ath9k: Trim struct ath_softc
[linux-2.6] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  *
12  * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13  * Copyright (c) 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through platform_device.  Structures which
29  *  define the configuration needed by the board are defined in a
30  *  board structure in arch/ppc/platforms (though I do not
31  *  discount the possibility that other architectures could one
32  *  day be supported.
33  *
34  *  The Gianfar Ethernet Controller uses a ring of buffer
35  *  descriptors.  The beginning is indicated by a register
36  *  pointing to the physical address of the start of the ring.
37  *  The end is determined by a "wrap" bit being set in the
38  *  last descriptor of the ring.
39  *
40  *  When a packet is received, the RXF bit in the
41  *  IEVENT register is set, triggering an interrupt when the
42  *  corresponding bit in the IMASK register is also set (if
43  *  interrupt coalescing is active, then the interrupt may not
44  *  happen immediately, but will wait until either a set number
45  *  of frames or amount of time have passed).  In NAPI, the
46  *  interrupt handler will signal there is work to be done, and
47  *  exit. This method will start at the last known empty
48  *  descriptor, and process every subsequent descriptor until there
49  *  are none left with data (NAPI will stop after a set number of
50  *  packets to give time to other tasks, but will eventually
51  *  process all the packets).  The data arrives inside a
52  *  pre-allocated skb, and so after the skb is passed up to the
53  *  stack, a new skb must be allocated, and the address field in
54  *  the buffer descriptor must be updated to indicate this new
55  *  skb.
56  *
57  *  When the kernel requests that a packet be transmitted, the
58  *  driver starts where it left off last time, and points the
59  *  descriptor at the buffer which was passed in.  The driver
60  *  then informs the DMA engine that there are packets ready to
61  *  be transmitted.  Once the controller is finished transmitting
62  *  the packet, an interrupt may be triggered (under the same
63  *  conditions as for reception, but depending on the TXF bit).
64  *  The driver then cleans up the buffer.
65  */
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/platform_device.h>
82 #include <linux/ip.h>
83 #include <linux/tcp.h>
84 #include <linux/udp.h>
85 #include <linux/in.h>
86
87 #include <asm/io.h>
88 #include <asm/irq.h>
89 #include <asm/uaccess.h>
90 #include <linux/module.h>
91 #include <linux/dma-mapping.h>
92 #include <linux/crc32.h>
93 #include <linux/mii.h>
94 #include <linux/phy.h>
95
96 #include "gianfar.h"
97 #include "gianfar_mii.h"
98
99 #define TX_TIMEOUT      (1*HZ)
100 #undef BRIEF_GFAR_ERRORS
101 #undef VERBOSE_GFAR_ERRORS
102
103 const char gfar_driver_name[] = "Gianfar Ethernet";
104 const char gfar_driver_version[] = "1.3";
105
106 static int gfar_enet_open(struct net_device *dev);
107 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
108 static void gfar_timeout(struct net_device *dev);
109 static int gfar_close(struct net_device *dev);
110 struct sk_buff *gfar_new_skb(struct net_device *dev);
111 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
112                 struct sk_buff *skb);
113 static int gfar_set_mac_address(struct net_device *dev);
114 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
115 static irqreturn_t gfar_error(int irq, void *dev_id);
116 static irqreturn_t gfar_transmit(int irq, void *dev_id);
117 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
118 static void adjust_link(struct net_device *dev);
119 static void init_registers(struct net_device *dev);
120 static int init_phy(struct net_device *dev);
121 static int gfar_probe(struct platform_device *pdev);
122 static int gfar_remove(struct platform_device *pdev);
123 static void free_skb_resources(struct gfar_private *priv);
124 static void gfar_set_multi(struct net_device *dev);
125 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
126 static void gfar_configure_serdes(struct net_device *dev);
127 static int gfar_poll(struct napi_struct *napi, int budget);
128 #ifdef CONFIG_NET_POLL_CONTROLLER
129 static void gfar_netpoll(struct net_device *dev);
130 #endif
131 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
132 static int gfar_clean_tx_ring(struct net_device *dev);
133 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
134 static void gfar_vlan_rx_register(struct net_device *netdev,
135                                 struct vlan_group *grp);
136 void gfar_halt(struct net_device *dev);
137 static void gfar_halt_nodisable(struct net_device *dev);
138 void gfar_start(struct net_device *dev);
139 static void gfar_clear_exact_match(struct net_device *dev);
140 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
141
142 extern const struct ethtool_ops gfar_ethtool_ops;
143
144 MODULE_AUTHOR("Freescale Semiconductor, Inc");
145 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
146 MODULE_LICENSE("GPL");
147
148 /* Returns 1 if incoming frames use an FCB */
149 static inline int gfar_uses_fcb(struct gfar_private *priv)
150 {
151         return (priv->vlan_enable || priv->rx_csum_enable);
152 }
153
154 /* Set up the ethernet device structure, private data,
155  * and anything else we need before we start */
156 static int gfar_probe(struct platform_device *pdev)
157 {
158         u32 tempval;
159         struct net_device *dev = NULL;
160         struct gfar_private *priv = NULL;
161         struct gianfar_platform_data *einfo;
162         struct resource *r;
163         int err = 0;
164         DECLARE_MAC_BUF(mac);
165
166         einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
167
168         if (NULL == einfo) {
169                 printk(KERN_ERR "gfar %d: Missing additional data!\n",
170                        pdev->id);
171
172                 return -ENODEV;
173         }
174
175         /* Create an ethernet device instance */
176         dev = alloc_etherdev(sizeof (*priv));
177
178         if (NULL == dev)
179                 return -ENOMEM;
180
181         priv = netdev_priv(dev);
182         priv->dev = dev;
183
184         /* Set the info in the priv to the current info */
185         priv->einfo = einfo;
186
187         /* fill out IRQ fields */
188         if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
189                 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
190                 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
191                 priv->interruptError = platform_get_irq_byname(pdev, "error");
192                 if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0)
193                         goto regs_fail;
194         } else {
195                 priv->interruptTransmit = platform_get_irq(pdev, 0);
196                 if (priv->interruptTransmit < 0)
197                         goto regs_fail;
198         }
199
200         /* get a pointer to the register memory */
201         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
202         priv->regs = ioremap(r->start, sizeof (struct gfar));
203
204         if (NULL == priv->regs) {
205                 err = -ENOMEM;
206                 goto regs_fail;
207         }
208
209         spin_lock_init(&priv->txlock);
210         spin_lock_init(&priv->rxlock);
211         spin_lock_init(&priv->bflock);
212
213         platform_set_drvdata(pdev, dev);
214
215         /* Stop the DMA engine now, in case it was running before */
216         /* (The firmware could have used it, and left it running). */
217         /* To do this, we write Graceful Receive Stop and Graceful */
218         /* Transmit Stop, and then wait until the corresponding bits */
219         /* in IEVENT indicate the stops have completed. */
220         tempval = gfar_read(&priv->regs->dmactrl);
221         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
222         gfar_write(&priv->regs->dmactrl, tempval);
223
224         tempval = gfar_read(&priv->regs->dmactrl);
225         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
226         gfar_write(&priv->regs->dmactrl, tempval);
227
228         while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
229                 cpu_relax();
230
231         /* Reset MAC layer */
232         gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
233
234         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
235         gfar_write(&priv->regs->maccfg1, tempval);
236
237         /* Initialize MACCFG2. */
238         gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
239
240         /* Initialize ECNTRL */
241         gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
242
243         /* Copy the station address into the dev structure, */
244         memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
245
246         /* Set the dev->base_addr to the gfar reg region */
247         dev->base_addr = (unsigned long) (priv->regs);
248
249         SET_NETDEV_DEV(dev, &pdev->dev);
250
251         /* Fill in the dev structure */
252         dev->open = gfar_enet_open;
253         dev->hard_start_xmit = gfar_start_xmit;
254         dev->tx_timeout = gfar_timeout;
255         dev->watchdog_timeo = TX_TIMEOUT;
256         netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
257 #ifdef CONFIG_NET_POLL_CONTROLLER
258         dev->poll_controller = gfar_netpoll;
259 #endif
260         dev->stop = gfar_close;
261         dev->change_mtu = gfar_change_mtu;
262         dev->mtu = 1500;
263         dev->set_multicast_list = gfar_set_multi;
264
265         dev->ethtool_ops = &gfar_ethtool_ops;
266
267         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
268                 priv->rx_csum_enable = 1;
269                 dev->features |= NETIF_F_IP_CSUM;
270         } else
271                 priv->rx_csum_enable = 0;
272
273         priv->vlgrp = NULL;
274
275         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
276                 dev->vlan_rx_register = gfar_vlan_rx_register;
277
278                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
279
280                 priv->vlan_enable = 1;
281         }
282
283         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
284                 priv->extended_hash = 1;
285                 priv->hash_width = 9;
286
287                 priv->hash_regs[0] = &priv->regs->igaddr0;
288                 priv->hash_regs[1] = &priv->regs->igaddr1;
289                 priv->hash_regs[2] = &priv->regs->igaddr2;
290                 priv->hash_regs[3] = &priv->regs->igaddr3;
291                 priv->hash_regs[4] = &priv->regs->igaddr4;
292                 priv->hash_regs[5] = &priv->regs->igaddr5;
293                 priv->hash_regs[6] = &priv->regs->igaddr6;
294                 priv->hash_regs[7] = &priv->regs->igaddr7;
295                 priv->hash_regs[8] = &priv->regs->gaddr0;
296                 priv->hash_regs[9] = &priv->regs->gaddr1;
297                 priv->hash_regs[10] = &priv->regs->gaddr2;
298                 priv->hash_regs[11] = &priv->regs->gaddr3;
299                 priv->hash_regs[12] = &priv->regs->gaddr4;
300                 priv->hash_regs[13] = &priv->regs->gaddr5;
301                 priv->hash_regs[14] = &priv->regs->gaddr6;
302                 priv->hash_regs[15] = &priv->regs->gaddr7;
303
304         } else {
305                 priv->extended_hash = 0;
306                 priv->hash_width = 8;
307
308                 priv->hash_regs[0] = &priv->regs->gaddr0;
309                 priv->hash_regs[1] = &priv->regs->gaddr1;
310                 priv->hash_regs[2] = &priv->regs->gaddr2;
311                 priv->hash_regs[3] = &priv->regs->gaddr3;
312                 priv->hash_regs[4] = &priv->regs->gaddr4;
313                 priv->hash_regs[5] = &priv->regs->gaddr5;
314                 priv->hash_regs[6] = &priv->regs->gaddr6;
315                 priv->hash_regs[7] = &priv->regs->gaddr7;
316         }
317
318         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
319                 priv->padding = DEFAULT_PADDING;
320         else
321                 priv->padding = 0;
322
323         if (dev->features & NETIF_F_IP_CSUM)
324                 dev->hard_header_len += GMAC_FCB_LEN;
325
326         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
327         priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
328         priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
329
330         priv->txcoalescing = DEFAULT_TX_COALESCE;
331         priv->txcount = DEFAULT_TXCOUNT;
332         priv->txtime = DEFAULT_TXTIME;
333         priv->rxcoalescing = DEFAULT_RX_COALESCE;
334         priv->rxcount = DEFAULT_RXCOUNT;
335         priv->rxtime = DEFAULT_RXTIME;
336
337         /* Enable most messages by default */
338         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
339
340         err = register_netdev(dev);
341
342         if (err) {
343                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
344                                 dev->name);
345                 goto register_fail;
346         }
347
348         /* Create all the sysfs files */
349         gfar_init_sysfs(dev);
350
351         /* Print out the device info */
352         printk(KERN_INFO DEVICE_NAME "%s\n",
353                dev->name, print_mac(mac, dev->dev_addr));
354
355         /* Even more device info helps when determining which kernel */
356         /* provided which set of benchmarks. */
357         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
358         printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
359                dev->name, priv->rx_ring_size, priv->tx_ring_size);
360
361         return 0;
362
363 register_fail:
364         iounmap(priv->regs);
365 regs_fail:
366         free_netdev(dev);
367         return err;
368 }
369
370 static int gfar_remove(struct platform_device *pdev)
371 {
372         struct net_device *dev = platform_get_drvdata(pdev);
373         struct gfar_private *priv = netdev_priv(dev);
374
375         platform_set_drvdata(pdev, NULL);
376
377         iounmap(priv->regs);
378         free_netdev(dev);
379
380         return 0;
381 }
382
383 #ifdef CONFIG_PM
384 static int gfar_suspend(struct platform_device *pdev, pm_message_t state)
385 {
386         struct net_device *dev = platform_get_drvdata(pdev);
387         struct gfar_private *priv = netdev_priv(dev);
388         unsigned long flags;
389         u32 tempval;
390
391         int magic_packet = priv->wol_en &&
392                 (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
393
394         netif_device_detach(dev);
395
396         if (netif_running(dev)) {
397                 spin_lock_irqsave(&priv->txlock, flags);
398                 spin_lock(&priv->rxlock);
399
400                 gfar_halt_nodisable(dev);
401
402                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
403                 tempval = gfar_read(&priv->regs->maccfg1);
404
405                 tempval &= ~MACCFG1_TX_EN;
406
407                 if (!magic_packet)
408                         tempval &= ~MACCFG1_RX_EN;
409
410                 gfar_write(&priv->regs->maccfg1, tempval);
411
412                 spin_unlock(&priv->rxlock);
413                 spin_unlock_irqrestore(&priv->txlock, flags);
414
415                 napi_disable(&priv->napi);
416
417                 if (magic_packet) {
418                         /* Enable interrupt on Magic Packet */
419                         gfar_write(&priv->regs->imask, IMASK_MAG);
420
421                         /* Enable Magic Packet mode */
422                         tempval = gfar_read(&priv->regs->maccfg2);
423                         tempval |= MACCFG2_MPEN;
424                         gfar_write(&priv->regs->maccfg2, tempval);
425                 } else {
426                         phy_stop(priv->phydev);
427                 }
428         }
429
430         return 0;
431 }
432
433 static int gfar_resume(struct platform_device *pdev)
434 {
435         struct net_device *dev = platform_get_drvdata(pdev);
436         struct gfar_private *priv = netdev_priv(dev);
437         unsigned long flags;
438         u32 tempval;
439         int magic_packet = priv->wol_en &&
440                 (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
441
442         if (!netif_running(dev)) {
443                 netif_device_attach(dev);
444                 return 0;
445         }
446
447         if (!magic_packet && priv->phydev)
448                 phy_start(priv->phydev);
449
450         /* Disable Magic Packet mode, in case something
451          * else woke us up.
452          */
453
454         spin_lock_irqsave(&priv->txlock, flags);
455         spin_lock(&priv->rxlock);
456
457         tempval = gfar_read(&priv->regs->maccfg2);
458         tempval &= ~MACCFG2_MPEN;
459         gfar_write(&priv->regs->maccfg2, tempval);
460
461         gfar_start(dev);
462
463         spin_unlock(&priv->rxlock);
464         spin_unlock_irqrestore(&priv->txlock, flags);
465
466         netif_device_attach(dev);
467
468         napi_enable(&priv->napi);
469
470         return 0;
471 }
472 #else
473 #define gfar_suspend NULL
474 #define gfar_resume NULL
475 #endif
476
477 /* Reads the controller's registers to determine what interface
478  * connects it to the PHY.
479  */
480 static phy_interface_t gfar_get_interface(struct net_device *dev)
481 {
482         struct gfar_private *priv = netdev_priv(dev);
483         u32 ecntrl = gfar_read(&priv->regs->ecntrl);
484
485         if (ecntrl & ECNTRL_SGMII_MODE)
486                 return PHY_INTERFACE_MODE_SGMII;
487
488         if (ecntrl & ECNTRL_TBI_MODE) {
489                 if (ecntrl & ECNTRL_REDUCED_MODE)
490                         return PHY_INTERFACE_MODE_RTBI;
491                 else
492                         return PHY_INTERFACE_MODE_TBI;
493         }
494
495         if (ecntrl & ECNTRL_REDUCED_MODE) {
496                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
497                         return PHY_INTERFACE_MODE_RMII;
498                 else {
499                         phy_interface_t interface = priv->einfo->interface;
500
501                         /*
502                          * This isn't autodetected right now, so it must
503                          * be set by the device tree or platform code.
504                          */
505                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
506                                 return PHY_INTERFACE_MODE_RGMII_ID;
507
508                         return PHY_INTERFACE_MODE_RGMII;
509                 }
510         }
511
512         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
513                 return PHY_INTERFACE_MODE_GMII;
514
515         return PHY_INTERFACE_MODE_MII;
516 }
517
518
519 /* Initializes driver's PHY state, and attaches to the PHY.
520  * Returns 0 on success.
521  */
522 static int init_phy(struct net_device *dev)
523 {
524         struct gfar_private *priv = netdev_priv(dev);
525         uint gigabit_support =
526                 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
527                 SUPPORTED_1000baseT_Full : 0;
528         struct phy_device *phydev;
529         char phy_id[BUS_ID_SIZE];
530         phy_interface_t interface;
531
532         priv->oldlink = 0;
533         priv->oldspeed = 0;
534         priv->oldduplex = -1;
535
536         snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
537
538         interface = gfar_get_interface(dev);
539
540         phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface);
541
542         if (interface == PHY_INTERFACE_MODE_SGMII)
543                 gfar_configure_serdes(dev);
544
545         if (IS_ERR(phydev)) {
546                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
547                 return PTR_ERR(phydev);
548         }
549
550         /* Remove any features not supported by the controller */
551         phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
552         phydev->advertising = phydev->supported;
553
554         priv->phydev = phydev;
555
556         return 0;
557 }
558
559 /*
560  * Initialize TBI PHY interface for communicating with the
561  * SERDES lynx PHY on the chip.  We communicate with this PHY
562  * through the MDIO bus on each controller, treating it as a
563  * "normal" PHY at the address found in the TBIPA register.  We assume
564  * that the TBIPA register is valid.  Either the MDIO bus code will set
565  * it to a value that doesn't conflict with other PHYs on the bus, or the
566  * value doesn't matter, as there are no other PHYs on the bus.
567  */
568 static void gfar_configure_serdes(struct net_device *dev)
569 {
570         struct gfar_private *priv = netdev_priv(dev);
571         struct gfar_mii __iomem *regs =
572                         (void __iomem *)&priv->regs->gfar_mii_regs;
573         int tbipa = gfar_read(&priv->regs->tbipa);
574
575         /* Single clk mode, mii mode off(for serdes communication) */
576         gfar_local_mdio_write(regs, tbipa, MII_TBICON, TBICON_CLK_SELECT);
577
578         gfar_local_mdio_write(regs, tbipa, MII_ADVERTISE,
579                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
580                         ADVERTISE_1000XPSE_ASYM);
581
582         gfar_local_mdio_write(regs, tbipa, MII_BMCR, BMCR_ANENABLE |
583                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
584 }
585
586 static void init_registers(struct net_device *dev)
587 {
588         struct gfar_private *priv = netdev_priv(dev);
589
590         /* Clear IEVENT */
591         gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
592
593         /* Initialize IMASK */
594         gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
595
596         /* Init hash registers to zero */
597         gfar_write(&priv->regs->igaddr0, 0);
598         gfar_write(&priv->regs->igaddr1, 0);
599         gfar_write(&priv->regs->igaddr2, 0);
600         gfar_write(&priv->regs->igaddr3, 0);
601         gfar_write(&priv->regs->igaddr4, 0);
602         gfar_write(&priv->regs->igaddr5, 0);
603         gfar_write(&priv->regs->igaddr6, 0);
604         gfar_write(&priv->regs->igaddr7, 0);
605
606         gfar_write(&priv->regs->gaddr0, 0);
607         gfar_write(&priv->regs->gaddr1, 0);
608         gfar_write(&priv->regs->gaddr2, 0);
609         gfar_write(&priv->regs->gaddr3, 0);
610         gfar_write(&priv->regs->gaddr4, 0);
611         gfar_write(&priv->regs->gaddr5, 0);
612         gfar_write(&priv->regs->gaddr6, 0);
613         gfar_write(&priv->regs->gaddr7, 0);
614
615         /* Zero out the rmon mib registers if it has them */
616         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
617                 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
618
619                 /* Mask off the CAM interrupts */
620                 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
621                 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
622         }
623
624         /* Initialize the max receive buffer length */
625         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
626
627         /* Initialize the Minimum Frame Length Register */
628         gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
629 }
630
631
632 /* Halt the receive and transmit queues */
633 static void gfar_halt_nodisable(struct net_device *dev)
634 {
635         struct gfar_private *priv = netdev_priv(dev);
636         struct gfar __iomem *regs = priv->regs;
637         u32 tempval;
638
639         /* Mask all interrupts */
640         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
641
642         /* Clear all interrupts */
643         gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
644
645         /* Stop the DMA, and wait for it to stop */
646         tempval = gfar_read(&priv->regs->dmactrl);
647         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
648             != (DMACTRL_GRS | DMACTRL_GTS)) {
649                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
650                 gfar_write(&priv->regs->dmactrl, tempval);
651
652                 while (!(gfar_read(&priv->regs->ievent) &
653                          (IEVENT_GRSC | IEVENT_GTSC)))
654                         cpu_relax();
655         }
656 }
657
658 /* Halt the receive and transmit queues */
659 void gfar_halt(struct net_device *dev)
660 {
661         struct gfar_private *priv = netdev_priv(dev);
662         struct gfar __iomem *regs = priv->regs;
663         u32 tempval;
664
665         gfar_halt_nodisable(dev);
666
667         /* Disable Rx and Tx */
668         tempval = gfar_read(&regs->maccfg1);
669         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
670         gfar_write(&regs->maccfg1, tempval);
671 }
672
673 void stop_gfar(struct net_device *dev)
674 {
675         struct gfar_private *priv = netdev_priv(dev);
676         struct gfar __iomem *regs = priv->regs;
677         unsigned long flags;
678
679         phy_stop(priv->phydev);
680
681         /* Lock it down */
682         spin_lock_irqsave(&priv->txlock, flags);
683         spin_lock(&priv->rxlock);
684
685         gfar_halt(dev);
686
687         spin_unlock(&priv->rxlock);
688         spin_unlock_irqrestore(&priv->txlock, flags);
689
690         /* Free the IRQs */
691         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
692                 free_irq(priv->interruptError, dev);
693                 free_irq(priv->interruptTransmit, dev);
694                 free_irq(priv->interruptReceive, dev);
695         } else {
696                 free_irq(priv->interruptTransmit, dev);
697         }
698
699         free_skb_resources(priv);
700
701         dma_free_coherent(&dev->dev,
702                         sizeof(struct txbd8)*priv->tx_ring_size
703                         + sizeof(struct rxbd8)*priv->rx_ring_size,
704                         priv->tx_bd_base,
705                         gfar_read(&regs->tbase0));
706 }
707
708 /* If there are any tx skbs or rx skbs still around, free them.
709  * Then free tx_skbuff and rx_skbuff */
710 static void free_skb_resources(struct gfar_private *priv)
711 {
712         struct rxbd8 *rxbdp;
713         struct txbd8 *txbdp;
714         int i;
715
716         /* Go through all the buffer descriptors and free their data buffers */
717         txbdp = priv->tx_bd_base;
718
719         for (i = 0; i < priv->tx_ring_size; i++) {
720
721                 if (priv->tx_skbuff[i]) {
722                         dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
723                                         txbdp->length,
724                                         DMA_TO_DEVICE);
725                         dev_kfree_skb_any(priv->tx_skbuff[i]);
726                         priv->tx_skbuff[i] = NULL;
727                 }
728
729                 txbdp++;
730         }
731
732         kfree(priv->tx_skbuff);
733
734         rxbdp = priv->rx_bd_base;
735
736         /* rx_skbuff is not guaranteed to be allocated, so only
737          * free it and its contents if it is allocated */
738         if(priv->rx_skbuff != NULL) {
739                 for (i = 0; i < priv->rx_ring_size; i++) {
740                         if (priv->rx_skbuff[i]) {
741                                 dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
742                                                 priv->rx_buffer_size,
743                                                 DMA_FROM_DEVICE);
744
745                                 dev_kfree_skb_any(priv->rx_skbuff[i]);
746                                 priv->rx_skbuff[i] = NULL;
747                         }
748
749                         rxbdp->status = 0;
750                         rxbdp->length = 0;
751                         rxbdp->bufPtr = 0;
752
753                         rxbdp++;
754                 }
755
756                 kfree(priv->rx_skbuff);
757         }
758 }
759
760 void gfar_start(struct net_device *dev)
761 {
762         struct gfar_private *priv = netdev_priv(dev);
763         struct gfar __iomem *regs = priv->regs;
764         u32 tempval;
765
766         /* Enable Rx and Tx in MACCFG1 */
767         tempval = gfar_read(&regs->maccfg1);
768         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
769         gfar_write(&regs->maccfg1, tempval);
770
771         /* Initialize DMACTRL to have WWR and WOP */
772         tempval = gfar_read(&priv->regs->dmactrl);
773         tempval |= DMACTRL_INIT_SETTINGS;
774         gfar_write(&priv->regs->dmactrl, tempval);
775
776         /* Make sure we aren't stopped */
777         tempval = gfar_read(&priv->regs->dmactrl);
778         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
779         gfar_write(&priv->regs->dmactrl, tempval);
780
781         /* Clear THLT/RHLT, so that the DMA starts polling now */
782         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
783         gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
784
785         /* Unmask the interrupts we look for */
786         gfar_write(&regs->imask, IMASK_DEFAULT);
787 }
788
789 /* Bring the controller up and running */
790 int startup_gfar(struct net_device *dev)
791 {
792         struct txbd8 *txbdp;
793         struct rxbd8 *rxbdp;
794         dma_addr_t addr = 0;
795         unsigned long vaddr;
796         int i;
797         struct gfar_private *priv = netdev_priv(dev);
798         struct gfar __iomem *regs = priv->regs;
799         int err = 0;
800         u32 rctrl = 0;
801         u32 attrs = 0;
802
803         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
804
805         /* Allocate memory for the buffer descriptors */
806         vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
807                         sizeof (struct txbd8) * priv->tx_ring_size +
808                         sizeof (struct rxbd8) * priv->rx_ring_size,
809                         &addr, GFP_KERNEL);
810
811         if (vaddr == 0) {
812                 if (netif_msg_ifup(priv))
813                         printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
814                                         dev->name);
815                 return -ENOMEM;
816         }
817
818         priv->tx_bd_base = (struct txbd8 *) vaddr;
819
820         /* enet DMA only understands physical addresses */
821         gfar_write(&regs->tbase0, addr);
822
823         /* Start the rx descriptor ring where the tx ring leaves off */
824         addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
825         vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
826         priv->rx_bd_base = (struct rxbd8 *) vaddr;
827         gfar_write(&regs->rbase0, addr);
828
829         /* Setup the skbuff rings */
830         priv->tx_skbuff =
831             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
832                                         priv->tx_ring_size, GFP_KERNEL);
833
834         if (NULL == priv->tx_skbuff) {
835                 if (netif_msg_ifup(priv))
836                         printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
837                                         dev->name);
838                 err = -ENOMEM;
839                 goto tx_skb_fail;
840         }
841
842         for (i = 0; i < priv->tx_ring_size; i++)
843                 priv->tx_skbuff[i] = NULL;
844
845         priv->rx_skbuff =
846             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
847                                         priv->rx_ring_size, GFP_KERNEL);
848
849         if (NULL == priv->rx_skbuff) {
850                 if (netif_msg_ifup(priv))
851                         printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
852                                         dev->name);
853                 err = -ENOMEM;
854                 goto rx_skb_fail;
855         }
856
857         for (i = 0; i < priv->rx_ring_size; i++)
858                 priv->rx_skbuff[i] = NULL;
859
860         /* Initialize some variables in our dev structure */
861         priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
862         priv->cur_rx = priv->rx_bd_base;
863         priv->skb_curtx = priv->skb_dirtytx = 0;
864         priv->skb_currx = 0;
865
866         /* Initialize Transmit Descriptor Ring */
867         txbdp = priv->tx_bd_base;
868         for (i = 0; i < priv->tx_ring_size; i++) {
869                 txbdp->status = 0;
870                 txbdp->length = 0;
871                 txbdp->bufPtr = 0;
872                 txbdp++;
873         }
874
875         /* Set the last descriptor in the ring to indicate wrap */
876         txbdp--;
877         txbdp->status |= TXBD_WRAP;
878
879         rxbdp = priv->rx_bd_base;
880         for (i = 0; i < priv->rx_ring_size; i++) {
881                 struct sk_buff *skb;
882
883                 skb = gfar_new_skb(dev);
884
885                 if (!skb) {
886                         printk(KERN_ERR "%s: Can't allocate RX buffers\n",
887                                         dev->name);
888
889                         goto err_rxalloc_fail;
890                 }
891
892                 priv->rx_skbuff[i] = skb;
893
894                 gfar_new_rxbdp(dev, rxbdp, skb);
895
896                 rxbdp++;
897         }
898
899         /* Set the last descriptor in the ring to wrap */
900         rxbdp--;
901         rxbdp->status |= RXBD_WRAP;
902
903         /* If the device has multiple interrupts, register for
904          * them.  Otherwise, only register for the one */
905         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
906                 /* Install our interrupt handlers for Error,
907                  * Transmit, and Receive */
908                 if (request_irq(priv->interruptError, gfar_error,
909                                 0, "enet_error", dev) < 0) {
910                         if (netif_msg_intr(priv))
911                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
912                                         dev->name, priv->interruptError);
913
914                         err = -1;
915                         goto err_irq_fail;
916                 }
917
918                 if (request_irq(priv->interruptTransmit, gfar_transmit,
919                                 0, "enet_tx", dev) < 0) {
920                         if (netif_msg_intr(priv))
921                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
922                                         dev->name, priv->interruptTransmit);
923
924                         err = -1;
925
926                         goto tx_irq_fail;
927                 }
928
929                 if (request_irq(priv->interruptReceive, gfar_receive,
930                                 0, "enet_rx", dev) < 0) {
931                         if (netif_msg_intr(priv))
932                                 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
933                                                 dev->name, priv->interruptReceive);
934
935                         err = -1;
936                         goto rx_irq_fail;
937                 }
938         } else {
939                 if (request_irq(priv->interruptTransmit, gfar_interrupt,
940                                 0, "gfar_interrupt", dev) < 0) {
941                         if (netif_msg_intr(priv))
942                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
943                                         dev->name, priv->interruptError);
944
945                         err = -1;
946                         goto err_irq_fail;
947                 }
948         }
949
950         phy_start(priv->phydev);
951
952         /* Configure the coalescing support */
953         if (priv->txcoalescing)
954                 gfar_write(&regs->txic,
955                            mk_ic_value(priv->txcount, priv->txtime));
956         else
957                 gfar_write(&regs->txic, 0);
958
959         if (priv->rxcoalescing)
960                 gfar_write(&regs->rxic,
961                            mk_ic_value(priv->rxcount, priv->rxtime));
962         else
963                 gfar_write(&regs->rxic, 0);
964
965         if (priv->rx_csum_enable)
966                 rctrl |= RCTRL_CHECKSUMMING;
967
968         if (priv->extended_hash) {
969                 rctrl |= RCTRL_EXTHASH;
970
971                 gfar_clear_exact_match(dev);
972                 rctrl |= RCTRL_EMEN;
973         }
974
975         if (priv->vlan_enable)
976                 rctrl |= RCTRL_VLAN;
977
978         if (priv->padding) {
979                 rctrl &= ~RCTRL_PAL_MASK;
980                 rctrl |= RCTRL_PADDING(priv->padding);
981         }
982
983         /* Init rctrl based on our settings */
984         gfar_write(&priv->regs->rctrl, rctrl);
985
986         if (dev->features & NETIF_F_IP_CSUM)
987                 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
988
989         /* Set the extraction length and index */
990         attrs = ATTRELI_EL(priv->rx_stash_size) |
991                 ATTRELI_EI(priv->rx_stash_index);
992
993         gfar_write(&priv->regs->attreli, attrs);
994
995         /* Start with defaults, and add stashing or locking
996          * depending on the approprate variables */
997         attrs = ATTR_INIT_SETTINGS;
998
999         if (priv->bd_stash_en)
1000                 attrs |= ATTR_BDSTASH;
1001
1002         if (priv->rx_stash_size != 0)
1003                 attrs |= ATTR_BUFSTASH;
1004
1005         gfar_write(&priv->regs->attr, attrs);
1006
1007         gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1008         gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1009         gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1010
1011         /* Start the controller */
1012         gfar_start(dev);
1013
1014         return 0;
1015
1016 rx_irq_fail:
1017         free_irq(priv->interruptTransmit, dev);
1018 tx_irq_fail:
1019         free_irq(priv->interruptError, dev);
1020 err_irq_fail:
1021 err_rxalloc_fail:
1022 rx_skb_fail:
1023         free_skb_resources(priv);
1024 tx_skb_fail:
1025         dma_free_coherent(&dev->dev,
1026                         sizeof(struct txbd8)*priv->tx_ring_size
1027                         + sizeof(struct rxbd8)*priv->rx_ring_size,
1028                         priv->tx_bd_base,
1029                         gfar_read(&regs->tbase0));
1030
1031         return err;
1032 }
1033
1034 /* Called when something needs to use the ethernet device */
1035 /* Returns 0 for success. */
1036 static int gfar_enet_open(struct net_device *dev)
1037 {
1038         struct gfar_private *priv = netdev_priv(dev);
1039         int err;
1040
1041         napi_enable(&priv->napi);
1042
1043         /* Initialize a bunch of registers */
1044         init_registers(dev);
1045
1046         gfar_set_mac_address(dev);
1047
1048         err = init_phy(dev);
1049
1050         if(err) {
1051                 napi_disable(&priv->napi);
1052                 return err;
1053         }
1054
1055         err = startup_gfar(dev);
1056         if (err) {
1057                 napi_disable(&priv->napi);
1058                 return err;
1059         }
1060
1061         netif_start_queue(dev);
1062
1063         return err;
1064 }
1065
1066 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
1067 {
1068         struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
1069
1070         memset(fcb, 0, GMAC_FCB_LEN);
1071
1072         return fcb;
1073 }
1074
1075 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1076 {
1077         u8 flags = 0;
1078
1079         /* If we're here, it's a IP packet with a TCP or UDP
1080          * payload.  We set it to checksum, using a pseudo-header
1081          * we provide
1082          */
1083         flags = TXFCB_DEFAULT;
1084
1085         /* Tell the controller what the protocol is */
1086         /* And provide the already calculated phcs */
1087         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1088                 flags |= TXFCB_UDP;
1089                 fcb->phcs = udp_hdr(skb)->check;
1090         } else
1091                 fcb->phcs = tcp_hdr(skb)->check;
1092
1093         /* l3os is the distance between the start of the
1094          * frame (skb->data) and the start of the IP hdr.
1095          * l4os is the distance between the start of the
1096          * l3 hdr and the l4 hdr */
1097         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1098         fcb->l4os = skb_network_header_len(skb);
1099
1100         fcb->flags = flags;
1101 }
1102
1103 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1104 {
1105         fcb->flags |= TXFCB_VLN;
1106         fcb->vlctl = vlan_tx_tag_get(skb);
1107 }
1108
1109 /* This is called by the kernel when a frame is ready for transmission. */
1110 /* It is pointed to by the dev->hard_start_xmit function pointer */
1111 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1112 {
1113         struct gfar_private *priv = netdev_priv(dev);
1114         struct txfcb *fcb = NULL;
1115         struct txbd8 *txbdp;
1116         u16 status;
1117         unsigned long flags;
1118
1119         /* Update transmit stats */
1120         dev->stats.tx_bytes += skb->len;
1121
1122         /* Lock priv now */
1123         spin_lock_irqsave(&priv->txlock, flags);
1124
1125         /* Point at the first free tx descriptor */
1126         txbdp = priv->cur_tx;
1127
1128         /* Clear all but the WRAP status flags */
1129         status = txbdp->status & TXBD_WRAP;
1130
1131         /* Set up checksumming */
1132         if (likely((dev->features & NETIF_F_IP_CSUM)
1133                         && (CHECKSUM_PARTIAL == skb->ip_summed))) {
1134                 fcb = gfar_add_fcb(skb, txbdp);
1135                 status |= TXBD_TOE;
1136                 gfar_tx_checksum(skb, fcb);
1137         }
1138
1139         if (priv->vlan_enable &&
1140                         unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
1141                 if (unlikely(NULL == fcb)) {
1142                         fcb = gfar_add_fcb(skb, txbdp);
1143                         status |= TXBD_TOE;
1144                 }
1145
1146                 gfar_tx_vlan(skb, fcb);
1147         }
1148
1149         /* Set buffer length and pointer */
1150         txbdp->length = skb->len;
1151         txbdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1152                         skb->len, DMA_TO_DEVICE);
1153
1154         /* Save the skb pointer so we can free it later */
1155         priv->tx_skbuff[priv->skb_curtx] = skb;
1156
1157         /* Update the current skb pointer (wrapping if this was the last) */
1158         priv->skb_curtx =
1159             (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1160
1161         /* Flag the BD as interrupt-causing */
1162         status |= TXBD_INTERRUPT;
1163
1164         /* Flag the BD as ready to go, last in frame, and  */
1165         /* in need of CRC */
1166         status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
1167
1168         dev->trans_start = jiffies;
1169
1170         /* The powerpc-specific eieio() is used, as wmb() has too strong
1171          * semantics (it requires synchronization between cacheable and
1172          * uncacheable mappings, which eieio doesn't provide and which we
1173          * don't need), thus requiring a more expensive sync instruction.  At
1174          * some point, the set of architecture-independent barrier functions
1175          * should be expanded to include weaker barriers.
1176          */
1177
1178         eieio();
1179         txbdp->status = status;
1180
1181         /* If this was the last BD in the ring, the next one */
1182         /* is at the beginning of the ring */
1183         if (txbdp->status & TXBD_WRAP)
1184                 txbdp = priv->tx_bd_base;
1185         else
1186                 txbdp++;
1187
1188         /* If the next BD still needs to be cleaned up, then the bds
1189            are full.  We need to tell the kernel to stop sending us stuff. */
1190         if (txbdp == priv->dirty_tx) {
1191                 netif_stop_queue(dev);
1192
1193                 dev->stats.tx_fifo_errors++;
1194         }
1195
1196         /* Update the current txbd to the next one */
1197         priv->cur_tx = txbdp;
1198
1199         /* Tell the DMA to go go go */
1200         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1201
1202         /* Unlock priv */
1203         spin_unlock_irqrestore(&priv->txlock, flags);
1204
1205         return 0;
1206 }
1207
1208 /* Stops the kernel queue, and halts the controller */
1209 static int gfar_close(struct net_device *dev)
1210 {
1211         struct gfar_private *priv = netdev_priv(dev);
1212
1213         napi_disable(&priv->napi);
1214
1215         stop_gfar(dev);
1216
1217         /* Disconnect from the PHY */
1218         phy_disconnect(priv->phydev);
1219         priv->phydev = NULL;
1220
1221         netif_stop_queue(dev);
1222
1223         return 0;
1224 }
1225
1226 /* Changes the mac address if the controller is not running. */
1227 static int gfar_set_mac_address(struct net_device *dev)
1228 {
1229         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1230
1231         return 0;
1232 }
1233
1234
1235 /* Enables and disables VLAN insertion/extraction */
1236 static void gfar_vlan_rx_register(struct net_device *dev,
1237                 struct vlan_group *grp)
1238 {
1239         struct gfar_private *priv = netdev_priv(dev);
1240         unsigned long flags;
1241         u32 tempval;
1242
1243         spin_lock_irqsave(&priv->rxlock, flags);
1244
1245         priv->vlgrp = grp;
1246
1247         if (grp) {
1248                 /* Enable VLAN tag insertion */
1249                 tempval = gfar_read(&priv->regs->tctrl);
1250                 tempval |= TCTRL_VLINS;
1251
1252                 gfar_write(&priv->regs->tctrl, tempval);
1253
1254                 /* Enable VLAN tag extraction */
1255                 tempval = gfar_read(&priv->regs->rctrl);
1256                 tempval |= RCTRL_VLEX;
1257                 gfar_write(&priv->regs->rctrl, tempval);
1258         } else {
1259                 /* Disable VLAN tag insertion */
1260                 tempval = gfar_read(&priv->regs->tctrl);
1261                 tempval &= ~TCTRL_VLINS;
1262                 gfar_write(&priv->regs->tctrl, tempval);
1263
1264                 /* Disable VLAN tag extraction */
1265                 tempval = gfar_read(&priv->regs->rctrl);
1266                 tempval &= ~RCTRL_VLEX;
1267                 gfar_write(&priv->regs->rctrl, tempval);
1268         }
1269
1270         spin_unlock_irqrestore(&priv->rxlock, flags);
1271 }
1272
1273 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1274 {
1275         int tempsize, tempval;
1276         struct gfar_private *priv = netdev_priv(dev);
1277         int oldsize = priv->rx_buffer_size;
1278         int frame_size = new_mtu + ETH_HLEN;
1279
1280         if (priv->vlan_enable)
1281                 frame_size += VLAN_HLEN;
1282
1283         if (gfar_uses_fcb(priv))
1284                 frame_size += GMAC_FCB_LEN;
1285
1286         frame_size += priv->padding;
1287
1288         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1289                 if (netif_msg_drv(priv))
1290                         printk(KERN_ERR "%s: Invalid MTU setting\n",
1291                                         dev->name);
1292                 return -EINVAL;
1293         }
1294
1295         tempsize =
1296             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1297             INCREMENTAL_BUFFER_SIZE;
1298
1299         /* Only stop and start the controller if it isn't already
1300          * stopped, and we changed something */
1301         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1302                 stop_gfar(dev);
1303
1304         priv->rx_buffer_size = tempsize;
1305
1306         dev->mtu = new_mtu;
1307
1308         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1309         gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1310
1311         /* If the mtu is larger than the max size for standard
1312          * ethernet frames (ie, a jumbo frame), then set maccfg2
1313          * to allow huge frames, and to check the length */
1314         tempval = gfar_read(&priv->regs->maccfg2);
1315
1316         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1317                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1318         else
1319                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1320
1321         gfar_write(&priv->regs->maccfg2, tempval);
1322
1323         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1324                 startup_gfar(dev);
1325
1326         return 0;
1327 }
1328
1329 /* gfar_timeout gets called when a packet has not been
1330  * transmitted after a set amount of time.
1331  * For now, assume that clearing out all the structures, and
1332  * starting over will fix the problem. */
1333 static void gfar_timeout(struct net_device *dev)
1334 {
1335         dev->stats.tx_errors++;
1336
1337         if (dev->flags & IFF_UP) {
1338                 stop_gfar(dev);
1339                 startup_gfar(dev);
1340         }
1341
1342         netif_tx_schedule_all(dev);
1343 }
1344
1345 /* Interrupt Handler for Transmit complete */
1346 static int gfar_clean_tx_ring(struct net_device *dev)
1347 {
1348         struct txbd8 *bdp;
1349         struct gfar_private *priv = netdev_priv(dev);
1350         int howmany = 0;
1351
1352         bdp = priv->dirty_tx;
1353         while ((bdp->status & TXBD_READY) == 0) {
1354                 /* If dirty_tx and cur_tx are the same, then either the */
1355                 /* ring is empty or full now (it could only be full in the beginning, */
1356                 /* obviously).  If it is empty, we are done. */
1357                 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1358                         break;
1359
1360                 howmany++;
1361
1362                 /* Deferred means some collisions occurred during transmit, */
1363                 /* but we eventually sent the packet. */
1364                 if (bdp->status & TXBD_DEF)
1365                         dev->stats.collisions++;
1366
1367                 /* Free the sk buffer associated with this TxBD */
1368                 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1369
1370                 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1371                 priv->skb_dirtytx =
1372                     (priv->skb_dirtytx +
1373                      1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1374
1375                 /* Clean BD length for empty detection */
1376                 bdp->length = 0;
1377
1378                 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1379                 if (bdp->status & TXBD_WRAP)
1380                         bdp = priv->tx_bd_base;
1381                 else
1382                         bdp++;
1383
1384                 /* Move dirty_tx to be the next bd */
1385                 priv->dirty_tx = bdp;
1386
1387                 /* We freed a buffer, so now we can restart transmission */
1388                 if (netif_queue_stopped(dev))
1389                         netif_wake_queue(dev);
1390         } /* while ((bdp->status & TXBD_READY) == 0) */
1391
1392         dev->stats.tx_packets += howmany;
1393
1394         return howmany;
1395 }
1396
1397 /* Interrupt Handler for Transmit complete */
1398 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1399 {
1400         struct net_device *dev = (struct net_device *) dev_id;
1401         struct gfar_private *priv = netdev_priv(dev);
1402
1403         /* Clear IEVENT */
1404         gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1405
1406         /* Lock priv */
1407         spin_lock(&priv->txlock);
1408
1409         gfar_clean_tx_ring(dev);
1410
1411         /* If we are coalescing the interrupts, reset the timer */
1412         /* Otherwise, clear it */
1413         if (likely(priv->txcoalescing)) {
1414                 gfar_write(&priv->regs->txic, 0);
1415                 gfar_write(&priv->regs->txic,
1416                            mk_ic_value(priv->txcount, priv->txtime));
1417         }
1418
1419         spin_unlock(&priv->txlock);
1420
1421         return IRQ_HANDLED;
1422 }
1423
1424 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1425                 struct sk_buff *skb)
1426 {
1427         struct gfar_private *priv = netdev_priv(dev);
1428         u32 * status_len = (u32 *)bdp;
1429         u16 flags;
1430
1431         bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1432                         priv->rx_buffer_size, DMA_FROM_DEVICE);
1433
1434         flags = RXBD_EMPTY | RXBD_INTERRUPT;
1435
1436         if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1437                 flags |= RXBD_WRAP;
1438
1439         eieio();
1440
1441         *status_len = (u32)flags << 16;
1442 }
1443
1444
1445 struct sk_buff * gfar_new_skb(struct net_device *dev)
1446 {
1447         unsigned int alignamount;
1448         struct gfar_private *priv = netdev_priv(dev);
1449         struct sk_buff *skb = NULL;
1450
1451         /* We have to allocate the skb, so keep trying till we succeed */
1452         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
1453
1454         if (!skb)
1455                 return NULL;
1456
1457         alignamount = RXBUF_ALIGNMENT -
1458                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1459
1460         /* We need the data buffer to be aligned properly.  We will reserve
1461          * as many bytes as needed to align the data properly
1462          */
1463         skb_reserve(skb, alignamount);
1464
1465         return skb;
1466 }
1467
1468 static inline void count_errors(unsigned short status, struct net_device *dev)
1469 {
1470         struct gfar_private *priv = netdev_priv(dev);
1471         struct net_device_stats *stats = &dev->stats;
1472         struct gfar_extra_stats *estats = &priv->extra_stats;
1473
1474         /* If the packet was truncated, none of the other errors
1475          * matter */
1476         if (status & RXBD_TRUNCATED) {
1477                 stats->rx_length_errors++;
1478
1479                 estats->rx_trunc++;
1480
1481                 return;
1482         }
1483         /* Count the errors, if there were any */
1484         if (status & (RXBD_LARGE | RXBD_SHORT)) {
1485                 stats->rx_length_errors++;
1486
1487                 if (status & RXBD_LARGE)
1488                         estats->rx_large++;
1489                 else
1490                         estats->rx_short++;
1491         }
1492         if (status & RXBD_NONOCTET) {
1493                 stats->rx_frame_errors++;
1494                 estats->rx_nonoctet++;
1495         }
1496         if (status & RXBD_CRCERR) {
1497                 estats->rx_crcerr++;
1498                 stats->rx_crc_errors++;
1499         }
1500         if (status & RXBD_OVERRUN) {
1501                 estats->rx_overrun++;
1502                 stats->rx_crc_errors++;
1503         }
1504 }
1505
1506 irqreturn_t gfar_receive(int irq, void *dev_id)
1507 {
1508         struct net_device *dev = (struct net_device *) dev_id;
1509         struct gfar_private *priv = netdev_priv(dev);
1510         u32 tempval;
1511
1512         /* support NAPI */
1513         /* Clear IEVENT, so interrupts aren't called again
1514          * because of the packets that have already arrived */
1515         gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1516
1517         if (netif_rx_schedule_prep(dev, &priv->napi)) {
1518                 tempval = gfar_read(&priv->regs->imask);
1519                 tempval &= IMASK_RTX_DISABLED;
1520                 gfar_write(&priv->regs->imask, tempval);
1521
1522                 __netif_rx_schedule(dev, &priv->napi);
1523         } else {
1524                 if (netif_msg_rx_err(priv))
1525                         printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1526                                 dev->name, gfar_read(&priv->regs->ievent),
1527                                 gfar_read(&priv->regs->imask));
1528         }
1529
1530         return IRQ_HANDLED;
1531 }
1532
1533 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1534 {
1535         /* If valid headers were found, and valid sums
1536          * were verified, then we tell the kernel that no
1537          * checksumming is necessary.  Otherwise, it is */
1538         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1539                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1540         else
1541                 skb->ip_summed = CHECKSUM_NONE;
1542 }
1543
1544
1545 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1546 {
1547         struct rxfcb *fcb = (struct rxfcb *)skb->data;
1548
1549         /* Remove the FCB from the skb */
1550         skb_pull(skb, GMAC_FCB_LEN);
1551
1552         return fcb;
1553 }
1554
1555 /* gfar_process_frame() -- handle one incoming packet if skb
1556  * isn't NULL.  */
1557 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1558                 int length)
1559 {
1560         struct gfar_private *priv = netdev_priv(dev);
1561         struct rxfcb *fcb = NULL;
1562
1563         if (NULL == skb) {
1564                 if (netif_msg_rx_err(priv))
1565                         printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1566                 dev->stats.rx_dropped++;
1567                 priv->extra_stats.rx_skbmissing++;
1568         } else {
1569                 int ret;
1570
1571                 /* Prep the skb for the packet */
1572                 skb_put(skb, length);
1573
1574                 /* Grab the FCB if there is one */
1575                 if (gfar_uses_fcb(priv))
1576                         fcb = gfar_get_fcb(skb);
1577
1578                 /* Remove the padded bytes, if there are any */
1579                 if (priv->padding)
1580                         skb_pull(skb, priv->padding);
1581
1582                 if (priv->rx_csum_enable)
1583                         gfar_rx_checksum(skb, fcb);
1584
1585                 /* Tell the skb what kind of packet this is */
1586                 skb->protocol = eth_type_trans(skb, dev);
1587
1588                 /* Send the packet up the stack */
1589                 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN))) {
1590                         ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp,
1591                                                        fcb->vlctl);
1592                 } else
1593                         ret = netif_receive_skb(skb);
1594
1595                 if (NET_RX_DROP == ret)
1596                         priv->extra_stats.kernel_dropped++;
1597         }
1598
1599         return 0;
1600 }
1601
1602 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1603  *   until the budget/quota has been reached. Returns the number
1604  *   of frames handled
1605  */
1606 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1607 {
1608         struct rxbd8 *bdp;
1609         struct sk_buff *skb;
1610         u16 pkt_len;
1611         int howmany = 0;
1612         struct gfar_private *priv = netdev_priv(dev);
1613
1614         /* Get the first full descriptor */
1615         bdp = priv->cur_rx;
1616
1617         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1618                 struct sk_buff *newskb;
1619                 rmb();
1620
1621                 /* Add another skb for the future */
1622                 newskb = gfar_new_skb(dev);
1623
1624                 skb = priv->rx_skbuff[priv->skb_currx];
1625
1626                 /* We drop the frame if we failed to allocate a new buffer */
1627                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1628                                  bdp->status & RXBD_ERR)) {
1629                         count_errors(bdp->status, dev);
1630
1631                         if (unlikely(!newskb))
1632                                 newskb = skb;
1633
1634                         if (skb) {
1635                                 dma_unmap_single(&priv->dev->dev,
1636                                                 bdp->bufPtr,
1637                                                 priv->rx_buffer_size,
1638                                                 DMA_FROM_DEVICE);
1639
1640                                 dev_kfree_skb_any(skb);
1641                         }
1642                 } else {
1643                         /* Increment the number of packets */
1644                         dev->stats.rx_packets++;
1645                         howmany++;
1646
1647                         /* Remove the FCS from the packet length */
1648                         pkt_len = bdp->length - 4;
1649
1650                         gfar_process_frame(dev, skb, pkt_len);
1651
1652                         dev->stats.rx_bytes += pkt_len;
1653                 }
1654
1655                 dev->last_rx = jiffies;
1656
1657                 priv->rx_skbuff[priv->skb_currx] = newskb;
1658
1659                 /* Setup the new bdp */
1660                 gfar_new_rxbdp(dev, bdp, newskb);
1661
1662                 /* Update to the next pointer */
1663                 if (bdp->status & RXBD_WRAP)
1664                         bdp = priv->rx_bd_base;
1665                 else
1666                         bdp++;
1667
1668                 /* update to point at the next skb */
1669                 priv->skb_currx =
1670                     (priv->skb_currx + 1) &
1671                     RX_RING_MOD_MASK(priv->rx_ring_size);
1672         }
1673
1674         /* Update the current rxbd pointer to be the next one */
1675         priv->cur_rx = bdp;
1676
1677         return howmany;
1678 }
1679
1680 static int gfar_poll(struct napi_struct *napi, int budget)
1681 {
1682         struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1683         struct net_device *dev = priv->dev;
1684         int howmany;
1685         unsigned long flags;
1686
1687         /* If we fail to get the lock, don't bother with the TX BDs */
1688         if (spin_trylock_irqsave(&priv->txlock, flags)) {
1689                 gfar_clean_tx_ring(dev);
1690                 spin_unlock_irqrestore(&priv->txlock, flags);
1691         }
1692
1693         howmany = gfar_clean_rx_ring(dev, budget);
1694
1695         if (howmany < budget) {
1696                 netif_rx_complete(dev, napi);
1697
1698                 /* Clear the halt bit in RSTAT */
1699                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1700
1701                 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1702
1703                 /* If we are coalescing interrupts, update the timer */
1704                 /* Otherwise, clear it */
1705                 if (likely(priv->rxcoalescing)) {
1706                         gfar_write(&priv->regs->rxic, 0);
1707                         gfar_write(&priv->regs->rxic,
1708                                    mk_ic_value(priv->rxcount, priv->rxtime));
1709                 }
1710         }
1711
1712         return howmany;
1713 }
1714
1715 #ifdef CONFIG_NET_POLL_CONTROLLER
1716 /*
1717  * Polling 'interrupt' - used by things like netconsole to send skbs
1718  * without having to re-enable interrupts. It's not called while
1719  * the interrupt routine is executing.
1720  */
1721 static void gfar_netpoll(struct net_device *dev)
1722 {
1723         struct gfar_private *priv = netdev_priv(dev);
1724
1725         /* If the device has multiple interrupts, run tx/rx */
1726         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1727                 disable_irq(priv->interruptTransmit);
1728                 disable_irq(priv->interruptReceive);
1729                 disable_irq(priv->interruptError);
1730                 gfar_interrupt(priv->interruptTransmit, dev);
1731                 enable_irq(priv->interruptError);
1732                 enable_irq(priv->interruptReceive);
1733                 enable_irq(priv->interruptTransmit);
1734         } else {
1735                 disable_irq(priv->interruptTransmit);
1736                 gfar_interrupt(priv->interruptTransmit, dev);
1737                 enable_irq(priv->interruptTransmit);
1738         }
1739 }
1740 #endif
1741
1742 /* The interrupt handler for devices with one interrupt */
1743 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1744 {
1745         struct net_device *dev = dev_id;
1746         struct gfar_private *priv = netdev_priv(dev);
1747
1748         /* Save ievent for future reference */
1749         u32 events = gfar_read(&priv->regs->ievent);
1750
1751         /* Check for reception */
1752         if (events & IEVENT_RX_MASK)
1753                 gfar_receive(irq, dev_id);
1754
1755         /* Check for transmit completion */
1756         if (events & IEVENT_TX_MASK)
1757                 gfar_transmit(irq, dev_id);
1758
1759         /* Check for errors */
1760         if (events & IEVENT_ERR_MASK)
1761                 gfar_error(irq, dev_id);
1762
1763         return IRQ_HANDLED;
1764 }
1765
1766 /* Called every time the controller might need to be made
1767  * aware of new link state.  The PHY code conveys this
1768  * information through variables in the phydev structure, and this
1769  * function converts those variables into the appropriate
1770  * register values, and can bring down the device if needed.
1771  */
1772 static void adjust_link(struct net_device *dev)
1773 {
1774         struct gfar_private *priv = netdev_priv(dev);
1775         struct gfar __iomem *regs = priv->regs;
1776         unsigned long flags;
1777         struct phy_device *phydev = priv->phydev;
1778         int new_state = 0;
1779
1780         spin_lock_irqsave(&priv->txlock, flags);
1781         if (phydev->link) {
1782                 u32 tempval = gfar_read(&regs->maccfg2);
1783                 u32 ecntrl = gfar_read(&regs->ecntrl);
1784
1785                 /* Now we make sure that we can be in full duplex mode.
1786                  * If not, we operate in half-duplex mode. */
1787                 if (phydev->duplex != priv->oldduplex) {
1788                         new_state = 1;
1789                         if (!(phydev->duplex))
1790                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
1791                         else
1792                                 tempval |= MACCFG2_FULL_DUPLEX;
1793
1794                         priv->oldduplex = phydev->duplex;
1795                 }
1796
1797                 if (phydev->speed != priv->oldspeed) {
1798                         new_state = 1;
1799                         switch (phydev->speed) {
1800                         case 1000:
1801                                 tempval =
1802                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1803                                 break;
1804                         case 100:
1805                         case 10:
1806                                 tempval =
1807                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1808
1809                                 /* Reduced mode distinguishes
1810                                  * between 10 and 100 */
1811                                 if (phydev->speed == SPEED_100)
1812                                         ecntrl |= ECNTRL_R100;
1813                                 else
1814                                         ecntrl &= ~(ECNTRL_R100);
1815                                 break;
1816                         default:
1817                                 if (netif_msg_link(priv))
1818                                         printk(KERN_WARNING
1819                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
1820                                                 dev->name, phydev->speed);
1821                                 break;
1822                         }
1823
1824                         priv->oldspeed = phydev->speed;
1825                 }
1826
1827                 gfar_write(&regs->maccfg2, tempval);
1828                 gfar_write(&regs->ecntrl, ecntrl);
1829
1830                 if (!priv->oldlink) {
1831                         new_state = 1;
1832                         priv->oldlink = 1;
1833                 }
1834         } else if (priv->oldlink) {
1835                 new_state = 1;
1836                 priv->oldlink = 0;
1837                 priv->oldspeed = 0;
1838                 priv->oldduplex = -1;
1839         }
1840
1841         if (new_state && netif_msg_link(priv))
1842                 phy_print_status(phydev);
1843
1844         spin_unlock_irqrestore(&priv->txlock, flags);
1845 }
1846
1847 /* Update the hash table based on the current list of multicast
1848  * addresses we subscribe to.  Also, change the promiscuity of
1849  * the device based on the flags (this function is called
1850  * whenever dev->flags is changed */
1851 static void gfar_set_multi(struct net_device *dev)
1852 {
1853         struct dev_mc_list *mc_ptr;
1854         struct gfar_private *priv = netdev_priv(dev);
1855         struct gfar __iomem *regs = priv->regs;
1856         u32 tempval;
1857
1858         if(dev->flags & IFF_PROMISC) {
1859                 /* Set RCTRL to PROM */
1860                 tempval = gfar_read(&regs->rctrl);
1861                 tempval |= RCTRL_PROM;
1862                 gfar_write(&regs->rctrl, tempval);
1863         } else {
1864                 /* Set RCTRL to not PROM */
1865                 tempval = gfar_read(&regs->rctrl);
1866                 tempval &= ~(RCTRL_PROM);
1867                 gfar_write(&regs->rctrl, tempval);
1868         }
1869
1870         if(dev->flags & IFF_ALLMULTI) {
1871                 /* Set the hash to rx all multicast frames */
1872                 gfar_write(&regs->igaddr0, 0xffffffff);
1873                 gfar_write(&regs->igaddr1, 0xffffffff);
1874                 gfar_write(&regs->igaddr2, 0xffffffff);
1875                 gfar_write(&regs->igaddr3, 0xffffffff);
1876                 gfar_write(&regs->igaddr4, 0xffffffff);
1877                 gfar_write(&regs->igaddr5, 0xffffffff);
1878                 gfar_write(&regs->igaddr6, 0xffffffff);
1879                 gfar_write(&regs->igaddr7, 0xffffffff);
1880                 gfar_write(&regs->gaddr0, 0xffffffff);
1881                 gfar_write(&regs->gaddr1, 0xffffffff);
1882                 gfar_write(&regs->gaddr2, 0xffffffff);
1883                 gfar_write(&regs->gaddr3, 0xffffffff);
1884                 gfar_write(&regs->gaddr4, 0xffffffff);
1885                 gfar_write(&regs->gaddr5, 0xffffffff);
1886                 gfar_write(&regs->gaddr6, 0xffffffff);
1887                 gfar_write(&regs->gaddr7, 0xffffffff);
1888         } else {
1889                 int em_num;
1890                 int idx;
1891
1892                 /* zero out the hash */
1893                 gfar_write(&regs->igaddr0, 0x0);
1894                 gfar_write(&regs->igaddr1, 0x0);
1895                 gfar_write(&regs->igaddr2, 0x0);
1896                 gfar_write(&regs->igaddr3, 0x0);
1897                 gfar_write(&regs->igaddr4, 0x0);
1898                 gfar_write(&regs->igaddr5, 0x0);
1899                 gfar_write(&regs->igaddr6, 0x0);
1900                 gfar_write(&regs->igaddr7, 0x0);
1901                 gfar_write(&regs->gaddr0, 0x0);
1902                 gfar_write(&regs->gaddr1, 0x0);
1903                 gfar_write(&regs->gaddr2, 0x0);
1904                 gfar_write(&regs->gaddr3, 0x0);
1905                 gfar_write(&regs->gaddr4, 0x0);
1906                 gfar_write(&regs->gaddr5, 0x0);
1907                 gfar_write(&regs->gaddr6, 0x0);
1908                 gfar_write(&regs->gaddr7, 0x0);
1909
1910                 /* If we have extended hash tables, we need to
1911                  * clear the exact match registers to prepare for
1912                  * setting them */
1913                 if (priv->extended_hash) {
1914                         em_num = GFAR_EM_NUM + 1;
1915                         gfar_clear_exact_match(dev);
1916                         idx = 1;
1917                 } else {
1918                         idx = 0;
1919                         em_num = 0;
1920                 }
1921
1922                 if(dev->mc_count == 0)
1923                         return;
1924
1925                 /* Parse the list, and set the appropriate bits */
1926                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1927                         if (idx < em_num) {
1928                                 gfar_set_mac_for_addr(dev, idx,
1929                                                 mc_ptr->dmi_addr);
1930                                 idx++;
1931                         } else
1932                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1933                 }
1934         }
1935
1936         return;
1937 }
1938
1939
1940 /* Clears each of the exact match registers to zero, so they
1941  * don't interfere with normal reception */
1942 static void gfar_clear_exact_match(struct net_device *dev)
1943 {
1944         int idx;
1945         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1946
1947         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1948                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1949 }
1950
1951 /* Set the appropriate hash bit for the given addr */
1952 /* The algorithm works like so:
1953  * 1) Take the Destination Address (ie the multicast address), and
1954  * do a CRC on it (little endian), and reverse the bits of the
1955  * result.
1956  * 2) Use the 8 most significant bits as a hash into a 256-entry
1957  * table.  The table is controlled through 8 32-bit registers:
1958  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
1959  * gaddr7.  This means that the 3 most significant bits in the
1960  * hash index which gaddr register to use, and the 5 other bits
1961  * indicate which bit (assuming an IBM numbering scheme, which
1962  * for PowerPC (tm) is usually the case) in the register holds
1963  * the entry. */
1964 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1965 {
1966         u32 tempval;
1967         struct gfar_private *priv = netdev_priv(dev);
1968         u32 result = ether_crc(MAC_ADDR_LEN, addr);
1969         int width = priv->hash_width;
1970         u8 whichbit = (result >> (32 - width)) & 0x1f;
1971         u8 whichreg = result >> (32 - width + 5);
1972         u32 value = (1 << (31-whichbit));
1973
1974         tempval = gfar_read(priv->hash_regs[whichreg]);
1975         tempval |= value;
1976         gfar_write(priv->hash_regs[whichreg], tempval);
1977
1978         return;
1979 }
1980
1981
1982 /* There are multiple MAC Address register pairs on some controllers
1983  * This function sets the numth pair to a given address
1984  */
1985 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1986 {
1987         struct gfar_private *priv = netdev_priv(dev);
1988         int idx;
1989         char tmpbuf[MAC_ADDR_LEN];
1990         u32 tempval;
1991         u32 __iomem *macptr = &priv->regs->macstnaddr1;
1992
1993         macptr += num*2;
1994
1995         /* Now copy it into the mac registers backwards, cuz */
1996         /* little endian is silly */
1997         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
1998                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
1999
2000         gfar_write(macptr, *((u32 *) (tmpbuf)));
2001
2002         tempval = *((u32 *) (tmpbuf + 4));
2003
2004         gfar_write(macptr+1, tempval);
2005 }
2006
2007 /* GFAR error interrupt handler */
2008 static irqreturn_t gfar_error(int irq, void *dev_id)
2009 {
2010         struct net_device *dev = dev_id;
2011         struct gfar_private *priv = netdev_priv(dev);
2012
2013         /* Save ievent for future reference */
2014         u32 events = gfar_read(&priv->regs->ievent);
2015
2016         /* Clear IEVENT */
2017         gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2018
2019         /* Magic Packet is not an error. */
2020         if ((priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2021             (events & IEVENT_MAG))
2022                 events &= ~IEVENT_MAG;
2023
2024         /* Hmm... */
2025         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2026                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2027                        dev->name, events, gfar_read(&priv->regs->imask));
2028
2029         /* Update the error counters */
2030         if (events & IEVENT_TXE) {
2031                 dev->stats.tx_errors++;
2032
2033                 if (events & IEVENT_LC)
2034                         dev->stats.tx_window_errors++;
2035                 if (events & IEVENT_CRL)
2036                         dev->stats.tx_aborted_errors++;
2037                 if (events & IEVENT_XFUN) {
2038                         if (netif_msg_tx_err(priv))
2039                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2040                                        "packet dropped.\n", dev->name);
2041                         dev->stats.tx_dropped++;
2042                         priv->extra_stats.tx_underrun++;
2043
2044                         /* Reactivate the Tx Queues */
2045                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2046                 }
2047                 if (netif_msg_tx_err(priv))
2048                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2049         }
2050         if (events & IEVENT_BSY) {
2051                 dev->stats.rx_errors++;
2052                 priv->extra_stats.rx_bsy++;
2053
2054                 gfar_receive(irq, dev_id);
2055
2056                 if (netif_msg_rx_err(priv))
2057                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2058                                dev->name, gfar_read(&priv->regs->rstat));
2059         }
2060         if (events & IEVENT_BABR) {
2061                 dev->stats.rx_errors++;
2062                 priv->extra_stats.rx_babr++;
2063
2064                 if (netif_msg_rx_err(priv))
2065                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2066         }
2067         if (events & IEVENT_EBERR) {
2068                 priv->extra_stats.eberr++;
2069                 if (netif_msg_rx_err(priv))
2070                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
2071         }
2072         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2073                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2074
2075         if (events & IEVENT_BABT) {
2076                 priv->extra_stats.tx_babt++;
2077                 if (netif_msg_tx_err(priv))
2078                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2079         }
2080         return IRQ_HANDLED;
2081 }
2082
2083 /* work with hotplug and coldplug */
2084 MODULE_ALIAS("platform:fsl-gianfar");
2085
2086 /* Structure for a device driver */
2087 static struct platform_driver gfar_driver = {
2088         .probe = gfar_probe,
2089         .remove = gfar_remove,
2090         .suspend = gfar_suspend,
2091         .resume = gfar_resume,
2092         .driver = {
2093                 .name = "fsl-gianfar",
2094                 .owner = THIS_MODULE,
2095         },
2096 };
2097
2098 static int __init gfar_init(void)
2099 {
2100         int err = gfar_mdio_init();
2101
2102         if (err)
2103                 return err;
2104
2105         err = platform_driver_register(&gfar_driver);
2106
2107         if (err)
2108                 gfar_mdio_exit();
2109
2110         return err;
2111 }
2112
2113 static void __exit gfar_exit(void)
2114 {
2115         platform_driver_unregister(&gfar_driver);
2116         gfar_mdio_exit();
2117 }
2118
2119 module_init(gfar_init);
2120 module_exit(gfar_exit);
2121