2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally descibed in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
28 * Code from fib_hash has been reused which includes the following header:
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
35 * IPv4 FIB: lookup engine and maintenance routines.
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
46 #define VERSION "0.404"
48 #include <linux/config.h>
49 #include <asm/uaccess.h>
50 #include <asm/system.h>
51 #include <asm/bitops.h>
52 #include <linux/types.h>
53 #include <linux/kernel.h>
54 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/socket.h>
58 #include <linux/sockios.h>
59 #include <linux/errno.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_arp.h>
64 #include <linux/proc_fs.h>
65 #include <linux/rcupdate.h>
66 #include <linux/skbuff.h>
67 #include <linux/netlink.h>
68 #include <linux/init.h>
69 #include <linux/list.h>
71 #include <net/protocol.h>
72 #include <net/route.h>
75 #include <net/ip_fib.h>
76 #include "fib_lookup.h"
78 #undef CONFIG_IP_FIB_TRIE_STATS
79 #define MAX_CHILDS 16384
81 #define KEYLENGTH (8*sizeof(t_key))
82 #define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l))
83 #define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset))
85 typedef unsigned int t_key;
89 #define NODE_TYPE_MASK 0x1UL
90 #define NODE_PARENT(node) \
91 ((struct tnode *)rcu_dereference(((node)->parent & ~NODE_TYPE_MASK)))
93 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95 #define NODE_SET_PARENT(node, ptr) \
96 rcu_assign_pointer((node)->parent, \
97 ((unsigned long)(ptr)) | NODE_TYPE(node))
99 #define IS_TNODE(n) (!(n->parent & T_LEAF))
100 #define IS_LEAF(n) (n->parent & T_LEAF)
104 unsigned long parent;
109 unsigned long parent;
110 struct hlist_head list;
115 struct hlist_node hlist;
118 struct list_head falh;
123 unsigned long parent;
124 unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */
125 unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */
126 unsigned short full_children; /* KEYLENGTH bits needed */
127 unsigned short empty_children; /* KEYLENGTH bits needed */
129 struct node *child[0];
132 #ifdef CONFIG_IP_FIB_TRIE_STATS
133 struct trie_use_stats {
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
139 unsigned int resize_node_skipped;
144 unsigned int totdepth;
145 unsigned int maxdepth;
148 unsigned int nullpointers;
149 unsigned int nodesizes[MAX_CHILDS];
154 #ifdef CONFIG_IP_FIB_TRIE_STATS
155 struct trie_use_stats stats;
158 unsigned int revision;
161 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
162 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
163 static struct node *resize(struct trie *t, struct tnode *tn);
164 static struct tnode *inflate(struct trie *t, struct tnode *tn);
165 static struct tnode *halve(struct trie *t, struct tnode *tn);
166 static void tnode_free(struct tnode *tn);
168 static kmem_cache_t *fn_alias_kmem __read_mostly;
169 static struct trie *trie_local = NULL, *trie_main = NULL;
172 /* rcu_read_lock needs to be hold by caller from readside */
174 static inline struct node *tnode_get_child(struct tnode *tn, int i)
176 BUG_ON(i >= 1 << tn->bits);
178 return rcu_dereference(tn->child[i]);
181 static inline int tnode_child_length(const struct tnode *tn)
183 return 1 << tn->bits;
186 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
188 if (offset < KEYLENGTH)
189 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
194 static inline int tkey_equals(t_key a, t_key b)
199 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
201 if (bits == 0 || offset >= KEYLENGTH)
203 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
204 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
207 static inline int tkey_mismatch(t_key a, int offset, t_key b)
214 while ((diff << i) >> (KEYLENGTH-1) == 0)
220 To understand this stuff, an understanding of keys and all their bits is
221 necessary. Every node in the trie has a key associated with it, but not
222 all of the bits in that key are significant.
224 Consider a node 'n' and its parent 'tp'.
226 If n is a leaf, every bit in its key is significant. Its presence is
227 necessitated by path compression, since during a tree traversal (when
228 searching for a leaf - unless we are doing an insertion) we will completely
229 ignore all skipped bits we encounter. Thus we need to verify, at the end of
230 a potentially successful search, that we have indeed been walking the
233 Note that we can never "miss" the correct key in the tree if present by
234 following the wrong path. Path compression ensures that segments of the key
235 that are the same for all keys with a given prefix are skipped, but the
236 skipped part *is* identical for each node in the subtrie below the skipped
237 bit! trie_insert() in this implementation takes care of that - note the
238 call to tkey_sub_equals() in trie_insert().
240 if n is an internal node - a 'tnode' here, the various parts of its key
241 have many different meanings.
244 _________________________________________________________________
245 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
246 -----------------------------------------------------------------
247 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
249 _________________________________________________________________
250 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
251 -----------------------------------------------------------------
252 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
259 First, let's just ignore the bits that come before the parent tp, that is
260 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
261 not use them for anything.
263 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
264 index into the parent's child array. That is, they will be used to find
265 'n' among tp's children.
267 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
270 All the bits we have seen so far are significant to the node n. The rest
271 of the bits are really not needed or indeed known in n->key.
273 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
274 n's child array, and will of course be different for each child.
277 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
282 static inline void check_tnode(const struct tnode *tn)
284 WARN_ON(tn && tn->pos+tn->bits > 32);
287 static int halve_threshold = 25;
288 static int inflate_threshold = 50;
291 static void __alias_free_mem(struct rcu_head *head)
293 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
294 kmem_cache_free(fn_alias_kmem, fa);
297 static inline void alias_free_mem_rcu(struct fib_alias *fa)
299 call_rcu(&fa->rcu, __alias_free_mem);
302 static void __leaf_free_rcu(struct rcu_head *head)
304 kfree(container_of(head, struct leaf, rcu));
307 static inline void free_leaf(struct leaf *leaf)
309 call_rcu(&leaf->rcu, __leaf_free_rcu);
312 static void __leaf_info_free_rcu(struct rcu_head *head)
314 kfree(container_of(head, struct leaf_info, rcu));
317 static inline void free_leaf_info(struct leaf_info *leaf)
319 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
322 static struct tnode *tnode_alloc(unsigned int size)
326 if (size <= PAGE_SIZE)
327 return kcalloc(size, 1, GFP_KERNEL);
329 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
333 return page_address(pages);
336 static void __tnode_free_rcu(struct rcu_head *head)
338 struct tnode *tn = container_of(head, struct tnode, rcu);
339 unsigned int size = sizeof(struct tnode) +
340 (1 << tn->bits) * sizeof(struct node *);
342 if (size <= PAGE_SIZE)
345 free_pages((unsigned long)tn, get_order(size));
348 static inline void tnode_free(struct tnode *tn)
350 call_rcu(&tn->rcu, __tnode_free_rcu);
353 static struct leaf *leaf_new(void)
355 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL);
358 INIT_HLIST_HEAD(&l->list);
363 static struct leaf_info *leaf_info_new(int plen)
365 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
368 INIT_LIST_HEAD(&li->falh);
373 static struct tnode* tnode_new(t_key key, int pos, int bits)
375 int nchildren = 1<<bits;
376 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
377 struct tnode *tn = tnode_alloc(sz);
381 tn->parent = T_TNODE;
385 tn->full_children = 0;
386 tn->empty_children = 1<<bits;
389 pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
390 (unsigned int) (sizeof(struct node) * 1<<bits));
395 * Check whether a tnode 'n' is "full", i.e. it is an internal node
396 * and no bits are skipped. See discussion in dyntree paper p. 6
399 static inline int tnode_full(const struct tnode *tn, const struct node *n)
401 if (n == NULL || IS_LEAF(n))
404 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
407 static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
409 tnode_put_child_reorg(tn, i, n, -1);
413 * Add a child at position i overwriting the old value.
414 * Update the value of full_children and empty_children.
417 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
419 struct node *chi = tn->child[i];
422 BUG_ON(i >= 1<<tn->bits);
425 /* update emptyChildren */
426 if (n == NULL && chi != NULL)
427 tn->empty_children++;
428 else if (n != NULL && chi == NULL)
429 tn->empty_children--;
431 /* update fullChildren */
433 wasfull = tnode_full(tn, chi);
435 isfull = tnode_full(tn, n);
436 if (wasfull && !isfull)
438 else if (!wasfull && isfull)
442 NODE_SET_PARENT(n, tn);
444 rcu_assign_pointer(tn->child[i], n);
447 static struct node *resize(struct trie *t, struct tnode *tn)
451 struct tnode *old_tn;
456 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
457 tn, inflate_threshold, halve_threshold);
460 if (tn->empty_children == tnode_child_length(tn)) {
465 if (tn->empty_children == tnode_child_length(tn) - 1)
466 for (i = 0; i < tnode_child_length(tn); i++) {
473 /* compress one level */
474 NODE_SET_PARENT(n, NULL);
479 * Double as long as the resulting node has a number of
480 * nonempty nodes that are above the threshold.
484 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
485 * the Helsinki University of Technology and Matti Tikkanen of Nokia
486 * Telecommunications, page 6:
487 * "A node is doubled if the ratio of non-empty children to all
488 * children in the *doubled* node is at least 'high'."
490 * 'high' in this instance is the variable 'inflate_threshold'. It
491 * is expressed as a percentage, so we multiply it with
492 * tnode_child_length() and instead of multiplying by 2 (since the
493 * child array will be doubled by inflate()) and multiplying
494 * the left-hand side by 100 (to handle the percentage thing) we
495 * multiply the left-hand side by 50.
497 * The left-hand side may look a bit weird: tnode_child_length(tn)
498 * - tn->empty_children is of course the number of non-null children
499 * in the current node. tn->full_children is the number of "full"
500 * children, that is non-null tnodes with a skip value of 0.
501 * All of those will be doubled in the resulting inflated tnode, so
502 * we just count them one extra time here.
504 * A clearer way to write this would be:
506 * to_be_doubled = tn->full_children;
507 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
510 * new_child_length = tnode_child_length(tn) * 2;
512 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
514 * if (new_fill_factor >= inflate_threshold)
516 * ...and so on, tho it would mess up the while () loop.
519 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
523 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
524 * inflate_threshold * new_child_length
526 * expand not_to_be_doubled and to_be_doubled, and shorten:
527 * 100 * (tnode_child_length(tn) - tn->empty_children +
528 * tn->full_children) >= inflate_threshold * new_child_length
530 * expand new_child_length:
531 * 100 * (tnode_child_length(tn) - tn->empty_children +
532 * tn->full_children) >=
533 * inflate_threshold * tnode_child_length(tn) * 2
536 * 50 * (tn->full_children + tnode_child_length(tn) -
537 * tn->empty_children) >= inflate_threshold *
538 * tnode_child_length(tn)
545 while ((tn->full_children > 0 &&
546 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
547 inflate_threshold * tnode_child_length(tn))) {
553 #ifdef CONFIG_IP_FIB_TRIE_STATS
554 t->stats.resize_node_skipped++;
563 * Halve as long as the number of empty children in this
564 * node is above threshold.
568 while (tn->bits > 1 &&
569 100 * (tnode_child_length(tn) - tn->empty_children) <
570 halve_threshold * tnode_child_length(tn)) {
576 #ifdef CONFIG_IP_FIB_TRIE_STATS
577 t->stats.resize_node_skipped++;
584 /* Only one child remains */
585 if (tn->empty_children == tnode_child_length(tn) - 1)
586 for (i = 0; i < tnode_child_length(tn); i++) {
593 /* compress one level */
595 NODE_SET_PARENT(n, NULL);
600 return (struct node *) tn;
603 static struct tnode *inflate(struct trie *t, struct tnode *tn)
606 struct tnode *oldtnode = tn;
607 int olen = tnode_child_length(tn);
610 pr_debug("In inflate\n");
612 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
615 return ERR_PTR(-ENOMEM);
618 * Preallocate and store tnodes before the actual work so we
619 * don't get into an inconsistent state if memory allocation
620 * fails. In case of failure we return the oldnode and inflate
621 * of tnode is ignored.
624 for (i = 0; i < olen; i++) {
625 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
629 inode->pos == oldtnode->pos + oldtnode->bits &&
631 struct tnode *left, *right;
632 t_key m = TKEY_GET_MASK(inode->pos, 1);
634 left = tnode_new(inode->key&(~m), inode->pos + 1,
639 right = tnode_new(inode->key|m, inode->pos + 1,
647 put_child(t, tn, 2*i, (struct node *) left);
648 put_child(t, tn, 2*i+1, (struct node *) right);
652 for (i = 0; i < olen; i++) {
653 struct node *node = tnode_get_child(oldtnode, i);
654 struct tnode *left, *right;
661 /* A leaf or an internal node with skipped bits */
663 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
664 tn->pos + tn->bits - 1) {
665 if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
667 put_child(t, tn, 2*i, node);
669 put_child(t, tn, 2*i+1, node);
673 /* An internal node with two children */
674 inode = (struct tnode *) node;
676 if (inode->bits == 1) {
677 put_child(t, tn, 2*i, inode->child[0]);
678 put_child(t, tn, 2*i+1, inode->child[1]);
684 /* An internal node with more than two children */
686 /* We will replace this node 'inode' with two new
687 * ones, 'left' and 'right', each with half of the
688 * original children. The two new nodes will have
689 * a position one bit further down the key and this
690 * means that the "significant" part of their keys
691 * (see the discussion near the top of this file)
692 * will differ by one bit, which will be "0" in
693 * left's key and "1" in right's key. Since we are
694 * moving the key position by one step, the bit that
695 * we are moving away from - the bit at position
696 * (inode->pos) - is the one that will differ between
697 * left and right. So... we synthesize that bit in the
699 * The mask 'm' below will be a single "one" bit at
700 * the position (inode->pos)
703 /* Use the old key, but set the new significant
707 left = (struct tnode *) tnode_get_child(tn, 2*i);
708 put_child(t, tn, 2*i, NULL);
712 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
713 put_child(t, tn, 2*i+1, NULL);
717 size = tnode_child_length(left);
718 for (j = 0; j < size; j++) {
719 put_child(t, left, j, inode->child[j]);
720 put_child(t, right, j, inode->child[j + size]);
722 put_child(t, tn, 2*i, resize(t, left));
723 put_child(t, tn, 2*i+1, resize(t, right));
727 tnode_free(oldtnode);
731 int size = tnode_child_length(tn);
734 for (j = 0; j < size; j++)
736 tnode_free((struct tnode *)tn->child[j]);
740 return ERR_PTR(-ENOMEM);
744 static struct tnode *halve(struct trie *t, struct tnode *tn)
746 struct tnode *oldtnode = tn;
747 struct node *left, *right;
749 int olen = tnode_child_length(tn);
751 pr_debug("In halve\n");
753 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
756 return ERR_PTR(-ENOMEM);
759 * Preallocate and store tnodes before the actual work so we
760 * don't get into an inconsistent state if memory allocation
761 * fails. In case of failure we return the oldnode and halve
762 * of tnode is ignored.
765 for (i = 0; i < olen; i += 2) {
766 left = tnode_get_child(oldtnode, i);
767 right = tnode_get_child(oldtnode, i+1);
769 /* Two nonempty children */
773 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
778 put_child(t, tn, i/2, (struct node *)newn);
783 for (i = 0; i < olen; i += 2) {
784 struct tnode *newBinNode;
786 left = tnode_get_child(oldtnode, i);
787 right = tnode_get_child(oldtnode, i+1);
789 /* At least one of the children is empty */
791 if (right == NULL) /* Both are empty */
793 put_child(t, tn, i/2, right);
798 put_child(t, tn, i/2, left);
802 /* Two nonempty children */
803 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
804 put_child(t, tn, i/2, NULL);
805 put_child(t, newBinNode, 0, left);
806 put_child(t, newBinNode, 1, right);
807 put_child(t, tn, i/2, resize(t, newBinNode));
809 tnode_free(oldtnode);
813 int size = tnode_child_length(tn);
816 for (j = 0; j < size; j++)
818 tnode_free((struct tnode *)tn->child[j]);
822 return ERR_PTR(-ENOMEM);
826 static void trie_init(struct trie *t)
832 rcu_assign_pointer(t->trie, NULL);
834 #ifdef CONFIG_IP_FIB_TRIE_STATS
835 memset(&t->stats, 0, sizeof(struct trie_use_stats));
839 /* readside must use rcu_read_lock currently dump routines
840 via get_fa_head and dump */
842 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
844 struct hlist_head *head = &l->list;
845 struct hlist_node *node;
846 struct leaf_info *li;
848 hlist_for_each_entry_rcu(li, node, head, hlist)
849 if (li->plen == plen)
855 static inline struct list_head * get_fa_head(struct leaf *l, int plen)
857 struct leaf_info *li = find_leaf_info(l, plen);
865 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
867 struct leaf_info *li = NULL, *last = NULL;
868 struct hlist_node *node;
870 if (hlist_empty(head)) {
871 hlist_add_head_rcu(&new->hlist, head);
873 hlist_for_each_entry(li, node, head, hlist) {
874 if (new->plen > li->plen)
880 hlist_add_after_rcu(&last->hlist, &new->hlist);
882 hlist_add_before_rcu(&new->hlist, &li->hlist);
886 /* rcu_read_lock needs to be hold by caller from readside */
889 fib_find_node(struct trie *t, u32 key)
896 n = rcu_dereference(t->trie);
898 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
899 tn = (struct tnode *) n;
903 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
904 pos = tn->pos + tn->bits;
905 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
909 /* Case we have found a leaf. Compare prefixes */
911 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
912 return (struct leaf *)n;
917 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
921 struct tnode *tp = NULL;
925 while (tn != NULL && NODE_PARENT(tn) != NULL) {
927 tp = NODE_PARENT(tn);
928 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
929 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
930 tn = (struct tnode *) resize (t, (struct tnode *)tn);
931 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
933 if (!NODE_PARENT(tn))
936 tn = NODE_PARENT(tn);
938 /* Handle last (top) tnode */
940 tn = (struct tnode*) resize(t, (struct tnode *)tn);
942 return (struct node*) tn;
945 /* only used from updater-side */
947 static struct list_head *
948 fib_insert_node(struct trie *t, int *err, u32 key, int plen)
951 struct tnode *tp = NULL, *tn = NULL;
955 struct list_head *fa_head = NULL;
956 struct leaf_info *li;
962 /* If we point to NULL, stop. Either the tree is empty and we should
963 * just put a new leaf in if, or we have reached an empty child slot,
964 * and we should just put our new leaf in that.
965 * If we point to a T_TNODE, check if it matches our key. Note that
966 * a T_TNODE might be skipping any number of bits - its 'pos' need
967 * not be the parent's 'pos'+'bits'!
969 * If it does match the current key, get pos/bits from it, extract
970 * the index from our key, push the T_TNODE and walk the tree.
972 * If it doesn't, we have to replace it with a new T_TNODE.
974 * If we point to a T_LEAF, it might or might not have the same key
975 * as we do. If it does, just change the value, update the T_LEAF's
976 * value, and return it.
977 * If it doesn't, we need to replace it with a T_TNODE.
980 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
981 tn = (struct tnode *) n;
985 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
987 pos = tn->pos + tn->bits;
988 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
990 BUG_ON(n && NODE_PARENT(n) != tn);
996 * n ----> NULL, LEAF or TNODE
998 * tp is n's (parent) ----> NULL or TNODE
1001 BUG_ON(tp && IS_LEAF(tp));
1003 /* Case 1: n is a leaf. Compare prefixes */
1005 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1006 struct leaf *l = (struct leaf *) n;
1008 li = leaf_info_new(plen);
1015 fa_head = &li->falh;
1016 insert_leaf_info(&l->list, li);
1028 li = leaf_info_new(plen);
1031 tnode_free((struct tnode *) l);
1036 fa_head = &li->falh;
1037 insert_leaf_info(&l->list, li);
1039 if (t->trie && n == NULL) {
1040 /* Case 2: n is NULL, and will just insert a new leaf */
1042 NODE_SET_PARENT(l, tp);
1044 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1045 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1047 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1049 * Add a new tnode here
1050 * first tnode need some special handling
1054 pos = tp->pos+tp->bits;
1059 newpos = tkey_mismatch(key, pos, n->key);
1060 tn = tnode_new(n->key, newpos, 1);
1063 tn = tnode_new(key, newpos, 1); /* First tnode */
1068 tnode_free((struct tnode *) l);
1073 NODE_SET_PARENT(tn, tp);
1075 missbit = tkey_extract_bits(key, newpos, 1);
1076 put_child(t, tn, missbit, (struct node *)l);
1077 put_child(t, tn, 1-missbit, n);
1080 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1081 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
1083 rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
1088 if (tp && tp->pos + tp->bits > 32)
1089 printk(KERN_WARNING "fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1090 tp, tp->pos, tp->bits, key, plen);
1092 /* Rebalance the trie */
1094 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1102 fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1103 struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
1105 struct trie *t = (struct trie *) tb->tb_data;
1106 struct fib_alias *fa, *new_fa;
1107 struct list_head *fa_head = NULL;
1108 struct fib_info *fi;
1109 int plen = r->rtm_dst_len;
1110 int type = r->rtm_type;
1111 u8 tos = r->rtm_tos;
1121 memcpy(&key, rta->rta_dst, 4);
1125 pr_debug("Insert table=%d %08x/%d\n", tb->tb_id, key, plen);
1127 mask = ntohl(inet_make_mask(plen));
1134 fi = fib_create_info(r, rta, nlhdr, &err);
1139 l = fib_find_node(t, key);
1143 fa_head = get_fa_head(l, plen);
1144 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1147 /* Now fa, if non-NULL, points to the first fib alias
1148 * with the same keys [prefix,tos,priority], if such key already
1149 * exists or to the node before which we will insert new one.
1151 * If fa is NULL, we will need to allocate a new one and
1152 * insert to the head of f.
1154 * If f is NULL, no fib node matched the destination key
1155 * and we need to allocate a new one of those as well.
1158 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
1159 struct fib_alias *fa_orig;
1162 if (nlhdr->nlmsg_flags & NLM_F_EXCL)
1165 if (nlhdr->nlmsg_flags & NLM_F_REPLACE) {
1166 struct fib_info *fi_drop;
1170 new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
1174 fi_drop = fa->fa_info;
1175 new_fa->fa_tos = fa->fa_tos;
1176 new_fa->fa_info = fi;
1177 new_fa->fa_type = type;
1178 new_fa->fa_scope = r->rtm_scope;
1179 state = fa->fa_state;
1180 new_fa->fa_state &= ~FA_S_ACCESSED;
1182 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1183 alias_free_mem_rcu(fa);
1185 fib_release_info(fi_drop);
1186 if (state & FA_S_ACCESSED)
1191 /* Error if we find a perfect match which
1192 * uses the same scope, type, and nexthop
1196 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1197 if (fa->fa_tos != tos)
1199 if (fa->fa_info->fib_priority != fi->fib_priority)
1201 if (fa->fa_type == type &&
1202 fa->fa_scope == r->rtm_scope &&
1203 fa->fa_info == fi) {
1207 if (!(nlhdr->nlmsg_flags & NLM_F_APPEND))
1211 if (!(nlhdr->nlmsg_flags & NLM_F_CREATE))
1215 new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
1219 new_fa->fa_info = fi;
1220 new_fa->fa_tos = tos;
1221 new_fa->fa_type = type;
1222 new_fa->fa_scope = r->rtm_scope;
1223 new_fa->fa_state = 0;
1225 * Insert new entry to the list.
1229 fa_head = fib_insert_node(t, &err, key, plen);
1232 goto out_free_new_fa;
1235 list_add_tail_rcu(&new_fa->fa_list,
1236 (fa ? &fa->fa_list : fa_head));
1239 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, nlhdr, req);
1244 kmem_cache_free(fn_alias_kmem, new_fa);
1246 fib_release_info(fi);
1252 /* should be called with rcu_read_lock */
1253 static inline int check_leaf(struct trie *t, struct leaf *l,
1254 t_key key, int *plen, const struct flowi *flp,
1255 struct fib_result *res)
1259 struct leaf_info *li;
1260 struct hlist_head *hhead = &l->list;
1261 struct hlist_node *node;
1263 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1265 mask = ntohl(inet_make_mask(i));
1266 if (l->key != (key & mask))
1269 if ((err = fib_semantic_match(&li->falh, flp, res, l->key, mask, i)) <= 0) {
1271 #ifdef CONFIG_IP_FIB_TRIE_STATS
1272 t->stats.semantic_match_passed++;
1276 #ifdef CONFIG_IP_FIB_TRIE_STATS
1277 t->stats.semantic_match_miss++;
1284 fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1286 struct trie *t = (struct trie *) tb->tb_data;
1291 t_key key = ntohl(flp->fl4_dst);
1294 int current_prefix_length = KEYLENGTH;
1296 t_key node_prefix, key_prefix, pref_mismatch;
1301 n = rcu_dereference(t->trie);
1305 #ifdef CONFIG_IP_FIB_TRIE_STATS
1311 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1315 pn = (struct tnode *) n;
1323 cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits);
1325 n = tnode_get_child(pn, cindex);
1328 #ifdef CONFIG_IP_FIB_TRIE_STATS
1329 t->stats.null_node_hit++;
1335 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1343 cn = (struct tnode *)n;
1346 * It's a tnode, and we can do some extra checks here if we
1347 * like, to avoid descending into a dead-end branch.
1348 * This tnode is in the parent's child array at index
1349 * key[p_pos..p_pos+p_bits] but potentially with some bits
1350 * chopped off, so in reality the index may be just a
1351 * subprefix, padded with zero at the end.
1352 * We can also take a look at any skipped bits in this
1353 * tnode - everything up to p_pos is supposed to be ok,
1354 * and the non-chopped bits of the index (se previous
1355 * paragraph) are also guaranteed ok, but the rest is
1356 * considered unknown.
1358 * The skipped bits are key[pos+bits..cn->pos].
1361 /* If current_prefix_length < pos+bits, we are already doing
1362 * actual prefix matching, which means everything from
1363 * pos+(bits-chopped_off) onward must be zero along some
1364 * branch of this subtree - otherwise there is *no* valid
1365 * prefix present. Here we can only check the skipped
1366 * bits. Remember, since we have already indexed into the
1367 * parent's child array, we know that the bits we chopped of
1371 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
1373 if (current_prefix_length < pos+bits) {
1374 if (tkey_extract_bits(cn->key, current_prefix_length,
1375 cn->pos - current_prefix_length) != 0 ||
1381 * If chopped_off=0, the index is fully validated and we
1382 * only need to look at the skipped bits for this, the new,
1383 * tnode. What we actually want to do is to find out if
1384 * these skipped bits match our key perfectly, or if we will
1385 * have to count on finding a matching prefix further down,
1386 * because if we do, we would like to have some way of
1387 * verifying the existence of such a prefix at this point.
1390 /* The only thing we can do at this point is to verify that
1391 * any such matching prefix can indeed be a prefix to our
1392 * key, and if the bits in the node we are inspecting that
1393 * do not match our key are not ZERO, this cannot be true.
1394 * Thus, find out where there is a mismatch (before cn->pos)
1395 * and verify that all the mismatching bits are zero in the
1399 /* Note: We aren't very concerned about the piece of the key
1400 * that precede pn->pos+pn->bits, since these have already been
1401 * checked. The bits after cn->pos aren't checked since these are
1402 * by definition "unknown" at this point. Thus, what we want to
1403 * see is if we are about to enter the "prefix matching" state,
1404 * and in that case verify that the skipped bits that will prevail
1405 * throughout this subtree are zero, as they have to be if we are
1406 * to find a matching prefix.
1409 node_prefix = MASK_PFX(cn->key, cn->pos);
1410 key_prefix = MASK_PFX(key, cn->pos);
1411 pref_mismatch = key_prefix^node_prefix;
1414 /* In short: If skipped bits in this node do not match the search
1415 * key, enter the "prefix matching" state.directly.
1417 if (pref_mismatch) {
1418 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1420 pref_mismatch = pref_mismatch <<1;
1422 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1424 if (key_prefix != 0)
1427 if (current_prefix_length >= cn->pos)
1428 current_prefix_length = mp;
1431 pn = (struct tnode *)n; /* Descend */
1438 /* As zero don't change the child key (cindex) */
1439 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
1442 /* Decrease current_... with bits chopped off */
1443 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1444 current_prefix_length = pn->pos + pn->bits - chopped_off;
1447 * Either we do the actual chop off according or if we have
1448 * chopped off all bits in this tnode walk up to our parent.
1451 if (chopped_off <= pn->bits) {
1452 cindex &= ~(1 << (chopped_off-1));
1454 if (NODE_PARENT(pn) == NULL)
1457 /* Get Child's index */
1458 cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits);
1459 pn = NODE_PARENT(pn);
1462 #ifdef CONFIG_IP_FIB_TRIE_STATS
1463 t->stats.backtrack++;
1475 /* only called from updater side */
1476 static int trie_leaf_remove(struct trie *t, t_key key)
1479 struct tnode *tp = NULL;
1480 struct node *n = t->trie;
1483 pr_debug("entering trie_leaf_remove(%p)\n", n);
1485 /* Note that in the case skipped bits, those bits are *not* checked!
1486 * When we finish this, we will have NULL or a T_LEAF, and the
1487 * T_LEAF may or may not match our key.
1490 while (n != NULL && IS_TNODE(n)) {
1491 struct tnode *tn = (struct tnode *) n;
1493 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1495 BUG_ON(n && NODE_PARENT(n) != tn);
1497 l = (struct leaf *) n;
1499 if (!n || !tkey_equals(l->key, key))
1504 * Remove the leaf and rebalance the tree
1511 tp = NODE_PARENT(n);
1512 tnode_free((struct tnode *) n);
1515 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1516 put_child(t, (struct tnode *)tp, cindex, NULL);
1517 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1519 rcu_assign_pointer(t->trie, NULL);
1526 fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1527 struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
1529 struct trie *t = (struct trie *) tb->tb_data;
1531 int plen = r->rtm_dst_len;
1532 u8 tos = r->rtm_tos;
1533 struct fib_alias *fa, *fa_to_delete;
1534 struct list_head *fa_head;
1536 struct leaf_info *li;
1544 memcpy(&key, rta->rta_dst, 4);
1547 mask = ntohl(inet_make_mask(plen));
1553 l = fib_find_node(t, key);
1558 fa_head = get_fa_head(l, plen);
1559 fa = fib_find_alias(fa_head, tos, 0);
1564 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1566 fa_to_delete = NULL;
1567 fa_head = fa->fa_list.prev;
1569 list_for_each_entry(fa, fa_head, fa_list) {
1570 struct fib_info *fi = fa->fa_info;
1572 if (fa->fa_tos != tos)
1575 if ((!r->rtm_type ||
1576 fa->fa_type == r->rtm_type) &&
1577 (r->rtm_scope == RT_SCOPE_NOWHERE ||
1578 fa->fa_scope == r->rtm_scope) &&
1579 (!r->rtm_protocol ||
1580 fi->fib_protocol == r->rtm_protocol) &&
1581 fib_nh_match(r, nlhdr, rta, fi) == 0) {
1591 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, nlhdr, req);
1593 l = fib_find_node(t, key);
1594 li = find_leaf_info(l, plen);
1596 list_del_rcu(&fa->fa_list);
1598 if (list_empty(fa_head)) {
1599 hlist_del_rcu(&li->hlist);
1603 if (hlist_empty(&l->list))
1604 trie_leaf_remove(t, key);
1606 if (fa->fa_state & FA_S_ACCESSED)
1609 fib_release_info(fa->fa_info);
1610 alias_free_mem_rcu(fa);
1614 static int trie_flush_list(struct trie *t, struct list_head *head)
1616 struct fib_alias *fa, *fa_node;
1619 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1620 struct fib_info *fi = fa->fa_info;
1622 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1623 list_del_rcu(&fa->fa_list);
1624 fib_release_info(fa->fa_info);
1625 alias_free_mem_rcu(fa);
1632 static int trie_flush_leaf(struct trie *t, struct leaf *l)
1635 struct hlist_head *lih = &l->list;
1636 struct hlist_node *node, *tmp;
1637 struct leaf_info *li = NULL;
1639 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1640 found += trie_flush_list(t, &li->falh);
1642 if (list_empty(&li->falh)) {
1643 hlist_del_rcu(&li->hlist);
1650 /* rcu_read_lock needs to be hold by caller from readside */
1652 static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1654 struct node *c = (struct node *) thisleaf;
1657 struct node *trie = rcu_dereference(t->trie);
1663 if (IS_LEAF(trie)) /* trie w. just a leaf */
1664 return (struct leaf *) trie;
1666 p = (struct tnode*) trie; /* Start */
1668 p = (struct tnode *) NODE_PARENT(c);
1673 /* Find the next child of the parent */
1675 pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1679 last = 1 << p->bits;
1680 for (idx = pos; idx < last ; idx++) {
1681 c = rcu_dereference(p->child[idx]);
1686 /* Decend if tnode */
1687 while (IS_TNODE(c)) {
1688 p = (struct tnode *) c;
1691 /* Rightmost non-NULL branch */
1692 if (p && IS_TNODE(p))
1693 while (!(c = rcu_dereference(p->child[idx]))
1694 && idx < (1<<p->bits)) idx++;
1696 /* Done with this tnode? */
1697 if (idx >= (1 << p->bits) || !c)
1700 return (struct leaf *) c;
1703 /* No more children go up one step */
1704 c = (struct node *) p;
1705 p = (struct tnode *) NODE_PARENT(p);
1707 return NULL; /* Ready. Root of trie */
1710 static int fn_trie_flush(struct fib_table *tb)
1712 struct trie *t = (struct trie *) tb->tb_data;
1713 struct leaf *ll = NULL, *l = NULL;
1718 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1719 found += trie_flush_leaf(t, l);
1721 if (ll && hlist_empty(&ll->list))
1722 trie_leaf_remove(t, ll->key);
1726 if (ll && hlist_empty(&ll->list))
1727 trie_leaf_remove(t, ll->key);
1729 pr_debug("trie_flush found=%d\n", found);
1733 static int trie_last_dflt = -1;
1736 fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1738 struct trie *t = (struct trie *) tb->tb_data;
1739 int order, last_idx;
1740 struct fib_info *fi = NULL;
1741 struct fib_info *last_resort;
1742 struct fib_alias *fa = NULL;
1743 struct list_head *fa_head;
1752 l = fib_find_node(t, 0);
1756 fa_head = get_fa_head(l, 0);
1760 if (list_empty(fa_head))
1763 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1764 struct fib_info *next_fi = fa->fa_info;
1766 if (fa->fa_scope != res->scope ||
1767 fa->fa_type != RTN_UNICAST)
1770 if (next_fi->fib_priority > res->fi->fib_priority)
1772 if (!next_fi->fib_nh[0].nh_gw ||
1773 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1775 fa->fa_state |= FA_S_ACCESSED;
1778 if (next_fi != res->fi)
1780 } else if (!fib_detect_death(fi, order, &last_resort,
1781 &last_idx, &trie_last_dflt)) {
1783 fib_info_put(res->fi);
1785 atomic_inc(&fi->fib_clntref);
1786 trie_last_dflt = order;
1792 if (order <= 0 || fi == NULL) {
1793 trie_last_dflt = -1;
1797 if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) {
1799 fib_info_put(res->fi);
1801 atomic_inc(&fi->fib_clntref);
1802 trie_last_dflt = order;
1805 if (last_idx >= 0) {
1807 fib_info_put(res->fi);
1808 res->fi = last_resort;
1810 atomic_inc(&last_resort->fib_clntref);
1812 trie_last_dflt = last_idx;
1817 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
1818 struct sk_buff *skb, struct netlink_callback *cb)
1821 struct fib_alias *fa;
1823 u32 xkey = htonl(key);
1828 /* rcu_read_lock is hold by caller */
1830 list_for_each_entry_rcu(fa, fah, fa_list) {
1835 BUG_ON(!fa->fa_info);
1837 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1846 fa->fa_info, 0) < 0) {
1856 static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
1857 struct netlink_callback *cb)
1860 struct list_head *fa_head;
1861 struct leaf *l = NULL;
1865 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1869 memset(&cb->args[3], 0,
1870 sizeof(cb->args) - 3*sizeof(cb->args[0]));
1872 fa_head = get_fa_head(l, plen);
1877 if (list_empty(fa_head))
1880 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
1889 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
1892 struct trie *t = (struct trie *) tb->tb_data;
1897 for (m = 0; m <= 32; m++) {
1901 memset(&cb->args[2], 0,
1902 sizeof(cb->args) - 2*sizeof(cb->args[0]));
1904 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
1917 /* Fix more generic FIB names for init later */
1919 #ifdef CONFIG_IP_MULTIPLE_TABLES
1920 struct fib_table * fib_hash_init(int id)
1922 struct fib_table * __init fib_hash_init(int id)
1925 struct fib_table *tb;
1928 if (fn_alias_kmem == NULL)
1929 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1930 sizeof(struct fib_alias),
1931 0, SLAB_HWCACHE_ALIGN,
1934 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1940 tb->tb_lookup = fn_trie_lookup;
1941 tb->tb_insert = fn_trie_insert;
1942 tb->tb_delete = fn_trie_delete;
1943 tb->tb_flush = fn_trie_flush;
1944 tb->tb_select_default = fn_trie_select_default;
1945 tb->tb_dump = fn_trie_dump;
1946 memset(tb->tb_data, 0, sizeof(struct trie));
1948 t = (struct trie *) tb->tb_data;
1952 if (id == RT_TABLE_LOCAL)
1954 else if (id == RT_TABLE_MAIN)
1957 if (id == RT_TABLE_LOCAL)
1958 printk(KERN_INFO "IPv4 FIB: Using LC-trie version %s\n", VERSION);
1963 #ifdef CONFIG_PROC_FS
1964 /* Depth first Trie walk iterator */
1965 struct fib_trie_iter {
1966 struct tnode *tnode;
1972 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
1974 struct tnode *tn = iter->tnode;
1975 unsigned cindex = iter->index;
1978 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1979 iter->tnode, iter->index, iter->depth);
1981 while (cindex < (1<<tn->bits)) {
1982 struct node *n = tnode_get_child(tn, cindex);
1987 iter->index = cindex + 1;
1989 /* push down one level */
1990 iter->tnode = (struct tnode *) n;
2000 /* Current node exhausted, pop back up */
2001 p = NODE_PARENT(tn);
2003 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2013 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2016 struct node *n = rcu_dereference(t->trie);
2018 if (n && IS_TNODE(n)) {
2019 iter->tnode = (struct tnode *) n;
2028 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2031 struct fib_trie_iter iter;
2033 memset(s, 0, sizeof(*s));
2036 for (n = fib_trie_get_first(&iter, t); n;
2037 n = fib_trie_get_next(&iter)) {
2040 s->totdepth += iter.depth;
2041 if (iter.depth > s->maxdepth)
2042 s->maxdepth = iter.depth;
2044 const struct tnode *tn = (const struct tnode *) n;
2048 s->nodesizes[tn->bits]++;
2049 for (i = 0; i < (1<<tn->bits); i++)
2058 * This outputs /proc/net/fib_triestats
2060 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2062 unsigned i, max, pointers, bytes, avdepth;
2065 avdepth = stat->totdepth*100 / stat->leaves;
2069 seq_printf(seq, "\tAver depth: %d.%02d\n", avdepth / 100, avdepth % 100 );
2070 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2072 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2074 bytes = sizeof(struct leaf) * stat->leaves;
2075 seq_printf(seq, "\tInternal nodes: %d\n\t", stat->tnodes);
2076 bytes += sizeof(struct tnode) * stat->tnodes;
2079 while (max >= 0 && stat->nodesizes[max] == 0)
2083 for (i = 1; i <= max; i++)
2084 if (stat->nodesizes[i] != 0) {
2085 seq_printf(seq, " %d: %d", i, stat->nodesizes[i]);
2086 pointers += (1<<i) * stat->nodesizes[i];
2088 seq_putc(seq, '\n');
2089 seq_printf(seq, "\tPointers: %d\n", pointers);
2091 bytes += sizeof(struct node *) * pointers;
2092 seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers);
2093 seq_printf(seq, "Total size: %d kB\n", (bytes + 1023) / 1024);
2095 #ifdef CONFIG_IP_FIB_TRIE_STATS
2096 seq_printf(seq, "Counters:\n---------\n");
2097 seq_printf(seq,"gets = %d\n", t->stats.gets);
2098 seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
2099 seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
2100 seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
2101 seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
2102 seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped);
2104 memset(&(t->stats), 0, sizeof(t->stats));
2106 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2109 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2111 struct trie_stat *stat;
2113 stat = kmalloc(sizeof(*stat), GFP_KERNEL);
2117 seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
2118 sizeof(struct leaf), sizeof(struct tnode));
2121 seq_printf(seq, "Local:\n");
2122 trie_collect_stats(trie_local, stat);
2123 trie_show_stats(seq, stat);
2127 seq_printf(seq, "Main:\n");
2128 trie_collect_stats(trie_main, stat);
2129 trie_show_stats(seq, stat);
2136 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2138 return single_open(file, fib_triestat_seq_show, NULL);
2141 static struct file_operations fib_triestat_fops = {
2142 .owner = THIS_MODULE,
2143 .open = fib_triestat_seq_open,
2145 .llseek = seq_lseek,
2146 .release = single_release,
2149 static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2155 for (n = fib_trie_get_first(iter, trie_local);
2156 n; ++idx, n = fib_trie_get_next(iter)) {
2161 for (n = fib_trie_get_first(iter, trie_main);
2162 n; ++idx, n = fib_trie_get_next(iter)) {
2169 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2173 return SEQ_START_TOKEN;
2174 return fib_trie_get_idx(seq->private, *pos - 1);
2177 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2179 struct fib_trie_iter *iter = seq->private;
2183 if (v == SEQ_START_TOKEN)
2184 return fib_trie_get_idx(iter, 0);
2186 v = fib_trie_get_next(iter);
2191 /* continue scan in next trie */
2192 if (iter->trie == trie_local)
2193 return fib_trie_get_first(iter, trie_main);
2198 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2203 static void seq_indent(struct seq_file *seq, int n)
2205 while (n-- > 0) seq_puts(seq, " ");
2208 static inline const char *rtn_scope(enum rt_scope_t s)
2210 static char buf[32];
2213 case RT_SCOPE_UNIVERSE: return "universe";
2214 case RT_SCOPE_SITE: return "site";
2215 case RT_SCOPE_LINK: return "link";
2216 case RT_SCOPE_HOST: return "host";
2217 case RT_SCOPE_NOWHERE: return "nowhere";
2219 snprintf(buf, sizeof(buf), "scope=%d", s);
2224 static const char *rtn_type_names[__RTN_MAX] = {
2225 [RTN_UNSPEC] = "UNSPEC",
2226 [RTN_UNICAST] = "UNICAST",
2227 [RTN_LOCAL] = "LOCAL",
2228 [RTN_BROADCAST] = "BROADCAST",
2229 [RTN_ANYCAST] = "ANYCAST",
2230 [RTN_MULTICAST] = "MULTICAST",
2231 [RTN_BLACKHOLE] = "BLACKHOLE",
2232 [RTN_UNREACHABLE] = "UNREACHABLE",
2233 [RTN_PROHIBIT] = "PROHIBIT",
2234 [RTN_THROW] = "THROW",
2236 [RTN_XRESOLVE] = "XRESOLVE",
2239 static inline const char *rtn_type(unsigned t)
2241 static char buf[32];
2243 if (t < __RTN_MAX && rtn_type_names[t])
2244 return rtn_type_names[t];
2245 snprintf(buf, sizeof(buf), "type %d", t);
2249 /* Pretty print the trie */
2250 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2252 const struct fib_trie_iter *iter = seq->private;
2255 if (v == SEQ_START_TOKEN)
2259 struct tnode *tn = (struct tnode *) n;
2260 t_key prf = ntohl(MASK_PFX(tn->key, tn->pos));
2262 if (!NODE_PARENT(n)) {
2263 if (iter->trie == trie_local)
2264 seq_puts(seq, "<local>:\n");
2266 seq_puts(seq, "<main>:\n");
2268 seq_indent(seq, iter->depth-1);
2269 seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n",
2270 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
2271 tn->empty_children);
2274 struct leaf *l = (struct leaf *) n;
2276 u32 val = ntohl(l->key);
2278 seq_indent(seq, iter->depth);
2279 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val));
2280 for (i = 32; i >= 0; i--) {
2281 struct leaf_info *li = find_leaf_info(l, i);
2283 struct fib_alias *fa;
2284 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2285 seq_indent(seq, iter->depth+1);
2286 seq_printf(seq, " /%d %s %s", i,
2287 rtn_scope(fa->fa_scope),
2288 rtn_type(fa->fa_type));
2290 seq_printf(seq, "tos =%d\n",
2292 seq_putc(seq, '\n');
2301 static struct seq_operations fib_trie_seq_ops = {
2302 .start = fib_trie_seq_start,
2303 .next = fib_trie_seq_next,
2304 .stop = fib_trie_seq_stop,
2305 .show = fib_trie_seq_show,
2308 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2310 struct seq_file *seq;
2312 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
2317 rc = seq_open(file, &fib_trie_seq_ops);
2321 seq = file->private_data;
2323 memset(s, 0, sizeof(*s));
2331 static struct file_operations fib_trie_fops = {
2332 .owner = THIS_MODULE,
2333 .open = fib_trie_seq_open,
2335 .llseek = seq_lseek,
2336 .release = seq_release_private,
2339 static unsigned fib_flag_trans(int type, u32 mask, const struct fib_info *fi)
2341 static unsigned type2flags[RTN_MAX + 1] = {
2342 [7] = RTF_REJECT, [8] = RTF_REJECT,
2344 unsigned flags = type2flags[type];
2346 if (fi && fi->fib_nh->nh_gw)
2347 flags |= RTF_GATEWAY;
2348 if (mask == 0xFFFFFFFF)
2355 * This outputs /proc/net/route.
2356 * The format of the file is not supposed to be changed
2357 * and needs to be same as fib_hash output to avoid breaking
2360 static int fib_route_seq_show(struct seq_file *seq, void *v)
2366 if (v == SEQ_START_TOKEN) {
2367 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2368 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2376 for (i=32; i>=0; i--) {
2377 struct leaf_info *li = find_leaf_info(l, i);
2378 struct fib_alias *fa;
2384 mask = inet_make_mask(li->plen);
2385 prefix = htonl(l->key);
2387 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2388 const struct fib_info *fi = rcu_dereference(fa->fa_info);
2389 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2391 if (fa->fa_type == RTN_BROADCAST
2392 || fa->fa_type == RTN_MULTICAST)
2396 snprintf(bf, sizeof(bf),
2397 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2398 fi->fib_dev ? fi->fib_dev->name : "*",
2400 fi->fib_nh->nh_gw, flags, 0, 0,
2403 (fi->fib_advmss ? fi->fib_advmss + 40 : 0),
2407 snprintf(bf, sizeof(bf),
2408 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2409 prefix, 0, flags, 0, 0, 0,
2412 seq_printf(seq, "%-127s\n", bf);
2419 static struct seq_operations fib_route_seq_ops = {
2420 .start = fib_trie_seq_start,
2421 .next = fib_trie_seq_next,
2422 .stop = fib_trie_seq_stop,
2423 .show = fib_route_seq_show,
2426 static int fib_route_seq_open(struct inode *inode, struct file *file)
2428 struct seq_file *seq;
2430 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
2435 rc = seq_open(file, &fib_route_seq_ops);
2439 seq = file->private_data;
2441 memset(s, 0, sizeof(*s));
2449 static struct file_operations fib_route_fops = {
2450 .owner = THIS_MODULE,
2451 .open = fib_route_seq_open,
2453 .llseek = seq_lseek,
2454 .release = seq_release_private,
2457 int __init fib_proc_init(void)
2459 if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_fops))
2462 if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_fops))
2465 if (!proc_net_fops_create("route", S_IRUGO, &fib_route_fops))
2471 proc_net_remove("fib_triestat");
2473 proc_net_remove("fib_trie");
2478 void __init fib_proc_exit(void)
2480 proc_net_remove("fib_trie");
2481 proc_net_remove("fib_triestat");
2482 proc_net_remove("route");
2485 #endif /* CONFIG_PROC_FS */