KVM: MMU: drop zeroing on mmu_memory_cache_alloc
[linux-2.6] / fs / fuse / dev.c
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8
9 #include "fuse_i.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/poll.h>
14 #include <linux/uio.h>
15 #include <linux/miscdevice.h>
16 #include <linux/pagemap.h>
17 #include <linux/file.h>
18 #include <linux/slab.h>
19
20 MODULE_ALIAS_MISCDEV(FUSE_MINOR);
21
22 static struct kmem_cache *fuse_req_cachep;
23
24 static struct fuse_conn *fuse_get_conn(struct file *file)
25 {
26         /*
27          * Lockless access is OK, because file->private data is set
28          * once during mount and is valid until the file is released.
29          */
30         return file->private_data;
31 }
32
33 static void fuse_request_init(struct fuse_req *req)
34 {
35         memset(req, 0, sizeof(*req));
36         INIT_LIST_HEAD(&req->list);
37         INIT_LIST_HEAD(&req->intr_entry);
38         init_waitqueue_head(&req->waitq);
39         atomic_set(&req->count, 1);
40 }
41
42 struct fuse_req *fuse_request_alloc(void)
43 {
44         struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_KERNEL);
45         if (req)
46                 fuse_request_init(req);
47         return req;
48 }
49
50 struct fuse_req *fuse_request_alloc_nofs(void)
51 {
52         struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_NOFS);
53         if (req)
54                 fuse_request_init(req);
55         return req;
56 }
57
58 void fuse_request_free(struct fuse_req *req)
59 {
60         kmem_cache_free(fuse_req_cachep, req);
61 }
62
63 static void block_sigs(sigset_t *oldset)
64 {
65         sigset_t mask;
66
67         siginitsetinv(&mask, sigmask(SIGKILL));
68         sigprocmask(SIG_BLOCK, &mask, oldset);
69 }
70
71 static void restore_sigs(sigset_t *oldset)
72 {
73         sigprocmask(SIG_SETMASK, oldset, NULL);
74 }
75
76 static void __fuse_get_request(struct fuse_req *req)
77 {
78         atomic_inc(&req->count);
79 }
80
81 /* Must be called with > 1 refcount */
82 static void __fuse_put_request(struct fuse_req *req)
83 {
84         BUG_ON(atomic_read(&req->count) < 2);
85         atomic_dec(&req->count);
86 }
87
88 static void fuse_req_init_context(struct fuse_req *req)
89 {
90         req->in.h.uid = current_fsuid();
91         req->in.h.gid = current_fsgid();
92         req->in.h.pid = current->pid;
93 }
94
95 struct fuse_req *fuse_get_req(struct fuse_conn *fc)
96 {
97         struct fuse_req *req;
98         sigset_t oldset;
99         int intr;
100         int err;
101
102         atomic_inc(&fc->num_waiting);
103         block_sigs(&oldset);
104         intr = wait_event_interruptible(fc->blocked_waitq, !fc->blocked);
105         restore_sigs(&oldset);
106         err = -EINTR;
107         if (intr)
108                 goto out;
109
110         err = -ENOTCONN;
111         if (!fc->connected)
112                 goto out;
113
114         req = fuse_request_alloc();
115         err = -ENOMEM;
116         if (!req)
117                 goto out;
118
119         fuse_req_init_context(req);
120         req->waiting = 1;
121         return req;
122
123  out:
124         atomic_dec(&fc->num_waiting);
125         return ERR_PTR(err);
126 }
127
128 /*
129  * Return request in fuse_file->reserved_req.  However that may
130  * currently be in use.  If that is the case, wait for it to become
131  * available.
132  */
133 static struct fuse_req *get_reserved_req(struct fuse_conn *fc,
134                                          struct file *file)
135 {
136         struct fuse_req *req = NULL;
137         struct fuse_file *ff = file->private_data;
138
139         do {
140                 wait_event(fc->reserved_req_waitq, ff->reserved_req);
141                 spin_lock(&fc->lock);
142                 if (ff->reserved_req) {
143                         req = ff->reserved_req;
144                         ff->reserved_req = NULL;
145                         get_file(file);
146                         req->stolen_file = file;
147                 }
148                 spin_unlock(&fc->lock);
149         } while (!req);
150
151         return req;
152 }
153
154 /*
155  * Put stolen request back into fuse_file->reserved_req
156  */
157 static void put_reserved_req(struct fuse_conn *fc, struct fuse_req *req)
158 {
159         struct file *file = req->stolen_file;
160         struct fuse_file *ff = file->private_data;
161
162         spin_lock(&fc->lock);
163         fuse_request_init(req);
164         BUG_ON(ff->reserved_req);
165         ff->reserved_req = req;
166         wake_up_all(&fc->reserved_req_waitq);
167         spin_unlock(&fc->lock);
168         fput(file);
169 }
170
171 /*
172  * Gets a requests for a file operation, always succeeds
173  *
174  * This is used for sending the FLUSH request, which must get to
175  * userspace, due to POSIX locks which may need to be unlocked.
176  *
177  * If allocation fails due to OOM, use the reserved request in
178  * fuse_file.
179  *
180  * This is very unlikely to deadlock accidentally, since the
181  * filesystem should not have it's own file open.  If deadlock is
182  * intentional, it can still be broken by "aborting" the filesystem.
183  */
184 struct fuse_req *fuse_get_req_nofail(struct fuse_conn *fc, struct file *file)
185 {
186         struct fuse_req *req;
187
188         atomic_inc(&fc->num_waiting);
189         wait_event(fc->blocked_waitq, !fc->blocked);
190         req = fuse_request_alloc();
191         if (!req)
192                 req = get_reserved_req(fc, file);
193
194         fuse_req_init_context(req);
195         req->waiting = 1;
196         return req;
197 }
198
199 void fuse_put_request(struct fuse_conn *fc, struct fuse_req *req)
200 {
201         if (atomic_dec_and_test(&req->count)) {
202                 if (req->waiting)
203                         atomic_dec(&fc->num_waiting);
204
205                 if (req->stolen_file)
206                         put_reserved_req(fc, req);
207                 else
208                         fuse_request_free(req);
209         }
210 }
211
212 static unsigned len_args(unsigned numargs, struct fuse_arg *args)
213 {
214         unsigned nbytes = 0;
215         unsigned i;
216
217         for (i = 0; i < numargs; i++)
218                 nbytes += args[i].size;
219
220         return nbytes;
221 }
222
223 static u64 fuse_get_unique(struct fuse_conn *fc)
224 {
225         fc->reqctr++;
226         /* zero is special */
227         if (fc->reqctr == 0)
228                 fc->reqctr = 1;
229
230         return fc->reqctr;
231 }
232
233 static void queue_request(struct fuse_conn *fc, struct fuse_req *req)
234 {
235         req->in.h.unique = fuse_get_unique(fc);
236         req->in.h.len = sizeof(struct fuse_in_header) +
237                 len_args(req->in.numargs, (struct fuse_arg *) req->in.args);
238         list_add_tail(&req->list, &fc->pending);
239         req->state = FUSE_REQ_PENDING;
240         if (!req->waiting) {
241                 req->waiting = 1;
242                 atomic_inc(&fc->num_waiting);
243         }
244         wake_up(&fc->waitq);
245         kill_fasync(&fc->fasync, SIGIO, POLL_IN);
246 }
247
248 static void flush_bg_queue(struct fuse_conn *fc)
249 {
250         while (fc->active_background < FUSE_MAX_BACKGROUND &&
251                !list_empty(&fc->bg_queue)) {
252                 struct fuse_req *req;
253
254                 req = list_entry(fc->bg_queue.next, struct fuse_req, list);
255                 list_del(&req->list);
256                 fc->active_background++;
257                 queue_request(fc, req);
258         }
259 }
260
261 /*
262  * This function is called when a request is finished.  Either a reply
263  * has arrived or it was aborted (and not yet sent) or some error
264  * occurred during communication with userspace, or the device file
265  * was closed.  The requester thread is woken up (if still waiting),
266  * the 'end' callback is called if given, else the reference to the
267  * request is released
268  *
269  * Called with fc->lock, unlocks it
270  */
271 static void request_end(struct fuse_conn *fc, struct fuse_req *req)
272 __releases(&fc->lock)
273 {
274         void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
275         req->end = NULL;
276         list_del(&req->list);
277         list_del(&req->intr_entry);
278         req->state = FUSE_REQ_FINISHED;
279         if (req->background) {
280                 if (fc->num_background == FUSE_MAX_BACKGROUND) {
281                         fc->blocked = 0;
282                         wake_up_all(&fc->blocked_waitq);
283                 }
284                 if (fc->num_background == FUSE_CONGESTION_THRESHOLD &&
285                     fc->connected) {
286                         clear_bdi_congested(&fc->bdi, READ);
287                         clear_bdi_congested(&fc->bdi, WRITE);
288                 }
289                 fc->num_background--;
290                 fc->active_background--;
291                 flush_bg_queue(fc);
292         }
293         spin_unlock(&fc->lock);
294         wake_up(&req->waitq);
295         if (end)
296                 end(fc, req);
297         fuse_put_request(fc, req);
298 }
299
300 static void wait_answer_interruptible(struct fuse_conn *fc,
301                                       struct fuse_req *req)
302 __releases(&fc->lock)
303 __acquires(&fc->lock)
304 {
305         if (signal_pending(current))
306                 return;
307
308         spin_unlock(&fc->lock);
309         wait_event_interruptible(req->waitq, req->state == FUSE_REQ_FINISHED);
310         spin_lock(&fc->lock);
311 }
312
313 static void queue_interrupt(struct fuse_conn *fc, struct fuse_req *req)
314 {
315         list_add_tail(&req->intr_entry, &fc->interrupts);
316         wake_up(&fc->waitq);
317         kill_fasync(&fc->fasync, SIGIO, POLL_IN);
318 }
319
320 static void request_wait_answer(struct fuse_conn *fc, struct fuse_req *req)
321 __releases(&fc->lock)
322 __acquires(&fc->lock)
323 {
324         if (!fc->no_interrupt) {
325                 /* Any signal may interrupt this */
326                 wait_answer_interruptible(fc, req);
327
328                 if (req->aborted)
329                         goto aborted;
330                 if (req->state == FUSE_REQ_FINISHED)
331                         return;
332
333                 req->interrupted = 1;
334                 if (req->state == FUSE_REQ_SENT)
335                         queue_interrupt(fc, req);
336         }
337
338         if (!req->force) {
339                 sigset_t oldset;
340
341                 /* Only fatal signals may interrupt this */
342                 block_sigs(&oldset);
343                 wait_answer_interruptible(fc, req);
344                 restore_sigs(&oldset);
345
346                 if (req->aborted)
347                         goto aborted;
348                 if (req->state == FUSE_REQ_FINISHED)
349                         return;
350
351                 /* Request is not yet in userspace, bail out */
352                 if (req->state == FUSE_REQ_PENDING) {
353                         list_del(&req->list);
354                         __fuse_put_request(req);
355                         req->out.h.error = -EINTR;
356                         return;
357                 }
358         }
359
360         /*
361          * Either request is already in userspace, or it was forced.
362          * Wait it out.
363          */
364         spin_unlock(&fc->lock);
365         wait_event(req->waitq, req->state == FUSE_REQ_FINISHED);
366         spin_lock(&fc->lock);
367
368         if (!req->aborted)
369                 return;
370
371  aborted:
372         BUG_ON(req->state != FUSE_REQ_FINISHED);
373         if (req->locked) {
374                 /* This is uninterruptible sleep, because data is
375                    being copied to/from the buffers of req.  During
376                    locked state, there mustn't be any filesystem
377                    operation (e.g. page fault), since that could lead
378                    to deadlock */
379                 spin_unlock(&fc->lock);
380                 wait_event(req->waitq, !req->locked);
381                 spin_lock(&fc->lock);
382         }
383 }
384
385 void fuse_request_send(struct fuse_conn *fc, struct fuse_req *req)
386 {
387         req->isreply = 1;
388         spin_lock(&fc->lock);
389         if (!fc->connected)
390                 req->out.h.error = -ENOTCONN;
391         else if (fc->conn_error)
392                 req->out.h.error = -ECONNREFUSED;
393         else {
394                 queue_request(fc, req);
395                 /* acquire extra reference, since request is still needed
396                    after request_end() */
397                 __fuse_get_request(req);
398
399                 request_wait_answer(fc, req);
400         }
401         spin_unlock(&fc->lock);
402 }
403
404 static void fuse_request_send_nowait_locked(struct fuse_conn *fc,
405                                             struct fuse_req *req)
406 {
407         req->background = 1;
408         fc->num_background++;
409         if (fc->num_background == FUSE_MAX_BACKGROUND)
410                 fc->blocked = 1;
411         if (fc->num_background == FUSE_CONGESTION_THRESHOLD) {
412                 set_bdi_congested(&fc->bdi, READ);
413                 set_bdi_congested(&fc->bdi, WRITE);
414         }
415         list_add_tail(&req->list, &fc->bg_queue);
416         flush_bg_queue(fc);
417 }
418
419 static void fuse_request_send_nowait(struct fuse_conn *fc, struct fuse_req *req)
420 {
421         spin_lock(&fc->lock);
422         if (fc->connected) {
423                 fuse_request_send_nowait_locked(fc, req);
424                 spin_unlock(&fc->lock);
425         } else {
426                 req->out.h.error = -ENOTCONN;
427                 request_end(fc, req);
428         }
429 }
430
431 void fuse_request_send_noreply(struct fuse_conn *fc, struct fuse_req *req)
432 {
433         req->isreply = 0;
434         fuse_request_send_nowait(fc, req);
435 }
436
437 void fuse_request_send_background(struct fuse_conn *fc, struct fuse_req *req)
438 {
439         req->isreply = 1;
440         fuse_request_send_nowait(fc, req);
441 }
442
443 /*
444  * Called under fc->lock
445  *
446  * fc->connected must have been checked previously
447  */
448 void fuse_request_send_background_locked(struct fuse_conn *fc,
449                                          struct fuse_req *req)
450 {
451         req->isreply = 1;
452         fuse_request_send_nowait_locked(fc, req);
453 }
454
455 /*
456  * Lock the request.  Up to the next unlock_request() there mustn't be
457  * anything that could cause a page-fault.  If the request was already
458  * aborted bail out.
459  */
460 static int lock_request(struct fuse_conn *fc, struct fuse_req *req)
461 {
462         int err = 0;
463         if (req) {
464                 spin_lock(&fc->lock);
465                 if (req->aborted)
466                         err = -ENOENT;
467                 else
468                         req->locked = 1;
469                 spin_unlock(&fc->lock);
470         }
471         return err;
472 }
473
474 /*
475  * Unlock request.  If it was aborted during being locked, the
476  * requester thread is currently waiting for it to be unlocked, so
477  * wake it up.
478  */
479 static void unlock_request(struct fuse_conn *fc, struct fuse_req *req)
480 {
481         if (req) {
482                 spin_lock(&fc->lock);
483                 req->locked = 0;
484                 if (req->aborted)
485                         wake_up(&req->waitq);
486                 spin_unlock(&fc->lock);
487         }
488 }
489
490 struct fuse_copy_state {
491         struct fuse_conn *fc;
492         int write;
493         struct fuse_req *req;
494         const struct iovec *iov;
495         unsigned long nr_segs;
496         unsigned long seglen;
497         unsigned long addr;
498         struct page *pg;
499         void *mapaddr;
500         void *buf;
501         unsigned len;
502 };
503
504 static void fuse_copy_init(struct fuse_copy_state *cs, struct fuse_conn *fc,
505                            int write, struct fuse_req *req,
506                            const struct iovec *iov, unsigned long nr_segs)
507 {
508         memset(cs, 0, sizeof(*cs));
509         cs->fc = fc;
510         cs->write = write;
511         cs->req = req;
512         cs->iov = iov;
513         cs->nr_segs = nr_segs;
514 }
515
516 /* Unmap and put previous page of userspace buffer */
517 static void fuse_copy_finish(struct fuse_copy_state *cs)
518 {
519         if (cs->mapaddr) {
520                 kunmap_atomic(cs->mapaddr, KM_USER0);
521                 if (cs->write) {
522                         flush_dcache_page(cs->pg);
523                         set_page_dirty_lock(cs->pg);
524                 }
525                 put_page(cs->pg);
526                 cs->mapaddr = NULL;
527         }
528 }
529
530 /*
531  * Get another pagefull of userspace buffer, and map it to kernel
532  * address space, and lock request
533  */
534 static int fuse_copy_fill(struct fuse_copy_state *cs)
535 {
536         unsigned long offset;
537         int err;
538
539         unlock_request(cs->fc, cs->req);
540         fuse_copy_finish(cs);
541         if (!cs->seglen) {
542                 BUG_ON(!cs->nr_segs);
543                 cs->seglen = cs->iov[0].iov_len;
544                 cs->addr = (unsigned long) cs->iov[0].iov_base;
545                 cs->iov++;
546                 cs->nr_segs--;
547         }
548         down_read(&current->mm->mmap_sem);
549         err = get_user_pages(current, current->mm, cs->addr, 1, cs->write, 0,
550                              &cs->pg, NULL);
551         up_read(&current->mm->mmap_sem);
552         if (err < 0)
553                 return err;
554         BUG_ON(err != 1);
555         offset = cs->addr % PAGE_SIZE;
556         cs->mapaddr = kmap_atomic(cs->pg, KM_USER0);
557         cs->buf = cs->mapaddr + offset;
558         cs->len = min(PAGE_SIZE - offset, cs->seglen);
559         cs->seglen -= cs->len;
560         cs->addr += cs->len;
561
562         return lock_request(cs->fc, cs->req);
563 }
564
565 /* Do as much copy to/from userspace buffer as we can */
566 static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
567 {
568         unsigned ncpy = min(*size, cs->len);
569         if (val) {
570                 if (cs->write)
571                         memcpy(cs->buf, *val, ncpy);
572                 else
573                         memcpy(*val, cs->buf, ncpy);
574                 *val += ncpy;
575         }
576         *size -= ncpy;
577         cs->len -= ncpy;
578         cs->buf += ncpy;
579         return ncpy;
580 }
581
582 /*
583  * Copy a page in the request to/from the userspace buffer.  Must be
584  * done atomically
585  */
586 static int fuse_copy_page(struct fuse_copy_state *cs, struct page *page,
587                           unsigned offset, unsigned count, int zeroing)
588 {
589         if (page && zeroing && count < PAGE_SIZE) {
590                 void *mapaddr = kmap_atomic(page, KM_USER1);
591                 memset(mapaddr, 0, PAGE_SIZE);
592                 kunmap_atomic(mapaddr, KM_USER1);
593         }
594         while (count) {
595                 if (!cs->len) {
596                         int err = fuse_copy_fill(cs);
597                         if (err)
598                                 return err;
599                 }
600                 if (page) {
601                         void *mapaddr = kmap_atomic(page, KM_USER1);
602                         void *buf = mapaddr + offset;
603                         offset += fuse_copy_do(cs, &buf, &count);
604                         kunmap_atomic(mapaddr, KM_USER1);
605                 } else
606                         offset += fuse_copy_do(cs, NULL, &count);
607         }
608         if (page && !cs->write)
609                 flush_dcache_page(page);
610         return 0;
611 }
612
613 /* Copy pages in the request to/from userspace buffer */
614 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
615                            int zeroing)
616 {
617         unsigned i;
618         struct fuse_req *req = cs->req;
619         unsigned offset = req->page_offset;
620         unsigned count = min(nbytes, (unsigned) PAGE_SIZE - offset);
621
622         for (i = 0; i < req->num_pages && (nbytes || zeroing); i++) {
623                 struct page *page = req->pages[i];
624                 int err = fuse_copy_page(cs, page, offset, count, zeroing);
625                 if (err)
626                         return err;
627
628                 nbytes -= count;
629                 count = min(nbytes, (unsigned) PAGE_SIZE);
630                 offset = 0;
631         }
632         return 0;
633 }
634
635 /* Copy a single argument in the request to/from userspace buffer */
636 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
637 {
638         while (size) {
639                 if (!cs->len) {
640                         int err = fuse_copy_fill(cs);
641                         if (err)
642                                 return err;
643                 }
644                 fuse_copy_do(cs, &val, &size);
645         }
646         return 0;
647 }
648
649 /* Copy request arguments to/from userspace buffer */
650 static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
651                           unsigned argpages, struct fuse_arg *args,
652                           int zeroing)
653 {
654         int err = 0;
655         unsigned i;
656
657         for (i = 0; !err && i < numargs; i++)  {
658                 struct fuse_arg *arg = &args[i];
659                 if (i == numargs - 1 && argpages)
660                         err = fuse_copy_pages(cs, arg->size, zeroing);
661                 else
662                         err = fuse_copy_one(cs, arg->value, arg->size);
663         }
664         return err;
665 }
666
667 static int request_pending(struct fuse_conn *fc)
668 {
669         return !list_empty(&fc->pending) || !list_empty(&fc->interrupts);
670 }
671
672 /* Wait until a request is available on the pending list */
673 static void request_wait(struct fuse_conn *fc)
674 __releases(&fc->lock)
675 __acquires(&fc->lock)
676 {
677         DECLARE_WAITQUEUE(wait, current);
678
679         add_wait_queue_exclusive(&fc->waitq, &wait);
680         while (fc->connected && !request_pending(fc)) {
681                 set_current_state(TASK_INTERRUPTIBLE);
682                 if (signal_pending(current))
683                         break;
684
685                 spin_unlock(&fc->lock);
686                 schedule();
687                 spin_lock(&fc->lock);
688         }
689         set_current_state(TASK_RUNNING);
690         remove_wait_queue(&fc->waitq, &wait);
691 }
692
693 /*
694  * Transfer an interrupt request to userspace
695  *
696  * Unlike other requests this is assembled on demand, without a need
697  * to allocate a separate fuse_req structure.
698  *
699  * Called with fc->lock held, releases it
700  */
701 static int fuse_read_interrupt(struct fuse_conn *fc, struct fuse_req *req,
702                                const struct iovec *iov, unsigned long nr_segs)
703 __releases(&fc->lock)
704 {
705         struct fuse_copy_state cs;
706         struct fuse_in_header ih;
707         struct fuse_interrupt_in arg;
708         unsigned reqsize = sizeof(ih) + sizeof(arg);
709         int err;
710
711         list_del_init(&req->intr_entry);
712         req->intr_unique = fuse_get_unique(fc);
713         memset(&ih, 0, sizeof(ih));
714         memset(&arg, 0, sizeof(arg));
715         ih.len = reqsize;
716         ih.opcode = FUSE_INTERRUPT;
717         ih.unique = req->intr_unique;
718         arg.unique = req->in.h.unique;
719
720         spin_unlock(&fc->lock);
721         if (iov_length(iov, nr_segs) < reqsize)
722                 return -EINVAL;
723
724         fuse_copy_init(&cs, fc, 1, NULL, iov, nr_segs);
725         err = fuse_copy_one(&cs, &ih, sizeof(ih));
726         if (!err)
727                 err = fuse_copy_one(&cs, &arg, sizeof(arg));
728         fuse_copy_finish(&cs);
729
730         return err ? err : reqsize;
731 }
732
733 /*
734  * Read a single request into the userspace filesystem's buffer.  This
735  * function waits until a request is available, then removes it from
736  * the pending list and copies request data to userspace buffer.  If
737  * no reply is needed (FORGET) or request has been aborted or there
738  * was an error during the copying then it's finished by calling
739  * request_end().  Otherwise add it to the processing list, and set
740  * the 'sent' flag.
741  */
742 static ssize_t fuse_dev_read(struct kiocb *iocb, const struct iovec *iov,
743                               unsigned long nr_segs, loff_t pos)
744 {
745         int err;
746         struct fuse_req *req;
747         struct fuse_in *in;
748         struct fuse_copy_state cs;
749         unsigned reqsize;
750         struct file *file = iocb->ki_filp;
751         struct fuse_conn *fc = fuse_get_conn(file);
752         if (!fc)
753                 return -EPERM;
754
755  restart:
756         spin_lock(&fc->lock);
757         err = -EAGAIN;
758         if ((file->f_flags & O_NONBLOCK) && fc->connected &&
759             !request_pending(fc))
760                 goto err_unlock;
761
762         request_wait(fc);
763         err = -ENODEV;
764         if (!fc->connected)
765                 goto err_unlock;
766         err = -ERESTARTSYS;
767         if (!request_pending(fc))
768                 goto err_unlock;
769
770         if (!list_empty(&fc->interrupts)) {
771                 req = list_entry(fc->interrupts.next, struct fuse_req,
772                                  intr_entry);
773                 return fuse_read_interrupt(fc, req, iov, nr_segs);
774         }
775
776         req = list_entry(fc->pending.next, struct fuse_req, list);
777         req->state = FUSE_REQ_READING;
778         list_move(&req->list, &fc->io);
779
780         in = &req->in;
781         reqsize = in->h.len;
782         /* If request is too large, reply with an error and restart the read */
783         if (iov_length(iov, nr_segs) < reqsize) {
784                 req->out.h.error = -EIO;
785                 /* SETXATTR is special, since it may contain too large data */
786                 if (in->h.opcode == FUSE_SETXATTR)
787                         req->out.h.error = -E2BIG;
788                 request_end(fc, req);
789                 goto restart;
790         }
791         spin_unlock(&fc->lock);
792         fuse_copy_init(&cs, fc, 1, req, iov, nr_segs);
793         err = fuse_copy_one(&cs, &in->h, sizeof(in->h));
794         if (!err)
795                 err = fuse_copy_args(&cs, in->numargs, in->argpages,
796                                      (struct fuse_arg *) in->args, 0);
797         fuse_copy_finish(&cs);
798         spin_lock(&fc->lock);
799         req->locked = 0;
800         if (req->aborted) {
801                 request_end(fc, req);
802                 return -ENODEV;
803         }
804         if (err) {
805                 req->out.h.error = -EIO;
806                 request_end(fc, req);
807                 return err;
808         }
809         if (!req->isreply)
810                 request_end(fc, req);
811         else {
812                 req->state = FUSE_REQ_SENT;
813                 list_move_tail(&req->list, &fc->processing);
814                 if (req->interrupted)
815                         queue_interrupt(fc, req);
816                 spin_unlock(&fc->lock);
817         }
818         return reqsize;
819
820  err_unlock:
821         spin_unlock(&fc->lock);
822         return err;
823 }
824
825 static int fuse_notify_poll(struct fuse_conn *fc, unsigned int size,
826                             struct fuse_copy_state *cs)
827 {
828         struct fuse_notify_poll_wakeup_out outarg;
829         int err = -EINVAL;
830
831         if (size != sizeof(outarg))
832                 goto err;
833
834         err = fuse_copy_one(cs, &outarg, sizeof(outarg));
835         if (err)
836                 goto err;
837
838         fuse_copy_finish(cs);
839         return fuse_notify_poll_wakeup(fc, &outarg);
840
841 err:
842         fuse_copy_finish(cs);
843         return err;
844 }
845
846 static int fuse_notify(struct fuse_conn *fc, enum fuse_notify_code code,
847                        unsigned int size, struct fuse_copy_state *cs)
848 {
849         switch (code) {
850         case FUSE_NOTIFY_POLL:
851                 return fuse_notify_poll(fc, size, cs);
852
853         default:
854                 fuse_copy_finish(cs);
855                 return -EINVAL;
856         }
857 }
858
859 /* Look up request on processing list by unique ID */
860 static struct fuse_req *request_find(struct fuse_conn *fc, u64 unique)
861 {
862         struct list_head *entry;
863
864         list_for_each(entry, &fc->processing) {
865                 struct fuse_req *req;
866                 req = list_entry(entry, struct fuse_req, list);
867                 if (req->in.h.unique == unique || req->intr_unique == unique)
868                         return req;
869         }
870         return NULL;
871 }
872
873 static int copy_out_args(struct fuse_copy_state *cs, struct fuse_out *out,
874                          unsigned nbytes)
875 {
876         unsigned reqsize = sizeof(struct fuse_out_header);
877
878         if (out->h.error)
879                 return nbytes != reqsize ? -EINVAL : 0;
880
881         reqsize += len_args(out->numargs, out->args);
882
883         if (reqsize < nbytes || (reqsize > nbytes && !out->argvar))
884                 return -EINVAL;
885         else if (reqsize > nbytes) {
886                 struct fuse_arg *lastarg = &out->args[out->numargs-1];
887                 unsigned diffsize = reqsize - nbytes;
888                 if (diffsize > lastarg->size)
889                         return -EINVAL;
890                 lastarg->size -= diffsize;
891         }
892         return fuse_copy_args(cs, out->numargs, out->argpages, out->args,
893                               out->page_zeroing);
894 }
895
896 /*
897  * Write a single reply to a request.  First the header is copied from
898  * the write buffer.  The request is then searched on the processing
899  * list by the unique ID found in the header.  If found, then remove
900  * it from the list and copy the rest of the buffer to the request.
901  * The request is finished by calling request_end()
902  */
903 static ssize_t fuse_dev_write(struct kiocb *iocb, const struct iovec *iov,
904                                unsigned long nr_segs, loff_t pos)
905 {
906         int err;
907         unsigned nbytes = iov_length(iov, nr_segs);
908         struct fuse_req *req;
909         struct fuse_out_header oh;
910         struct fuse_copy_state cs;
911         struct fuse_conn *fc = fuse_get_conn(iocb->ki_filp);
912         if (!fc)
913                 return -EPERM;
914
915         fuse_copy_init(&cs, fc, 0, NULL, iov, nr_segs);
916         if (nbytes < sizeof(struct fuse_out_header))
917                 return -EINVAL;
918
919         err = fuse_copy_one(&cs, &oh, sizeof(oh));
920         if (err)
921                 goto err_finish;
922
923         err = -EINVAL;
924         if (oh.len != nbytes)
925                 goto err_finish;
926
927         /*
928          * Zero oh.unique indicates unsolicited notification message
929          * and error contains notification code.
930          */
931         if (!oh.unique) {
932                 err = fuse_notify(fc, oh.error, nbytes - sizeof(oh), &cs);
933                 return err ? err : nbytes;
934         }
935
936         err = -EINVAL;
937         if (oh.error <= -1000 || oh.error > 0)
938                 goto err_finish;
939
940         spin_lock(&fc->lock);
941         err = -ENOENT;
942         if (!fc->connected)
943                 goto err_unlock;
944
945         req = request_find(fc, oh.unique);
946         if (!req)
947                 goto err_unlock;
948
949         if (req->aborted) {
950                 spin_unlock(&fc->lock);
951                 fuse_copy_finish(&cs);
952                 spin_lock(&fc->lock);
953                 request_end(fc, req);
954                 return -ENOENT;
955         }
956         /* Is it an interrupt reply? */
957         if (req->intr_unique == oh.unique) {
958                 err = -EINVAL;
959                 if (nbytes != sizeof(struct fuse_out_header))
960                         goto err_unlock;
961
962                 if (oh.error == -ENOSYS)
963                         fc->no_interrupt = 1;
964                 else if (oh.error == -EAGAIN)
965                         queue_interrupt(fc, req);
966
967                 spin_unlock(&fc->lock);
968                 fuse_copy_finish(&cs);
969                 return nbytes;
970         }
971
972         req->state = FUSE_REQ_WRITING;
973         list_move(&req->list, &fc->io);
974         req->out.h = oh;
975         req->locked = 1;
976         cs.req = req;
977         spin_unlock(&fc->lock);
978
979         err = copy_out_args(&cs, &req->out, nbytes);
980         fuse_copy_finish(&cs);
981
982         spin_lock(&fc->lock);
983         req->locked = 0;
984         if (!err) {
985                 if (req->aborted)
986                         err = -ENOENT;
987         } else if (!req->aborted)
988                 req->out.h.error = -EIO;
989         request_end(fc, req);
990
991         return err ? err : nbytes;
992
993  err_unlock:
994         spin_unlock(&fc->lock);
995  err_finish:
996         fuse_copy_finish(&cs);
997         return err;
998 }
999
1000 static unsigned fuse_dev_poll(struct file *file, poll_table *wait)
1001 {
1002         unsigned mask = POLLOUT | POLLWRNORM;
1003         struct fuse_conn *fc = fuse_get_conn(file);
1004         if (!fc)
1005                 return POLLERR;
1006
1007         poll_wait(file, &fc->waitq, wait);
1008
1009         spin_lock(&fc->lock);
1010         if (!fc->connected)
1011                 mask = POLLERR;
1012         else if (request_pending(fc))
1013                 mask |= POLLIN | POLLRDNORM;
1014         spin_unlock(&fc->lock);
1015
1016         return mask;
1017 }
1018
1019 /*
1020  * Abort all requests on the given list (pending or processing)
1021  *
1022  * This function releases and reacquires fc->lock
1023  */
1024 static void end_requests(struct fuse_conn *fc, struct list_head *head)
1025 __releases(&fc->lock)
1026 __acquires(&fc->lock)
1027 {
1028         while (!list_empty(head)) {
1029                 struct fuse_req *req;
1030                 req = list_entry(head->next, struct fuse_req, list);
1031                 req->out.h.error = -ECONNABORTED;
1032                 request_end(fc, req);
1033                 spin_lock(&fc->lock);
1034         }
1035 }
1036
1037 /*
1038  * Abort requests under I/O
1039  *
1040  * The requests are set to aborted and finished, and the request
1041  * waiter is woken up.  This will make request_wait_answer() wait
1042  * until the request is unlocked and then return.
1043  *
1044  * If the request is asynchronous, then the end function needs to be
1045  * called after waiting for the request to be unlocked (if it was
1046  * locked).
1047  */
1048 static void end_io_requests(struct fuse_conn *fc)
1049 __releases(&fc->lock)
1050 __acquires(&fc->lock)
1051 {
1052         while (!list_empty(&fc->io)) {
1053                 struct fuse_req *req =
1054                         list_entry(fc->io.next, struct fuse_req, list);
1055                 void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
1056
1057                 req->aborted = 1;
1058                 req->out.h.error = -ECONNABORTED;
1059                 req->state = FUSE_REQ_FINISHED;
1060                 list_del_init(&req->list);
1061                 wake_up(&req->waitq);
1062                 if (end) {
1063                         req->end = NULL;
1064                         __fuse_get_request(req);
1065                         spin_unlock(&fc->lock);
1066                         wait_event(req->waitq, !req->locked);
1067                         end(fc, req);
1068                         fuse_put_request(fc, req);
1069                         spin_lock(&fc->lock);
1070                 }
1071         }
1072 }
1073
1074 /*
1075  * Abort all requests.
1076  *
1077  * Emergency exit in case of a malicious or accidental deadlock, or
1078  * just a hung filesystem.
1079  *
1080  * The same effect is usually achievable through killing the
1081  * filesystem daemon and all users of the filesystem.  The exception
1082  * is the combination of an asynchronous request and the tricky
1083  * deadlock (see Documentation/filesystems/fuse.txt).
1084  *
1085  * During the aborting, progression of requests from the pending and
1086  * processing lists onto the io list, and progression of new requests
1087  * onto the pending list is prevented by req->connected being false.
1088  *
1089  * Progression of requests under I/O to the processing list is
1090  * prevented by the req->aborted flag being true for these requests.
1091  * For this reason requests on the io list must be aborted first.
1092  */
1093 void fuse_abort_conn(struct fuse_conn *fc)
1094 {
1095         spin_lock(&fc->lock);
1096         if (fc->connected) {
1097                 fc->connected = 0;
1098                 fc->blocked = 0;
1099                 end_io_requests(fc);
1100                 end_requests(fc, &fc->pending);
1101                 end_requests(fc, &fc->processing);
1102                 wake_up_all(&fc->waitq);
1103                 wake_up_all(&fc->blocked_waitq);
1104                 kill_fasync(&fc->fasync, SIGIO, POLL_IN);
1105         }
1106         spin_unlock(&fc->lock);
1107 }
1108
1109 static int fuse_dev_release(struct inode *inode, struct file *file)
1110 {
1111         struct fuse_conn *fc = fuse_get_conn(file);
1112         if (fc) {
1113                 spin_lock(&fc->lock);
1114                 fc->connected = 0;
1115                 end_requests(fc, &fc->pending);
1116                 end_requests(fc, &fc->processing);
1117                 spin_unlock(&fc->lock);
1118                 fuse_conn_put(fc);
1119         }
1120
1121         return 0;
1122 }
1123
1124 static int fuse_dev_fasync(int fd, struct file *file, int on)
1125 {
1126         struct fuse_conn *fc = fuse_get_conn(file);
1127         if (!fc)
1128                 return -EPERM;
1129
1130         /* No locking - fasync_helper does its own locking */
1131         return fasync_helper(fd, file, on, &fc->fasync);
1132 }
1133
1134 const struct file_operations fuse_dev_operations = {
1135         .owner          = THIS_MODULE,
1136         .llseek         = no_llseek,
1137         .read           = do_sync_read,
1138         .aio_read       = fuse_dev_read,
1139         .write          = do_sync_write,
1140         .aio_write      = fuse_dev_write,
1141         .poll           = fuse_dev_poll,
1142         .release        = fuse_dev_release,
1143         .fasync         = fuse_dev_fasync,
1144 };
1145
1146 static struct miscdevice fuse_miscdevice = {
1147         .minor = FUSE_MINOR,
1148         .name  = "fuse",
1149         .fops = &fuse_dev_operations,
1150 };
1151
1152 int __init fuse_dev_init(void)
1153 {
1154         int err = -ENOMEM;
1155         fuse_req_cachep = kmem_cache_create("fuse_request",
1156                                             sizeof(struct fuse_req),
1157                                             0, 0, NULL);
1158         if (!fuse_req_cachep)
1159                 goto out;
1160
1161         err = misc_register(&fuse_miscdevice);
1162         if (err)
1163                 goto out_cache_clean;
1164
1165         return 0;
1166
1167  out_cache_clean:
1168         kmem_cache_destroy(fuse_req_cachep);
1169  out:
1170         return err;
1171 }
1172
1173 void fuse_dev_cleanup(void)
1174 {
1175         misc_deregister(&fuse_miscdevice);
1176         kmem_cache_destroy(fuse_req_cachep);
1177 }