2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
21 #include <linux/smp.h>
22 #include <linux/smp_lock.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/slab.h>
27 #include <linux/user.h>
28 #include <linux/elf.h>
29 #include <linux/init.h>
30 #include <linux/prctl.h>
31 #include <linux/init_task.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/mqueue.h>
35 #include <linux/hardirq.h>
36 #include <linux/utsname.h>
38 #include <asm/pgtable.h>
39 #include <asm/uaccess.h>
40 #include <asm/system.h>
42 #include <asm/processor.h>
45 #include <asm/machdep.h>
47 #include <asm/syscalls.h>
49 #include <asm/firmware.h>
52 extern unsigned long _get_SP(void);
55 struct task_struct *last_task_used_math = NULL;
56 struct task_struct *last_task_used_altivec = NULL;
57 struct task_struct *last_task_used_spe = NULL;
61 * Make sure the floating-point register state in the
62 * the thread_struct is up to date for task tsk.
64 void flush_fp_to_thread(struct task_struct *tsk)
66 if (tsk->thread.regs) {
68 * We need to disable preemption here because if we didn't,
69 * another process could get scheduled after the regs->msr
70 * test but before we have finished saving the FP registers
71 * to the thread_struct. That process could take over the
72 * FPU, and then when we get scheduled again we would store
73 * bogus values for the remaining FP registers.
76 if (tsk->thread.regs->msr & MSR_FP) {
79 * This should only ever be called for current or
80 * for a stopped child process. Since we save away
81 * the FP register state on context switch on SMP,
82 * there is something wrong if a stopped child appears
83 * to still have its FP state in the CPU registers.
85 BUG_ON(tsk != current);
93 void enable_kernel_fp(void)
95 WARN_ON(preemptible());
98 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
101 giveup_fpu(NULL); /* just enables FP for kernel */
103 giveup_fpu(last_task_used_math);
104 #endif /* CONFIG_SMP */
106 EXPORT_SYMBOL(enable_kernel_fp);
108 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
110 if (!tsk->thread.regs)
112 flush_fp_to_thread(current);
114 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
119 #ifdef CONFIG_ALTIVEC
120 void enable_kernel_altivec(void)
122 WARN_ON(preemptible());
125 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
126 giveup_altivec(current);
128 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
130 giveup_altivec(last_task_used_altivec);
131 #endif /* CONFIG_SMP */
133 EXPORT_SYMBOL(enable_kernel_altivec);
136 * Make sure the VMX/Altivec register state in the
137 * the thread_struct is up to date for task tsk.
139 void flush_altivec_to_thread(struct task_struct *tsk)
141 if (tsk->thread.regs) {
143 if (tsk->thread.regs->msr & MSR_VEC) {
145 BUG_ON(tsk != current);
147 giveup_altivec(current);
153 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
155 flush_altivec_to_thread(current);
156 memcpy(vrregs, ¤t->thread.vr[0], sizeof(*vrregs));
159 #endif /* CONFIG_ALTIVEC */
163 void enable_kernel_spe(void)
165 WARN_ON(preemptible());
168 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
171 giveup_spe(NULL); /* just enable SPE for kernel - force */
173 giveup_spe(last_task_used_spe);
174 #endif /* __SMP __ */
176 EXPORT_SYMBOL(enable_kernel_spe);
178 void flush_spe_to_thread(struct task_struct *tsk)
180 if (tsk->thread.regs) {
182 if (tsk->thread.regs->msr & MSR_SPE) {
184 BUG_ON(tsk != current);
192 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
194 flush_spe_to_thread(current);
195 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
196 memcpy(evrregs, ¤t->thread.evr[0], sizeof(u32) * 35);
199 #endif /* CONFIG_SPE */
203 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
204 * and the current task has some state, discard it.
206 void discard_lazy_cpu_state(void)
209 if (last_task_used_math == current)
210 last_task_used_math = NULL;
211 #ifdef CONFIG_ALTIVEC
212 if (last_task_used_altivec == current)
213 last_task_used_altivec = NULL;
214 #endif /* CONFIG_ALTIVEC */
216 if (last_task_used_spe == current)
217 last_task_used_spe = NULL;
221 #endif /* CONFIG_SMP */
223 #ifdef CONFIG_PPC_MERGE /* XXX for now */
224 int set_dabr(unsigned long dabr)
227 return ppc_md.set_dabr(dabr);
229 mtspr(SPRN_DABR, dabr);
235 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
236 static DEFINE_PER_CPU(unsigned long, current_dabr);
239 struct task_struct *__switch_to(struct task_struct *prev,
240 struct task_struct *new)
242 struct thread_struct *new_thread, *old_thread;
244 struct task_struct *last;
247 /* avoid complexity of lazy save/restore of fpu
248 * by just saving it every time we switch out if
249 * this task used the fpu during the last quantum.
251 * If it tries to use the fpu again, it'll trap and
252 * reload its fp regs. So we don't have to do a restore
253 * every switch, just a save.
256 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
258 #ifdef CONFIG_ALTIVEC
260 * If the previous thread used altivec in the last quantum
261 * (thus changing altivec regs) then save them.
262 * We used to check the VRSAVE register but not all apps
263 * set it, so we don't rely on it now (and in fact we need
264 * to save & restore VSCR even if VRSAVE == 0). -- paulus
266 * On SMP we always save/restore altivec regs just to avoid the
267 * complexity of changing processors.
270 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
271 giveup_altivec(prev);
272 #endif /* CONFIG_ALTIVEC */
275 * If the previous thread used spe in the last quantum
276 * (thus changing spe regs) then save them.
278 * On SMP we always save/restore spe regs just to avoid the
279 * complexity of changing processors.
281 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
283 #endif /* CONFIG_SPE */
285 #else /* CONFIG_SMP */
286 #ifdef CONFIG_ALTIVEC
287 /* Avoid the trap. On smp this this never happens since
288 * we don't set last_task_used_altivec -- Cort
290 if (new->thread.regs && last_task_used_altivec == new)
291 new->thread.regs->msr |= MSR_VEC;
292 #endif /* CONFIG_ALTIVEC */
294 /* Avoid the trap. On smp this this never happens since
295 * we don't set last_task_used_spe
297 if (new->thread.regs && last_task_used_spe == new)
298 new->thread.regs->msr |= MSR_SPE;
299 #endif /* CONFIG_SPE */
301 #endif /* CONFIG_SMP */
303 #ifdef CONFIG_PPC64 /* for now */
304 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
305 set_dabr(new->thread.dabr);
306 __get_cpu_var(current_dabr) = new->thread.dabr;
308 #endif /* CONFIG_PPC64 */
310 new_thread = &new->thread;
311 old_thread = ¤t->thread;
315 * Collect processor utilization data per process
317 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
318 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
319 long unsigned start_tb, current_tb;
320 start_tb = old_thread->start_tb;
321 cu->current_tb = current_tb = mfspr(SPRN_PURR);
322 old_thread->accum_tb += (current_tb - start_tb);
323 new_thread->start_tb = current_tb;
327 local_irq_save(flags);
329 account_system_vtime(current);
330 account_process_vtime(current);
331 calculate_steal_time();
333 last = _switch(old_thread, new_thread);
335 local_irq_restore(flags);
340 static int instructions_to_print = 16;
342 static void show_instructions(struct pt_regs *regs)
345 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
348 printk("Instruction dump:");
350 for (i = 0; i < instructions_to_print; i++) {
356 /* We use __get_user here *only* to avoid an OOPS on a
357 * bad address because the pc *should* only be a
360 if (!__kernel_text_address(pc) ||
361 __get_user(instr, (unsigned int __user *)pc)) {
365 printk("<%08x> ", instr);
367 printk("%08x ", instr);
376 static struct regbit {
389 static void printbits(unsigned long val, struct regbit *bits)
391 const char *sep = "";
394 for (; bits->bit; ++bits)
395 if (val & bits->bit) {
396 printk("%s%s", sep, bits->name);
404 #define REGS_PER_LINE 4
405 #define LAST_VOLATILE 13
408 #define REGS_PER_LINE 8
409 #define LAST_VOLATILE 12
412 void show_regs(struct pt_regs * regs)
416 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
417 regs->nip, regs->link, regs->ctr);
418 printk("REGS: %p TRAP: %04lx %s (%s)\n",
419 regs, regs->trap, print_tainted(), init_utsname()->release);
420 printk("MSR: "REG" ", regs->msr);
421 printbits(regs->msr, msr_bits);
422 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
424 if (trap == 0x300 || trap == 0x600)
425 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
426 printk("TASK = %p[%d] '%s' THREAD: %p",
427 current, current->pid, current->comm, task_thread_info(current));
430 printk(" CPU: %d", smp_processor_id());
431 #endif /* CONFIG_SMP */
433 for (i = 0; i < 32; i++) {
434 if ((i % REGS_PER_LINE) == 0)
435 printk("\n" KERN_INFO "GPR%02d: ", i);
436 printk(REG " ", regs->gpr[i]);
437 if (i == LAST_VOLATILE && !FULL_REGS(regs))
441 #ifdef CONFIG_KALLSYMS
443 * Lookup NIP late so we have the best change of getting the
444 * above info out without failing
446 printk("NIP ["REG"] ", regs->nip);
447 print_symbol("%s\n", regs->nip);
448 printk("LR ["REG"] ", regs->link);
449 print_symbol("%s\n", regs->link);
451 show_stack(current, (unsigned long *) regs->gpr[1]);
452 if (!user_mode(regs))
453 show_instructions(regs);
456 void exit_thread(void)
458 discard_lazy_cpu_state();
461 void flush_thread(void)
464 struct thread_info *t = current_thread_info();
466 if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
467 clear_ti_thread_flag(t, TIF_ABI_PENDING);
468 if (test_ti_thread_flag(t, TIF_32BIT))
469 clear_ti_thread_flag(t, TIF_32BIT);
471 set_ti_thread_flag(t, TIF_32BIT);
475 discard_lazy_cpu_state();
477 #ifdef CONFIG_PPC64 /* for now */
478 if (current->thread.dabr) {
479 current->thread.dabr = 0;
486 release_thread(struct task_struct *t)
491 * This gets called before we allocate a new thread and copy
492 * the current task into it.
494 void prepare_to_copy(struct task_struct *tsk)
496 flush_fp_to_thread(current);
497 flush_altivec_to_thread(current);
498 flush_spe_to_thread(current);
504 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
505 unsigned long unused, struct task_struct *p,
506 struct pt_regs *regs)
508 struct pt_regs *childregs, *kregs;
509 extern void ret_from_fork(void);
510 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
512 CHECK_FULL_REGS(regs);
514 sp -= sizeof(struct pt_regs);
515 childregs = (struct pt_regs *) sp;
517 if ((childregs->msr & MSR_PR) == 0) {
518 /* for kernel thread, set `current' and stackptr in new task */
519 childregs->gpr[1] = sp + sizeof(struct pt_regs);
521 childregs->gpr[2] = (unsigned long) p;
523 clear_tsk_thread_flag(p, TIF_32BIT);
525 p->thread.regs = NULL; /* no user register state */
527 childregs->gpr[1] = usp;
528 p->thread.regs = childregs;
529 if (clone_flags & CLONE_SETTLS) {
531 if (!test_thread_flag(TIF_32BIT))
532 childregs->gpr[13] = childregs->gpr[6];
535 childregs->gpr[2] = childregs->gpr[6];
538 childregs->gpr[3] = 0; /* Result from fork() */
539 sp -= STACK_FRAME_OVERHEAD;
542 * The way this works is that at some point in the future
543 * some task will call _switch to switch to the new task.
544 * That will pop off the stack frame created below and start
545 * the new task running at ret_from_fork. The new task will
546 * do some house keeping and then return from the fork or clone
547 * system call, using the stack frame created above.
549 sp -= sizeof(struct pt_regs);
550 kregs = (struct pt_regs *) sp;
551 sp -= STACK_FRAME_OVERHEAD;
555 if (cpu_has_feature(CPU_FTR_SLB)) {
556 unsigned long sp_vsid = get_kernel_vsid(sp);
557 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
559 sp_vsid <<= SLB_VSID_SHIFT;
560 sp_vsid |= SLB_VSID_KERNEL | llp;
561 p->thread.ksp_vsid = sp_vsid;
565 * The PPC64 ABI makes use of a TOC to contain function
566 * pointers. The function (ret_from_except) is actually a pointer
567 * to the TOC entry. The first entry is a pointer to the actual
570 kregs->nip = *((unsigned long *)ret_from_fork);
572 kregs->nip = (unsigned long)ret_from_fork;
579 * Set up a thread for executing a new program
581 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
584 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
590 * If we exec out of a kernel thread then thread.regs will not be
593 if (!current->thread.regs) {
594 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
595 current->thread.regs = regs - 1;
598 memset(regs->gpr, 0, sizeof(regs->gpr));
608 regs->msr = MSR_USER;
610 if (!test_thread_flag(TIF_32BIT)) {
611 unsigned long entry, toc;
613 /* start is a relocated pointer to the function descriptor for
614 * the elf _start routine. The first entry in the function
615 * descriptor is the entry address of _start and the second
616 * entry is the TOC value we need to use.
618 __get_user(entry, (unsigned long __user *)start);
619 __get_user(toc, (unsigned long __user *)start+1);
621 /* Check whether the e_entry function descriptor entries
622 * need to be relocated before we can use them.
624 if (load_addr != 0) {
630 regs->msr = MSR_USER64;
634 regs->msr = MSR_USER32;
638 discard_lazy_cpu_state();
639 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
640 current->thread.fpscr.val = 0;
641 #ifdef CONFIG_ALTIVEC
642 memset(current->thread.vr, 0, sizeof(current->thread.vr));
643 memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr));
644 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
645 current->thread.vrsave = 0;
646 current->thread.used_vr = 0;
647 #endif /* CONFIG_ALTIVEC */
649 memset(current->thread.evr, 0, sizeof(current->thread.evr));
650 current->thread.acc = 0;
651 current->thread.spefscr = 0;
652 current->thread.used_spe = 0;
653 #endif /* CONFIG_SPE */
656 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
657 | PR_FP_EXC_RES | PR_FP_EXC_INV)
659 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
661 struct pt_regs *regs = tsk->thread.regs;
663 /* This is a bit hairy. If we are an SPE enabled processor
664 * (have embedded fp) we store the IEEE exception enable flags in
665 * fpexc_mode. fpexc_mode is also used for setting FP exception
666 * mode (asyn, precise, disabled) for 'Classic' FP. */
667 if (val & PR_FP_EXC_SW_ENABLE) {
669 tsk->thread.fpexc_mode = val &
670 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
677 /* on a CONFIG_SPE this does not hurt us. The bits that
678 * __pack_fe01 use do not overlap with bits used for
679 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
680 * on CONFIG_SPE implementations are reserved so writing to
681 * them does not change anything */
682 if (val > PR_FP_EXC_PRECISE)
684 tsk->thread.fpexc_mode = __pack_fe01(val);
685 if (regs != NULL && (regs->msr & MSR_FP) != 0)
686 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
687 | tsk->thread.fpexc_mode;
691 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
695 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
697 val = tsk->thread.fpexc_mode;
702 val = __unpack_fe01(tsk->thread.fpexc_mode);
703 return put_user(val, (unsigned int __user *) adr);
706 int set_endian(struct task_struct *tsk, unsigned int val)
708 struct pt_regs *regs = tsk->thread.regs;
710 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
711 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
717 if (val == PR_ENDIAN_BIG)
718 regs->msr &= ~MSR_LE;
719 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
727 int get_endian(struct task_struct *tsk, unsigned long adr)
729 struct pt_regs *regs = tsk->thread.regs;
732 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
733 !cpu_has_feature(CPU_FTR_REAL_LE))
739 if (regs->msr & MSR_LE) {
740 if (cpu_has_feature(CPU_FTR_REAL_LE))
741 val = PR_ENDIAN_LITTLE;
743 val = PR_ENDIAN_PPC_LITTLE;
747 return put_user(val, (unsigned int __user *)adr);
750 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
752 tsk->thread.align_ctl = val;
756 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
758 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
761 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
763 int sys_clone(unsigned long clone_flags, unsigned long usp,
764 int __user *parent_tidp, void __user *child_threadptr,
765 int __user *child_tidp, int p6,
766 struct pt_regs *regs)
768 CHECK_FULL_REGS(regs);
770 usp = regs->gpr[1]; /* stack pointer for child */
772 if (test_thread_flag(TIF_32BIT)) {
773 parent_tidp = TRUNC_PTR(parent_tidp);
774 child_tidp = TRUNC_PTR(child_tidp);
777 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
780 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
781 unsigned long p4, unsigned long p5, unsigned long p6,
782 struct pt_regs *regs)
784 CHECK_FULL_REGS(regs);
785 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
788 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
789 unsigned long p4, unsigned long p5, unsigned long p6,
790 struct pt_regs *regs)
792 CHECK_FULL_REGS(regs);
793 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
794 regs, 0, NULL, NULL);
797 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
798 unsigned long a3, unsigned long a4, unsigned long a5,
799 struct pt_regs *regs)
804 filename = getname((char __user *) a0);
805 error = PTR_ERR(filename);
806 if (IS_ERR(filename))
808 flush_fp_to_thread(current);
809 flush_altivec_to_thread(current);
810 flush_spe_to_thread(current);
811 error = do_execve(filename, (char __user * __user *) a1,
812 (char __user * __user *) a2, regs);
815 current->ptrace &= ~PT_DTRACE;
816 task_unlock(current);
823 #ifdef CONFIG_IRQSTACKS
824 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
825 unsigned long nbytes)
827 unsigned long stack_page;
828 unsigned long cpu = task_cpu(p);
831 * Avoid crashing if the stack has overflowed and corrupted
832 * task_cpu(p), which is in the thread_info struct.
834 if (cpu < NR_CPUS && cpu_possible(cpu)) {
835 stack_page = (unsigned long) hardirq_ctx[cpu];
836 if (sp >= stack_page + sizeof(struct thread_struct)
837 && sp <= stack_page + THREAD_SIZE - nbytes)
840 stack_page = (unsigned long) softirq_ctx[cpu];
841 if (sp >= stack_page + sizeof(struct thread_struct)
842 && sp <= stack_page + THREAD_SIZE - nbytes)
849 #define valid_irq_stack(sp, p, nb) 0
850 #endif /* CONFIG_IRQSTACKS */
852 int validate_sp(unsigned long sp, struct task_struct *p,
853 unsigned long nbytes)
855 unsigned long stack_page = (unsigned long)task_stack_page(p);
857 if (sp >= stack_page + sizeof(struct thread_struct)
858 && sp <= stack_page + THREAD_SIZE - nbytes)
861 return valid_irq_stack(sp, p, nbytes);
865 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */
866 #define FRAME_LR_SAVE 2
867 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
868 #define REGS_MARKER 0x7265677368657265ul
869 #define FRAME_MARKER 12
871 #define MIN_STACK_FRAME 16
872 #define FRAME_LR_SAVE 1
873 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
874 #define REGS_MARKER 0x72656773ul
875 #define FRAME_MARKER 2
878 EXPORT_SYMBOL(validate_sp);
880 unsigned long get_wchan(struct task_struct *p)
882 unsigned long ip, sp;
885 if (!p || p == current || p->state == TASK_RUNNING)
889 if (!validate_sp(sp, p, MIN_STACK_FRAME))
893 sp = *(unsigned long *)sp;
894 if (!validate_sp(sp, p, MIN_STACK_FRAME))
897 ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
898 if (!in_sched_functions(ip))
901 } while (count++ < 16);
905 static int kstack_depth_to_print = 64;
907 void show_stack(struct task_struct *tsk, unsigned long *stack)
909 unsigned long sp, ip, lr, newsp;
913 sp = (unsigned long) stack;
918 asm("mr %0,1" : "=r" (sp));
920 sp = tsk->thread.ksp;
924 printk("Call Trace:\n");
926 if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
929 stack = (unsigned long *) sp;
931 ip = stack[FRAME_LR_SAVE];
932 if (!firstframe || ip != lr) {
933 printk("["REG"] ["REG"] ", sp, ip);
934 print_symbol("%s", ip);
936 printk(" (unreliable)");
942 * See if this is an exception frame.
943 * We look for the "regshere" marker in the current frame.
945 if (validate_sp(sp, tsk, INT_FRAME_SIZE)
946 && stack[FRAME_MARKER] == REGS_MARKER) {
947 struct pt_regs *regs = (struct pt_regs *)
948 (sp + STACK_FRAME_OVERHEAD);
949 printk("--- Exception: %lx", regs->trap);
950 print_symbol(" at %s\n", regs->nip);
952 print_symbol(" LR = %s\n", lr);
957 } while (count++ < kstack_depth_to_print);
960 void dump_stack(void)
962 show_stack(current, NULL);
964 EXPORT_SYMBOL(dump_stack);
967 void ppc64_runlatch_on(void)
971 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
974 ctrl = mfspr(SPRN_CTRLF);
975 ctrl |= CTRL_RUNLATCH;
976 mtspr(SPRN_CTRLT, ctrl);
978 set_thread_flag(TIF_RUNLATCH);
982 void ppc64_runlatch_off(void)
986 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
989 clear_thread_flag(TIF_RUNLATCH);
991 ctrl = mfspr(SPRN_CTRLF);
992 ctrl &= ~CTRL_RUNLATCH;
993 mtspr(SPRN_CTRLT, ctrl);