiry = expiry;
846 hwgroup->timer.expires = jiffies + timeout;
847 hwgroup->req_gen_timer = hwgroup->req_gen;
848 add_timer(&hwgroup->timer);
851 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
852 unsigned int timeout, ide_expiry_t *expiry)
855 spin_lock_irqsave(&ide_lock, flags);
856 __ide_set_handler(drive, handler, timeout, expiry);
857 spin_unlock_irqrestore(&ide_lock, flags);
860 EXPORT_SYMBOL(ide_set_handler);
863 * ide_execute_command - execute an IDE command
864 * @drive: IDE drive to issue the command against
865 * @command: command byte to write
866 * @handler: handler for next phase
867 * @timeout: timeout for command
868 * @expiry: handler to run on timeout
870 * Helper function to issue an IDE command. This handles the
871 * atomicity requirements, command timing and ensures that the
872 * handler and IRQ setup do not race. All IDE command kick off
873 * should go via this function or do equivalent locking.
876 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
877 unsigned timeout, ide_expiry_t *expiry)
880 ide_hwif_t *hwif = HWIF(drive);
882 spin_lock_irqsave(&ide_lock, flags);
883 __ide_set_handler(drive, handler, timeout, expiry);
884 hwif->OUTBSYNC(hwif, cmd, hwif->io_ports.command_addr);
886 * Drive takes 400nS to respond, we must avoid the IRQ being
887 * serviced before that.
889 * FIXME: we could skip this delay with care on non shared devices
892 spin_unlock_irqrestore(&ide_lock, flags);
894 EXPORT_SYMBOL(ide_execute_command);
896 void ide_execute_pkt_cmd(ide_drive_t *drive)
898 ide_hwif_t *hwif = drive->hwif;
901 spin_lock_irqsave(&ide_lock, flags);
902 hwif->OUTBSYNC(hwif, WIN_PACKETCMD, hwif->io_ports.command_addr);
904 spin_unlock_irqrestore(&ide_lock, flags);
906 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
909 static ide_startstop_t do_reset1 (ide_drive_t *, int);
912 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
913 * during an atapi drive reset operation. If the drive has not yet responded,
914 * and we have not yet hit our maximum waiting time, then the timer is restarted
917 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
919 ide_hwgroup_t *hwgroup = HWGROUP(drive);
924 stat = ide_read_status(drive);
926 if (OK_STAT(stat, 0, BUSY_STAT))
927 printk("%s: ATAPI reset complete\n", drive->name);
929 if (time_before(jiffies, hwgroup->poll_timeout)) {
930 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
931 /* continue polling */
935 hwgroup->polling = 0;
936 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
938 /* do it the old fashioned way */
939 return do_reset1(drive, 1);
942 hwgroup->polling = 0;
943 hwgroup->resetting = 0;
948 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
949 * during an ide reset operation. If the drives have not yet responded,
950 * and we have not yet hit our maximum waiting time, then the timer is restarted
953 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
955 ide_hwgroup_t *hwgroup = HWGROUP(drive);
956 ide_hwif_t *hwif = HWIF(drive);
957 const struct ide_port_ops *port_ops = hwif->port_ops;
960 if (port_ops && port_ops->reset_poll) {
961 if (port_ops->reset_poll(drive)) {
962 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
963 hwif->name, drive->name);
968 tmp = ide_read_status(drive);
970 if (!OK_STAT(tmp, 0, BUSY_STAT)) {
971 if (time_before(jiffies, hwgroup->poll_timeout)) {
972 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
973 /* continue polling */
976 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
979 printk("%s: reset: ", hwif->name);
980 tmp = ide_read_error(drive);
988 switch (tmp & 0x7f) {
989 case 1: printk("passed");
991 case 2: printk("formatter device error");
993 case 3: printk("sector buffer error");
995 case 4: printk("ECC circuitry error");
997 case 5: printk("controlling MPU error");
999 default:printk("error (0x%02x?)", tmp);
1002 printk("; slave: failed");
1006 hwgroup->polling = 0; /* done polling */
1007 hwgroup->resetting = 0; /* done reset attempt */
1011 static void ide_disk_pre_reset(ide_drive_t *drive)
1013 int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1015 drive->special.all = 0;
1016 drive->special.b.set_geometry = legacy;
1017 drive->special.b.recalibrate = legacy;
1018 drive->mult_count = 0;
1019 if (!drive->keep_settings && !drive->using_dma)
1020 drive->mult_req = 0;
1021 if (drive->mult_req != drive->mult_count)
1022 drive->special.b.set_multmode = 1;
1025 static void pre_reset(ide_drive_t *drive)
1027 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1029 if (drive->media == ide_disk)
1030 ide_disk_pre_reset(drive);
1032 drive->post_reset = 1;
1034 if (drive->using_dma) {
1035 if (drive->crc_count)
1036 ide_check_dma_crc(drive);
1041 if (!drive->keep_settings) {
1042 if (!drive->using_dma) {
1044 drive->io_32bit = 0;
1049 if (port_ops && port_ops->pre_reset)
1050 port_ops->pre_reset(drive);
1052 if (drive->current_speed != 0xff)
1053 drive->desired_speed = drive->current_speed;
1054 drive->current_speed = 0xff;
1058 * do_reset1() attempts to recover a confused drive by resetting it.
1059 * Unfortunately, resetting a disk drive actually resets all devices on
1060 * the same interface, so it can really be thought of as resetting the
1061 * interface rather than resetting the drive.
1063 * ATAPI devices have their own reset mechanism which allows them to be
1064 * individually reset without clobbering other devices on the same interface.
1066 * Unfortunately, the IDE interface does not generate an interrupt to let
1067 * us know when the reset operation has finished, so we must poll for this.
1068 * Equally poor, though, is the fact that this may a very long time to complete,
1069 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1070 * we set a timer to poll at 50ms intervals.
1072 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1075 unsigned long flags;
1077 ide_hwgroup_t *hwgroup;
1078 struct ide_io_ports *io_ports;
1079 const struct ide_port_ops *port_ops;
1082 spin_lock_irqsave(&ide_lock, flags);
1084 hwgroup = HWGROUP(drive);
1086 io_ports = &hwif->io_ports;
1088 /* We must not reset with running handlers */
1089 BUG_ON(hwgroup->handler != NULL);
1091 /* For an ATAPI device, first try an ATAPI SRST. */
1092 if (drive->media != ide_disk && !do_not_try_atapi) {
1093 hwgroup->resetting = 1;
1095 SELECT_DRIVE(drive);
1097 hwif->OUTBSYNC(hwif, WIN_SRST, io_ports->command_addr);
1099 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1100 hwgroup->polling = 1;
1101 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1102 spin_unlock_irqrestore(&ide_lock, flags);
1107 * First, reset any device state data we were maintaining
1108 * for any of the drives on this interface.
1110 for (unit = 0; unit < MAX_DRIVES; ++unit)
1111 pre_reset(&hwif->drives[unit]);
1113 if (io_ports->ctl_addr == 0) {
1114 spin_unlock_irqrestore(&ide_lock, flags);
1118 hwgroup->resetting = 1;
1120 * Note that we also set nIEN while resetting the device,
1121 * to mask unwanted interrupts from the interface during the reset.
1122 * However, due to the design of PC hardware, this will cause an
1123 * immediate interrupt due to the edge transition it produces.
1124 * This single interrupt gives us a "fast poll" for drives that
1125 * recover from reset very quickly, saving us the first 50ms wait time.
1127 /* set SRST and nIEN */
1128 hwif->OUTBSYNC(hwif, ATA_DEVCTL_OBS | 6, io_ports->ctl_addr);
1129 /* more than enough time */
1131 if (drive->quirk_list == 2)
1132 ctl = ATA_DEVCTL_OBS; /* clear SRST and nIEN */
1134 ctl = ATA_DEVCTL_OBS | 2; /* clear SRST, leave nIEN */
1135 hwif->OUTBSYNC(hwif, ctl, io_ports->ctl_addr);
1136 /* more than enough time */
1138 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1139 hwgroup->polling = 1;
1140 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1143 * Some weird controller like resetting themselves to a strange
1144 * state when the disks are reset this way. At least, the Winbond
1145 * 553 documentation says that
1147 port_ops = hwif->port_ops;
1148 if (port_ops && port_ops->resetproc)
1149 port_ops->resetproc(drive);
1151 spin_unlock_irqrestore(&ide_lock, flags);
1156 * ide_do_reset() is the entry point to the drive/interface reset code.
1159 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1161 return do_reset1(drive, 0);
1164 EXPORT_SYMBOL(ide_do_reset);
1167 * ide_wait_not_busy() waits for the currently selected device on the hwif
1168 * to report a non-busy status, see comments in ide_probe_port().
1170 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1176 * Turn this into a schedule() sleep once I'm sure
1177 * about locking issues (2.5 work ?).
1180 stat = hwif->INB(hwif->io_ports.status_addr);
1181 if ((stat & BUSY_STAT) == 0)
1184 * Assume a value of 0xff means nothing is connected to
1185 * the interface and it doesn't implement the pull-down
1190 touch_softlockup_watchdog();
1191 touch_nmi_watchdog();
1196 EXPORT_SYMBOL_GPL(ide_wait_not_busy);