3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 #include <asm/unaligned.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/firmware.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/skbuff.h>
26 #include <linux/usb.h>
27 #include <linux/workqueue.h>
28 #include <net/ieee80211.h>
31 #include "zd_netdev.h"
36 static struct usb_device_id usb_ids[] = {
38 { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
39 { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
40 { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
41 { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
42 { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
43 { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
44 { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
45 { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
46 { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
47 { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
48 { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
49 { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
50 { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
51 { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
52 { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
53 { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
54 { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
55 { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
57 { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
58 { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
59 { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
60 { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
61 { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
62 { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
63 { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
64 { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
65 { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
66 { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
67 { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
68 { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
69 { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
70 /* "Driverless" devices that need ejecting */
71 { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
75 MODULE_LICENSE("GPL");
76 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
77 MODULE_AUTHOR("Ulrich Kunitz");
78 MODULE_AUTHOR("Daniel Drake");
79 MODULE_VERSION("1.0");
80 MODULE_DEVICE_TABLE(usb, usb_ids);
82 #define FW_ZD1211_PREFIX "zd1211/zd1211_"
83 #define FW_ZD1211B_PREFIX "zd1211/zd1211b_"
85 /* USB device initialization */
87 static int request_fw_file(
88 const struct firmware **fw, const char *name, struct device *device)
92 dev_dbg_f(device, "fw name %s\n", name);
94 r = request_firmware(fw, name, device);
97 "Could not load firmware file %s. Error number %d\n",
102 static inline u16 get_bcdDevice(const struct usb_device *udev)
104 return le16_to_cpu(udev->descriptor.bcdDevice);
107 enum upload_code_flags {
111 /* Ensures that MAX_TRANSFER_SIZE is even. */
112 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
114 static int upload_code(struct usb_device *udev,
115 const u8 *data, size_t size, u16 code_offset, int flags)
120 /* USB request blocks need "kmalloced" buffers.
122 p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
124 dev_err(&udev->dev, "out of memory\n");
131 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
132 size : MAX_TRANSFER_SIZE;
134 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
136 memcpy(p, data, transfer_size);
137 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
138 USB_REQ_FIRMWARE_DOWNLOAD,
139 USB_DIR_OUT | USB_TYPE_VENDOR,
140 code_offset, 0, p, transfer_size, 1000 /* ms */);
143 "USB control request for firmware upload"
144 " failed. Error number %d\n", r);
147 transfer_size = r & ~1;
149 size -= transfer_size;
150 data += transfer_size;
151 code_offset += transfer_size/sizeof(u16);
154 if (flags & REBOOT) {
157 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
158 USB_REQ_FIRMWARE_CONFIRM,
159 USB_DIR_IN | USB_TYPE_VENDOR,
160 0, 0, &ret, sizeof(ret), 5000 /* ms */);
161 if (r != sizeof(ret)) {
163 "control request firmeware confirmation failed."
164 " Return value %d\n", r);
171 "Internal error while downloading."
172 " Firmware confirm return value %#04x\n",
177 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
187 static u16 get_word(const void *data, u16 offset)
189 const __le16 *p = data;
190 return le16_to_cpu(p[offset]);
193 static char *get_fw_name(char *buffer, size_t size, u8 device_type,
196 scnprintf(buffer, size, "%s%s",
197 device_type == DEVICE_ZD1211B ?
198 FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
203 static int handle_version_mismatch(struct usb_device *udev, u8 device_type,
204 const struct firmware *ub_fw)
206 const struct firmware *ur_fw = NULL;
211 r = request_fw_file(&ur_fw,
212 get_fw_name(fw_name, sizeof(fw_name), device_type, "ur"),
217 r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
221 offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
222 r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
223 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
225 /* At this point, the vendor driver downloads the whole firmware
226 * image, hacks around with version IDs, and uploads it again,
227 * completely overwriting the boot code. We do not do this here as
228 * it is not required on any tested devices, and it is suspected to
231 release_firmware(ur_fw);
235 static int upload_firmware(struct usb_device *udev, u8 device_type)
240 const struct firmware *ub_fw = NULL;
241 const struct firmware *uph_fw = NULL;
244 bcdDevice = get_bcdDevice(udev);
246 r = request_fw_file(&ub_fw,
247 get_fw_name(fw_name, sizeof(fw_name), device_type, "ub"),
252 fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
254 if (fw_bcdDevice != bcdDevice) {
256 "firmware version %#06x and device bootcode version "
257 "%#06x differ\n", fw_bcdDevice, bcdDevice);
258 if (bcdDevice <= 0x4313)
259 dev_warn(&udev->dev, "device has old bootcode, please "
260 "report success or failure\n");
262 r = handle_version_mismatch(udev, device_type, ub_fw);
266 dev_dbg_f(&udev->dev,
267 "firmware device id %#06x is equal to the "
268 "actual device id\n", fw_bcdDevice);
272 r = request_fw_file(&uph_fw,
273 get_fw_name(fw_name, sizeof(fw_name), device_type, "uphr"),
278 r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
281 "Could not upload firmware code uph. Error number %d\n",
287 release_firmware(ub_fw);
288 release_firmware(uph_fw);
292 #define urb_dev(urb) (&(urb)->dev->dev)
294 static inline void handle_regs_int(struct urb *urb)
296 struct zd_usb *usb = urb->context;
297 struct zd_usb_interrupt *intr = &usb->intr;
300 ZD_ASSERT(in_interrupt());
301 spin_lock(&intr->lock);
303 if (intr->read_regs_enabled) {
304 intr->read_regs.length = len = urb->actual_length;
306 if (len > sizeof(intr->read_regs.buffer))
307 len = sizeof(intr->read_regs.buffer);
308 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
309 intr->read_regs_enabled = 0;
310 complete(&intr->read_regs.completion);
314 dev_dbg_f(urb_dev(urb), "regs interrupt ignored\n");
316 spin_unlock(&intr->lock);
319 static inline void handle_retry_failed_int(struct urb *urb)
321 struct zd_usb *usb = urb->context;
322 struct zd_mac *mac = zd_usb_to_mac(usb);
323 struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
325 ieee->stats.tx_errors++;
326 ieee->ieee_stats.tx_retry_limit_exceeded++;
327 dev_dbg_f(urb_dev(urb), "retry failed interrupt\n");
331 static void int_urb_complete(struct urb *urb)
334 struct usb_int_header *hdr;
336 switch (urb->status) {
350 if (urb->actual_length < sizeof(hdr)) {
351 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
355 hdr = urb->transfer_buffer;
356 if (hdr->type != USB_INT_TYPE) {
357 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
362 case USB_INT_ID_REGS:
363 handle_regs_int(urb);
365 case USB_INT_ID_RETRY_FAILED:
366 handle_retry_failed_int(urb);
369 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
370 (unsigned int)hdr->id);
375 r = usb_submit_urb(urb, GFP_ATOMIC);
377 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
382 kfree(urb->transfer_buffer);
385 static inline int int_urb_interval(struct usb_device *udev)
387 switch (udev->speed) {
398 static inline int usb_int_enabled(struct zd_usb *usb)
401 struct zd_usb_interrupt *intr = &usb->intr;
404 spin_lock_irqsave(&intr->lock, flags);
406 spin_unlock_irqrestore(&intr->lock, flags);
410 int zd_usb_enable_int(struct zd_usb *usb)
413 struct usb_device *udev;
414 struct zd_usb_interrupt *intr = &usb->intr;
415 void *transfer_buffer = NULL;
418 dev_dbg_f(zd_usb_dev(usb), "\n");
420 urb = usb_alloc_urb(0, GFP_KERNEL);
426 ZD_ASSERT(!irqs_disabled());
427 spin_lock_irq(&intr->lock);
429 spin_unlock_irq(&intr->lock);
434 spin_unlock_irq(&intr->lock);
436 /* TODO: make it a DMA buffer */
438 transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_KERNEL);
439 if (!transfer_buffer) {
440 dev_dbg_f(zd_usb_dev(usb),
441 "couldn't allocate transfer_buffer\n");
442 goto error_set_urb_null;
445 udev = zd_usb_to_usbdev(usb);
446 usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
447 transfer_buffer, USB_MAX_EP_INT_BUFFER,
448 int_urb_complete, usb,
451 dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
452 r = usb_submit_urb(urb, GFP_KERNEL);
454 dev_dbg_f(zd_usb_dev(usb),
455 "Couldn't submit urb. Error number %d\n", r);
461 kfree(transfer_buffer);
463 spin_lock_irq(&intr->lock);
465 spin_unlock_irq(&intr->lock);
472 void zd_usb_disable_int(struct zd_usb *usb)
475 struct zd_usb_interrupt *intr = &usb->intr;
478 spin_lock_irqsave(&intr->lock, flags);
481 spin_unlock_irqrestore(&intr->lock, flags);
485 spin_unlock_irqrestore(&intr->lock, flags);
488 dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
492 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
496 struct zd_mac *mac = zd_usb_to_mac(usb);
497 const struct rx_length_info *length_info;
499 if (length < sizeof(struct rx_length_info)) {
500 /* It's not a complete packet anyhow. */
501 struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
502 ieee->stats.rx_errors++;
503 ieee->stats.rx_length_errors++;
506 length_info = (struct rx_length_info *)
507 (buffer + length - sizeof(struct rx_length_info));
509 /* It might be that three frames are merged into a single URB
510 * transaction. We have to check for the length info tag.
512 * While testing we discovered that length_info might be unaligned,
513 * because if USB transactions are merged, the last packet will not
514 * be padded. Unaligned access might also happen if the length_info
515 * structure is not present.
517 if (get_unaligned(&length_info->tag) == cpu_to_le16(RX_LENGTH_INFO_TAG))
519 unsigned int l, k, n;
520 for (i = 0, l = 0;; i++) {
521 k = le16_to_cpu(get_unaligned(&length_info->length[i]));
527 zd_mac_rx_irq(mac, buffer+l, k);
533 zd_mac_rx_irq(mac, buffer, length);
537 static void rx_urb_complete(struct urb *urb)
540 struct zd_usb_rx *rx;
544 switch (urb->status) {
555 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
559 buffer = urb->transfer_buffer;
560 length = urb->actual_length;
564 if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
565 /* If there is an old first fragment, we don't care. */
566 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
567 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
568 spin_lock(&rx->lock);
569 memcpy(rx->fragment, buffer, length);
570 rx->fragment_length = length;
571 spin_unlock(&rx->lock);
575 spin_lock(&rx->lock);
576 if (rx->fragment_length > 0) {
577 /* We are on a second fragment, we believe */
578 ZD_ASSERT(length + rx->fragment_length <=
579 ARRAY_SIZE(rx->fragment));
580 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
581 memcpy(rx->fragment+rx->fragment_length, buffer, length);
582 handle_rx_packet(usb, rx->fragment,
583 rx->fragment_length + length);
584 rx->fragment_length = 0;
585 spin_unlock(&rx->lock);
587 spin_unlock(&rx->lock);
588 handle_rx_packet(usb, buffer, length);
592 usb_submit_urb(urb, GFP_ATOMIC);
595 static struct urb *alloc_urb(struct zd_usb *usb)
597 struct usb_device *udev = zd_usb_to_usbdev(usb);
601 urb = usb_alloc_urb(0, GFP_KERNEL);
604 buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
611 usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
612 buffer, USB_MAX_RX_SIZE,
613 rx_urb_complete, usb);
614 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
619 static void free_urb(struct urb *urb)
623 usb_buffer_free(urb->dev, urb->transfer_buffer_length,
624 urb->transfer_buffer, urb->transfer_dma);
628 int zd_usb_enable_rx(struct zd_usb *usb)
631 struct zd_usb_rx *rx = &usb->rx;
634 dev_dbg_f(zd_usb_dev(usb), "\n");
637 urbs = kcalloc(URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
640 for (i = 0; i < URBS_COUNT; i++) {
641 urbs[i] = alloc_urb(usb);
646 ZD_ASSERT(!irqs_disabled());
647 spin_lock_irq(&rx->lock);
649 spin_unlock_irq(&rx->lock);
654 rx->urbs_count = URBS_COUNT;
655 spin_unlock_irq(&rx->lock);
657 for (i = 0; i < URBS_COUNT; i++) {
658 r = usb_submit_urb(urbs[i], GFP_KERNEL);
665 for (i = 0; i < URBS_COUNT; i++) {
666 usb_kill_urb(urbs[i]);
668 spin_lock_irq(&rx->lock);
671 spin_unlock_irq(&rx->lock);
674 for (i = 0; i < URBS_COUNT; i++)
680 void zd_usb_disable_rx(struct zd_usb *usb)
686 struct zd_usb_rx *rx = &usb->rx;
688 spin_lock_irqsave(&rx->lock, flags);
690 count = rx->urbs_count;
691 spin_unlock_irqrestore(&rx->lock, flags);
695 for (i = 0; i < count; i++) {
696 usb_kill_urb(urbs[i]);
701 spin_lock_irqsave(&rx->lock, flags);
704 spin_unlock_irqrestore(&rx->lock, flags);
707 static void tx_urb_complete(struct urb *urb)
711 switch (urb->status) {
720 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
723 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
727 usb_buffer_free(urb->dev, urb->transfer_buffer_length,
728 urb->transfer_buffer, urb->transfer_dma);
732 r = usb_submit_urb(urb, GFP_ATOMIC);
734 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
739 /* Puts the frame on the USB endpoint. It doesn't wait for
740 * completion. The frame must contain the control set.
742 int zd_usb_tx(struct zd_usb *usb, const u8 *frame, unsigned int length)
745 struct usb_device *udev = zd_usb_to_usbdev(usb);
749 urb = usb_alloc_urb(0, GFP_ATOMIC);
755 buffer = usb_buffer_alloc(zd_usb_to_usbdev(usb), length, GFP_ATOMIC,
761 memcpy(buffer, frame, length);
763 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
764 buffer, length, tx_urb_complete, NULL);
765 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
767 r = usb_submit_urb(urb, GFP_ATOMIC);
772 usb_buffer_free(zd_usb_to_usbdev(usb), length, buffer,
780 static inline void init_usb_interrupt(struct zd_usb *usb)
782 struct zd_usb_interrupt *intr = &usb->intr;
784 spin_lock_init(&intr->lock);
785 intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
786 init_completion(&intr->read_regs.completion);
787 intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
790 static inline void init_usb_rx(struct zd_usb *usb)
792 struct zd_usb_rx *rx = &usb->rx;
793 spin_lock_init(&rx->lock);
794 if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
795 rx->usb_packet_size = 512;
797 rx->usb_packet_size = 64;
799 ZD_ASSERT(rx->fragment_length == 0);
802 static inline void init_usb_tx(struct zd_usb *usb)
804 /* FIXME: at this point we will allocate a fixed number of urb's for
805 * use in a cyclic scheme */
808 void zd_usb_init(struct zd_usb *usb, struct net_device *netdev,
809 struct usb_interface *intf)
811 memset(usb, 0, sizeof(*usb));
812 usb->intf = usb_get_intf(intf);
813 usb_set_intfdata(usb->intf, netdev);
814 init_usb_interrupt(usb);
819 void zd_usb_clear(struct zd_usb *usb)
821 usb_set_intfdata(usb->intf, NULL);
822 usb_put_intf(usb->intf);
823 ZD_MEMCLEAR(usb, sizeof(*usb));
824 /* FIXME: usb_interrupt, usb_tx, usb_rx? */
827 static const char *speed(enum usb_device_speed speed)
837 return "unknown speed";
841 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
843 return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
844 le16_to_cpu(udev->descriptor.idVendor),
845 le16_to_cpu(udev->descriptor.idProduct),
850 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
852 struct usb_device *udev = interface_to_usbdev(usb->intf);
853 return scnprint_id(udev, buffer, size);
857 static void print_id(struct usb_device *udev)
861 scnprint_id(udev, buffer, sizeof(buffer));
862 buffer[sizeof(buffer)-1] = 0;
863 dev_dbg_f(&udev->dev, "%s\n", buffer);
866 #define print_id(udev) do { } while (0)
869 static int eject_installer(struct usb_interface *intf)
871 struct usb_device *udev = interface_to_usbdev(intf);
872 struct usb_host_interface *iface_desc = &intf->altsetting[0];
873 struct usb_endpoint_descriptor *endpoint;
878 /* Find bulk out endpoint */
879 endpoint = &iface_desc->endpoint[1].desc;
880 if ((endpoint->bEndpointAddress & USB_TYPE_MASK) == USB_DIR_OUT &&
881 (endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
882 USB_ENDPOINT_XFER_BULK) {
883 bulk_out_ep = endpoint->bEndpointAddress;
886 "zd1211rw: Could not find bulk out endpoint\n");
890 cmd = kzalloc(31, GFP_KERNEL);
894 /* USB bulk command block */
895 cmd[0] = 0x55; /* bulk command signature */
896 cmd[1] = 0x53; /* bulk command signature */
897 cmd[2] = 0x42; /* bulk command signature */
898 cmd[3] = 0x43; /* bulk command signature */
899 cmd[14] = 6; /* command length */
901 cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
902 cmd[19] = 0x2; /* eject disc */
904 dev_info(&udev->dev, "Ejecting virtual installer media...\n");
905 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
906 cmd, 31, NULL, 2000);
911 /* At this point, the device disconnects and reconnects with the real
914 usb_set_intfdata(intf, NULL);
918 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
921 struct usb_device *udev = interface_to_usbdev(intf);
922 struct net_device *netdev = NULL;
926 if (id->driver_info & DEVICE_INSTALLER)
927 return eject_installer(intf);
929 switch (udev->speed) {
935 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
940 usb_reset_device(interface_to_usbdev(intf));
942 netdev = zd_netdev_alloc(intf);
943 if (netdev == NULL) {
948 r = upload_firmware(udev, id->driver_info);
951 "couldn't load firmware. Error number %d\n", r);
955 r = usb_reset_configuration(udev);
957 dev_dbg_f(&intf->dev,
958 "couldn't reset configuration. Error number %d\n", r);
962 /* At this point the interrupt endpoint is not generally enabled. We
963 * save the USB bandwidth until the network device is opened. But
964 * notify that the initialization of the MAC will require the
965 * interrupts to be temporary enabled.
967 r = zd_mac_init_hw(zd_netdev_mac(netdev), id->driver_info);
969 dev_dbg_f(&intf->dev,
970 "couldn't initialize mac. Error number %d\n", r);
974 r = register_netdev(netdev);
976 dev_dbg_f(&intf->dev,
977 "couldn't register netdev. Error number %d\n", r);
981 dev_dbg_f(&intf->dev, "successful\n");
982 dev_info(&intf->dev,"%s\n", netdev->name);
985 usb_reset_device(interface_to_usbdev(intf));
986 zd_netdev_free(netdev);
990 static void disconnect(struct usb_interface *intf)
992 struct net_device *netdev = zd_intf_to_netdev(intf);
993 struct zd_mac *mac = zd_netdev_mac(netdev);
994 struct zd_usb *usb = &mac->chip.usb;
996 /* Either something really bad happened, or we're just dealing with
997 * a DEVICE_INSTALLER. */
1001 dev_dbg_f(zd_usb_dev(usb), "\n");
1003 zd_netdev_disconnect(netdev);
1005 /* Just in case something has gone wrong! */
1006 zd_usb_disable_rx(usb);
1007 zd_usb_disable_int(usb);
1009 /* If the disconnect has been caused by a removal of the
1010 * driver module, the reset allows reloading of the driver. If the
1011 * reset will not be executed here, the upload of the firmware in the
1012 * probe function caused by the reloading of the driver will fail.
1014 usb_reset_device(interface_to_usbdev(intf));
1016 zd_netdev_free(netdev);
1017 dev_dbg(&intf->dev, "disconnected\n");
1020 static struct usb_driver driver = {
1022 .id_table = usb_ids,
1024 .disconnect = disconnect,
1027 struct workqueue_struct *zd_workqueue;
1029 static int __init usb_init(void)
1033 pr_debug("%s usb_init()\n", driver.name);
1035 zd_workqueue = create_singlethread_workqueue(driver.name);
1036 if (zd_workqueue == NULL) {
1037 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1041 r = usb_register(&driver);
1043 destroy_workqueue(zd_workqueue);
1044 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1049 pr_debug("%s initialized\n", driver.name);
1053 static void __exit usb_exit(void)
1055 pr_debug("%s usb_exit()\n", driver.name);
1056 usb_deregister(&driver);
1057 destroy_workqueue(zd_workqueue);
1060 module_init(usb_init);
1061 module_exit(usb_exit);
1063 static int usb_int_regs_length(unsigned int count)
1065 return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1068 static void prepare_read_regs_int(struct zd_usb *usb)
1070 struct zd_usb_interrupt *intr = &usb->intr;
1072 spin_lock_irq(&intr->lock);
1073 intr->read_regs_enabled = 1;
1074 INIT_COMPLETION(intr->read_regs.completion);
1075 spin_unlock_irq(&intr->lock);
1078 static void disable_read_regs_int(struct zd_usb *usb)
1080 struct zd_usb_interrupt *intr = &usb->intr;
1082 spin_lock_irq(&intr->lock);
1083 intr->read_regs_enabled = 0;
1084 spin_unlock_irq(&intr->lock);
1087 static int get_results(struct zd_usb *usb, u16 *values,
1088 struct usb_req_read_regs *req, unsigned int count)
1092 struct zd_usb_interrupt *intr = &usb->intr;
1093 struct read_regs_int *rr = &intr->read_regs;
1094 struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1096 spin_lock_irq(&intr->lock);
1099 /* The created block size seems to be larger than expected.
1100 * However results appear to be correct.
1102 if (rr->length < usb_int_regs_length(count)) {
1103 dev_dbg_f(zd_usb_dev(usb),
1104 "error: actual length %d less than expected %d\n",
1105 rr->length, usb_int_regs_length(count));
1108 if (rr->length > sizeof(rr->buffer)) {
1109 dev_dbg_f(zd_usb_dev(usb),
1110 "error: actual length %d exceeds buffer size %zu\n",
1111 rr->length, sizeof(rr->buffer));
1115 for (i = 0; i < count; i++) {
1116 struct reg_data *rd = ®s->regs[i];
1117 if (rd->addr != req->addr[i]) {
1118 dev_dbg_f(zd_usb_dev(usb),
1119 "rd[%d] addr %#06hx expected %#06hx\n", i,
1120 le16_to_cpu(rd->addr),
1121 le16_to_cpu(req->addr[i]));
1124 values[i] = le16_to_cpu(rd->value);
1129 spin_unlock_irq(&intr->lock);
1133 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1134 const zd_addr_t *addresses, unsigned int count)
1137 int i, req_len, actual_req_len;
1138 struct usb_device *udev;
1139 struct usb_req_read_regs *req = NULL;
1140 unsigned long timeout;
1143 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1146 if (count > USB_MAX_IOREAD16_COUNT) {
1147 dev_dbg_f(zd_usb_dev(usb),
1148 "error: count %u exceeds possible max %u\n",
1149 count, USB_MAX_IOREAD16_COUNT);
1153 dev_dbg_f(zd_usb_dev(usb),
1154 "error: io in atomic context not supported\n");
1155 return -EWOULDBLOCK;
1157 if (!usb_int_enabled(usb)) {
1158 dev_dbg_f(zd_usb_dev(usb),
1159 "error: usb interrupt not enabled\n");
1160 return -EWOULDBLOCK;
1163 req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1164 req = kmalloc(req_len, GFP_KERNEL);
1167 req->id = cpu_to_le16(USB_REQ_READ_REGS);
1168 for (i = 0; i < count; i++)
1169 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1171 udev = zd_usb_to_usbdev(usb);
1172 prepare_read_regs_int(usb);
1173 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1174 req, req_len, &actual_req_len, 1000 /* ms */);
1176 dev_dbg_f(zd_usb_dev(usb),
1177 "error in usb_bulk_msg(). Error number %d\n", r);
1180 if (req_len != actual_req_len) {
1181 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1182 " req_len %d != actual_req_len %d\n",
1183 req_len, actual_req_len);
1188 timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1189 msecs_to_jiffies(1000));
1191 disable_read_regs_int(usb);
1192 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1197 r = get_results(usb, values, req, count);
1203 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1207 struct usb_device *udev;
1208 struct usb_req_write_regs *req = NULL;
1209 int i, req_len, actual_req_len;
1213 if (count > USB_MAX_IOWRITE16_COUNT) {
1214 dev_dbg_f(zd_usb_dev(usb),
1215 "error: count %u exceeds possible max %u\n",
1216 count, USB_MAX_IOWRITE16_COUNT);
1220 dev_dbg_f(zd_usb_dev(usb),
1221 "error: io in atomic context not supported\n");
1222 return -EWOULDBLOCK;
1225 req_len = sizeof(struct usb_req_write_regs) +
1226 count * sizeof(struct reg_data);
1227 req = kmalloc(req_len, GFP_KERNEL);
1231 req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1232 for (i = 0; i < count; i++) {
1233 struct reg_data *rw = &req->reg_writes[i];
1234 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1235 rw->value = cpu_to_le16(ioreqs[i].value);
1238 udev = zd_usb_to_usbdev(usb);
1239 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1240 req, req_len, &actual_req_len, 1000 /* ms */);
1242 dev_dbg_f(zd_usb_dev(usb),
1243 "error in usb_bulk_msg(). Error number %d\n", r);
1246 if (req_len != actual_req_len) {
1247 dev_dbg_f(zd_usb_dev(usb),
1248 "error in usb_bulk_msg()"
1249 " req_len %d != actual_req_len %d\n",
1250 req_len, actual_req_len);
1255 /* FALL-THROUGH with r == 0 */
1261 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1264 struct usb_device *udev;
1265 struct usb_req_rfwrite *req = NULL;
1266 int i, req_len, actual_req_len;
1267 u16 bit_value_template;
1270 dev_dbg_f(zd_usb_dev(usb),
1271 "error: io in atomic context not supported\n");
1272 return -EWOULDBLOCK;
1274 if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1275 dev_dbg_f(zd_usb_dev(usb),
1276 "error: bits %d are smaller than"
1277 " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1278 bits, USB_MIN_RFWRITE_BIT_COUNT);
1281 if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1282 dev_dbg_f(zd_usb_dev(usb),
1283 "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1284 bits, USB_MAX_RFWRITE_BIT_COUNT);
1288 if (value & (~0UL << bits)) {
1289 dev_dbg_f(zd_usb_dev(usb),
1290 "error: value %#09x has bits >= %d set\n",
1296 dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1298 r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1300 dev_dbg_f(zd_usb_dev(usb),
1301 "error %d: Couldn't read CR203\n", r);
1304 bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1306 req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1307 req = kmalloc(req_len, GFP_KERNEL);
1311 req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1312 /* 1: 3683a, but not used in ZYDAS driver */
1313 req->value = cpu_to_le16(2);
1314 req->bits = cpu_to_le16(bits);
1316 for (i = 0; i < bits; i++) {
1317 u16 bv = bit_value_template;
1318 if (value & (1 << (bits-1-i)))
1320 req->bit_values[i] = cpu_to_le16(bv);
1323 udev = zd_usb_to_usbdev(usb);
1324 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1325 req, req_len, &actual_req_len, 1000 /* ms */);
1327 dev_dbg_f(zd_usb_dev(usb),
1328 "error in usb_bulk_msg(). Error number %d\n", r);
1331 if (req_len != actual_req_len) {
1332 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1333 " req_len %d != actual_req_len %d\n",
1334 req_len, actual_req_len);
1339 /* FALL-THROUGH with r == 0 */