[PATCH] pcmcia: convert DEV_OK to pcmcia_dev_present
[linux-2.6] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <jkmaline@cc.hut.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/config.h>
138 #include <linux/errno.h>
139 #include <linux/if_arp.h>
140 #include <linux/in6.h>
141 #include <linux/in.h>
142 #include <linux/ip.h>
143 #include <linux/kernel.h>
144 #include <linux/kmod.h>
145 #include <linux/module.h>
146 #include <linux/netdevice.h>
147 #include <linux/ethtool.h>
148 #include <linux/pci.h>
149 #include <linux/dma-mapping.h>
150 #include <linux/proc_fs.h>
151 #include <linux/skbuff.h>
152 #include <asm/uaccess.h>
153 #include <asm/io.h>
154 #define __KERNEL_SYSCALLS__
155 #include <linux/fs.h>
156 #include <linux/mm.h>
157 #include <linux/slab.h>
158 #include <linux/unistd.h>
159 #include <linux/stringify.h>
160 #include <linux/tcp.h>
161 #include <linux/types.h>
162 #include <linux/version.h>
163 #include <linux/time.h>
164 #include <linux/firmware.h>
165 #include <linux/acpi.h>
166 #include <linux/ctype.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
176
177 /* Debugging stuff */
178 #ifdef CONFIG_IPW2100_DEBUG
179 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
180 #endif
181
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_VERSION(DRV_VERSION);
184 MODULE_AUTHOR(DRV_COPYRIGHT);
185 MODULE_LICENSE("GPL");
186
187 static int debug = 0;
188 static int mode = 0;
189 static int channel = 0;
190 static int associate = 1;
191 static int disable = 0;
192 #ifdef CONFIG_PM
193 static struct ipw2100_fw ipw2100_firmware;
194 #endif
195
196 #include <linux/moduleparam.h>
197 module_param(debug, int, 0444);
198 module_param(mode, int, 0444);
199 module_param(channel, int, 0444);
200 module_param(associate, int, 0444);
201 module_param(disable, int, 0444);
202
203 MODULE_PARM_DESC(debug, "debug level");
204 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205 MODULE_PARM_DESC(channel, "channel");
206 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
207 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208
209 static u32 ipw2100_debug_level = IPW_DL_NONE;
210
211 #ifdef CONFIG_IPW2100_DEBUG
212 #define IPW_DEBUG(level, message...) \
213 do { \
214         if (ipw2100_debug_level & (level)) { \
215                 printk(KERN_DEBUG "ipw2100: %c %s ", \
216                        in_interrupt() ? 'I' : 'U',  __FUNCTION__); \
217                 printk(message); \
218         } \
219 } while (0)
220 #else
221 #define IPW_DEBUG(level, message...) do {} while (0)
222 #endif                          /* CONFIG_IPW2100_DEBUG */
223
224 #ifdef CONFIG_IPW2100_DEBUG
225 static const char *command_types[] = {
226         "undefined",
227         "unused",               /* HOST_ATTENTION */
228         "HOST_COMPLETE",
229         "unused",               /* SLEEP */
230         "unused",               /* HOST_POWER_DOWN */
231         "unused",
232         "SYSTEM_CONFIG",
233         "unused",               /* SET_IMR */
234         "SSID",
235         "MANDATORY_BSSID",
236         "AUTHENTICATION_TYPE",
237         "ADAPTER_ADDRESS",
238         "PORT_TYPE",
239         "INTERNATIONAL_MODE",
240         "CHANNEL",
241         "RTS_THRESHOLD",
242         "FRAG_THRESHOLD",
243         "POWER_MODE",
244         "TX_RATES",
245         "BASIC_TX_RATES",
246         "WEP_KEY_INFO",
247         "unused",
248         "unused",
249         "unused",
250         "unused",
251         "WEP_KEY_INDEX",
252         "WEP_FLAGS",
253         "ADD_MULTICAST",
254         "CLEAR_ALL_MULTICAST",
255         "BEACON_INTERVAL",
256         "ATIM_WINDOW",
257         "CLEAR_STATISTICS",
258         "undefined",
259         "undefined",
260         "undefined",
261         "undefined",
262         "TX_POWER_INDEX",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "BROADCAST_SCAN",
270         "CARD_DISABLE",
271         "PREFERRED_BSSID",
272         "SET_SCAN_OPTIONS",
273         "SCAN_DWELL_TIME",
274         "SWEEP_TABLE",
275         "AP_OR_STATION_TABLE",
276         "GROUP_ORDINALS",
277         "SHORT_RETRY_LIMIT",
278         "LONG_RETRY_LIMIT",
279         "unused",               /* SAVE_CALIBRATION */
280         "unused",               /* RESTORE_CALIBRATION */
281         "undefined",
282         "undefined",
283         "undefined",
284         "HOST_PRE_POWER_DOWN",
285         "unused",               /* HOST_INTERRUPT_COALESCING */
286         "undefined",
287         "CARD_DISABLE_PHY_OFF",
288         "MSDU_TX_RATES" "undefined",
289         "undefined",
290         "SET_STATION_STAT_BITS",
291         "CLEAR_STATIONS_STAT_BITS",
292         "LEAP_ROGUE_MODE",
293         "SET_SECURITY_INFORMATION",
294         "DISASSOCIATION_BSSID",
295         "SET_WPA_ASS_IE"
296 };
297 #endif
298
299 /* Pre-decl until we get the code solid and then we can clean it up */
300 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
301 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
302 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303
304 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
305 static void ipw2100_queues_free(struct ipw2100_priv *priv);
306 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307
308 static int ipw2100_fw_download(struct ipw2100_priv *priv,
309                                struct ipw2100_fw *fw);
310 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
311                                 struct ipw2100_fw *fw);
312 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313                                  size_t max);
314 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315                                     size_t max);
316 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
317                                      struct ipw2100_fw *fw);
318 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
319                                   struct ipw2100_fw *fw);
320 static void ipw2100_wx_event_work(struct ipw2100_priv *priv);
321 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
322 static struct iw_handler_def ipw2100_wx_handler_def;
323
324 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 {
326         *val = readl((void __iomem *)(dev->base_addr + reg));
327         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
328 }
329
330 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 {
332         writel(val, (void __iomem *)(dev->base_addr + reg));
333         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
334 }
335
336 static inline void read_register_word(struct net_device *dev, u32 reg,
337                                       u16 * val)
338 {
339         *val = readw((void __iomem *)(dev->base_addr + reg));
340         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
341 }
342
343 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 {
345         *val = readb((void __iomem *)(dev->base_addr + reg));
346         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
347 }
348
349 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 {
351         writew(val, (void __iomem *)(dev->base_addr + reg));
352         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
353 }
354
355 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 {
357         writeb(val, (void __iomem *)(dev->base_addr + reg));
358         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
359 }
360
361 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 {
363         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
364                        addr & IPW_REG_INDIRECT_ADDR_MASK);
365         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
366 }
367
368 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 {
370         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
371                        addr & IPW_REG_INDIRECT_ADDR_MASK);
372         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
373 }
374
375 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 {
377         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
378                        addr & IPW_REG_INDIRECT_ADDR_MASK);
379         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
380 }
381
382 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 {
384         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
385                        addr & IPW_REG_INDIRECT_ADDR_MASK);
386         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
387 }
388
389 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 {
391         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
392                        addr & IPW_REG_INDIRECT_ADDR_MASK);
393         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
394 }
395
396 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 {
398         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
399                        addr & IPW_REG_INDIRECT_ADDR_MASK);
400         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 }
402
403 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 {
405         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
406                        addr & IPW_REG_INDIRECT_ADDR_MASK);
407 }
408
409 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 {
411         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
412 }
413
414 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
415                                     const u8 * buf)
416 {
417         u32 aligned_addr;
418         u32 aligned_len;
419         u32 dif_len;
420         u32 i;
421
422         /* read first nibble byte by byte */
423         aligned_addr = addr & (~0x3);
424         dif_len = addr - aligned_addr;
425         if (dif_len) {
426                 /* Start reading at aligned_addr + dif_len */
427                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428                                aligned_addr);
429                 for (i = dif_len; i < 4; i++, buf++)
430                         write_register_byte(dev,
431                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
432                                             *buf);
433
434                 len -= dif_len;
435                 aligned_addr += 4;
436         }
437
438         /* read DWs through autoincrement registers */
439         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
440         aligned_len = len & (~0x3);
441         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
442                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443
444         /* copy the last nibble */
445         dif_len = len - aligned_len;
446         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
447         for (i = 0; i < dif_len; i++, buf++)
448                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
449                                     *buf);
450 }
451
452 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
453                                    u8 * buf)
454 {
455         u32 aligned_addr;
456         u32 aligned_len;
457         u32 dif_len;
458         u32 i;
459
460         /* read first nibble byte by byte */
461         aligned_addr = addr & (~0x3);
462         dif_len = addr - aligned_addr;
463         if (dif_len) {
464                 /* Start reading at aligned_addr + dif_len */
465                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466                                aligned_addr);
467                 for (i = dif_len; i < 4; i++, buf++)
468                         read_register_byte(dev,
469                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
470                                            buf);
471
472                 len -= dif_len;
473                 aligned_addr += 4;
474         }
475
476         /* read DWs through autoincrement registers */
477         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
478         aligned_len = len & (~0x3);
479         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
480                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481
482         /* copy the last nibble */
483         dif_len = len - aligned_len;
484         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
485         for (i = 0; i < dif_len; i++, buf++)
486                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
487 }
488
489 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 {
491         return (dev->base_addr &&
492                 (readl
493                  ((void __iomem *)(dev->base_addr +
494                                    IPW_REG_DOA_DEBUG_AREA_START))
495                  == IPW_DATA_DOA_DEBUG_VALUE));
496 }
497
498 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
499                                void *val, u32 * len)
500 {
501         struct ipw2100_ordinals *ordinals = &priv->ordinals;
502         u32 addr;
503         u32 field_info;
504         u16 field_len;
505         u16 field_count;
506         u32 total_length;
507
508         if (ordinals->table1_addr == 0) {
509                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
510                        "before they have been loaded.\n");
511                 return -EINVAL;
512         }
513
514         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
515                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
516                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517
518                         printk(KERN_WARNING DRV_NAME
519                                ": ordinal buffer length too small, need %zd\n",
520                                IPW_ORD_TAB_1_ENTRY_SIZE);
521
522                         return -EINVAL;
523                 }
524
525                 read_nic_dword(priv->net_dev,
526                                ordinals->table1_addr + (ord << 2), &addr);
527                 read_nic_dword(priv->net_dev, addr, val);
528
529                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530
531                 return 0;
532         }
533
534         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535
536                 ord -= IPW_START_ORD_TAB_2;
537
538                 /* get the address of statistic */
539                 read_nic_dword(priv->net_dev,
540                                ordinals->table2_addr + (ord << 3), &addr);
541
542                 /* get the second DW of statistics ;
543                  * two 16-bit words - first is length, second is count */
544                 read_nic_dword(priv->net_dev,
545                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
546                                &field_info);
547
548                 /* get each entry length */
549                 field_len = *((u16 *) & field_info);
550
551                 /* get number of entries */
552                 field_count = *(((u16 *) & field_info) + 1);
553
554                 /* abort if no enought memory */
555                 total_length = field_len * field_count;
556                 if (total_length > *len) {
557                         *len = total_length;
558                         return -EINVAL;
559                 }
560
561                 *len = total_length;
562                 if (!total_length)
563                         return 0;
564
565                 /* read the ordinal data from the SRAM */
566                 read_nic_memory(priv->net_dev, addr, total_length, val);
567
568                 return 0;
569         }
570
571         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
572                "in table 2\n", ord);
573
574         return -EINVAL;
575 }
576
577 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
578                                u32 * len)
579 {
580         struct ipw2100_ordinals *ordinals = &priv->ordinals;
581         u32 addr;
582
583         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
584                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
585                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
586                         IPW_DEBUG_INFO("wrong size\n");
587                         return -EINVAL;
588                 }
589
590                 read_nic_dword(priv->net_dev,
591                                ordinals->table1_addr + (ord << 2), &addr);
592
593                 write_nic_dword(priv->net_dev, addr, *val);
594
595                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596
597                 return 0;
598         }
599
600         IPW_DEBUG_INFO("wrong table\n");
601         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
602                 return -EINVAL;
603
604         return -EINVAL;
605 }
606
607 static char *snprint_line(char *buf, size_t count,
608                           const u8 * data, u32 len, u32 ofs)
609 {
610         int out, i, j, l;
611         char c;
612
613         out = snprintf(buf, count, "%08X", ofs);
614
615         for (l = 0, i = 0; i < 2; i++) {
616                 out += snprintf(buf + out, count - out, " ");
617                 for (j = 0; j < 8 && l < len; j++, l++)
618                         out += snprintf(buf + out, count - out, "%02X ",
619                                         data[(i * 8 + j)]);
620                 for (; j < 8; j++)
621                         out += snprintf(buf + out, count - out, "   ");
622         }
623
624         out += snprintf(buf + out, count - out, " ");
625         for (l = 0, i = 0; i < 2; i++) {
626                 out += snprintf(buf + out, count - out, " ");
627                 for (j = 0; j < 8 && l < len; j++, l++) {
628                         c = data[(i * 8 + j)];
629                         if (!isascii(c) || !isprint(c))
630                                 c = '.';
631
632                         out += snprintf(buf + out, count - out, "%c", c);
633                 }
634
635                 for (; j < 8; j++)
636                         out += snprintf(buf + out, count - out, " ");
637         }
638
639         return buf;
640 }
641
642 static void printk_buf(int level, const u8 * data, u32 len)
643 {
644         char line[81];
645         u32 ofs = 0;
646         if (!(ipw2100_debug_level & level))
647                 return;
648
649         while (len) {
650                 printk(KERN_DEBUG "%s\n",
651                        snprint_line(line, sizeof(line), &data[ofs],
652                                     min(len, 16U), ofs));
653                 ofs += 16;
654                 len -= min(len, 16U);
655         }
656 }
657
658 #define MAX_RESET_BACKOFF 10
659
660 static void schedule_reset(struct ipw2100_priv *priv)
661 {
662         unsigned long now = get_seconds();
663
664         /* If we haven't received a reset request within the backoff period,
665          * then we can reset the backoff interval so this reset occurs
666          * immediately */
667         if (priv->reset_backoff &&
668             (now - priv->last_reset > priv->reset_backoff))
669                 priv->reset_backoff = 0;
670
671         priv->last_reset = get_seconds();
672
673         if (!(priv->status & STATUS_RESET_PENDING)) {
674                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
675                                priv->net_dev->name, priv->reset_backoff);
676                 netif_carrier_off(priv->net_dev);
677                 netif_stop_queue(priv->net_dev);
678                 priv->status |= STATUS_RESET_PENDING;
679                 if (priv->reset_backoff)
680                         queue_delayed_work(priv->workqueue, &priv->reset_work,
681                                            priv->reset_backoff * HZ);
682                 else
683                         queue_work(priv->workqueue, &priv->reset_work);
684
685                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686                         priv->reset_backoff++;
687
688                 wake_up_interruptible(&priv->wait_command_queue);
689         } else
690                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691                                priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697                                    struct host_command *cmd)
698 {
699         struct list_head *element;
700         struct ipw2100_tx_packet *packet;
701         unsigned long flags;
702         int err = 0;
703
704         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705                      command_types[cmd->host_command], cmd->host_command,
706                      cmd->host_command_length);
707         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708                    cmd->host_command_length);
709
710         spin_lock_irqsave(&priv->low_lock, flags);
711
712         if (priv->fatal_error) {
713                 IPW_DEBUG_INFO
714                     ("Attempt to send command while hardware in fatal error condition.\n");
715                 err = -EIO;
716                 goto fail_unlock;
717         }
718
719         if (!(priv->status & STATUS_RUNNING)) {
720                 IPW_DEBUG_INFO
721                     ("Attempt to send command while hardware is not running.\n");
722                 err = -EIO;
723                 goto fail_unlock;
724         }
725
726         if (priv->status & STATUS_CMD_ACTIVE) {
727                 IPW_DEBUG_INFO
728                     ("Attempt to send command while another command is pending.\n");
729                 err = -EBUSY;
730                 goto fail_unlock;
731         }
732
733         if (list_empty(&priv->msg_free_list)) {
734                 IPW_DEBUG_INFO("no available msg buffers\n");
735                 goto fail_unlock;
736         }
737
738         priv->status |= STATUS_CMD_ACTIVE;
739         priv->messages_sent++;
740
741         element = priv->msg_free_list.next;
742
743         packet = list_entry(element, struct ipw2100_tx_packet, list);
744         packet->jiffy_start = jiffies;
745
746         /* initialize the firmware command packet */
747         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749         packet->info.c_struct.cmd->host_command_len_reg =
750             cmd->host_command_length;
751         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754                cmd->host_command_parameters,
755                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757         list_del(element);
758         DEC_STAT(&priv->msg_free_stat);
759
760         list_add_tail(element, &priv->msg_pend_list);
761         INC_STAT(&priv->msg_pend_stat);
762
763         ipw2100_tx_send_commands(priv);
764         ipw2100_tx_send_data(priv);
765
766         spin_unlock_irqrestore(&priv->low_lock, flags);
767
768         /*
769          * We must wait for this command to complete before another
770          * command can be sent...  but if we wait more than 3 seconds
771          * then there is a problem.
772          */
773
774         err =
775             wait_event_interruptible_timeout(priv->wait_command_queue,
776                                              !(priv->
777                                                status & STATUS_CMD_ACTIVE),
778                                              HOST_COMPLETE_TIMEOUT);
779
780         if (err == 0) {
781                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784                 priv->status &= ~STATUS_CMD_ACTIVE;
785                 schedule_reset(priv);
786                 return -EIO;
787         }
788
789         if (priv->fatal_error) {
790                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791                        priv->net_dev->name);
792                 return -EIO;
793         }
794
795         /* !!!!! HACK TEST !!!!!
796          * When lots of debug trace statements are enabled, the driver
797          * doesn't seem to have as many firmware restart cycles...
798          *
799          * As a test, we're sticking in a 1/100s delay here */
800         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802         return 0;
803
804       fail_unlock:
805         spin_unlock_irqrestore(&priv->low_lock, flags);
806
807         return err;
808 }
809
810 /*
811  * Verify the values and data access of the hardware
812  * No locks needed or used.  No functions called.
813  */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816         u32 data1, data2;
817         u32 address;
818
819         u32 val1 = 0x76543210;
820         u32 val2 = 0xFEDCBA98;
821
822         /* Domain 0 check - all values should be DOA_DEBUG */
823         for (address = IPW_REG_DOA_DEBUG_AREA_START;
824              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825                 read_register(priv->net_dev, address, &data1);
826                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827                         return -EIO;
828         }
829
830         /* Domain 1 check - use arbitrary read/write compare  */
831         for (address = 0; address < 5; address++) {
832                 /* The memory area is not used now */
833                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834                                val1);
835                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836                                val2);
837                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838                               &data1);
839                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840                               &data2);
841                 if (val1 == data1 && val2 == data2)
842                         return 0;
843         }
844
845         return -EIO;
846 }
847
848 /*
849  *
850  * Loop until the CARD_DISABLED bit is the same value as the
851  * supplied parameter
852  *
853  * TODO: See if it would be more efficient to do a wait/wake
854  *       cycle and have the completion event trigger the wakeup
855  *
856  */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860         int i;
861         u32 card_state;
862         u32 len = sizeof(card_state);
863         int err;
864
865         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867                                           &card_state, &len);
868                 if (err) {
869                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870                                        "failed.\n");
871                         return 0;
872                 }
873
874                 /* We'll break out if either the HW state says it is
875                  * in the state we want, or if HOST_COMPLETE command
876                  * finishes */
877                 if ((card_state == state) ||
878                     ((priv->status & STATUS_ENABLED) ?
879                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880                         if (state == IPW_HW_STATE_ENABLED)
881                                 priv->status |= STATUS_ENABLED;
882                         else
883                                 priv->status &= ~STATUS_ENABLED;
884
885                         return 0;
886                 }
887
888                 udelay(50);
889         }
890
891         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892                        state ? "DISABLED" : "ENABLED");
893         return -EIO;
894 }
895
896 /*********************************************************************
897     Procedure   :   sw_reset_and_clock
898     Purpose     :   Asserts s/w reset, asserts clock initialization
899                     and waits for clock stabilization
900  ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903         int i;
904         u32 r;
905
906         // assert s/w reset
907         write_register(priv->net_dev, IPW_REG_RESET_REG,
908                        IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910         // wait for clock stabilization
911         for (i = 0; i < 1000; i++) {
912                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914                 // check clock ready bit
915                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917                         break;
918         }
919
920         if (i == 1000)
921                 return -EIO;    // TODO: better error value
922
923         /* set "initialization complete" bit to move adapter to
924          * D0 state */
925         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928         /* wait for clock stabilization */
929         for (i = 0; i < 10000; i++) {
930                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932                 /* check clock ready bit */
933                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935                         break;
936         }
937
938         if (i == 10000)
939                 return -EIO;    /* TODO: better error value */
940
941         /* set D0 standby bit */
942         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946         return 0;
947 }
948
949 /*********************************************************************
950     Procedure   :   ipw2100_download_firmware
951     Purpose     :   Initiaze adapter after power on.
952                     The sequence is:
953                     1. assert s/w reset first!
954                     2. awake clocks & wait for clock stabilization
955                     3. hold ARC (don't ask me why...)
956                     4. load Dino ucode and reset/clock init again
957                     5. zero-out shared mem
958                     6. download f/w
959  *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962         u32 address;
963         int err;
964
965 #ifndef CONFIG_PM
966         /* Fetch the firmware and microcode */
967         struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970         if (priv->fatal_error) {
971                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972                                 "fatal error %d.  Interface must be brought down.\n",
973                                 priv->net_dev->name, priv->fatal_error);
974                 return -EINVAL;
975         }
976 #ifdef CONFIG_PM
977         if (!ipw2100_firmware.version) {
978                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979                 if (err) {
980                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981                                         priv->net_dev->name, err);
982                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
983                         goto fail;
984                 }
985         }
986 #else
987         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988         if (err) {
989                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990                                 priv->net_dev->name, err);
991                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992                 goto fail;
993         }
994 #endif
995         priv->firmware_version = ipw2100_firmware.version;
996
997         /* s/w reset and clock stabilization */
998         err = sw_reset_and_clock(priv);
999         if (err) {
1000                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001                                 priv->net_dev->name, err);
1002                 goto fail;
1003         }
1004
1005         err = ipw2100_verify(priv);
1006         if (err) {
1007                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008                                 priv->net_dev->name, err);
1009                 goto fail;
1010         }
1011
1012         /* Hold ARC */
1013         write_nic_dword(priv->net_dev,
1014                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016         /* allow ARC to run */
1017         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019         /* load microcode */
1020         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021         if (err) {
1022                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023                        priv->net_dev->name, err);
1024                 goto fail;
1025         }
1026
1027         /* release ARC */
1028         write_nic_dword(priv->net_dev,
1029                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031         /* s/w reset and clock stabilization (again!!!) */
1032         err = sw_reset_and_clock(priv);
1033         if (err) {
1034                 printk(KERN_ERR DRV_NAME
1035                        ": %s: sw_reset_and_clock failed: %d\n",
1036                        priv->net_dev->name, err);
1037                 goto fail;
1038         }
1039
1040         /* load f/w */
1041         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042         if (err) {
1043                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044                                 priv->net_dev->name, err);
1045                 goto fail;
1046         }
1047 #ifndef CONFIG_PM
1048         /*
1049          * When the .resume method of the driver is called, the other
1050          * part of the system, i.e. the ide driver could still stay in
1051          * the suspend stage. This prevents us from loading the firmware
1052          * from the disk.  --YZ
1053          */
1054
1055         /* free any storage allocated for firmware image */
1056         ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059         /* zero out Domain 1 area indirectly (Si requirement) */
1060         for (address = IPW_HOST_FW_SHARED_AREA0;
1061              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062                 write_nic_dword(priv->net_dev, address, 0);
1063         for (address = IPW_HOST_FW_SHARED_AREA1;
1064              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065                 write_nic_dword(priv->net_dev, address, 0);
1066         for (address = IPW_HOST_FW_SHARED_AREA2;
1067              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068                 write_nic_dword(priv->net_dev, address, 0);
1069         for (address = IPW_HOST_FW_SHARED_AREA3;
1070              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071                 write_nic_dword(priv->net_dev, address, 0);
1072         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074                 write_nic_dword(priv->net_dev, address, 0);
1075
1076         return 0;
1077
1078       fail:
1079         ipw2100_release_firmware(priv, &ipw2100_firmware);
1080         return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085         if (priv->status & STATUS_INT_ENABLED)
1086                 return;
1087         priv->status |= STATUS_INT_ENABLED;
1088         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093         if (!(priv->status & STATUS_INT_ENABLED))
1094                 return;
1095         priv->status &= ~STATUS_INT_ENABLED;
1096         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101         struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103         IPW_DEBUG_INFO("enter\n");
1104
1105         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106                       &ord->table1_addr);
1107
1108         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109                       &ord->table2_addr);
1110
1111         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114         ord->table2_size &= 0x0000FFFF;
1115
1116         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118         IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123         u32 reg = 0;
1124         /*
1125          * Set GPIO 3 writable by FW; GPIO 1 writable
1126          * by driver and enable clock
1127          */
1128         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129                IPW_BIT_GPIO_LED_OFF);
1130         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138         unsigned short value = 0;
1139         u32 reg = 0;
1140         int i;
1141
1142         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143                 priv->status &= ~STATUS_RF_KILL_HW;
1144                 return 0;
1145         }
1146
1147         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148                 udelay(RF_KILL_CHECK_DELAY);
1149                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151         }
1152
1153         if (value == 0)
1154                 priv->status |= STATUS_RF_KILL_HW;
1155         else
1156                 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158         return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163         u32 addr, len;
1164         u32 val;
1165
1166         /*
1167          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168          */
1169         len = sizeof(addr);
1170         if (ipw2100_get_ordinal
1171             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173                                __LINE__);
1174                 return -EIO;
1175         }
1176
1177         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179         /*
1180          * EEPROM version is the byte at offset 0xfd in firmware
1181          * We read 4 bytes, then shift out the byte we actually want */
1182         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183         priv->eeprom_version = (val >> 24) & 0xFF;
1184         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186         /*
1187          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188          *
1189          *  notice that the EEPROM bit is reverse polarity, i.e.
1190          *     bit = 0  signifies HW RF kill switch is supported
1191          *     bit = 1  signifies HW RF kill switch is NOT supported
1192          */
1193         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194         if (!((val >> 24) & 0x01))
1195                 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200         return 0;
1201 }
1202
1203 /*
1204  * Start firmware execution after power on and intialization
1205  * The sequence is:
1206  *  1. Release ARC
1207  *  2. Wait for f/w initialization completes;
1208  */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211         int i;
1212         u32 inta, inta_mask, gpio;
1213
1214         IPW_DEBUG_INFO("enter\n");
1215
1216         if (priv->status & STATUS_RUNNING)
1217                 return 0;
1218
1219         /*
1220          * Initialize the hw - drive adapter to DO state by setting
1221          * init_done bit. Wait for clk_ready bit and Download
1222          * fw & dino ucode
1223          */
1224         if (ipw2100_download_firmware(priv)) {
1225                 printk(KERN_ERR DRV_NAME
1226                        ": %s: Failed to power on the adapter.\n",
1227                        priv->net_dev->name);
1228                 return -EIO;
1229         }
1230
1231         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232          * in the firmware RBD and TBD ring queue */
1233         ipw2100_queues_initialize(priv);
1234
1235         ipw2100_hw_set_gpio(priv);
1236
1237         /* TODO -- Look at disabling interrupts here to make sure none
1238          * get fired during FW initialization */
1239
1240         /* Release ARC - clear reset bit */
1241         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243         /* wait for f/w intialization complete */
1244         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245         i = 5000;
1246         do {
1247                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248                 /* Todo... wait for sync command ... */
1249
1250                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252                 /* check "init done" bit */
1253                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254                         /* reset "init done" bit */
1255                         write_register(priv->net_dev, IPW_REG_INTA,
1256                                        IPW2100_INTA_FW_INIT_DONE);
1257                         break;
1258                 }
1259
1260                 /* check error conditions : we check these after the firmware
1261                  * check so that if there is an error, the interrupt handler
1262                  * will see it and the adapter will be reset */
1263                 if (inta &
1264                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265                         /* clear error conditions */
1266                         write_register(priv->net_dev, IPW_REG_INTA,
1267                                        IPW2100_INTA_FATAL_ERROR |
1268                                        IPW2100_INTA_PARITY_ERROR);
1269                 }
1270         } while (i--);
1271
1272         /* Clear out any pending INTAs since we aren't supposed to have
1273          * interrupts enabled at this point... */
1274         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276         inta &= IPW_INTERRUPT_MASK;
1277         /* Clear out any pending interrupts */
1278         if (inta & inta_mask)
1279                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282                      i ? "SUCCESS" : "FAILED");
1283
1284         if (!i) {
1285                 printk(KERN_WARNING DRV_NAME
1286                        ": %s: Firmware did not initialize.\n",
1287                        priv->net_dev->name);
1288                 return -EIO;
1289         }
1290
1291         /* allow firmware to write to GPIO1 & GPIO3 */
1292         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298         /* Ready to receive commands */
1299         priv->status |= STATUS_RUNNING;
1300
1301         /* The adapter has been reset; we are not associated */
1302         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304         IPW_DEBUG_INFO("exit\n");
1305
1306         return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311         if (!priv->fatal_error)
1312                 return;
1313
1314         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316         priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322         u32 reg;
1323         int i;
1324
1325         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327         ipw2100_hw_set_gpio(priv);
1328
1329         /* Step 1. Stop Master Assert */
1330         write_register(priv->net_dev, IPW_REG_RESET_REG,
1331                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333         /* Step 2. Wait for stop Master Assert
1334          *         (not more then 50us, otherwise ret error */
1335         i = 5;
1336         do {
1337                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341                         break;
1342         } while (i--);
1343
1344         priv->status &= ~STATUS_RESET_PENDING;
1345
1346         if (!i) {
1347                 IPW_DEBUG_INFO
1348                     ("exit - waited too long for master assert stop\n");
1349                 return -EIO;
1350         }
1351
1352         write_register(priv->net_dev, IPW_REG_RESET_REG,
1353                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355         /* Reset any fatal_error conditions */
1356         ipw2100_reset_fatalerror(priv);
1357
1358         /* At this point, the adapter is now stopped and disabled */
1359         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360                           STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362         return 0;
1363 }
1364
1365 /*
1366  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367  *
1368  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369  *
1370  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371  * if STATUS_ASSN_LOST is sent.
1372  */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378         struct host_command cmd = {
1379                 .host_command = CARD_DISABLE_PHY_OFF,
1380                 .host_command_sequence = 0,
1381                 .host_command_length = 0,
1382         };
1383         int err, i;
1384         u32 val1, val2;
1385
1386         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388         /* Turn off the radio */
1389         err = ipw2100_hw_send_command(priv, &cmd);
1390         if (err)
1391                 return err;
1392
1393         for (i = 0; i < 2500; i++) {
1394                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398                     (val2 & IPW2100_COMMAND_PHY_OFF))
1399                         return 0;
1400
1401                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402         }
1403
1404         return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409         struct host_command cmd = {
1410                 .host_command = HOST_COMPLETE,
1411                 .host_command_sequence = 0,
1412                 .host_command_length = 0
1413         };
1414         int err = 0;
1415
1416         IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418         if (priv->status & STATUS_ENABLED)
1419                 return 0;
1420
1421         mutex_lock(&priv->adapter_mutex);
1422
1423         if (rf_kill_active(priv)) {
1424                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425                 goto fail_up;
1426         }
1427
1428         err = ipw2100_hw_send_command(priv, &cmd);
1429         if (err) {
1430                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431                 goto fail_up;
1432         }
1433
1434         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435         if (err) {
1436                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437                                priv->net_dev->name);
1438                 goto fail_up;
1439         }
1440
1441         if (priv->stop_hang_check) {
1442                 priv->stop_hang_check = 0;
1443                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444         }
1445
1446       fail_up:
1447         mutex_unlock(&priv->adapter_mutex);
1448         return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455         struct host_command cmd = {
1456                 .host_command = HOST_PRE_POWER_DOWN,
1457                 .host_command_sequence = 0,
1458                 .host_command_length = 0,
1459         };
1460         int err, i;
1461         u32 reg;
1462
1463         if (!(priv->status & STATUS_RUNNING))
1464                 return 0;
1465
1466         priv->status |= STATUS_STOPPING;
1467
1468         /* We can only shut down the card if the firmware is operational.  So,
1469          * if we haven't reset since a fatal_error, then we can not send the
1470          * shutdown commands. */
1471         if (!priv->fatal_error) {
1472                 /* First, make sure the adapter is enabled so that the PHY_OFF
1473                  * command can shut it down */
1474                 ipw2100_enable_adapter(priv);
1475
1476                 err = ipw2100_hw_phy_off(priv);
1477                 if (err)
1478                         printk(KERN_WARNING DRV_NAME
1479                                ": Error disabling radio %d\n", err);
1480
1481                 /*
1482                  * If in D0-standby mode going directly to D3 may cause a
1483                  * PCI bus violation.  Therefore we must change out of the D0
1484                  * state.
1485                  *
1486                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487                  * hardware from going into standby mode and will transition
1488                  * out of D0-standy if it is already in that state.
1489                  *
1490                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491                  * driver upon completion.  Once received, the driver can
1492                  * proceed to the D3 state.
1493                  *
1494                  * Prepare for power down command to fw.  This command would
1495                  * take HW out of D0-standby and prepare it for D3 state.
1496                  *
1497                  * Currently FW does not support event notification for this
1498                  * event. Therefore, skip waiting for it.  Just wait a fixed
1499                  * 100ms
1500                  */
1501                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503                 err = ipw2100_hw_send_command(priv, &cmd);
1504                 if (err)
1505                         printk(KERN_WARNING DRV_NAME ": "
1506                                "%s: Power down command failed: Error %d\n",
1507                                priv->net_dev->name, err);
1508                 else
1509                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510         }
1511
1512         priv->status &= ~STATUS_ENABLED;
1513
1514         /*
1515          * Set GPIO 3 writable by FW; GPIO 1 writable
1516          * by driver and enable clock
1517          */
1518         ipw2100_hw_set_gpio(priv);
1519
1520         /*
1521          * Power down adapter.  Sequence:
1522          * 1. Stop master assert (RESET_REG[9]=1)
1523          * 2. Wait for stop master (RESET_REG[8]==1)
1524          * 3. S/w reset assert (RESET_REG[7] = 1)
1525          */
1526
1527         /* Stop master assert */
1528         write_register(priv->net_dev, IPW_REG_RESET_REG,
1529                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531         /* wait stop master not more than 50 usec.
1532          * Otherwise return error. */
1533         for (i = 5; i > 0; i--) {
1534                 udelay(10);
1535
1536                 /* Check master stop bit */
1537                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540                         break;
1541         }
1542
1543         if (i == 0)
1544                 printk(KERN_WARNING DRV_NAME
1545                        ": %s: Could now power down adapter.\n",
1546                        priv->net_dev->name);
1547
1548         /* assert s/w reset */
1549         write_register(priv->net_dev, IPW_REG_RESET_REG,
1550                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554         return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559         struct host_command cmd = {
1560                 .host_command = CARD_DISABLE,
1561                 .host_command_sequence = 0,
1562                 .host_command_length = 0
1563         };
1564         int err = 0;
1565
1566         IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568         if (!(priv->status & STATUS_ENABLED))
1569                 return 0;
1570
1571         /* Make sure we clear the associated state */
1572         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574         if (!priv->stop_hang_check) {
1575                 priv->stop_hang_check = 1;
1576                 cancel_delayed_work(&priv->hang_check);
1577         }
1578
1579         mutex_lock(&priv->adapter_mutex);
1580
1581         err = ipw2100_hw_send_command(priv, &cmd);
1582         if (err) {
1583                 printk(KERN_WARNING DRV_NAME
1584                        ": exit - failed to send CARD_DISABLE command\n");
1585                 goto fail_up;
1586         }
1587
1588         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589         if (err) {
1590                 printk(KERN_WARNING DRV_NAME
1591                        ": exit - card failed to change to DISABLED\n");
1592                 goto fail_up;
1593         }
1594
1595         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597       fail_up:
1598         mutex_unlock(&priv->adapter_mutex);
1599         return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604         struct host_command cmd = {
1605                 .host_command = SET_SCAN_OPTIONS,
1606                 .host_command_sequence = 0,
1607                 .host_command_length = 8
1608         };
1609         int err;
1610
1611         IPW_DEBUG_INFO("enter\n");
1612
1613         IPW_DEBUG_SCAN("setting scan options\n");
1614
1615         cmd.host_command_parameters[0] = 0;
1616
1617         if (!(priv->config & CFG_ASSOCIATE))
1618                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621         if (priv->config & CFG_PASSIVE_SCAN)
1622                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624         cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626         err = ipw2100_hw_send_command(priv, &cmd);
1627
1628         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629                      cmd.host_command_parameters[0]);
1630
1631         return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636         struct host_command cmd = {
1637                 .host_command = BROADCAST_SCAN,
1638                 .host_command_sequence = 0,
1639                 .host_command_length = 4
1640         };
1641         int err;
1642
1643         IPW_DEBUG_HC("START_SCAN\n");
1644
1645         cmd.host_command_parameters[0] = 0;
1646
1647         /* No scanning if in monitor mode */
1648         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649                 return 1;
1650
1651         if (priv->status & STATUS_SCANNING) {
1652                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653                 return 0;
1654         }
1655
1656         IPW_DEBUG_INFO("enter\n");
1657
1658         /* Not clearing here; doing so makes iwlist always return nothing...
1659          *
1660          * We should modify the table logic to use aging tables vs. clearing
1661          * the table on each scan start.
1662          */
1663         IPW_DEBUG_SCAN("starting scan\n");
1664
1665         priv->status |= STATUS_SCANNING;
1666         err = ipw2100_hw_send_command(priv, &cmd);
1667         if (err)
1668                 priv->status &= ~STATUS_SCANNING;
1669
1670         IPW_DEBUG_INFO("exit\n");
1671
1672         return err;
1673 }
1674
1675 static const struct ieee80211_geo ipw_geos[] = {
1676         {                       /* Restricted */
1677          "---",
1678          .bg_channels = 14,
1679          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680                 {2427, 4}, {2432, 5}, {2437, 6},
1681                 {2442, 7}, {2447, 8}, {2452, 9},
1682                 {2457, 10}, {2462, 11}, {2467, 12},
1683                 {2472, 13}, {2484, 14}},
1684          },
1685 };
1686
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 {
1689         unsigned long flags;
1690         int rc = 0;
1691         u32 lock;
1692         u32 ord_len = sizeof(lock);
1693
1694         /* Quite if manually disabled. */
1695         if (priv->status & STATUS_RF_KILL_SW) {
1696                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697                                "switch\n", priv->net_dev->name);
1698                 return 0;
1699         }
1700
1701         /* If the interrupt is enabled, turn it off... */
1702         spin_lock_irqsave(&priv->low_lock, flags);
1703         ipw2100_disable_interrupts(priv);
1704
1705         /* Reset any fatal_error conditions */
1706         ipw2100_reset_fatalerror(priv);
1707         spin_unlock_irqrestore(&priv->low_lock, flags);
1708
1709         if (priv->status & STATUS_POWERED ||
1710             (priv->status & STATUS_RESET_PENDING)) {
1711                 /* Power cycle the card ... */
1712                 if (ipw2100_power_cycle_adapter(priv)) {
1713                         printk(KERN_WARNING DRV_NAME
1714                                ": %s: Could not cycle adapter.\n",
1715                                priv->net_dev->name);
1716                         rc = 1;
1717                         goto exit;
1718                 }
1719         } else
1720                 priv->status |= STATUS_POWERED;
1721
1722         /* Load the firmware, start the clocks, etc. */
1723         if (ipw2100_start_adapter(priv)) {
1724                 printk(KERN_ERR DRV_NAME
1725                        ": %s: Failed to start the firmware.\n",
1726                        priv->net_dev->name);
1727                 rc = 1;
1728                 goto exit;
1729         }
1730
1731         ipw2100_initialize_ordinals(priv);
1732
1733         /* Determine capabilities of this particular HW configuration */
1734         if (ipw2100_get_hw_features(priv)) {
1735                 printk(KERN_ERR DRV_NAME
1736                        ": %s: Failed to determine HW features.\n",
1737                        priv->net_dev->name);
1738                 rc = 1;
1739                 goto exit;
1740         }
1741
1742         /* Initialize the geo */
1743         if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1744                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1745                 return 0;
1746         }
1747         priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1748
1749         lock = LOCK_NONE;
1750         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1751                 printk(KERN_ERR DRV_NAME
1752                        ": %s: Failed to clear ordinal lock.\n",
1753                        priv->net_dev->name);
1754                 rc = 1;
1755                 goto exit;
1756         }
1757
1758         priv->status &= ~STATUS_SCANNING;
1759
1760         if (rf_kill_active(priv)) {
1761                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1762                        priv->net_dev->name);
1763
1764                 if (priv->stop_rf_kill) {
1765                         priv->stop_rf_kill = 0;
1766                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1767                 }
1768
1769                 deferred = 1;
1770         }
1771
1772         /* Turn on the interrupt so that commands can be processed */
1773         ipw2100_enable_interrupts(priv);
1774
1775         /* Send all of the commands that must be sent prior to
1776          * HOST_COMPLETE */
1777         if (ipw2100_adapter_setup(priv)) {
1778                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1779                        priv->net_dev->name);
1780                 rc = 1;
1781                 goto exit;
1782         }
1783
1784         if (!deferred) {
1785                 /* Enable the adapter - sends HOST_COMPLETE */
1786                 if (ipw2100_enable_adapter(priv)) {
1787                         printk(KERN_ERR DRV_NAME ": "
1788                                "%s: failed in call to enable adapter.\n",
1789                                priv->net_dev->name);
1790                         ipw2100_hw_stop_adapter(priv);
1791                         rc = 1;
1792                         goto exit;
1793                 }
1794
1795                 /* Start a scan . . . */
1796                 ipw2100_set_scan_options(priv);
1797                 ipw2100_start_scan(priv);
1798         }
1799
1800       exit:
1801         return rc;
1802 }
1803
1804 /* Called by register_netdev() */
1805 static int ipw2100_net_init(struct net_device *dev)
1806 {
1807         struct ipw2100_priv *priv = ieee80211_priv(dev);
1808         return ipw2100_up(priv, 1);
1809 }
1810
1811 static void ipw2100_down(struct ipw2100_priv *priv)
1812 {
1813         unsigned long flags;
1814         union iwreq_data wrqu = {
1815                 .ap_addr = {
1816                             .sa_family = ARPHRD_ETHER}
1817         };
1818         int associated = priv->status & STATUS_ASSOCIATED;
1819
1820         /* Kill the RF switch timer */
1821         if (!priv->stop_rf_kill) {
1822                 priv->stop_rf_kill = 1;
1823                 cancel_delayed_work(&priv->rf_kill);
1824         }
1825
1826         /* Kill the firmare hang check timer */
1827         if (!priv->stop_hang_check) {
1828                 priv->stop_hang_check = 1;
1829                 cancel_delayed_work(&priv->hang_check);
1830         }
1831
1832         /* Kill any pending resets */
1833         if (priv->status & STATUS_RESET_PENDING)
1834                 cancel_delayed_work(&priv->reset_work);
1835
1836         /* Make sure the interrupt is on so that FW commands will be
1837          * processed correctly */
1838         spin_lock_irqsave(&priv->low_lock, flags);
1839         ipw2100_enable_interrupts(priv);
1840         spin_unlock_irqrestore(&priv->low_lock, flags);
1841
1842         if (ipw2100_hw_stop_adapter(priv))
1843                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1844                        priv->net_dev->name);
1845
1846         /* Do not disable the interrupt until _after_ we disable
1847          * the adaptor.  Otherwise the CARD_DISABLE command will never
1848          * be ack'd by the firmware */
1849         spin_lock_irqsave(&priv->low_lock, flags);
1850         ipw2100_disable_interrupts(priv);
1851         spin_unlock_irqrestore(&priv->low_lock, flags);
1852
1853 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1854         if (priv->config & CFG_C3_DISABLED) {
1855                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1856                 acpi_set_cstate_limit(priv->cstate_limit);
1857                 priv->config &= ~CFG_C3_DISABLED;
1858         }
1859 #endif
1860
1861         /* We have to signal any supplicant if we are disassociating */
1862         if (associated)
1863                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1864
1865         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1866         netif_carrier_off(priv->net_dev);
1867         netif_stop_queue(priv->net_dev);
1868 }
1869
1870 static void ipw2100_reset_adapter(struct ipw2100_priv *priv)
1871 {
1872         unsigned long flags;
1873         union iwreq_data wrqu = {
1874                 .ap_addr = {
1875                             .sa_family = ARPHRD_ETHER}
1876         };
1877         int associated = priv->status & STATUS_ASSOCIATED;
1878
1879         spin_lock_irqsave(&priv->low_lock, flags);
1880         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1881         priv->resets++;
1882         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1883         priv->status |= STATUS_SECURITY_UPDATED;
1884
1885         /* Force a power cycle even if interface hasn't been opened
1886          * yet */
1887         cancel_delayed_work(&priv->reset_work);
1888         priv->status |= STATUS_RESET_PENDING;
1889         spin_unlock_irqrestore(&priv->low_lock, flags);
1890
1891         mutex_lock(&priv->action_mutex);
1892         /* stop timed checks so that they don't interfere with reset */
1893         priv->stop_hang_check = 1;
1894         cancel_delayed_work(&priv->hang_check);
1895
1896         /* We have to signal any supplicant if we are disassociating */
1897         if (associated)
1898                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1899
1900         ipw2100_up(priv, 0);
1901         mutex_unlock(&priv->action_mutex);
1902
1903 }
1904
1905 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1906 {
1907
1908 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1909         int ret, len, essid_len;
1910         char essid[IW_ESSID_MAX_SIZE];
1911         u32 txrate;
1912         u32 chan;
1913         char *txratename;
1914         u8 bssid[ETH_ALEN];
1915
1916         /*
1917          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1918          *      an actual MAC of the AP. Seems like FW sets this
1919          *      address too late. Read it later and expose through
1920          *      /proc or schedule a later task to query and update
1921          */
1922
1923         essid_len = IW_ESSID_MAX_SIZE;
1924         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1925                                   essid, &essid_len);
1926         if (ret) {
1927                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1928                                __LINE__);
1929                 return;
1930         }
1931
1932         len = sizeof(u32);
1933         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1934         if (ret) {
1935                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1936                                __LINE__);
1937                 return;
1938         }
1939
1940         len = sizeof(u32);
1941         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1942         if (ret) {
1943                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1944                                __LINE__);
1945                 return;
1946         }
1947         len = ETH_ALEN;
1948         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1949         if (ret) {
1950                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1951                                __LINE__);
1952                 return;
1953         }
1954         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1955
1956         switch (txrate) {
1957         case TX_RATE_1_MBIT:
1958                 txratename = "1Mbps";
1959                 break;
1960         case TX_RATE_2_MBIT:
1961                 txratename = "2Mbsp";
1962                 break;
1963         case TX_RATE_5_5_MBIT:
1964                 txratename = "5.5Mbps";
1965                 break;
1966         case TX_RATE_11_MBIT:
1967                 txratename = "11Mbps";
1968                 break;
1969         default:
1970                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1971                 txratename = "unknown rate";
1972                 break;
1973         }
1974
1975         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1976                        MAC_FMT ")\n",
1977                        priv->net_dev->name, escape_essid(essid, essid_len),
1978                        txratename, chan, MAC_ARG(bssid));
1979
1980         /* now we copy read ssid into dev */
1981         if (!(priv->config & CFG_STATIC_ESSID)) {
1982                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1983                 memcpy(priv->essid, essid, priv->essid_len);
1984         }
1985         priv->channel = chan;
1986         memcpy(priv->bssid, bssid, ETH_ALEN);
1987
1988         priv->status |= STATUS_ASSOCIATING;
1989         priv->connect_start = get_seconds();
1990
1991         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1992 }
1993
1994 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1995                              int length, int batch_mode)
1996 {
1997         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
1998         struct host_command cmd = {
1999                 .host_command = SSID,
2000                 .host_command_sequence = 0,
2001                 .host_command_length = ssid_len
2002         };
2003         int err;
2004
2005         IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2006
2007         if (ssid_len)
2008                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2009
2010         if (!batch_mode) {
2011                 err = ipw2100_disable_adapter(priv);
2012                 if (err)
2013                         return err;
2014         }
2015
2016         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2017          * disable auto association -- so we cheat by setting a bogus SSID */
2018         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2019                 int i;
2020                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2021                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2022                         bogus[i] = 0x18 + i;
2023                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2024         }
2025
2026         /* NOTE:  We always send the SSID command even if the provided ESSID is
2027          * the same as what we currently think is set. */
2028
2029         err = ipw2100_hw_send_command(priv, &cmd);
2030         if (!err) {
2031                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2032                 memcpy(priv->essid, essid, ssid_len);
2033                 priv->essid_len = ssid_len;
2034         }
2035
2036         if (!batch_mode) {
2037                 if (ipw2100_enable_adapter(priv))
2038                         err = -EIO;
2039         }
2040
2041         return err;
2042 }
2043
2044 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2045 {
2046         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2047                   "disassociated: '%s' " MAC_FMT " \n",
2048                   escape_essid(priv->essid, priv->essid_len),
2049                   MAC_ARG(priv->bssid));
2050
2051         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2052
2053         if (priv->status & STATUS_STOPPING) {
2054                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2055                 return;
2056         }
2057
2058         memset(priv->bssid, 0, ETH_ALEN);
2059         memset(priv->ieee->bssid, 0, ETH_ALEN);
2060
2061         netif_carrier_off(priv->net_dev);
2062         netif_stop_queue(priv->net_dev);
2063
2064         if (!(priv->status & STATUS_RUNNING))
2065                 return;
2066
2067         if (priv->status & STATUS_SECURITY_UPDATED)
2068                 queue_work(priv->workqueue, &priv->security_work);
2069
2070         queue_work(priv->workqueue, &priv->wx_event_work);
2071 }
2072
2073 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2074 {
2075         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2076                        priv->net_dev->name);
2077
2078         /* RF_KILL is now enabled (else we wouldn't be here) */
2079         priv->status |= STATUS_RF_KILL_HW;
2080
2081 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2082         if (priv->config & CFG_C3_DISABLED) {
2083                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2084                 acpi_set_cstate_limit(priv->cstate_limit);
2085                 priv->config &= ~CFG_C3_DISABLED;
2086         }
2087 #endif
2088
2089         /* Make sure the RF Kill check timer is running */
2090         priv->stop_rf_kill = 0;
2091         cancel_delayed_work(&priv->rf_kill);
2092         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2093 }
2094
2095 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2096 {
2097         IPW_DEBUG_SCAN("scan complete\n");
2098         /* Age the scan results... */
2099         priv->ieee->scans++;
2100         priv->status &= ~STATUS_SCANNING;
2101 }
2102
2103 #ifdef CONFIG_IPW2100_DEBUG
2104 #define IPW2100_HANDLER(v, f) { v, f, # v }
2105 struct ipw2100_status_indicator {
2106         int status;
2107         void (*cb) (struct ipw2100_priv * priv, u32 status);
2108         char *name;
2109 };
2110 #else
2111 #define IPW2100_HANDLER(v, f) { v, f }
2112 struct ipw2100_status_indicator {
2113         int status;
2114         void (*cb) (struct ipw2100_priv * priv, u32 status);
2115 };
2116 #endif                          /* CONFIG_IPW2100_DEBUG */
2117
2118 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2119 {
2120         IPW_DEBUG_SCAN("Scanning...\n");
2121         priv->status |= STATUS_SCANNING;
2122 }
2123
2124 static const struct ipw2100_status_indicator status_handlers[] = {
2125         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2126         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2127         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2128         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2129         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2130         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2131         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2132         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2133         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2134         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2135         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2136         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2137         IPW2100_HANDLER(-1, NULL)
2138 };
2139
2140 static void isr_status_change(struct ipw2100_priv *priv, int status)
2141 {
2142         int i;
2143
2144         if (status == IPW_STATE_SCANNING &&
2145             priv->status & STATUS_ASSOCIATED &&
2146             !(priv->status & STATUS_SCANNING)) {
2147                 IPW_DEBUG_INFO("Scan detected while associated, with "
2148                                "no scan request.  Restarting firmware.\n");
2149
2150                 /* Wake up any sleeping jobs */
2151                 schedule_reset(priv);
2152         }
2153
2154         for (i = 0; status_handlers[i].status != -1; i++) {
2155                 if (status == status_handlers[i].status) {
2156                         IPW_DEBUG_NOTIF("Status change: %s\n",
2157                                         status_handlers[i].name);
2158                         if (status_handlers[i].cb)
2159                                 status_handlers[i].cb(priv, status);
2160                         priv->wstats.status = status;
2161                         return;
2162                 }
2163         }
2164
2165         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2166 }
2167
2168 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2169                                     struct ipw2100_cmd_header *cmd)
2170 {
2171 #ifdef CONFIG_IPW2100_DEBUG
2172         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2173                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2174                              command_types[cmd->host_command_reg],
2175                              cmd->host_command_reg);
2176         }
2177 #endif
2178         if (cmd->host_command_reg == HOST_COMPLETE)
2179                 priv->status |= STATUS_ENABLED;
2180
2181         if (cmd->host_command_reg == CARD_DISABLE)
2182                 priv->status &= ~STATUS_ENABLED;
2183
2184         priv->status &= ~STATUS_CMD_ACTIVE;
2185
2186         wake_up_interruptible(&priv->wait_command_queue);
2187 }
2188
2189 #ifdef CONFIG_IPW2100_DEBUG
2190 static const char *frame_types[] = {
2191         "COMMAND_STATUS_VAL",
2192         "STATUS_CHANGE_VAL",
2193         "P80211_DATA_VAL",
2194         "P8023_DATA_VAL",
2195         "HOST_NOTIFICATION_VAL"
2196 };
2197 #endif
2198
2199 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2200                                     struct ipw2100_rx_packet *packet)
2201 {
2202         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2203         if (!packet->skb)
2204                 return -ENOMEM;
2205
2206         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2207         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2208                                           sizeof(struct ipw2100_rx),
2209                                           PCI_DMA_FROMDEVICE);
2210         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2211          *       dma_addr */
2212
2213         return 0;
2214 }
2215
2216 #define SEARCH_ERROR   0xffffffff
2217 #define SEARCH_FAIL    0xfffffffe
2218 #define SEARCH_SUCCESS 0xfffffff0
2219 #define SEARCH_DISCARD 0
2220 #define SEARCH_SNAPSHOT 1
2221
2222 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2223 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2224 {
2225         int i;
2226         if (!priv->snapshot[0])
2227                 return;
2228         for (i = 0; i < 0x30; i++)
2229                 kfree(priv->snapshot[i]);
2230         priv->snapshot[0] = NULL;
2231 }
2232
2233 #ifdef CONFIG_IPW2100_DEBUG_C3
2234 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2235 {
2236         int i;
2237         if (priv->snapshot[0])
2238                 return 1;
2239         for (i = 0; i < 0x30; i++) {
2240                 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2241                 if (!priv->snapshot[i]) {
2242                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2243                                        "buffer %d\n", priv->net_dev->name, i);
2244                         while (i > 0)
2245                                 kfree(priv->snapshot[--i]);
2246                         priv->snapshot[0] = NULL;
2247                         return 0;
2248                 }
2249         }
2250
2251         return 1;
2252 }
2253
2254 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2255                                     size_t len, int mode)
2256 {
2257         u32 i, j;
2258         u32 tmp;
2259         u8 *s, *d;
2260         u32 ret;
2261
2262         s = in_buf;
2263         if (mode == SEARCH_SNAPSHOT) {
2264                 if (!ipw2100_snapshot_alloc(priv))
2265                         mode = SEARCH_DISCARD;
2266         }
2267
2268         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2269                 read_nic_dword(priv->net_dev, i, &tmp);
2270                 if (mode == SEARCH_SNAPSHOT)
2271                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2272                 if (ret == SEARCH_FAIL) {
2273                         d = (u8 *) & tmp;
2274                         for (j = 0; j < 4; j++) {
2275                                 if (*s != *d) {
2276                                         s = in_buf;
2277                                         continue;
2278                                 }
2279
2280                                 s++;
2281                                 d++;
2282
2283                                 if ((s - in_buf) == len)
2284                                         ret = (i + j) - len + 1;
2285                         }
2286                 } else if (mode == SEARCH_DISCARD)
2287                         return ret;
2288         }
2289
2290         return ret;
2291 }
2292 #endif
2293
2294 /*
2295  *
2296  * 0) Disconnect the SKB from the firmware (just unmap)
2297  * 1) Pack the ETH header into the SKB
2298  * 2) Pass the SKB to the network stack
2299  *
2300  * When packet is provided by the firmware, it contains the following:
2301  *
2302  * .  ieee80211_hdr
2303  * .  ieee80211_snap_hdr
2304  *
2305  * The size of the constructed ethernet
2306  *
2307  */
2308 #ifdef CONFIG_IPW2100_RX_DEBUG
2309 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2310 #endif
2311
2312 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2313 {
2314 #ifdef CONFIG_IPW2100_DEBUG_C3
2315         struct ipw2100_status *status = &priv->status_queue.drv[i];
2316         u32 match, reg;
2317         int j;
2318 #endif
2319 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2320         int limit;
2321 #endif
2322
2323         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2324                        i * sizeof(struct ipw2100_status));
2325
2326 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2327         IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2328         limit = acpi_get_cstate_limit();
2329         if (limit > 2) {
2330                 priv->cstate_limit = limit;
2331                 acpi_set_cstate_limit(2);
2332                 priv->config |= CFG_C3_DISABLED;
2333         }
2334 #endif
2335
2336 #ifdef CONFIG_IPW2100_DEBUG_C3
2337         /* Halt the fimrware so we can get a good image */
2338         write_register(priv->net_dev, IPW_REG_RESET_REG,
2339                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2340         j = 5;
2341         do {
2342                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2343                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2344
2345                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2346                         break;
2347         } while (j--);
2348
2349         match = ipw2100_match_buf(priv, (u8 *) status,
2350                                   sizeof(struct ipw2100_status),
2351                                   SEARCH_SNAPSHOT);
2352         if (match < SEARCH_SUCCESS)
2353                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2354                                "offset 0x%06X, length %d:\n",
2355                                priv->net_dev->name, match,
2356                                sizeof(struct ipw2100_status));
2357         else
2358                 IPW_DEBUG_INFO("%s: No DMA status match in "
2359                                "Firmware.\n", priv->net_dev->name);
2360
2361         printk_buf((u8 *) priv->status_queue.drv,
2362                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2363 #endif
2364
2365         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2366         priv->ieee->stats.rx_errors++;
2367         schedule_reset(priv);
2368 }
2369
2370 static void isr_rx(struct ipw2100_priv *priv, int i,
2371                           struct ieee80211_rx_stats *stats)
2372 {
2373         struct ipw2100_status *status = &priv->status_queue.drv[i];
2374         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2375
2376         IPW_DEBUG_RX("Handler...\n");
2377
2378         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2379                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2380                                "  Dropping.\n",
2381                                priv->net_dev->name,
2382                                status->frame_size, skb_tailroom(packet->skb));
2383                 priv->ieee->stats.rx_errors++;
2384                 return;
2385         }
2386
2387         if (unlikely(!netif_running(priv->net_dev))) {
2388                 priv->ieee->stats.rx_errors++;
2389                 priv->wstats.discard.misc++;
2390                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2391                 return;
2392         }
2393
2394         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2395                      !(priv->status & STATUS_ASSOCIATED))) {
2396                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2397                 priv->wstats.discard.misc++;
2398                 return;
2399         }
2400
2401         pci_unmap_single(priv->pci_dev,
2402                          packet->dma_addr,
2403                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2404
2405         skb_put(packet->skb, status->frame_size);
2406
2407 #ifdef CONFIG_IPW2100_RX_DEBUG
2408         /* Make a copy of the frame so we can dump it to the logs if
2409          * ieee80211_rx fails */
2410         memcpy(packet_data, packet->skb->data,
2411                min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2412 #endif
2413
2414         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2415 #ifdef CONFIG_IPW2100_RX_DEBUG
2416                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2417                                priv->net_dev->name);
2418                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2419 #endif
2420                 priv->ieee->stats.rx_errors++;
2421
2422                 /* ieee80211_rx failed, so it didn't free the SKB */
2423                 dev_kfree_skb_any(packet->skb);
2424                 packet->skb = NULL;
2425         }
2426
2427         /* We need to allocate a new SKB and attach it to the RDB. */
2428         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2429                 printk(KERN_WARNING DRV_NAME ": "
2430                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2431                        "adapter.\n", priv->net_dev->name);
2432                 /* TODO: schedule adapter shutdown */
2433                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2434         }
2435
2436         /* Update the RDB entry */
2437         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2438 }
2439
2440 #ifdef CONFIG_IPW2100_MONITOR
2441
2442 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2443                    struct ieee80211_rx_stats *stats)
2444 {
2445         struct ipw2100_status *status = &priv->status_queue.drv[i];
2446         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2447
2448         /* Magic struct that slots into the radiotap header -- no reason
2449          * to build this manually element by element, we can write it much
2450          * more efficiently than we can parse it. ORDER MATTERS HERE */
2451         struct ipw_rt_hdr {
2452                 struct ieee80211_radiotap_header rt_hdr;
2453                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2454         } *ipw_rt;
2455
2456         IPW_DEBUG_RX("Handler...\n");
2457
2458         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2459                                 sizeof(struct ipw_rt_hdr))) {
2460                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2461                                "  Dropping.\n",
2462                                priv->net_dev->name,
2463                                status->frame_size,
2464                                skb_tailroom(packet->skb));
2465                 priv->ieee->stats.rx_errors++;
2466                 return;
2467         }
2468
2469         if (unlikely(!netif_running(priv->net_dev))) {
2470                 priv->ieee->stats.rx_errors++;
2471                 priv->wstats.discard.misc++;
2472                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2473                 return;
2474         }
2475
2476         if (unlikely(priv->config & CFG_CRC_CHECK &&
2477                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2478                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2479                 priv->ieee->stats.rx_errors++;
2480                 return;
2481         }
2482
2483         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2484                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2485         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2486                 packet->skb->data, status->frame_size);
2487
2488         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2489
2490         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2491         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2492         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2493
2494         ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2495
2496         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2497
2498         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2499
2500         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2501                 priv->ieee->stats.rx_errors++;
2502
2503                 /* ieee80211_rx failed, so it didn't free the SKB */
2504                 dev_kfree_skb_any(packet->skb);
2505                 packet->skb = NULL;
2506         }
2507
2508         /* We need to allocate a new SKB and attach it to the RDB. */
2509         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2510                 IPW_DEBUG_WARNING(
2511                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2512                         "adapter.\n", priv->net_dev->name);
2513                 /* TODO: schedule adapter shutdown */
2514                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2515         }
2516
2517         /* Update the RDB entry */
2518         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2519 }
2520
2521 #endif
2522
2523 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2524 {
2525         struct ipw2100_status *status = &priv->status_queue.drv[i];
2526         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2527         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2528
2529         switch (frame_type) {
2530         case COMMAND_STATUS_VAL:
2531                 return (status->frame_size != sizeof(u->rx_data.command));
2532         case STATUS_CHANGE_VAL:
2533                 return (status->frame_size != sizeof(u->rx_data.status));
2534         case HOST_NOTIFICATION_VAL:
2535                 return (status->frame_size < sizeof(u->rx_data.notification));
2536         case P80211_DATA_VAL:
2537         case P8023_DATA_VAL:
2538 #ifdef CONFIG_IPW2100_MONITOR
2539                 return 0;
2540 #else
2541                 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2542                 case IEEE80211_FTYPE_MGMT:
2543                 case IEEE80211_FTYPE_CTL:
2544                         return 0;
2545                 case IEEE80211_FTYPE_DATA:
2546                         return (status->frame_size >
2547                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2548                 }
2549 #endif
2550         }
2551
2552         return 1;
2553 }
2554
2555 /*
2556  * ipw2100 interrupts are disabled at this point, and the ISR
2557  * is the only code that calls this method.  So, we do not need
2558  * to play with any locks.
2559  *
2560  * RX Queue works as follows:
2561  *
2562  * Read index - firmware places packet in entry identified by the
2563  *              Read index and advances Read index.  In this manner,
2564  *              Read index will always point to the next packet to
2565  *              be filled--but not yet valid.
2566  *
2567  * Write index - driver fills this entry with an unused RBD entry.
2568  *               This entry has not filled by the firmware yet.
2569  *
2570  * In between the W and R indexes are the RBDs that have been received
2571  * but not yet processed.
2572  *
2573  * The process of handling packets will start at WRITE + 1 and advance
2574  * until it reaches the READ index.
2575  *
2576  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2577  *
2578  */
2579 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2580 {
2581         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2582         struct ipw2100_status_queue *sq = &priv->status_queue;
2583         struct ipw2100_rx_packet *packet;
2584         u16 frame_type;
2585         u32 r, w, i, s;
2586         struct ipw2100_rx *u;
2587         struct ieee80211_rx_stats stats = {
2588                 .mac_time = jiffies,
2589         };
2590
2591         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2592         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2593
2594         if (r >= rxq->entries) {
2595                 IPW_DEBUG_RX("exit - bad read index\n");
2596                 return;
2597         }
2598
2599         i = (rxq->next + 1) % rxq->entries;
2600         s = i;
2601         while (i != r) {
2602                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2603                    r, rxq->next, i); */
2604
2605                 packet = &priv->rx_buffers[i];
2606
2607                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2608                  * the correct values */
2609                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2610                                             sq->nic +
2611                                             sizeof(struct ipw2100_status) * i,
2612                                             sizeof(struct ipw2100_status),
2613                                             PCI_DMA_FROMDEVICE);
2614
2615                 /* Sync the DMA for the RX buffer so CPU is sure to get
2616                  * the correct values */
2617                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2618                                             sizeof(struct ipw2100_rx),
2619                                             PCI_DMA_FROMDEVICE);
2620
2621                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2622                         ipw2100_corruption_detected(priv, i);
2623                         goto increment;
2624                 }
2625
2626                 u = packet->rxp;
2627                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2628                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2629                 stats.len = sq->drv[i].frame_size;
2630
2631                 stats.mask = 0;
2632                 if (stats.rssi != 0)
2633                         stats.mask |= IEEE80211_STATMASK_RSSI;
2634                 stats.freq = IEEE80211_24GHZ_BAND;
2635
2636                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2637                              priv->net_dev->name, frame_types[frame_type],
2638                              stats.len);
2639
2640                 switch (frame_type) {
2641                 case COMMAND_STATUS_VAL:
2642                         /* Reset Rx watchdog */
2643                         isr_rx_complete_command(priv, &u->rx_data.command);
2644                         break;
2645
2646                 case STATUS_CHANGE_VAL:
2647                         isr_status_change(priv, u->rx_data.status);
2648                         break;
2649
2650                 case P80211_DATA_VAL:
2651                 case P8023_DATA_VAL:
2652 #ifdef CONFIG_IPW2100_MONITOR
2653                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2654                                 isr_rx_monitor(priv, i, &stats);
2655                                 break;
2656                         }
2657 #endif
2658                         if (stats.len < sizeof(u->rx_data.header))
2659                                 break;
2660                         switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2661                         case IEEE80211_FTYPE_MGMT:
2662                                 ieee80211_rx_mgt(priv->ieee,
2663                                                  &u->rx_data.header, &stats);
2664                                 break;
2665
2666                         case IEEE80211_FTYPE_CTL:
2667                                 break;
2668
2669                         case IEEE80211_FTYPE_DATA:
2670                                 isr_rx(priv, i, &stats);
2671                                 break;
2672
2673                         }
2674                         break;
2675                 }
2676
2677               increment:
2678                 /* clear status field associated with this RBD */
2679                 rxq->drv[i].status.info.field = 0;
2680
2681                 i = (i + 1) % rxq->entries;
2682         }
2683
2684         if (i != s) {
2685                 /* backtrack one entry, wrapping to end if at 0 */
2686                 rxq->next = (i ? i : rxq->entries) - 1;
2687
2688                 write_register(priv->net_dev,
2689                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2690         }
2691 }
2692
2693 /*
2694  * __ipw2100_tx_process
2695  *
2696  * This routine will determine whether the next packet on
2697  * the fw_pend_list has been processed by the firmware yet.
2698  *
2699  * If not, then it does nothing and returns.
2700  *
2701  * If so, then it removes the item from the fw_pend_list, frees
2702  * any associated storage, and places the item back on the
2703  * free list of its source (either msg_free_list or tx_free_list)
2704  *
2705  * TX Queue works as follows:
2706  *
2707  * Read index - points to the next TBD that the firmware will
2708  *              process.  The firmware will read the data, and once
2709  *              done processing, it will advance the Read index.
2710  *
2711  * Write index - driver fills this entry with an constructed TBD
2712  *               entry.  The Write index is not advanced until the
2713  *               packet has been configured.
2714  *
2715  * In between the W and R indexes are the TBDs that have NOT been
2716  * processed.  Lagging behind the R index are packets that have
2717  * been processed but have not been freed by the driver.
2718  *
2719  * In order to free old storage, an internal index will be maintained
2720  * that points to the next packet to be freed.  When all used
2721  * packets have been freed, the oldest index will be the same as the
2722  * firmware's read index.
2723  *
2724  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2725  *
2726  * Because the TBD structure can not contain arbitrary data, the
2727  * driver must keep an internal queue of cached allocations such that
2728  * it can put that data back into the tx_free_list and msg_free_list
2729  * for use by future command and data packets.
2730  *
2731  */
2732 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2733 {
2734         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2735         struct ipw2100_bd *tbd;
2736         struct list_head *element;
2737         struct ipw2100_tx_packet *packet;
2738         int descriptors_used;
2739         int e, i;
2740         u32 r, w, frag_num = 0;
2741
2742         if (list_empty(&priv->fw_pend_list))
2743                 return 0;
2744
2745         element = priv->fw_pend_list.next;
2746
2747         packet = list_entry(element, struct ipw2100_tx_packet, list);
2748         tbd = &txq->drv[packet->index];
2749
2750         /* Determine how many TBD entries must be finished... */
2751         switch (packet->type) {
2752         case COMMAND:
2753                 /* COMMAND uses only one slot; don't advance */
2754                 descriptors_used = 1;
2755                 e = txq->oldest;
2756                 break;
2757
2758         case DATA:
2759                 /* DATA uses two slots; advance and loop position. */
2760                 descriptors_used = tbd->num_fragments;
2761                 frag_num = tbd->num_fragments - 1;
2762                 e = txq->oldest + frag_num;
2763                 e %= txq->entries;
2764                 break;
2765
2766         default:
2767                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2768                        priv->net_dev->name);
2769                 return 0;
2770         }
2771
2772         /* if the last TBD is not done by NIC yet, then packet is
2773          * not ready to be released.
2774          *
2775          */
2776         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2777                       &r);
2778         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2779                       &w);
2780         if (w != txq->next)
2781                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2782                        priv->net_dev->name);
2783
2784         /*
2785          * txq->next is the index of the last packet written txq->oldest is
2786          * the index of the r is the index of the next packet to be read by
2787          * firmware
2788          */
2789
2790         /*
2791          * Quick graphic to help you visualize the following
2792          * if / else statement
2793          *
2794          * ===>|                     s---->|===============
2795          *                               e>|
2796          * | a | b | c | d | e | f | g | h | i | j | k | l
2797          *       r---->|
2798          *               w
2799          *
2800          * w - updated by driver
2801          * r - updated by firmware
2802          * s - start of oldest BD entry (txq->oldest)
2803          * e - end of oldest BD entry
2804          *
2805          */
2806         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2807                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2808                 return 0;
2809         }
2810
2811         list_del(element);
2812         DEC_STAT(&priv->fw_pend_stat);
2813
2814 #ifdef CONFIG_IPW2100_DEBUG
2815         {
2816                 int i = txq->oldest;
2817                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2818                              &txq->drv[i],
2819                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2820                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2821
2822                 if (packet->type == DATA) {
2823                         i = (i + 1) % txq->entries;
2824
2825                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2826                                      &txq->drv[i],
2827                                      (u32) (txq->nic + i *
2828                                             sizeof(struct ipw2100_bd)),
2829                                      (u32) txq->drv[i].host_addr,
2830                                      txq->drv[i].buf_length);
2831                 }
2832         }
2833 #endif
2834
2835         switch (packet->type) {
2836         case DATA:
2837                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2838                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2839                                "Expecting DATA TBD but pulled "
2840                                "something else: ids %d=%d.\n",
2841                                priv->net_dev->name, txq->oldest, packet->index);
2842
2843                 /* DATA packet; we have to unmap and free the SKB */
2844                 for (i = 0; i < frag_num; i++) {
2845                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2846
2847                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2848                                      (packet->index + 1 + i) % txq->entries,
2849                                      tbd->host_addr, tbd->buf_length);
2850
2851                         pci_unmap_single(priv->pci_dev,
2852                                          tbd->host_addr,
2853                                          tbd->buf_length, PCI_DMA_TODEVICE);
2854                 }
2855
2856                 ieee80211_txb_free(packet->info.d_struct.txb);
2857                 packet->info.d_struct.txb = NULL;
2858
2859                 list_add_tail(element, &priv->tx_free_list);
2860                 INC_STAT(&priv->tx_free_stat);
2861
2862                 /* We have a free slot in the Tx queue, so wake up the
2863                  * transmit layer if it is stopped. */
2864                 if (priv->status & STATUS_ASSOCIATED)
2865                         netif_wake_queue(priv->net_dev);
2866
2867                 /* A packet was processed by the hardware, so update the
2868                  * watchdog */
2869                 priv->net_dev->trans_start = jiffies;
2870
2871                 break;
2872
2873         case COMMAND:
2874                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2875                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2876                                "Expecting COMMAND TBD but pulled "
2877                                "something else: ids %d=%d.\n",
2878                                priv->net_dev->name, txq->oldest, packet->index);
2879
2880 #ifdef CONFIG_IPW2100_DEBUG
2881                 if (packet->info.c_struct.cmd->host_command_reg <
2882                     sizeof(command_types) / sizeof(*command_types))
2883                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2884                                      command_types[packet->info.c_struct.cmd->
2885                                                    host_command_reg],
2886                                      packet->info.c_struct.cmd->
2887                                      host_command_reg,
2888                                      packet->info.c_struct.cmd->cmd_status_reg);
2889 #endif
2890
2891                 list_add_tail(element, &priv->msg_free_list);
2892                 INC_STAT(&priv->msg_free_stat);
2893                 break;
2894         }
2895
2896         /* advance oldest used TBD pointer to start of next entry */
2897         txq->oldest = (e + 1) % txq->entries;
2898         /* increase available TBDs number */
2899         txq->available += descriptors_used;
2900         SET_STAT(&priv->txq_stat, txq->available);
2901
2902         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2903                      jiffies - packet->jiffy_start);
2904
2905         return (!list_empty(&priv->fw_pend_list));
2906 }
2907
2908 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2909 {
2910         int i = 0;
2911
2912         while (__ipw2100_tx_process(priv) && i < 200)
2913                 i++;
2914
2915         if (i == 200) {
2916                 printk(KERN_WARNING DRV_NAME ": "
2917                        "%s: Driver is running slow (%d iters).\n",
2918                        priv->net_dev->name, i);
2919         }
2920 }
2921
2922 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2923 {
2924         struct list_head *element;
2925         struct ipw2100_tx_packet *packet;
2926         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2927         struct ipw2100_bd *tbd;
2928         int next = txq->next;
2929
2930         while (!list_empty(&priv->msg_pend_list)) {
2931                 /* if there isn't enough space in TBD queue, then
2932                  * don't stuff a new one in.
2933                  * NOTE: 3 are needed as a command will take one,
2934                  *       and there is a minimum of 2 that must be
2935                  *       maintained between the r and w indexes
2936                  */
2937                 if (txq->available <= 3) {
2938                         IPW_DEBUG_TX("no room in tx_queue\n");
2939                         break;
2940                 }
2941
2942                 element = priv->msg_pend_list.next;
2943                 list_del(element);
2944                 DEC_STAT(&priv->msg_pend_stat);
2945
2946                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2947
2948                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2949                              &txq->drv[txq->next],
2950                              (void *)(txq->nic + txq->next *
2951                                       sizeof(struct ipw2100_bd)));
2952
2953                 packet->index = txq->next;
2954
2955                 tbd = &txq->drv[txq->next];
2956
2957                 /* initialize TBD */
2958                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2959                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2960                 /* not marking number of fragments causes problems
2961                  * with f/w debug version */
2962                 tbd->num_fragments = 1;
2963                 tbd->status.info.field =
2964                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2965                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2966
2967                 /* update TBD queue counters */
2968                 txq->next++;
2969                 txq->next %= txq->entries;
2970                 txq->available--;
2971                 DEC_STAT(&priv->txq_stat);
2972
2973                 list_add_tail(element, &priv->fw_pend_list);
2974                 INC_STAT(&priv->fw_pend_stat);
2975         }
2976
2977         if (txq->next != next) {
2978                 /* kick off the DMA by notifying firmware the
2979                  * write index has moved; make sure TBD stores are sync'd */
2980                 wmb();
2981                 write_register(priv->net_dev,
2982                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2983                                txq->next);
2984         }
2985 }
2986
2987 /*
2988  * ipw2100_tx_send_data
2989  *
2990  */
2991 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
2992 {
2993         struct list_head *element;
2994         struct ipw2100_tx_packet *packet;
2995         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2996         struct ipw2100_bd *tbd;
2997         int next = txq->next;
2998         int i = 0;
2999         struct ipw2100_data_header *ipw_hdr;
3000         struct ieee80211_hdr_3addr *hdr;
3001
3002         while (!list_empty(&priv->tx_pend_list)) {
3003                 /* if there isn't enough space in TBD queue, then
3004                  * don't stuff a new one in.
3005                  * NOTE: 4 are needed as a data will take two,
3006                  *       and there is a minimum of 2 that must be
3007                  *       maintained between the r and w indexes
3008                  */
3009                 element = priv->tx_pend_list.next;
3010                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3011
3012                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3013                              IPW_MAX_BDS)) {
3014                         /* TODO: Support merging buffers if more than
3015                          * IPW_MAX_BDS are used */
3016                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
3017                                        "Increase fragmentation level.\n",
3018                                        priv->net_dev->name);
3019                 }
3020
3021                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3022                         IPW_DEBUG_TX("no room in tx_queue\n");
3023                         break;
3024                 }
3025
3026                 list_del(element);
3027                 DEC_STAT(&priv->tx_pend_stat);
3028
3029                 tbd = &txq->drv[txq->next];
3030
3031                 packet->index = txq->next;
3032
3033                 ipw_hdr = packet->info.d_struct.data;
3034                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3035                     fragments[0]->data;
3036
3037                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3038                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3039                            Addr3 = DA */
3040                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3041                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3042                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3043                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3044                            Addr3 = BSSID */
3045                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3046                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3047                 }
3048
3049                 ipw_hdr->host_command_reg = SEND;
3050                 ipw_hdr->host_command_reg1 = 0;
3051
3052                 /* For now we only support host based encryption */
3053                 ipw_hdr->needs_encryption = 0;
3054                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3055                 if (packet->info.d_struct.txb->nr_frags > 1)
3056                         ipw_hdr->fragment_size =
3057                             packet->info.d_struct.txb->frag_size -
3058                             IEEE80211_3ADDR_LEN;
3059                 else
3060                         ipw_hdr->fragment_size = 0;
3061
3062                 tbd->host_addr = packet->info.d_struct.data_phys;
3063                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3064                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3065                 tbd->status.info.field =
3066                     IPW_BD_STATUS_TX_FRAME_802_3 |
3067                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3068                 txq->next++;
3069                 txq->next %= txq->entries;
3070
3071                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3072                              packet->index, tbd->host_addr, tbd->buf_length);
3073 #ifdef CONFIG_IPW2100_DEBUG
3074                 if (packet->info.d_struct.txb->nr_frags > 1)
3075                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3076                                        packet->info.d_struct.txb->nr_frags);
3077 #endif
3078
3079                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3080                         tbd = &txq->drv[txq->next];
3081                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3082                                 tbd->status.info.field =
3083                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3084                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3085                         else
3086                                 tbd->status.info.field =
3087                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3088                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3089
3090                         tbd->buf_length = packet->info.d_struct.txb->
3091                             fragments[i]->len - IEEE80211_3ADDR_LEN;
3092
3093                         tbd->host_addr = pci_map_single(priv->pci_dev,
3094                                                         packet->info.d_struct.
3095                                                         txb->fragments[i]->
3096                                                         data +
3097                                                         IEEE80211_3ADDR_LEN,
3098                                                         tbd->buf_length,
3099                                                         PCI_DMA_TODEVICE);
3100
3101                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3102                                      txq->next, tbd->host_addr,
3103                                      tbd->buf_length);
3104
3105                         pci_dma_sync_single_for_device(priv->pci_dev,
3106                                                        tbd->host_addr,
3107                                                        tbd->buf_length,
3108                                                        PCI_DMA_TODEVICE);
3109
3110                         txq->next++;
3111                         txq->next %= txq->entries;
3112                 }
3113
3114                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3115                 SET_STAT(&priv->txq_stat, txq->available);
3116
3117                 list_add_tail(element, &priv->fw_pend_list);
3118                 INC_STAT(&priv->fw_pend_stat);
3119         }
3120
3121         if (txq->next != next) {
3122                 /* kick off the DMA by notifying firmware the
3123                  * write index has moved; make sure TBD stores are sync'd */
3124                 write_register(priv->net_dev,
3125                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3126                                txq->next);
3127         }
3128         return;
3129 }
3130
3131 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3132 {
3133         struct net_device *dev = priv->net_dev;
3134         unsigned long flags;
3135         u32 inta, tmp;
3136
3137         spin_lock_irqsave(&priv->low_lock, flags);
3138         ipw2100_disable_interrupts(priv);
3139
3140         read_register(dev, IPW_REG_INTA, &inta);
3141
3142         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3143                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3144
3145         priv->in_isr++;
3146         priv->interrupts++;
3147
3148         /* We do not loop and keep polling for more interrupts as this
3149          * is frowned upon and doesn't play nicely with other potentially
3150          * chained IRQs */
3151         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3152                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3153
3154         if (inta & IPW2100_INTA_FATAL_ERROR) {
3155                 printk(KERN_WARNING DRV_NAME
3156                        ": Fatal interrupt. Scheduling firmware restart.\n");
3157                 priv->inta_other++;
3158                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3159
3160                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3161                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3162                                priv->net_dev->name, priv->fatal_error);
3163
3164                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3165                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3166                                priv->net_dev->name, tmp);
3167
3168                 /* Wake up any sleeping jobs */
3169                 schedule_reset(priv);
3170         }
3171
3172         if (inta & IPW2100_INTA_PARITY_ERROR) {
3173                 printk(KERN_ERR DRV_NAME
3174                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3175                 priv->inta_other++;
3176                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3177         }
3178
3179         if (inta & IPW2100_INTA_RX_TRANSFER) {
3180                 IPW_DEBUG_ISR("RX interrupt\n");
3181
3182                 priv->rx_interrupts++;
3183
3184                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3185
3186                 __ipw2100_rx_process(priv);
3187                 __ipw2100_tx_complete(priv);
3188         }
3189
3190         if (inta & IPW2100_INTA_TX_TRANSFER) {
3191                 IPW_DEBUG_ISR("TX interrupt\n");
3192
3193                 priv->tx_interrupts++;
3194
3195                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3196
3197                 __ipw2100_tx_complete(priv);
3198                 ipw2100_tx_send_commands(priv);
3199                 ipw2100_tx_send_data(priv);
3200         }
3201
3202         if (inta & IPW2100_INTA_TX_COMPLETE) {
3203                 IPW_DEBUG_ISR("TX complete\n");
3204                 priv->inta_other++;
3205                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3206
3207                 __ipw2100_tx_complete(priv);
3208         }
3209
3210         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3211                 /* ipw2100_handle_event(dev); */
3212                 priv->inta_other++;
3213                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3214         }
3215
3216         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3217                 IPW_DEBUG_ISR("FW init done interrupt\n");
3218                 priv->inta_other++;
3219
3220                 read_register(dev, IPW_REG_INTA, &tmp);
3221                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3222                            IPW2100_INTA_PARITY_ERROR)) {
3223                         write_register(dev, IPW_REG_INTA,
3224                                        IPW2100_INTA_FATAL_ERROR |
3225                                        IPW2100_INTA_PARITY_ERROR);
3226                 }
3227
3228                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3229         }
3230
3231         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3232                 IPW_DEBUG_ISR("Status change interrupt\n");
3233                 priv->inta_other++;
3234                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3235         }
3236
3237         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3238                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3239                 priv->inta_other++;
3240                 write_register(dev, IPW_REG_INTA,
3241                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3242         }
3243
3244         priv->in_isr--;
3245         ipw2100_enable_interrupts(priv);
3246
3247         spin_unlock_irqrestore(&priv->low_lock, flags);
3248
3249         IPW_DEBUG_ISR("exit\n");
3250 }
3251
3252 static irqreturn_t ipw2100_interrupt(int irq, void *data, struct pt_regs *regs)
3253 {
3254         struct ipw2100_priv *priv = data;
3255         u32 inta, inta_mask;
3256
3257         if (!data)
3258                 return IRQ_NONE;
3259
3260         spin_lock(&priv->low_lock);
3261
3262         /* We check to see if we should be ignoring interrupts before
3263          * we touch the hardware.  During ucode load if we try and handle
3264          * an interrupt we can cause keyboard problems as well as cause
3265          * the ucode to fail to initialize */
3266         if (!(priv->status & STATUS_INT_ENABLED)) {
3267                 /* Shared IRQ */
3268                 goto none;
3269         }
3270
3271         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3272         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3273
3274         if (inta == 0xFFFFFFFF) {
3275                 /* Hardware disappeared */
3276                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3277                 goto none;
3278         }
3279
3280         inta &= IPW_INTERRUPT_MASK;
3281
3282         if (!(inta & inta_mask)) {
3283                 /* Shared interrupt */
3284                 goto none;
3285         }
3286
3287         /* We disable the hardware interrupt here just to prevent unneeded
3288          * calls to be made.  We disable this again within the actual
3289          * work tasklet, so if another part of the code re-enables the
3290          * interrupt, that is fine */
3291         ipw2100_disable_interrupts(priv);
3292
3293         tasklet_schedule(&priv->irq_tasklet);
3294         spin_unlock(&priv->low_lock);
3295
3296         return IRQ_HANDLED;
3297       none:
3298         spin_unlock(&priv->low_lock);
3299         return IRQ_NONE;
3300 }
3301
3302 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3303                       int pri)
3304 {
3305         struct ipw2100_priv *priv = ieee80211_priv(dev);
3306         struct list_head *element;
3307         struct ipw2100_tx_packet *packet;
3308         unsigned long flags;
3309
3310         spin_lock_irqsave(&priv->low_lock, flags);
3311
3312         if (!(priv->status & STATUS_ASSOCIATED)) {
3313                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3314                 priv->ieee->stats.tx_carrier_errors++;
3315                 netif_stop_queue(dev);
3316                 goto fail_unlock;
3317         }
3318
3319         if (list_empty(&priv->tx_free_list))
3320                 goto fail_unlock;
3321
3322         element = priv->tx_free_list.next;
3323         packet = list_entry(element, struct ipw2100_tx_packet, list);
3324
3325         packet->info.d_struct.txb = txb;
3326
3327         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3328         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3329
3330         packet->jiffy_start = jiffies;
3331
3332         list_del(element);
3333         DEC_STAT(&priv->tx_free_stat);
3334
3335         list_add_tail(element, &priv->tx_pend_list);
3336         INC_STAT(&priv->tx_pend_stat);
3337
3338         ipw2100_tx_send_data(priv);
3339
3340         spin_unlock_irqrestore(&priv->low_lock, flags);
3341         return 0;
3342
3343       fail_unlock:
3344         netif_stop_queue(dev);
3345         spin_unlock_irqrestore(&priv->low_lock, flags);
3346         return 1;
3347 }
3348
3349 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3350 {
3351         int i, j, err = -EINVAL;
3352         void *v;
3353         dma_addr_t p;
3354
3355         priv->msg_buffers =
3356             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3357                                                 sizeof(struct
3358                                                        ipw2100_tx_packet),
3359                                                 GFP_KERNEL);
3360         if (!priv->msg_buffers) {
3361                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3362                        "buffers.\n", priv->net_dev->name);
3363                 return -ENOMEM;
3364         }
3365
3366         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3367                 v = pci_alloc_consistent(priv->pci_dev,
3368                                          sizeof(struct ipw2100_cmd_header), &p);
3369                 if (!v) {
3370                         printk(KERN_ERR DRV_NAME ": "
3371                                "%s: PCI alloc failed for msg "
3372                                "buffers.\n", priv->net_dev->name);
3373                         err = -ENOMEM;
3374                         break;
3375                 }
3376
3377                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3378
3379                 priv->msg_buffers[i].type = COMMAND;
3380                 priv->msg_buffers[i].info.c_struct.cmd =
3381                     (struct ipw2100_cmd_header *)v;
3382                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3383         }
3384
3385         if (i == IPW_COMMAND_POOL_SIZE)
3386                 return 0;
3387
3388         for (j = 0; j < i; j++) {
3389                 pci_free_consistent(priv->pci_dev,
3390                                     sizeof(struct ipw2100_cmd_header),
3391                                     priv->msg_buffers[j].info.c_struct.cmd,
3392                                     priv->msg_buffers[j].info.c_struct.
3393                                     cmd_phys);
3394         }
3395
3396         kfree(priv->msg_buffers);
3397         priv->msg_buffers = NULL;
3398
3399         return err;
3400 }
3401
3402 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3403 {
3404         int i;
3405
3406         INIT_LIST_HEAD(&priv->msg_free_list);
3407         INIT_LIST_HEAD(&priv->msg_pend_list);
3408
3409         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3410                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3411         SET_STAT(&priv->msg_free_stat, i);
3412
3413         return 0;
3414 }
3415
3416 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3417 {
3418         int i;
3419
3420         if (!priv->msg_buffers)
3421                 return;
3422
3423         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3424                 pci_free_consistent(priv->pci_dev,
3425                                     sizeof(struct ipw2100_cmd_header),
3426                                     priv->msg_buffers[i].info.c_struct.cmd,
3427                                     priv->msg_buffers[i].info.c_struct.
3428                                     cmd_phys);
3429         }
3430
3431         kfree(priv->msg_buffers);
3432         priv->msg_buffers = NULL;
3433 }
3434
3435 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3436                         char *buf)
3437 {
3438         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3439         char *out = buf;
3440         int i, j;
3441         u32 val;
3442
3443         for (i = 0; i < 16; i++) {
3444                 out += sprintf(out, "[%08X] ", i * 16);
3445                 for (j = 0; j < 16; j += 4) {
3446                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3447                         out += sprintf(out, "%08X ", val);
3448                 }
3449                 out += sprintf(out, "\n");
3450         }
3451
3452         return out - buf;
3453 }
3454
3455 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3456
3457 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3458                         char *buf)
3459 {
3460         struct ipw2100_priv *p = d->driver_data;
3461         return sprintf(buf, "0x%08x\n", (int)p->config);
3462 }
3463
3464 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3465
3466 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3467                            char *buf)
3468 {
3469         struct ipw2100_priv *p = d->driver_data;
3470         return sprintf(buf, "0x%08x\n", (int)p->status);
3471 }
3472
3473 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3474
3475 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3476                                char *buf)
3477 {
3478         struct ipw2100_priv *p = d->driver_data;
3479         return sprintf(buf, "0x%08x\n", (int)p->capability);
3480 }
3481
3482 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3483
3484 #define IPW2100_REG(x) { IPW_ ##x, #x }
3485 static const struct {
3486         u32 addr;
3487         const char *name;
3488 } hw_data[] = {
3489 IPW2100_REG(REG_GP_CNTRL),
3490             IPW2100_REG(REG_GPIO),
3491             IPW2100_REG(REG_INTA),
3492             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3493 #define IPW2100_NIC(x, s) { x, #x, s }
3494 static const struct {
3495         u32 addr;
3496         const char *name;
3497         size_t size;
3498 } nic_data[] = {
3499 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3500             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3501 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3502 static const struct {
3503         u8 index;
3504         const char *name;
3505         const char *desc;
3506 } ord_data[] = {
3507 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3508             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3509                                 "successful Host Tx's (MSDU)"),
3510             IPW2100_ORD(STAT_TX_DIR_DATA,
3511                                 "successful Directed Tx's (MSDU)"),
3512             IPW2100_ORD(STAT_TX_DIR_DATA1,
3513                                 "successful Directed Tx's (MSDU) @ 1MB"),
3514             IPW2100_ORD(STAT_TX_DIR_DATA2,
3515                                 "successful Directed Tx's (MSDU) @ 2MB"),
3516             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3517                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3518             IPW2100_ORD(STAT_TX_DIR_DATA11,
3519                                 "successful Directed Tx's (MSDU) @ 11MB"),
3520             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3521                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3522             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3523                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3524             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3525                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3526             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3527                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3528             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3529             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3530             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3531             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3532             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3533             IPW2100_ORD(STAT_TX_ASSN_RESP,
3534                                 "successful Association response Tx's"),
3535             IPW2100_ORD(STAT_TX_REASSN,
3536                                 "successful Reassociation Tx's"),
3537             IPW2100_ORD(STAT_TX_REASSN_RESP,
3538                                 "successful Reassociation response Tx's"),
3539             IPW2100_ORD(STAT_TX_PROBE,
3540                                 "probes successfully transmitted"),
3541             IPW2100_ORD(STAT_TX_PROBE_RESP,
3542                                 "probe responses successfully transmitted"),
3543             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3544             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3545             IPW2100_ORD(STAT_TX_DISASSN,
3546                                 "successful Disassociation TX"),
3547             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3548             IPW2100_ORD(STAT_TX_DEAUTH,
3549                                 "successful Deauthentication TX"),
3550             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3551                                 "Total successful Tx data bytes"),
3552             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3553             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3554             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3555             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3556             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3557             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3558             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3559                                 "times max tries in a hop failed"),
3560             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3561                                 "times disassociation failed"),
3562             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3563             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3564             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3565             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3566             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3567             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3568             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3569                                 "directed packets at 5.5MB"),
3570             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3571             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3572             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3573                                 "nondirected packets at 1MB"),
3574             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3575                                 "nondirected packets at 2MB"),
3576             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3577                                 "nondirected packets at 5.5MB"),
3578             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3579                                 "nondirected packets at 11MB"),
3580             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3581             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3582                                                                     "Rx CTS"),
3583             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3584             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3585             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3586             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3587             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3588             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3589             IPW2100_ORD(STAT_RX_REASSN_RESP,
3590                                 "Reassociation response Rx's"),
3591             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3592             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3593             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3594             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3595             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3596             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3597             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3598             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3599                                 "Total rx data bytes received"),
3600             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3601             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3602             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3603             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3604             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3605             IPW2100_ORD(STAT_RX_DUPLICATE1,
3606                                 "duplicate rx packets at 1MB"),
3607             IPW2100_ORD(STAT_RX_DUPLICATE2,
3608                                 "duplicate rx packets at 2MB"),
3609             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3610                                 "duplicate rx packets at 5.5MB"),
3611             IPW2100_ORD(STAT_RX_DUPLICATE11,
3612                                 "duplicate rx packets at 11MB"),
3613             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3614             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3615             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3616             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3617             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3618                                 "rx frames with invalid protocol"),
3619             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3620             IPW2100_ORD(STAT_RX_NO_BUFFER,
3621                                 "rx frames rejected due to no buffer"),
3622             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3623                                 "rx frames dropped due to missing fragment"),
3624             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3625                                 "rx frames dropped due to non-sequential fragment"),
3626             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3627                                 "rx frames dropped due to unmatched 1st frame"),
3628             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3629                                 "rx frames dropped due to uncompleted frame"),
3630             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3631                                 "ICV errors during decryption"),
3632             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3633             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3634             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3635                                 "poll response timeouts"),
3636             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3637                                 "timeouts waiting for last {broad,multi}cast pkt"),
3638             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3639             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3640             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3641             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3642             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3643                                 "current calculation of % missed beacons"),
3644             IPW2100_ORD(STAT_PERCENT_RETRIES,
3645                                 "current calculation of % missed tx retries"),
3646             IPW2100_ORD(ASSOCIATED_AP_PTR,
3647                                 "0 if not associated, else pointer to AP table entry"),
3648             IPW2100_ORD(AVAILABLE_AP_CNT,
3649                                 "AP's decsribed in the AP table"),
3650             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3651             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3652             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3653             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3654                                 "failures due to response fail"),
3655             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3656             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3657             IPW2100_ORD(STAT_ROAM_INHIBIT,
3658                                 "times roaming was inhibited due to activity"),
3659             IPW2100_ORD(RSSI_AT_ASSN,
3660                                 "RSSI of associated AP at time of association"),
3661             IPW2100_ORD(STAT_ASSN_CAUSE1,
3662                                 "reassociation: no probe response or TX on hop"),
3663             IPW2100_ORD(STAT_ASSN_CAUSE2,
3664                                 "reassociation: poor tx/rx quality"),
3665             IPW2100_ORD(STAT_ASSN_CAUSE3,
3666                                 "reassociation: tx/rx quality (excessive AP load"),
3667             IPW2100_ORD(STAT_ASSN_CAUSE4,
3668                                 "reassociation: AP RSSI level"),
3669             IPW2100_ORD(STAT_ASSN_CAUSE5,
3670                                 "reassociations due to load leveling"),
3671             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3672             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3673                                 "times authentication response failed"),
3674             IPW2100_ORD(STATION_TABLE_CNT,
3675                                 "entries in association table"),
3676             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3677             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3678             IPW2100_ORD(COUNTRY_CODE,
3679                                 "IEEE country code as recv'd from beacon"),
3680             IPW2100_ORD(COUNTRY_CHANNELS,
3681                                 "channels suported by country"),
3682             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3683             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3684             IPW2100_ORD(ANTENNA_DIVERSITY,
3685                                 "TRUE if antenna diversity is disabled"),
3686             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3687             IPW2100_ORD(OUR_FREQ,
3688                                 "current radio freq lower digits - channel ID"),
3689             IPW2100_ORD(RTC_TIME, "current RTC time"),
3690             IPW2100_ORD(PORT_TYPE, "operating mode"),
3691             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3692             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3693             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3694             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3695             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3696             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3697             IPW2100_ORD(CAPABILITIES,
3698                                 "Management frame capability field"),
3699             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3700             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3701             IPW2100_ORD(RTS_THRESHOLD,
3702                                 "Min packet length for RTS handshaking"),
3703             IPW2100_ORD(INT_MODE, "International mode"),
3704             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3705                                 "protocol frag threshold"),
3706             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3707                                 "EEPROM offset in SRAM"),
3708             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3709                                 "EEPROM size in SRAM"),
3710             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3711             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3712                                 "EEPROM IBSS 11b channel set"),
3713             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3714             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3715             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3716             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3717             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3718
3719 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3720                               char *buf)
3721 {
3722         int i;
3723         struct ipw2100_priv *priv = dev_get_drvdata(d);
3724         struct net_device *dev = priv->net_dev;
3725         char *out = buf;
3726         u32 val = 0;
3727
3728         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3729
3730         for (i = 0; i < (sizeof(hw_data) / sizeof(*hw_data)); i++) {
3731                 read_register(dev, hw_data[i].addr, &val);
3732                 out += sprintf(out, "%30s [%08X] : %08X\n",
3733                                hw_data[i].name, hw_data[i].addr, val);
3734         }
3735
3736         return out - buf;
3737 }
3738
3739 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3740
3741 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3742                              char *buf)
3743 {
3744         struct ipw2100_priv *priv = dev_get_drvdata(d);
3745         struct net_device *dev = priv->net_dev;
3746         char *out = buf;
3747         int i;
3748
3749         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3750
3751         for (i = 0; i < (sizeof(nic_data) / sizeof(*nic_data)); i++) {
3752                 u8 tmp8;
3753                 u16 tmp16;
3754                 u32 tmp32;
3755
3756                 switch (nic_data[i].size) {
3757                 case 1:
3758                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3759                         out += sprintf(out, "%30s [%08X] : %02X\n",
3760                                        nic_data[i].name, nic_data[i].addr,
3761                                        tmp8);
3762                         break;
3763                 case 2:
3764                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3765                         out += sprintf(out, "%30s [%08X] : %04X\n",
3766                                        nic_data[i].name, nic_data[i].addr,
3767                                        tmp16);
3768                         break;
3769                 case 4:
3770                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3771                         out += sprintf(out, "%30s [%08X] : %08X\n",
3772                                        nic_data[i].name, nic_data[i].addr,
3773                                        tmp32);
3774                         break;
3775                 }
3776         }
3777         return out - buf;
3778 }
3779
3780 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3781
3782 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3783                            char *buf)
3784 {
3785         struct ipw2100_priv *priv = dev_get_drvdata(d);
3786         struct net_device *dev = priv->net_dev;
3787         static unsigned long loop = 0;
3788         int len = 0;
3789         u32 buffer[4];
3790         int i;
3791         char line[81];
3792
3793         if (loop >= 0x30000)
3794                 loop = 0;
3795
3796         /* sysfs provides us PAGE_SIZE buffer */
3797         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3798
3799                 if (priv->snapshot[0])
3800                         for (i = 0; i < 4; i++)
3801                                 buffer[i] =
3802                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3803                 else
3804                         for (i = 0; i < 4; i++)
3805                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3806
3807                 if (priv->dump_raw)
3808                         len += sprintf(buf + len,
3809                                        "%c%c%c%c"
3810                                        "%c%c%c%c"
3811                                        "%c%c%c%c"
3812                                        "%c%c%c%c",
3813                                        ((u8 *) buffer)[0x0],
3814                                        ((u8 *) buffer)[0x1],
3815                                        ((u8 *) buffer)[0x2],
3816                                        ((u8 *) buffer)[0x3],
3817                                        ((u8 *) buffer)[0x4],
3818                                        ((u8 *) buffer)[0x5],
3819                                        ((u8 *) buffer)[0x6],
3820                                        ((u8 *) buffer)[0x7],
3821                                        ((u8 *) buffer)[0x8],
3822                                        ((u8 *) buffer)[0x9],
3823                                        ((u8 *) buffer)[0xa],
3824                                        ((u8 *) buffer)[0xb],
3825                                        ((u8 *) buffer)[0xc],
3826                                        ((u8 *) buffer)[0xd],
3827                                        ((u8 *) buffer)[0xe],
3828                                        ((u8 *) buffer)[0xf]);
3829                 else
3830                         len += sprintf(buf + len, "%s\n",
3831                                        snprint_line(line, sizeof(line),
3832                                                     (u8 *) buffer, 16, loop));
3833                 loop += 16;
3834         }
3835
3836         return len;
3837 }
3838
3839 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3840                             const char *buf, size_t count)
3841 {
3842         struct ipw2100_priv *priv = dev_get_drvdata(d);
3843         struct net_device *dev = priv->net_dev;
3844         const char *p = buf;
3845
3846         (void)dev;              /* kill unused-var warning for debug-only code */
3847
3848         if (count < 1)
3849                 return count;
3850
3851         if (p[0] == '1' ||
3852             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3853                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3854                                dev->name);
3855                 priv->dump_raw = 1;
3856
3857         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3858                                    tolower(p[1]) == 'f')) {
3859                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3860                                dev->name);
3861                 priv->dump_raw = 0;
3862
3863         } else if (tolower(p[0]) == 'r') {
3864                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3865                 ipw2100_snapshot_free(priv);
3866
3867         } else
3868                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3869                                "reset = clear memory snapshot\n", dev->name);
3870
3871         return count;
3872 }
3873
3874 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3875
3876 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3877                              char *buf)
3878 {
3879         struct ipw2100_priv *priv = dev_get_drvdata(d);
3880         u32 val = 0;
3881         int len = 0;
3882         u32 val_len;
3883         static int loop = 0;
3884
3885         if (priv->status & STATUS_RF_KILL_MASK)
3886                 return 0;
3887
3888         if (loop >= sizeof(ord_data) / sizeof(*ord_data))
3889                 loop = 0;
3890
3891         /* sysfs provides us PAGE_SIZE buffer */
3892         while (len < PAGE_SIZE - 128 &&
3893                loop < (sizeof(ord_data) / sizeof(*ord_data))) {
3894
3895                 val_len = sizeof(u32);
3896
3897                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3898                                         &val_len))
3899                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3900                                        ord_data[loop].index,
3901                                        ord_data[loop].desc);
3902                 else
3903                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3904                                        ord_data[loop].index, val,
3905                                        ord_data[loop].desc);
3906                 loop++;
3907         }
3908
3909         return len;
3910 }
3911
3912 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3913
3914 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3915                           char *buf)
3916 {
3917         struct ipw2100_priv *priv = dev_get_drvdata(d);
3918         char *out = buf;
3919
3920         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3921                        priv->interrupts, priv->tx_interrupts,
3922                        priv->rx_interrupts, priv->inta_other);
3923         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3924         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3925 #ifdef CONFIG_IPW2100_DEBUG
3926         out += sprintf(out, "packet mismatch image: %s\n",
3927                        priv->snapshot[0] ? "YES" : "NO");
3928 #endif
3929
3930         return out - buf;
3931 }
3932
3933 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3934
3935 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3936 {
3937         int err;
3938
3939         if (mode == priv->ieee->iw_mode)
3940                 return 0;
3941
3942         err = ipw2100_disable_adapter(priv);
3943         if (err) {
3944                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3945                        priv->net_dev->name, err);
3946                 return err;
3947         }
3948
3949         switch (mode) {
3950         case IW_MODE_INFRA:
3951                 priv->net_dev->type = ARPHRD_ETHER;
3952                 break;
3953         case IW_MODE_ADHOC:
3954                 priv->net_dev->type = ARPHRD_ETHER;
3955                 break;
3956 #ifdef CONFIG_IPW2100_MONITOR
3957         case IW_MODE_MONITOR:
3958                 priv->last_mode = priv->ieee->iw_mode;
3959                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3960                 break;
3961 #endif                          /* CONFIG_IPW2100_MONITOR */
3962         }
3963
3964         priv->ieee->iw_mode = mode;
3965
3966 #ifdef CONFIG_PM
3967         /* Indicate ipw2100_download_firmware download firmware
3968          * from disk instead of memory. */
3969         ipw2100_firmware.version = 0;
3970 #endif
3971
3972         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3973         priv->reset_backoff = 0;
3974         schedule_reset(priv);
3975
3976         return 0;
3977 }
3978
3979 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3980                               char *buf)
3981 {
3982         struct ipw2100_priv *priv = dev_get_drvdata(d);
3983         int len = 0;
3984
3985 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3986
3987         if (priv->status & STATUS_ASSOCIATED)
3988                 len += sprintf(buf + len, "connected: %lu\n",
3989                                get_seconds() - priv->connect_start);
3990         else
3991                 len += sprintf(buf + len, "not connected\n");
3992
3993         DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
3994         DUMP_VAR(status, "08lx");
3995         DUMP_VAR(config, "08lx");
3996         DUMP_VAR(capability, "08lx");
3997
3998         len +=
3999             sprintf(buf + len, "last_rtc: %lu\n",
4000                     (unsigned long)priv->last_rtc);
4001
4002         DUMP_VAR(fatal_error, "d");
4003         DUMP_VAR(stop_hang_check, "d");
4004         DUMP_VAR(stop_rf_kill, "d");
4005         DUMP_VAR(messages_sent, "d");
4006
4007         DUMP_VAR(tx_pend_stat.value, "d");
4008         DUMP_VAR(tx_pend_stat.hi, "d");
4009
4010         DUMP_VAR(tx_free_stat.value, "d");
4011         DUMP_VAR(tx_free_stat.lo, "d");
4012
4013         DUMP_VAR(msg_free_stat.value, "d");
4014         DUMP_VAR(msg_free_stat.lo, "d");
4015
4016         DUMP_VAR(msg_pend_stat.value, "d");
4017         DUMP_VAR(msg_pend_stat.hi, "d");
4018
4019         DUMP_VAR(fw_pend_stat.value, "d");
4020         DUMP_VAR(fw_pend_stat.hi, "d");
4021
4022         DUMP_VAR(txq_stat.value, "d");
4023         DUMP_VAR(txq_stat.lo, "d");
4024
4025         DUMP_VAR(ieee->scans, "d");
4026         DUMP_VAR(reset_backoff, "d");
4027
4028         return len;
4029 }
4030
4031 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4032
4033 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4034                             char *buf)
4035 {
4036         struct ipw2100_priv *priv = dev_get_drvdata(d);
4037         char essid[IW_ESSID_MAX_SIZE + 1];
4038         u8 bssid[ETH_ALEN];
4039         u32 chan = 0;
4040         char *out = buf;
4041         int length;
4042         int ret;
4043
4044         if (priv->status & STATUS_RF_KILL_MASK)
4045                 return 0;
4046
4047         memset(essid, 0, sizeof(essid));
4048         memset(bssid, 0, sizeof(bssid));
4049
4050         length = IW_ESSID_MAX_SIZE;
4051         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4052         if (ret)
4053                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4054                                __LINE__);
4055
4056         length = sizeof(bssid);
4057         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4058                                   bssid, &length);
4059         if (ret)
4060                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4061                                __LINE__);
4062
4063         length = sizeof(u32);
4064         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4065         if (ret)
4066                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4067                                __LINE__);
4068
4069         out += sprintf(out, "ESSID: %s\n", essid);
4070         out += sprintf(out, "BSSID:   %02x:%02x:%02x:%02x:%02x:%02x\n",
4071                        bssid[0], bssid[1], bssid[2],
4072                        bssid[3], bssid[4], bssid[5]);
4073         out += sprintf(out, "Channel: %d\n", chan);
4074
4075         return out - buf;
4076 }
4077
4078 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4079
4080 #ifdef CONFIG_IPW2100_DEBUG
4081 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4082 {
4083         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4084 }
4085
4086 static ssize_t store_debug_level(struct device_driver *d,
4087                                  const char *buf, size_t count)
4088 {
4089         char *p = (char *)buf;
4090         u32 val;
4091
4092         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4093                 p++;
4094                 if (p[0] == 'x' || p[0] == 'X')
4095                         p++;
4096                 val = simple_strtoul(p, &p, 16);
4097         } else
4098                 val = simple_strtoul(p, &p, 10);
4099         if (p == buf)
4100                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4101         else
4102                 ipw2100_debug_level = val;
4103
4104         return strnlen(buf, count);
4105 }
4106
4107 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4108                    store_debug_level);
4109 #endif                          /* CONFIG_IPW2100_DEBUG */
4110
4111 static ssize_t show_fatal_error(struct device *d,
4112                                 struct device_attribute *attr, char *buf)
4113 {
4114         struct ipw2100_priv *priv = dev_get_drvdata(d);
4115         char *out = buf;
4116         int i;
4117
4118         if (priv->fatal_error)
4119                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4120         else
4121                 out += sprintf(out, "0\n");
4122
4123         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4124                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4125                                         IPW2100_ERROR_QUEUE])
4126                         continue;
4127
4128                 out += sprintf(out, "%d. 0x%08X\n", i,
4129                                priv->fatal_errors[(priv->fatal_index - i) %
4130                                                   IPW2100_ERROR_QUEUE]);
4131         }
4132
4133         return out - buf;
4134 }
4135
4136 static ssize_t store_fatal_error(struct device *d,
4137                                  struct device_attribute *attr, const char *buf,
4138                                  size_t count)
4139 {
4140         struct ipw2100_priv *priv = dev_get_drvdata(d);
4141         schedule_reset(priv);
4142         return count;
4143 }
4144
4145 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4146                    store_fatal_error);
4147
4148 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4149                              char *buf)
4150 {
4151         struct ipw2100_priv *priv = dev_get_drvdata(d);
4152         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4153 }
4154
4155 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4156                               const char *buf, size_t count)
4157 {
4158         struct ipw2100_priv *priv = dev_get_drvdata(d);
4159         struct net_device *dev = priv->net_dev;
4160         char buffer[] = "00000000";
4161         unsigned long len =
4162             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4163         unsigned long val;
4164         char *p = buffer;
4165
4166         (void)dev;              /* kill unused-var warning for debug-only code */
4167
4168         IPW_DEBUG_INFO("enter\n");
4169
4170         strncpy(buffer, buf, len);
4171         buffer[len] = 0;
4172
4173         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4174                 p++;
4175                 if (p[0] == 'x' || p[0] == 'X')
4176                         p++;
4177                 val = simple_strtoul(p, &p, 16);
4178         } else
4179                 val = simple_strtoul(p, &p, 10);
4180         if (p == buffer) {
4181                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4182         } else {
4183                 priv->ieee->scan_age = val;
4184                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4185         }
4186
4187         IPW_DEBUG_INFO("exit\n");
4188         return len;
4189 }
4190
4191 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4192
4193 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4194                             char *buf)
4195 {
4196         /* 0 - RF kill not enabled
4197            1 - SW based RF kill active (sysfs)
4198            2 - HW based RF kill active
4199            3 - Both HW and SW baed RF kill active */
4200         struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4201         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4202             (rf_kill_active(priv) ? 0x2 : 0x0);
4203         return sprintf(buf, "%i\n", val);
4204 }
4205
4206 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4207 {
4208         if ((disable_radio ? 1 : 0) ==
4209             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4210                 return 0;
4211
4212         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4213                           disable_radio ? "OFF" : "ON");
4214
4215         mutex_lock(&priv->action_mutex);
4216
4217         if (disable_radio) {
4218                 priv->status |= STATUS_RF_KILL_SW;
4219                 ipw2100_down(priv);
4220         } else {
4221                 priv->status &= ~STATUS_RF_KILL_SW;
4222                 if (rf_kill_active(priv)) {
4223                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4224                                           "disabled by HW switch\n");
4225                         /* Make sure the RF_KILL check timer is running */
4226                         priv->stop_rf_kill = 0;
4227                         cancel_delayed_work(&priv->rf_kill);
4228                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4229                 } else
4230                         schedule_reset(priv);
4231         }
4232
4233         mutex_unlock(&priv->action_mutex);
4234         return 1;
4235 }
4236
4237 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4238                              const char *buf, size_t count)
4239 {
4240         struct ipw2100_priv *priv = dev_get_drvdata(d);
4241         ipw_radio_kill_sw(priv, buf[0] == '1');
4242         return count;
4243 }
4244
4245 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4246
4247 static struct attribute *ipw2100_sysfs_entries[] = {
4248         &dev_attr_hardware.attr,
4249         &dev_attr_registers.attr,
4250         &dev_attr_ordinals.attr,
4251         &dev_attr_pci.attr,
4252         &dev_attr_stats.attr,
4253         &dev_attr_internals.attr,
4254         &dev_attr_bssinfo.attr,
4255         &dev_attr_memory.attr,
4256         &dev_attr_scan_age.attr,
4257         &dev_attr_fatal_error.attr,
4258         &dev_attr_rf_kill.attr,
4259         &dev_attr_cfg.attr,
4260         &dev_attr_status.attr,
4261         &dev_attr_capability.attr,
4262         NULL,
4263 };
4264
4265 static struct attribute_group ipw2100_attribute_group = {
4266         .attrs = ipw2100_sysfs_entries,
4267 };
4268
4269 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4270 {
4271         struct ipw2100_status_queue *q = &priv->status_queue;
4272
4273         IPW_DEBUG_INFO("enter\n");
4274
4275         q->size = entries * sizeof(struct ipw2100_status);
4276         q->drv =
4277             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4278                                                           q->size, &q->nic);
4279         if (!q->drv) {
4280                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4281                 return -ENOMEM;
4282         }
4283
4284         memset(q->drv, 0, q->size);
4285
4286         IPW_DEBUG_INFO("exit\n");
4287
4288         return 0;
4289 }
4290
4291 static void status_queue_free(struct ipw2100_priv *priv)
4292 {
4293         IPW_DEBUG_INFO("enter\n");
4294
4295         if (priv->status_queue.drv) {
4296                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4297                                     priv->status_queue.drv,
4298                                     priv->status_queue.nic);
4299                 priv->status_queue.drv = NULL;
4300         }
4301
4302         IPW_DEBUG_INFO("exit\n");
4303 }
4304
4305 static int bd_queue_allocate(struct ipw2100_priv *priv,
4306                              struct ipw2100_bd_queue *q, int entries)
4307 {
4308         IPW_DEBUG_INFO("enter\n");
4309
4310         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4311
4312         q->entries = entries;
4313         q->size = entries * sizeof(struct ipw2100_bd);
4314         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4315         if (!q->drv) {
4316                 IPW_DEBUG_INFO
4317                     ("can't allocate shared memory for buffer descriptors\n");
4318                 return -ENOMEM;
4319         }
4320         memset(q->drv, 0, q->size);
4321
4322         IPW_DEBUG_INFO("exit\n");
4323
4324         return 0;
4325 }
4326
4327 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4328 {
4329         IPW_DEBUG_INFO("enter\n");
4330
4331         if (!q)
4332                 return;
4333
4334         if (q->drv) {
4335                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4336                 q->drv = NULL;
4337         }
4338
4339         IPW_DEBUG_INFO("exit\n");
4340 }
4341
4342 static void bd_queue_initialize(struct ipw2100_priv *priv,
4343                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4344                                 u32 r, u32 w)
4345 {
4346         IPW_DEBUG_INFO("enter\n");
4347
4348         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4349                        (u32) q->nic);
4350
4351         write_register(priv->net_dev, base, q->nic);
4352         write_register(priv->net_dev, size, q->entries);
4353         write_register(priv->net_dev, r, q->oldest);
4354         write_register(priv->net_dev, w, q->next);
4355
4356         IPW_DEBUG_INFO("exit\n");
4357 }
4358
4359 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4360 {
4361         if (priv->workqueue) {
4362                 priv->stop_rf_kill = 1;
4363                 priv->stop_hang_check = 1;
4364                 cancel_delayed_work(&priv->reset_work);
4365                 cancel_delayed_work(&priv->security_work);
4366                 cancel_delayed_work(&priv->wx_event_work);
4367                 cancel_delayed_work(&priv->hang_check);
4368                 cancel_delayed_work(&priv->rf_kill);
4369                 destroy_workqueue(priv->workqueue);
4370                 priv->workqueue = NULL;
4371         }
4372 }
4373
4374 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4375 {
4376         int i, j, err = -EINVAL;
4377         void *v;
4378         dma_addr_t p;
4379
4380         IPW_DEBUG_INFO("enter\n");
4381
4382         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4383         if (err) {
4384                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4385                                 priv->net_dev->name);
4386                 return err;
4387         }
4388
4389         priv->tx_buffers =
4390             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4391                                                 sizeof(struct
4392                                                        ipw2100_tx_packet),
4393                                                 GFP_ATOMIC);
4394         if (!priv->tx_buffers) {
4395                 printk(KERN_ERR DRV_NAME
4396                        ": %s: alloc failed form tx buffers.\n",
4397                        priv->net_dev->name);
4398                 bd_queue_free(priv, &priv->tx_queue);
4399                 return -ENOMEM;
4400         }
4401
4402         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4403                 v = pci_alloc_consistent(priv->pci_dev,
4404                                          sizeof(struct ipw2100_data_header),
4405                                          &p);
4406                 if (!v) {
4407                         printk(KERN_ERR DRV_NAME
4408                                ": %s: PCI alloc failed for tx " "buffers.\n",
4409                                priv->net_dev->name);
4410                         err = -ENOMEM;
4411                         break;
4412                 }
4413
4414                 priv->tx_buffers[i].type = DATA;
4415                 priv->tx_buffers[i].info.d_struct.data =
4416                     (struct ipw2100_data_header *)v;
4417                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4418                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4419         }
4420
4421         if (i == TX_PENDED_QUEUE_LENGTH)
4422                 return 0;
4423
4424         for (j = 0; j < i; j++) {
4425                 pci_free_consistent(priv->pci_dev,
4426                                     sizeof(struct ipw2100_data_header),
4427                                     priv->tx_buffers[j].info.d_struct.data,
4428                                     priv->tx_buffers[j].info.d_struct.
4429                                     data_phys);
4430         }
4431
4432         kfree(priv->tx_buffers);
4433         priv->tx_buffers = NULL;
4434
4435         return err;
4436 }
4437
4438 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4439 {
4440         int i;
4441
4442         IPW_DEBUG_INFO("enter\n");
4443
4444         /*
4445          * reinitialize packet info lists
4446          */
4447         INIT_LIST_HEAD(&priv->fw_pend_list);
4448         INIT_STAT(&priv->fw_pend_stat);
4449
4450         /*
4451          * reinitialize lists
4452          */
4453         INIT_LIST_HEAD(&priv->tx_pend_list);
4454         INIT_LIST_HEAD(&priv->tx_free_list);
4455         INIT_STAT(&priv->tx_pend_stat);
4456         INIT_STAT(&priv->tx_free_stat);
4457
4458         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4459                 /* We simply drop any SKBs that have been queued for
4460                  * transmit */
4461                 if (priv->tx_buffers[i].info.d_struct.txb) {
4462                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4463                                            txb);
4464                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4465                 }
4466
4467                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4468         }
4469
4470         SET_STAT(&priv->tx_free_stat, i);
4471
4472         priv->tx_queue.oldest = 0;
4473         priv->tx_queue.available = priv->tx_queue.entries;
4474         priv->tx_queue.next = 0;
4475         INIT_STAT(&priv->txq_stat);
4476         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4477
4478         bd_queue_initialize(priv, &priv->tx_queue,
4479                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4480                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4481                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4482                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4483
4484         IPW_DEBUG_INFO("exit\n");
4485
4486 }
4487
4488 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4489 {
4490         int i;
4491
4492         IPW_DEBUG_INFO("enter\n");
4493
4494         bd_queue_free(priv, &priv->tx_queue);
4495
4496         if (!priv->tx_buffers)
4497                 return;
4498
4499         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4500                 if (priv->tx_buffers[i].info.d_struct.txb) {
4501                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4502                                            txb);
4503                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4504                 }
4505                 if (priv->tx_buffers[i].info.d_struct.data)
4506                         pci_free_consistent(priv->pci_dev,
4507                                             sizeof(struct ipw2100_data_header),
4508                                             priv->tx_buffers[i].info.d_struct.
4509                                             data,
4510                                             priv->tx_buffers[i].info.d_struct.
4511                                             data_phys);
4512         }
4513
4514         kfree(priv->tx_buffers);
4515         priv->tx_buffers = NULL;
4516
4517         IPW_DEBUG_INFO("exit\n");
4518 }
4519
4520 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4521 {
4522         int i, j, err = -EINVAL;
4523
4524         IPW_DEBUG_INFO("enter\n");
4525
4526         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4527         if (err) {
4528                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4529                 return err;
4530         }
4531
4532         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4533         if (err) {
4534                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4535                 bd_queue_free(priv, &priv->rx_queue);
4536                 return err;
4537         }
4538
4539         /*
4540          * allocate packets
4541          */
4542         priv->rx_buffers = (struct ipw2100_rx_packet *)
4543             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4544                     GFP_KERNEL);
4545         if (!priv->rx_buffers) {
4546                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4547
4548                 bd_queue_free(priv, &priv->rx_queue);
4549
4550                 status_queue_free(priv);
4551
4552                 return -ENOMEM;
4553         }
4554
4555         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4556                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4557
4558                 err = ipw2100_alloc_skb(priv, packet);
4559                 if (unlikely(err)) {
4560                         err = -ENOMEM;
4561                         break;
4562                 }
4563
4564                 /* The BD holds the cache aligned address */
4565                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4566                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4567                 priv->status_queue.drv[i].status_fields = 0;
4568         }
4569
4570         if (i == RX_QUEUE_LENGTH)
4571                 return 0;
4572
4573         for (j = 0; j < i; j++) {
4574                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4575                                  sizeof(struct ipw2100_rx_packet),
4576                                  PCI_DMA_FROMDEVICE);
4577                 dev_kfree_skb(priv->rx_buffers[j].skb);
4578         }
4579
4580         kfree(priv->rx_buffers);
4581         priv->rx_buffers = NULL;
4582
4583         bd_queue_free(priv, &priv->rx_queue);
4584
4585         status_queue_free(priv);
4586
4587         return err;
4588 }
4589
4590 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4591 {
4592         IPW_DEBUG_INFO("enter\n");
4593
4594         priv->rx_queue.oldest = 0;
4595         priv->rx_queue.available = priv->rx_queue.entries - 1;
4596         priv->rx_queue.next = priv->rx_queue.entries - 1;
4597
4598         INIT_STAT(&priv->rxq_stat);
4599         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4600
4601         bd_queue_initialize(priv, &priv->rx_queue,
4602                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4603                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4604                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4605                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4606
4607         /* set up the status queue */
4608         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4609                        priv->status_queue.nic);
4610
4611         IPW_DEBUG_INFO("exit\n");
4612 }
4613
4614 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4615 {
4616         int i;
4617
4618         IPW_DEBUG_INFO("enter\n");
4619
4620         bd_queue_free(priv, &priv->rx_queue);
4621         status_queue_free(priv);
4622
4623         if (!priv->rx_buffers)
4624                 return;
4625
4626         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4627                 if (priv->rx_buffers[i].rxp) {
4628                         pci_unmap_single(priv->pci_dev,
4629                                          priv->rx_buffers[i].dma_addr,
4630                                          sizeof(struct ipw2100_rx),
4631                                          PCI_DMA_FROMDEVICE);
4632                         dev_kfree_skb(priv->rx_buffers[i].skb);
4633                 }
4634         }
4635
4636         kfree(priv->rx_buffers);
4637         priv->rx_buffers = NULL;
4638
4639         IPW_DEBUG_INFO("exit\n");
4640 }
4641
4642 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4643 {
4644         u32 length = ETH_ALEN;
4645         u8 mac[ETH_ALEN];
4646
4647         int err;
4648
4649         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4650         if (err) {
4651                 IPW_DEBUG_INFO("MAC address read failed\n");
4652                 return -EIO;
4653         }
4654         IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4655                        mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4656
4657         memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4658
4659         return 0;
4660 }
4661
4662 /********************************************************************
4663  *
4664  * Firmware Commands
4665  *
4666  ********************************************************************/
4667
4668 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4669 {
4670         struct host_command cmd = {
4671                 .host_command = ADAPTER_ADDRESS,
4672                 .host_command_sequence = 0,
4673                 .host_command_length = ETH_ALEN
4674         };
4675         int err;
4676
4677         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4678
4679         IPW_DEBUG_INFO("enter\n");
4680
4681         if (priv->config & CFG_CUSTOM_MAC) {
4682                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4683                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4684         } else
4685                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4686                        ETH_ALEN);
4687
4688         err = ipw2100_hw_send_command(priv, &cmd);
4689
4690         IPW_DEBUG_INFO("exit\n");
4691         return err;
4692 }
4693
4694 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4695                                  int batch_mode)
4696 {
4697         struct host_command cmd = {
4698                 .host_command = PORT_TYPE,
4699                 .host_command_sequence = 0,
4700                 .host_command_length = sizeof(u32)
4701         };
4702         int err;
4703
4704         switch (port_type) {
4705         case IW_MODE_INFRA:
4706                 cmd.host_command_parameters[0] = IPW_BSS;
4707                 break;
4708         case IW_MODE_ADHOC:
4709                 cmd.host_command_parameters[0] = IPW_IBSS;
4710                 break;
4711         }
4712
4713         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4714                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4715
4716         if (!batch_mode) {
4717                 err = ipw2100_disable_adapter(priv);
4718                 if (err) {
4719                         printk(KERN_ERR DRV_NAME
4720                                ": %s: Could not disable adapter %d\n",
4721                                priv->net_dev->name, err);
4722                         return err;
4723                 }
4724         }
4725
4726         /* send cmd to firmware */
4727         err = ipw2100_hw_send_command(priv, &cmd);
4728
4729         if (!batch_mode)
4730                 ipw2100_enable_adapter(priv);
4731
4732         return err;
4733 }
4734
4735 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4736                                int batch_mode)
4737 {
4738         struct host_command cmd = {
4739                 .host_command = CHANNEL,
4740                 .host_command_sequence = 0,
4741                 .host_command_length = sizeof(u32)
4742         };
4743         int err;
4744
4745         cmd.host_command_parameters[0] = channel;
4746
4747         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4748
4749         /* If BSS then we don't support channel selection */
4750         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4751                 return 0;
4752
4753         if ((channel != 0) &&
4754             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4755                 return -EINVAL;
4756
4757         if (!batch_mode) {
4758                 err = ipw2100_disable_adapter(priv);
4759                 if (err)
4760                         return err;
4761         }
4762
4763         err = ipw2100_hw_send_command(priv, &cmd);
4764         if (err) {
4765                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4766                 return err;
4767         }
4768
4769         if (channel)
4770                 priv->config |= CFG_STATIC_CHANNEL;
4771         else
4772                 priv->config &= ~CFG_STATIC_CHANNEL;
4773
4774         priv->channel = channel;
4775
4776         if (!batch_mode) {
4777                 err = ipw2100_enable_adapter(priv);
4778                 if (err)
4779                         return err;
4780         }
4781
4782         return 0;
4783 }
4784
4785 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4786 {
4787         struct host_command cmd = {
4788                 .host_command = SYSTEM_CONFIG,
4789                 .host_command_sequence = 0,
4790                 .host_command_length = 12,
4791         };
4792         u32 ibss_mask, len = sizeof(u32);
4793         int err;
4794
4795         /* Set system configuration */
4796
4797         if (!batch_mode) {
4798                 err = ipw2100_disable_adapter(priv);
4799                 if (err)
4800                         return err;
4801         }
4802
4803         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4804                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4805
4806         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4807             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4808
4809         if (!(priv->config & CFG_LONG_PREAMBLE))
4810                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4811
4812         err = ipw2100_get_ordinal(priv,
4813                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4814                                   &ibss_mask, &len);
4815         if (err)
4816                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4817
4818         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4819         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4820
4821         /* 11b only */
4822         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4823
4824         err = ipw2100_hw_send_command(priv, &cmd);
4825         if (err)
4826                 return err;
4827
4828 /* If IPv6 is configured in the kernel then we don't want to filter out all
4829  * of the multicast packets as IPv6 needs some. */
4830 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4831         cmd.host_command = ADD_MULTICAST;
4832         cmd.host_command_sequence = 0;
4833         cmd.host_command_length = 0;
4834
4835         ipw2100_hw_send_command(priv, &cmd);
4836 #endif
4837         if (!batch_mode) {
4838                 err = ipw2100_enable_adapter(priv);
4839                 if (err)
4840                         return err;
4841         }
4842
4843         return 0;
4844 }
4845
4846 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4847                                 int batch_mode)
4848 {
4849         struct host_command cmd = {
4850                 .host_command = BASIC_TX_RATES,
4851                 .host_command_sequence = 0,
4852                 .host_command_length = 4
4853         };
4854         int err;
4855
4856         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4857
4858         if (!batch_mode) {
4859                 err = ipw2100_disable_adapter(priv);
4860                 if (err)
4861                         return err;
4862         }
4863
4864         /* Set BASIC TX Rate first */
4865         ipw2100_hw_send_command(priv, &cmd);
4866
4867         /* Set TX Rate */
4868         cmd.host_command = TX_RATES;
4869         ipw2100_hw_send_command(priv, &cmd);
4870
4871         /* Set MSDU TX Rate */
4872         cmd.host_command = MSDU_TX_RATES;
4873         ipw2100_hw_send_command(priv, &cmd);
4874
4875         if (!batch_mode) {
4876                 err = ipw2100_enable_adapter(priv);
4877                 if (err)
4878                         return err;
4879         }
4880
4881         priv->tx_rates = rate;
4882
4883         return 0;
4884 }
4885
4886 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4887 {
4888         struct host_command cmd = {
4889                 .host_command = POWER_MODE,
4890                 .host_command_sequence = 0,
4891                 .host_command_length = 4
4892         };
4893         int err;
4894
4895         cmd.host_command_parameters[0] = power_level;
4896
4897         err = ipw2100_hw_send_command(priv, &cmd);
4898         if (err)
4899                 return err;
4900
4901         if (power_level == IPW_POWER_MODE_CAM)
4902                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4903         else
4904                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4905
4906 #ifdef CONFIG_IPW2100_TX_POWER
4907         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4908                 /* Set beacon interval */
4909                 cmd.host_command = TX_POWER_INDEX;
4910                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4911
4912                 err = ipw2100_hw_send_command(priv, &cmd);
4913                 if (err)
4914                         return err;
4915         }
4916 #endif
4917
4918         return 0;
4919 }
4920
4921 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4922 {
4923         struct host_command cmd = {
4924                 .host_command = RTS_THRESHOLD,
4925                 .host_command_sequence = 0,
4926                 .host_command_length = 4
4927         };
4928         int err;
4929
4930         if (threshold & RTS_DISABLED)
4931                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4932         else
4933                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4934
4935         err = ipw2100_hw_send_command(priv, &cmd);
4936         if (err)
4937                 return err;
4938
4939         priv->rts_threshold = threshold;
4940
4941         return 0;
4942 }
4943
4944 #if 0
4945 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4946                                         u32 threshold, int batch_mode)
4947 {
4948         struct host_command cmd = {
4949                 .host_command = FRAG_THRESHOLD,
4950                 .host_command_sequence = 0,
4951                 .host_command_length = 4,
4952                 .host_command_parameters[0] = 0,
4953         };
4954         int err;
4955
4956         if (!batch_mode) {
4957                 err = ipw2100_disable_adapter(priv);
4958                 if (err)
4959                         return err;
4960         }
4961
4962         if (threshold == 0)
4963                 threshold = DEFAULT_FRAG_THRESHOLD;
4964         else {
4965                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4966                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4967         }
4968
4969         cmd.host_command_parameters[0] = threshold;
4970
4971         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4972
4973         err = ipw2100_hw_send_command(priv, &cmd);
4974
4975         if (!batch_mode)
4976                 ipw2100_enable_adapter(priv);
4977
4978         if (!err)
4979                 priv->frag_threshold = threshold;
4980
4981         return err;
4982 }
4983 #endif
4984
4985 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4986 {
4987         struct host_command cmd = {
4988                 .host_command = SHORT_RETRY_LIMIT,
4989                 .host_command_sequence = 0,
4990                 .host_command_length = 4
4991         };
4992         int err;
4993
4994         cmd.host_command_parameters[0] = retry;
4995
4996         err = ipw2100_hw_send_command(priv, &cmd);
4997         if (err)
4998                 return err;
4999
5000         priv->short_retry_limit = retry;
5001
5002         return 0;
5003 }
5004
5005 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5006 {
5007         struct host_command cmd = {
5008                 .host_command = LONG_RETRY_LIMIT,
5009                 .host_command_sequence = 0,
5010                 .host_command_length = 4
5011         };
5012         int err;
5013
5014         cmd.host_command_parameters[0] = retry;
5015
5016         err = ipw2100_hw_send_command(priv, &cmd);
5017         if (err)
5018                 return err;
5019
5020         priv->long_retry_limit = retry;
5021
5022         return 0;
5023 }
5024
5025 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5026                                        int batch_mode)
5027 {
5028         struct host_command cmd = {
5029                 .host_command = MANDATORY_BSSID,
5030                 .host_command_sequence = 0,
5031                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5032         };
5033         int err;
5034
5035 #ifdef CONFIG_IPW2100_DEBUG
5036         if (bssid != NULL)
5037                 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5038                              bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5039                              bssid[5]);
5040         else
5041                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5042 #endif
5043         /* if BSSID is empty then we disable mandatory bssid mode */
5044         if (bssid != NULL)
5045                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5046
5047         if (!batch_mode) {
5048                 err = ipw2100_disable_adapter(priv);
5049                 if (err)
5050                         return err;
5051         }
5052
5053         err = ipw2100_hw_send_command(priv, &cmd);
5054
5055         if (!batch_mode)
5056                 ipw2100_enable_adapter(priv);
5057
5058         return err;
5059 }
5060
5061 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5062 {
5063         struct host_command cmd = {
5064                 .host_command = DISASSOCIATION_BSSID,
5065                 .host_command_sequence = 0,
5066                 .host_command_length = ETH_ALEN
5067         };
5068         int err;
5069         int len;
5070
5071         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5072
5073         len = ETH_ALEN;
5074         /* The Firmware currently ignores the BSSID and just disassociates from
5075          * the currently associated AP -- but in the off chance that a future
5076          * firmware does use the BSSID provided here, we go ahead and try and
5077          * set it to the currently associated AP's BSSID */
5078         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5079
5080         err = ipw2100_hw_send_command(priv, &cmd);
5081
5082         return err;
5083 }
5084
5085 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5086                               struct ipw2100_wpa_assoc_frame *, int)
5087     __attribute__ ((unused));
5088
5089 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5090                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5091                               int batch_mode)
5092 {
5093         struct host_command cmd = {
5094                 .host_command = SET_WPA_IE,
5095                 .host_command_sequence = 0,
5096                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5097         };
5098         int err;
5099
5100         IPW_DEBUG_HC("SET_WPA_IE\n");
5101
5102         if (!batch_mode) {
5103                 err = ipw2100_disable_adapter(priv);
5104                 if (err)
5105                         return err;
5106         }
5107
5108         memcpy(cmd.host_command_parameters, wpa_frame,
5109                sizeof(struct ipw2100_wpa_assoc_frame));
5110
5111         err = ipw2100_hw_send_command(priv, &cmd);
5112
5113         if (!batch_mode) {
5114                 if (ipw2100_enable_adapter(priv))
5115                         err = -EIO;
5116         }
5117
5118         return err;
5119 }
5120
5121 struct security_info_params {
5122         u32 allowed_ciphers;
5123         u16 version;
5124         u8 auth_mode;
5125         u8 replay_counters_number;
5126         u8 unicast_using_group;
5127 } __attribute__ ((packed));
5128
5129 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5130                                             int auth_mode,
5131                                             int security_level,
5132                                             int unicast_using_group,
5133                                             int batch_mode)
5134 {
5135         struct host_command cmd = {
5136                 .host_command = SET_SECURITY_INFORMATION,
5137                 .host_command_sequence = 0,
5138                 .host_command_length = sizeof(struct security_info_params)
5139         };
5140         struct security_info_params *security =
5141             (struct security_info_params *)&cmd.host_command_parameters;
5142         int err;
5143         memset(security, 0, sizeof(*security));
5144
5145         /* If shared key AP authentication is turned on, then we need to
5146          * configure the firmware to try and use it.
5147          *
5148          * Actual data encryption/decryption is handled by the host. */
5149         security->auth_mode = auth_mode;
5150         security->unicast_using_group = unicast_using_group;
5151
5152         switch (security_level) {
5153         default:
5154         case SEC_LEVEL_0:
5155                 security->allowed_ciphers = IPW_NONE_CIPHER;
5156                 break;
5157         case SEC_LEVEL_1:
5158                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5159                     IPW_WEP104_CIPHER;
5160                 break;
5161         case SEC_LEVEL_2:
5162                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5163                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5164                 break;
5165         case SEC_LEVEL_2_CKIP:
5166                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5167                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5168                 break;
5169         case SEC_LEVEL_3:
5170                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5171                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5172                 break;
5173         }
5174
5175         IPW_DEBUG_HC
5176             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5177              security->auth_mode, security->allowed_ciphers, security_level);
5178
5179         security->replay_counters_number = 0;
5180
5181         if (!batch_mode) {
5182                 err = ipw2100_disable_adapter(priv);
5183                 if (err)
5184                         return err;
5185         }
5186
5187         err = ipw2100_hw_send_command(priv, &cmd);
5188
5189         if (!batch_mode)
5190                 ipw2100_enable_adapter(priv);
5191
5192         return err;
5193 }
5194
5195 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5196 {
5197         struct host_command cmd = {
5198                 .host_command = TX_POWER_INDEX,
5199                 .host_command_sequence = 0,
5200                 .host_command_length = 4
5201         };
5202         int err = 0;
5203         u32 tmp = tx_power;
5204
5205         if (tx_power != IPW_TX_POWER_DEFAULT)
5206                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5207                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5208
5209         cmd.host_command_parameters[0] = tmp;
5210
5211         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5212                 err = ipw2100_hw_send_command(priv, &cmd);
5213         if (!err)
5214                 priv->tx_power = tx_power;
5215
5216         return 0;
5217 }
5218
5219 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5220                                             u32 interval, int batch_mode)
5221 {
5222         struct host_command cmd = {
5223                 .host_command = BEACON_INTERVAL,
5224                 .host_command_sequence = 0,
5225                 .host_command_length = 4
5226         };
5227         int err;
5228
5229         cmd.host_command_parameters[0] = interval;
5230
5231         IPW_DEBUG_INFO("enter\n");
5232
5233         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5234                 if (!batch_mode) {
5235                         err = ipw2100_disable_adapter(priv);
5236                         if (err)
5237                                 return err;
5238                 }
5239
5240                 ipw2100_hw_send_command(priv, &cmd);
5241
5242                 if (!batch_mode) {
5243                         err = ipw2100_enable_adapter(priv);
5244                         if (err)
5245                                 return err;
5246                 }
5247         }
5248
5249         IPW_DEBUG_INFO("exit\n");
5250
5251         return 0;
5252 }
5253
5254 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5255 {
5256         ipw2100_tx_initialize(priv);
5257         ipw2100_rx_initialize(priv);
5258         ipw2100_msg_initialize(priv);
5259 }
5260
5261 void ipw2100_queues_free(struct ipw2100_priv *priv)
5262 {
5263         ipw2100_tx_free(priv);
5264         ipw2100_rx_free(priv);
5265         ipw2100_msg_free(priv);
5266 }
5267
5268 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5269 {
5270         if (ipw2100_tx_allocate(priv) ||
5271             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5272                 goto fail;
5273
5274         return 0;
5275
5276       fail:
5277         ipw2100_tx_free(priv);
5278         ipw2100_rx_free(priv);
5279         ipw2100_msg_free(priv);
5280         return -ENOMEM;
5281 }
5282
5283 #define IPW_PRIVACY_CAPABLE 0x0008
5284
5285 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5286                                  int batch_mode)
5287 {
5288         struct host_command cmd = {
5289                 .host_command = WEP_FLAGS,
5290                 .host_command_sequence = 0,
5291                 .host_command_length = 4
5292         };
5293         int err;
5294
5295         cmd.host_command_parameters[0] = flags;
5296
5297         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5298
5299         if (!batch_mode) {
5300                 err = ipw2100_disable_adapter(priv);
5301                 if (err) {
5302                         printk(KERN_ERR DRV_NAME
5303                                ": %s: Could not disable adapter %d\n",
5304                                priv->net_dev->name, err);
5305                         return err;
5306                 }
5307         }
5308
5309         /* send cmd to firmware */
5310         err = ipw2100_hw_send_command(priv, &cmd);
5311
5312         if (!batch_mode)
5313                 ipw2100_enable_adapter(priv);
5314
5315         return err;
5316 }
5317
5318 struct ipw2100_wep_key {
5319         u8 idx;
5320         u8 len;
5321         u8 key[13];
5322 };
5323
5324 /* Macros to ease up priting WEP keys */
5325 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5326 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5327 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5328 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5329
5330 /**
5331  * Set a the wep key
5332  *
5333  * @priv: struct to work on
5334  * @idx: index of the key we want to set
5335  * @key: ptr to the key data to set
5336  * @len: length of the buffer at @key
5337  * @batch_mode: FIXME perform the operation in batch mode, not
5338  *              disabling the device.
5339  *
5340  * @returns 0 if OK, < 0 errno code on error.
5341  *
5342  * Fill out a command structure with the new wep key, length an
5343  * index and send it down the wire.
5344  */
5345 static int ipw2100_set_key(struct ipw2100_priv *priv,
5346                            int idx, char *key, int len, int batch_mode)
5347 {
5348         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5349         struct host_command cmd = {
5350                 .host_command = WEP_KEY_INFO,
5351                 .host_command_sequence = 0,
5352                 .host_command_length = sizeof(struct ipw2100_wep_key),
5353         };
5354         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5355         int err;
5356
5357         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5358                      idx, keylen, len);
5359
5360         /* NOTE: We don't check cached values in case the firmware was reset
5361          * or some other problem is occuring.  If the user is setting the key,
5362          * then we push the change */
5363
5364         wep_key->idx = idx;
5365         wep_key->len = keylen;
5366
5367         if (keylen) {
5368                 memcpy(wep_key->key, key, len);
5369                 memset(wep_key->key + len, 0, keylen - len);
5370         }
5371
5372         /* Will be optimized out on debug not being configured in */
5373         if (keylen == 0)
5374                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5375                               priv->net_dev->name, wep_key->idx);
5376         else if (keylen == 5)
5377                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5378                               priv->net_dev->name, wep_key->idx, wep_key->len,
5379                               WEP_STR_64(wep_key->key));
5380         else
5381                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5382                               "\n",
5383                               priv->net_dev->name, wep_key->idx, wep_key->len,
5384                               WEP_STR_128(wep_key->key));
5385
5386         if (!batch_mode) {
5387                 err = ipw2100_disable_adapter(priv);
5388                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5389                 if (err) {
5390                         printk(KERN_ERR DRV_NAME
5391                                ": %s: Could not disable adapter %d\n",
5392                                priv->net_dev->name, err);
5393                         return err;
5394                 }
5395         }
5396
5397         /* send cmd to firmware */
5398         err = ipw2100_hw_send_command(priv, &cmd);
5399
5400         if (!batch_mode) {
5401                 int err2 = ipw2100_enable_adapter(priv);
5402                 if (err == 0)
5403                         err = err2;
5404         }
5405         return err;
5406 }
5407
5408 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5409                                  int idx, int batch_mode)
5410 {
5411         struct host_command cmd = {
5412                 .host_command = WEP_KEY_INDEX,
5413                 .host_command_sequence = 0,
5414                 .host_command_length = 4,
5415                 .host_command_parameters = {idx},
5416         };
5417         int err;
5418
5419         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5420
5421         if (idx < 0 || idx > 3)
5422                 return -EINVAL;
5423
5424         if (!batch_mode) {
5425                 err = ipw2100_disable_adapter(priv);
5426                 if (err) {
5427                         printk(KERN_ERR DRV_NAME
5428                                ": %s: Could not disable adapter %d\n",
5429                                priv->net_dev->name, err);
5430                         return err;
5431                 }
5432         }
5433
5434         /* send cmd to firmware */
5435         err = ipw2100_hw_send_command(priv, &cmd);
5436
5437         if (!batch_mode)
5438                 ipw2100_enable_adapter(priv);
5439
5440         return err;
5441 }
5442
5443 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5444 {
5445         int i, err, auth_mode, sec_level, use_group;
5446
5447         if (!(priv->status & STATUS_RUNNING))
5448                 return 0;
5449
5450         if (!batch_mode) {
5451                 err = ipw2100_disable_adapter(priv);
5452                 if (err)
5453                         return err;
5454         }
5455
5456         if (!priv->ieee->sec.enabled) {
5457                 err =
5458                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5459                                                      SEC_LEVEL_0, 0, 1);
5460         } else {
5461                 auth_mode = IPW_AUTH_OPEN;
5462                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5463                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5464                                 auth_mode = IPW_AUTH_SHARED;
5465                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5466                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5467                 }
5468
5469                 sec_level = SEC_LEVEL_0;
5470                 if (priv->ieee->sec.flags & SEC_LEVEL)
5471                         sec_level = priv->ieee->sec.level;
5472
5473                 use_group = 0;
5474                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5475                         use_group = priv->ieee->sec.unicast_uses_group;
5476
5477                 err =
5478                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5479                                                      use_group, 1);
5480         }
5481
5482         if (err)
5483                 goto exit;
5484
5485         if (priv->ieee->sec.enabled) {
5486                 for (i = 0; i < 4; i++) {
5487                         if (!(priv->ieee->sec.flags & (1 << i))) {
5488                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5489                                 priv->ieee->sec.key_sizes[i] = 0;
5490                         } else {
5491                                 err = ipw2100_set_key(priv, i,
5492                                                       priv->ieee->sec.keys[i],
5493                                                       priv->ieee->sec.
5494                                                       key_sizes[i], 1);
5495                                 if (err)
5496                                         goto exit;
5497                         }
5498                 }
5499
5500                 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5501         }
5502
5503         /* Always enable privacy so the Host can filter WEP packets if
5504          * encrypted data is sent up */
5505         err =
5506             ipw2100_set_wep_flags(priv,
5507                                   priv->ieee->sec.
5508                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5509         if (err)
5510                 goto exit;
5511
5512         priv->status &= ~STATUS_SECURITY_UPDATED;
5513
5514       exit:
5515         if (!batch_mode)
5516                 ipw2100_enable_adapter(priv);
5517
5518         return err;
5519 }
5520
5521 static void ipw2100_security_work(struct ipw2100_priv *priv)
5522 {
5523         /* If we happen to have reconnected before we get a chance to
5524          * process this, then update the security settings--which causes
5525          * a disassociation to occur */
5526         if (!(priv->status & STATUS_ASSOCIATED) &&
5527             priv->status & STATUS_SECURITY_UPDATED)
5528                 ipw2100_configure_security(priv, 0);
5529 }
5530
5531 static void shim__set_security(struct net_device *dev,
5532                                struct ieee80211_security *sec)
5533 {
5534         struct ipw2100_priv *priv = ieee80211_priv(dev);
5535         int i, force_update = 0;
5536
5537         mutex_lock(&priv->action_mutex);
5538         if (!(priv->status & STATUS_INITIALIZED))
5539                 goto done;
5540
5541         for (i = 0; i < 4; i++) {
5542                 if (sec->flags & (1 << i)) {
5543                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5544                         if (sec->key_sizes[i] == 0)
5545                                 priv->ieee->sec.flags &= ~(1 << i);
5546                         else
5547                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5548                                        sec->key_sizes[i]);
5549                         if (sec->level == SEC_LEVEL_1) {
5550                                 priv->ieee->sec.flags |= (1 << i);
5551                                 priv->status |= STATUS_SECURITY_UPDATED;
5552                         } else
5553                                 priv->ieee->sec.flags &= ~(1 << i);
5554                 }
5555         }
5556
5557         if ((sec->flags & SEC_ACTIVE_KEY) &&
5558             priv->ieee->sec.active_key != sec->active_key) {
5559                 if (sec->active_key <= 3) {
5560                         priv->ieee->sec.active_key = sec->active_key;
5561                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5562                 } else
5563                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5564
5565                 priv->status |= STATUS_SECURITY_UPDATED;
5566         }
5567
5568         if ((sec->flags & SEC_AUTH_MODE) &&
5569             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5570                 priv->ieee->sec.auth_mode = sec->auth_mode;
5571                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5572                 priv->status |= STATUS_SECURITY_UPDATED;
5573         }
5574
5575         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5576                 priv->ieee->sec.flags |= SEC_ENABLED;
5577                 priv->ieee->sec.enabled = sec->enabled;
5578                 priv->status |= STATUS_SECURITY_UPDATED;
5579                 force_update = 1;
5580         }
5581
5582         if (sec->flags & SEC_ENCRYPT)
5583                 priv->ieee->sec.encrypt = sec->encrypt;
5584
5585         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5586                 priv->ieee->sec.level = sec->level;
5587                 priv->ieee->sec.flags |= SEC_LEVEL;
5588                 priv->status |= STATUS_SECURITY_UPDATED;
5589         }
5590
5591         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5592                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5593                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5594                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5595                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5596                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5597                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5598                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5599                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5600                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5601
5602 /* As a temporary work around to enable WPA until we figure out why
5603  * wpa_supplicant toggles the security capability of the driver, which
5604  * forces a disassocation with force_update...
5605  *
5606  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5607         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5608                 ipw2100_configure_security(priv, 0);
5609       done:
5610         mutex_unlock(&priv->action_mutex);
5611 }
5612
5613 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5614 {
5615         int err;
5616         int batch_mode = 1;
5617         u8 *bssid;
5618
5619         IPW_DEBUG_INFO("enter\n");
5620
5621         err = ipw2100_disable_adapter(priv);
5622         if (err)
5623                 return err;
5624 #ifdef CONFIG_IPW2100_MONITOR
5625         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5626                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5627                 if (err)
5628                         return err;
5629
5630                 IPW_DEBUG_INFO("exit\n");
5631
5632                 return 0;
5633         }
5634 #endif                          /* CONFIG_IPW2100_MONITOR */
5635
5636         err = ipw2100_read_mac_address(priv);
5637         if (err)
5638                 return -EIO;
5639
5640         err = ipw2100_set_mac_address(priv, batch_mode);
5641         if (err)
5642                 return err;
5643
5644         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5645         if (err)
5646                 return err;
5647
5648         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5649                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5650                 if (err)
5651                         return err;
5652         }
5653
5654         err = ipw2100_system_config(priv, batch_mode);
5655         if (err)
5656                 return err;
5657
5658         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5659         if (err)
5660                 return err;
5661
5662         /* Default to power mode OFF */
5663         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5664         if (err)
5665                 return err;
5666
5667         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5668         if (err)
5669                 return err;
5670
5671         if (priv->config & CFG_STATIC_BSSID)
5672                 bssid = priv->bssid;
5673         else
5674                 bssid = NULL;
5675         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5676         if (err)
5677                 return err;
5678
5679         if (priv->config & CFG_STATIC_ESSID)
5680                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5681                                         batch_mode);
5682         else
5683                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5684         if (err)
5685                 return err;
5686
5687         err = ipw2100_configure_security(priv, batch_mode);
5688         if (err)
5689                 return err;
5690
5691         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5692                 err =
5693                     ipw2100_set_ibss_beacon_interval(priv,
5694                                                      priv->beacon_interval,
5695                                                      batch_mode);
5696                 if (err)
5697                         return err;
5698
5699                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5700                 if (err)
5701                         return err;
5702         }
5703
5704         /*
5705            err = ipw2100_set_fragmentation_threshold(
5706            priv, priv->frag_threshold, batch_mode);
5707            if (err)
5708            return err;
5709          */
5710
5711         IPW_DEBUG_INFO("exit\n");
5712
5713         return 0;
5714 }
5715
5716 /*************************************************************************
5717  *
5718  * EXTERNALLY CALLED METHODS
5719  *
5720  *************************************************************************/
5721
5722 /* This method is called by the network layer -- not to be confused with
5723  * ipw2100_set_mac_address() declared above called by this driver (and this
5724  * method as well) to talk to the firmware */
5725 static int ipw2100_set_address(struct net_device *dev, void *p)
5726 {
5727         struct ipw2100_priv *priv = ieee80211_priv(dev);
5728         struct sockaddr *addr = p;
5729         int err = 0;
5730
5731         if (!is_valid_ether_addr(addr->sa_data))
5732                 return -EADDRNOTAVAIL;
5733
5734         mutex_lock(&priv->action_mutex);
5735
5736         priv->config |= CFG_CUSTOM_MAC;
5737         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5738
5739         err = ipw2100_set_mac_address(priv, 0);
5740         if (err)
5741                 goto done;
5742
5743         priv->reset_backoff = 0;
5744         mutex_unlock(&priv->action_mutex);
5745         ipw2100_reset_adapter(priv);
5746         return 0;
5747
5748       done:
5749         mutex_unlock(&priv->action_mutex);
5750         return err;
5751 }
5752
5753 static int ipw2100_open(struct net_device *dev)
5754 {
5755         struct ipw2100_priv *priv = ieee80211_priv(dev);
5756         unsigned long flags;
5757         IPW_DEBUG_INFO("dev->open\n");
5758
5759         spin_lock_irqsave(&priv->low_lock, flags);
5760         if (priv->status & STATUS_ASSOCIATED) {
5761                 netif_carrier_on(dev);
5762                 netif_start_queue(dev);
5763         }
5764         spin_unlock_irqrestore(&priv->low_lock, flags);
5765
5766         return 0;
5767 }
5768
5769 static int ipw2100_close(struct net_device *dev)
5770 {
5771         struct ipw2100_priv *priv = ieee80211_priv(dev);
5772         unsigned long flags;
5773         struct list_head *element;
5774         struct ipw2100_tx_packet *packet;
5775
5776         IPW_DEBUG_INFO("enter\n");
5777
5778         spin_lock_irqsave(&priv->low_lock, flags);
5779
5780         if (priv->status & STATUS_ASSOCIATED)
5781                 netif_carrier_off(dev);
5782         netif_stop_queue(dev);
5783
5784         /* Flush the TX queue ... */
5785         while (!list_empty(&priv->tx_pend_list)) {
5786                 element = priv->tx_pend_list.next;
5787                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5788
5789                 list_del(element);
5790                 DEC_STAT(&priv->tx_pend_stat);
5791
5792                 ieee80211_txb_free(packet->info.d_struct.txb);
5793                 packet->info.d_struct.txb = NULL;
5794
5795                 list_add_tail(element, &priv->tx_free_list);
5796                 INC_STAT(&priv->tx_free_stat);
5797         }
5798         spin_unlock_irqrestore(&priv->low_lock, flags);
5799
5800         IPW_DEBUG_INFO("exit\n");
5801
5802         return 0;
5803 }
5804
5805 /*
5806  * TODO:  Fix this function... its just wrong
5807  */
5808 static void ipw2100_tx_timeout(struct net_device *dev)
5809 {
5810         struct ipw2100_priv *priv = ieee80211_priv(dev);
5811
5812         priv->ieee->stats.tx_errors++;
5813
5814 #ifdef CONFIG_IPW2100_MONITOR
5815         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5816                 return;
5817 #endif
5818
5819         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5820                        dev->name);
5821         schedule_reset(priv);
5822 }
5823
5824 /*
5825  * TODO: reimplement it so that it reads statistics
5826  *       from the adapter using ordinal tables
5827  *       instead of/in addition to collecting them
5828  *       in the driver
5829  */
5830 static struct net_device_stats *ipw2100_stats(struct net_device *dev)
5831 {
5832         struct ipw2100_priv *priv = ieee80211_priv(dev);
5833
5834         return &priv->ieee->stats;
5835 }
5836
5837 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5838 {
5839         /* This is called when wpa_supplicant loads and closes the driver
5840          * interface. */
5841         priv->ieee->wpa_enabled = value;
5842         return 0;
5843 }
5844
5845 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5846 {
5847
5848         struct ieee80211_device *ieee = priv->ieee;
5849         struct ieee80211_security sec = {
5850                 .flags = SEC_AUTH_MODE,
5851         };
5852         int ret = 0;
5853
5854         if (value & IW_AUTH_ALG_SHARED_KEY) {
5855                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5856                 ieee->open_wep = 0;
5857         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5858                 sec.auth_mode = WLAN_AUTH_OPEN;
5859                 ieee->open_wep = 1;
5860         } else if (value & IW_AUTH_ALG_LEAP) {
5861                 sec.auth_mode = WLAN_AUTH_LEAP;
5862                 ieee->open_wep = 1;
5863         } else
5864                 return -EINVAL;
5865
5866         if (ieee->set_security)
5867                 ieee->set_security(ieee->dev, &sec);
5868         else
5869                 ret = -EOPNOTSUPP;
5870
5871         return ret;
5872 }
5873
5874 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5875                                     char *wpa_ie, int wpa_ie_len)
5876 {
5877
5878         struct ipw2100_wpa_assoc_frame frame;
5879
5880         frame.fixed_ie_mask = 0;
5881
5882         /* copy WPA IE */
5883         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5884         frame.var_ie_len = wpa_ie_len;
5885
5886         /* make sure WPA is enabled */
5887         ipw2100_wpa_enable(priv, 1);
5888         ipw2100_set_wpa_ie(priv, &frame, 0);
5889 }
5890
5891 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5892                                     struct ethtool_drvinfo *info)
5893 {
5894         struct ipw2100_priv *priv = ieee80211_priv(dev);
5895         char fw_ver[64], ucode_ver[64];
5896
5897         strcpy(info->driver, DRV_NAME);
5898         strcpy(info->version, DRV_VERSION);
5899
5900         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5901         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5902
5903         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5904                  fw_ver, priv->eeprom_version, ucode_ver);
5905
5906         strcpy(info->bus_info, pci_name(priv->pci_dev));
5907 }
5908
5909 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5910 {
5911         struct ipw2100_priv *priv = ieee80211_priv(dev);
5912         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5913 }
5914
5915 static struct ethtool_ops ipw2100_ethtool_ops = {
5916         .get_link = ipw2100_ethtool_get_link,
5917         .get_drvinfo = ipw_ethtool_get_drvinfo,
5918 };
5919
5920 static void ipw2100_hang_check(void *adapter)
5921 {
5922         struct ipw2100_priv *priv = adapter;
5923         unsigned long flags;
5924         u32 rtc = 0xa5a5a5a5;
5925         u32 len = sizeof(rtc);
5926         int restart = 0;
5927
5928         spin_lock_irqsave(&priv->low_lock, flags);
5929
5930         if (priv->fatal_error != 0) {
5931                 /* If fatal_error is set then we need to restart */
5932                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5933                                priv->net_dev->name);
5934
5935                 restart = 1;
5936         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5937                    (rtc == priv->last_rtc)) {
5938                 /* Check if firmware is hung */
5939                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5940                                priv->net_dev->name);
5941
5942                 restart = 1;
5943         }
5944
5945         if (restart) {
5946                 /* Kill timer */
5947                 priv->stop_hang_check = 1;
5948                 priv->hangs++;
5949
5950                 /* Restart the NIC */
5951                 schedule_reset(priv);
5952         }
5953
5954         priv->last_rtc = rtc;
5955
5956         if (!priv->stop_hang_check)
5957                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5958
5959         spin_unlock_irqrestore(&priv->low_lock, flags);
5960 }
5961
5962 static void ipw2100_rf_kill(void *adapter)
5963 {
5964         struct ipw2100_priv *priv = adapter;
5965         unsigned long flags;
5966
5967         spin_lock_irqsave(&priv->low_lock, flags);
5968
5969         if (rf_kill_active(priv)) {
5970                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5971                 if (!priv->stop_rf_kill)
5972                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5973                 goto exit_unlock;
5974         }
5975
5976         /* RF Kill is now disabled, so bring the device back up */
5977
5978         if (!(priv->status & STATUS_RF_KILL_MASK)) {
5979                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5980                                   "device\n");
5981                 schedule_reset(priv);
5982         } else
5983                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
5984                                   "enabled\n");
5985
5986       exit_unlock:
5987         spin_unlock_irqrestore(&priv->low_lock, flags);
5988 }
5989
5990 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5991
5992 /* Look into using netdev destructor to shutdown ieee80211? */
5993
5994 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5995                                                void __iomem * base_addr,
5996                                                unsigned long mem_start,
5997                                                unsigned long mem_len)
5998 {
5999         struct ipw2100_priv *priv;
6000         struct net_device *dev;
6001
6002         dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6003         if (!dev)
6004                 return NULL;
6005         priv = ieee80211_priv(dev);
6006         priv->ieee = netdev_priv(dev);
6007         priv->pci_dev = pci_dev;
6008         priv->net_dev = dev;
6009
6010         priv->ieee->hard_start_xmit = ipw2100_tx;
6011         priv->ieee->set_security = shim__set_security;
6012
6013         priv->ieee->perfect_rssi = -20;
6014         priv->ieee->worst_rssi = -85;
6015
6016         dev->open = ipw2100_open;
6017         dev->stop = ipw2100_close;
6018         dev->init = ipw2100_net_init;
6019         dev->get_stats = ipw2100_stats;
6020         dev->ethtool_ops = &ipw2100_ethtool_ops;
6021         dev->tx_timeout = ipw2100_tx_timeout;
6022         dev->wireless_handlers = &ipw2100_wx_handler_def;
6023         priv->wireless_data.ieee80211 = priv->ieee;
6024         dev->wireless_data = &priv->wireless_data;
6025         dev->set_mac_address = ipw2100_set_address;
6026         dev->watchdog_timeo = 3 * HZ;
6027         dev->irq = 0;
6028
6029         dev->base_addr = (unsigned long)base_addr;
6030         dev->mem_start = mem_start;
6031         dev->mem_end = dev->mem_start + mem_len - 1;
6032
6033         /* NOTE: We don't use the wireless_handlers hook
6034          * in dev as the system will start throwing WX requests
6035          * to us before we're actually initialized and it just
6036          * ends up causing problems.  So, we just handle
6037          * the WX extensions through the ipw2100_ioctl interface */
6038
6039         /* memset() puts everything to 0, so we only have explicitely set
6040          * those values that need to be something else */
6041
6042         /* If power management is turned on, default to AUTO mode */
6043         priv->power_mode = IPW_POWER_AUTO;
6044
6045 #ifdef CONFIG_IPW2100_MONITOR
6046         priv->config |= CFG_CRC_CHECK;
6047 #endif
6048         priv->ieee->wpa_enabled = 0;
6049         priv->ieee->drop_unencrypted = 0;
6050         priv->ieee->privacy_invoked = 0;
6051         priv->ieee->ieee802_1x = 1;
6052
6053         /* Set module parameters */
6054         switch (mode) {
6055         case 1:
6056                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6057                 break;
6058 #ifdef CONFIG_IPW2100_MONITOR
6059         case 2:
6060                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6061                 break;
6062 #endif
6063         default:
6064         case 0:
6065                 priv->ieee->iw_mode = IW_MODE_INFRA;
6066                 break;
6067         }
6068
6069         if (disable == 1)
6070                 priv->status |= STATUS_RF_KILL_SW;
6071
6072         if (channel != 0 &&
6073             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6074                 priv->config |= CFG_STATIC_CHANNEL;
6075                 priv->channel = channel;
6076         }
6077
6078         if (associate)
6079                 priv->config |= CFG_ASSOCIATE;
6080
6081         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6082         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6083         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6084         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6085         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6086         priv->tx_power = IPW_TX_POWER_DEFAULT;
6087         priv->tx_rates = DEFAULT_TX_RATES;
6088
6089         strcpy(priv->nick, "ipw2100");
6090
6091         spin_lock_init(&priv->low_lock);
6092         mutex_init(&priv->action_mutex);
6093         mutex_init(&priv->adapter_mutex);
6094
6095         init_waitqueue_head(&priv->wait_command_queue);
6096
6097         netif_carrier_off(dev);
6098
6099         INIT_LIST_HEAD(&priv->msg_free_list);
6100         INIT_LIST_HEAD(&priv->msg_pend_list);
6101         INIT_STAT(&priv->msg_free_stat);
6102         INIT_STAT(&priv->msg_pend_stat);
6103
6104         INIT_LIST_HEAD(&priv->tx_free_list);
6105         INIT_LIST_HEAD(&priv->tx_pend_list);
6106         INIT_STAT(&priv->tx_free_stat);
6107         INIT_STAT(&priv->tx_pend_stat);
6108
6109         INIT_LIST_HEAD(&priv->fw_pend_list);
6110         INIT_STAT(&priv->fw_pend_stat);
6111
6112         priv->workqueue = create_workqueue(DRV_NAME);
6113
6114         INIT_WORK(&priv->reset_work,
6115                   (void (*)(void *))ipw2100_reset_adapter, priv);
6116         INIT_WORK(&priv->security_work,
6117                   (void (*)(void *))ipw2100_security_work, priv);
6118         INIT_WORK(&priv->wx_event_work,
6119                   (void (*)(void *))ipw2100_wx_event_work, priv);
6120         INIT_WORK(&priv->hang_check, ipw2100_hang_check, priv);
6121         INIT_WORK(&priv->rf_kill, ipw2100_rf_kill, priv);
6122
6123         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6124                      ipw2100_irq_tasklet, (unsigned long)priv);
6125
6126         /* NOTE:  We do not start the deferred work for status checks yet */
6127         priv->stop_rf_kill = 1;
6128         priv->stop_hang_check = 1;
6129
6130         return dev;
6131 }
6132
6133 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6134                                 const struct pci_device_id *ent)
6135 {
6136         unsigned long mem_start, mem_len, mem_flags;
6137         void __iomem *base_addr = NULL;
6138         struct net_device *dev = NULL;
6139         struct ipw2100_priv *priv = NULL;
6140         int err = 0;
6141         int registered = 0;
6142         u32 val;
6143
6144         IPW_DEBUG_INFO("enter\n");
6145
6146         mem_start = pci_resource_start(pci_dev, 0);
6147         mem_len = pci_resource_len(pci_dev, 0);
6148         mem_flags = pci_resource_flags(pci_dev, 0);
6149
6150         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6151                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6152                 err = -ENODEV;
6153                 goto fail;
6154         }
6155
6156         base_addr = ioremap_nocache(mem_start, mem_len);
6157         if (!base_addr) {
6158                 printk(KERN_WARNING DRV_NAME
6159                        "Error calling ioremap_nocache.\n");
6160                 err = -EIO;
6161                 goto fail;
6162         }
6163
6164         /* allocate and initialize our net_device */
6165         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6166         if (!dev) {
6167                 printk(KERN_WARNING DRV_NAME
6168                        "Error calling ipw2100_alloc_device.\n");
6169                 err = -ENOMEM;
6170                 goto fail;
6171         }
6172
6173         /* set up PCI mappings for device */
6174         err = pci_enable_device(pci_dev);
6175         if (err) {
6176                 printk(KERN_WARNING DRV_NAME
6177                        "Error calling pci_enable_device.\n");
6178                 return err;
6179         }
6180
6181         priv = ieee80211_priv(dev);
6182
6183         pci_set_master(pci_dev);
6184         pci_set_drvdata(pci_dev, priv);
6185
6186         err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6187         if (err) {
6188                 printk(KERN_WARNING DRV_NAME
6189                        "Error calling pci_set_dma_mask.\n");
6190                 pci_disable_device(pci_dev);
6191                 return err;
6192         }
6193
6194         err = pci_request_regions(pci_dev, DRV_NAME);
6195         if (err) {
6196                 printk(KERN_WARNING DRV_NAME
6197                        "Error calling pci_request_regions.\n");
6198                 pci_disable_device(pci_dev);
6199                 return err;
6200         }
6201
6202         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6203          * PCI Tx retries from interfering with C3 CPU state */
6204         pci_read_config_dword(pci_dev, 0x40, &val);
6205         if ((val & 0x0000ff00) != 0)
6206                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6207
6208         pci_set_power_state(pci_dev, PCI_D0);
6209
6210         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6211                 printk(KERN_WARNING DRV_NAME
6212                        "Device not found via register read.\n");
6213                 err = -ENODEV;
6214                 goto fail;
6215         }
6216
6217         SET_NETDEV_DEV(dev, &pci_dev->dev);
6218
6219         /* Force interrupts to be shut off on the device */
6220         priv->status |= STATUS_INT_ENABLED;
6221         ipw2100_disable_interrupts(priv);
6222
6223         /* Allocate and initialize the Tx/Rx queues and lists */
6224         if (ipw2100_queues_allocate(priv)) {
6225                 printk(KERN_WARNING DRV_NAME
6226                        "Error calilng ipw2100_queues_allocate.\n");
6227                 err = -ENOMEM;
6228                 goto fail;
6229         }
6230         ipw2100_queues_initialize(priv);
6231
6232         err = request_irq(pci_dev->irq,
6233                           ipw2100_interrupt, SA_SHIRQ, dev->name, priv);
6234         if (err) {
6235                 printk(KERN_WARNING DRV_NAME
6236                        "Error calling request_irq: %d.\n", pci_dev->irq);
6237                 goto fail;
6238         }
6239         dev->irq = pci_dev->irq;
6240
6241         IPW_DEBUG_INFO("Attempting to register device...\n");
6242
6243         SET_MODULE_OWNER(dev);
6244
6245         printk(KERN_INFO DRV_NAME
6246                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6247
6248         /* Bring up the interface.  Pre 0.46, after we registered the
6249          * network device we would call ipw2100_up.  This introduced a race
6250          * condition with newer hotplug configurations (network was coming
6251          * up and making calls before the device was initialized).
6252          *
6253          * If we called ipw2100_up before we registered the device, then the
6254          * device name wasn't registered.  So, we instead use the net_dev->init
6255          * member to call a function that then just turns and calls ipw2100_up.
6256          * net_dev->init is called after name allocation but before the
6257          * notifier chain is called */
6258         mutex_lock(&priv->action_mutex);
6259         err = register_netdev(dev);
6260         if (err) {
6261                 printk(KERN_WARNING DRV_NAME
6262                        "Error calling register_netdev.\n");
6263                 goto fail_unlock;
6264         }
6265         registered = 1;
6266
6267         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6268
6269         /* perform this after register_netdev so that dev->name is set */
6270         sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6271
6272         /* If the RF Kill switch is disabled, go ahead and complete the
6273          * startup sequence */
6274         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6275                 /* Enable the adapter - sends HOST_COMPLETE */
6276                 if (ipw2100_enable_adapter(priv)) {
6277                         printk(KERN_WARNING DRV_NAME
6278                                ": %s: failed in call to enable adapter.\n",
6279                                priv->net_dev->name);
6280                         ipw2100_hw_stop_adapter(priv);
6281                         err = -EIO;
6282                         goto fail_unlock;
6283                 }
6284
6285                 /* Start a scan . . . */
6286                 ipw2100_set_scan_options(priv);
6287                 ipw2100_start_scan(priv);
6288         }
6289
6290         IPW_DEBUG_INFO("exit\n");
6291
6292         priv->status |= STATUS_INITIALIZED;
6293
6294         mutex_unlock(&priv->action_mutex);
6295
6296         return 0;
6297
6298       fail_unlock:
6299         mutex_unlock(&priv->action_mutex);
6300
6301       fail:
6302         if (dev) {
6303                 if (registered)
6304                         unregister_netdev(dev);
6305
6306                 ipw2100_hw_stop_adapter(priv);
6307
6308                 ipw2100_disable_interrupts(priv);
6309
6310                 if (dev->irq)
6311                         free_irq(dev->irq, priv);
6312
6313                 ipw2100_kill_workqueue(priv);
6314
6315                 /* These are safe to call even if they weren't allocated */
6316                 ipw2100_queues_free(priv);
6317                 sysfs_remove_group(&pci_dev->dev.kobj,
6318                                    &ipw2100_attribute_group);
6319
6320                 free_ieee80211(dev);
6321                 pci_set_drvdata(pci_dev, NULL);
6322         }
6323
6324         if (base_addr)
6325                 iounmap(base_addr);
6326
6327         pci_release_regions(pci_dev);
6328         pci_disable_device(pci_dev);
6329
6330         return err;
6331 }
6332
6333 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6334 {
6335         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6336         struct net_device *dev;
6337
6338         if (priv) {
6339                 mutex_lock(&priv->action_mutex);
6340
6341                 priv->status &= ~STATUS_INITIALIZED;
6342
6343                 dev = priv->net_dev;
6344                 sysfs_remove_group(&pci_dev->dev.kobj,
6345                                    &ipw2100_attribute_group);
6346
6347 #ifdef CONFIG_PM
6348                 if (ipw2100_firmware.version)
6349                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6350 #endif
6351                 /* Take down the hardware */
6352                 ipw2100_down(priv);
6353
6354                 /* Release the mutex so that the network subsystem can
6355                  * complete any needed calls into the driver... */
6356                 mutex_unlock(&priv->action_mutex);
6357
6358                 /* Unregister the device first - this results in close()
6359                  * being called if the device is open.  If we free storage
6360                  * first, then close() will crash. */
6361                 unregister_netdev(dev);
6362
6363                 /* ipw2100_down will ensure that there is no more pending work
6364                  * in the workqueue's, so we can safely remove them now. */
6365                 ipw2100_kill_workqueue(priv);
6366
6367                 ipw2100_queues_free(priv);
6368
6369                 /* Free potential debugging firmware snapshot */
6370                 ipw2100_snapshot_free(priv);
6371
6372                 if (dev->irq)
6373                         free_irq(dev->irq, priv);
6374
6375                 if (dev->base_addr)
6376                         iounmap((void __iomem *)dev->base_addr);
6377
6378                 free_ieee80211(dev);
6379         }
6380
6381         pci_release_regions(pci_dev);
6382         pci_disable_device(pci_dev);
6383
6384         IPW_DEBUG_INFO("exit\n");
6385 }
6386
6387 #ifdef CONFIG_PM
6388 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6389 {
6390         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6391         struct net_device *dev = priv->net_dev;
6392
6393         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6394
6395         mutex_lock(&priv->action_mutex);
6396         if (priv->status & STATUS_INITIALIZED) {
6397                 /* Take down the device; powers it off, etc. */
6398                 ipw2100_down(priv);
6399         }
6400
6401         /* Remove the PRESENT state of the device */
6402         netif_device_detach(dev);
6403
6404         pci_save_state(pci_dev);
6405         pci_disable_device(pci_dev);
6406         pci_set_power_state(pci_dev, PCI_D3hot);
6407
6408         mutex_unlock(&priv->action_mutex);
6409
6410         return 0;
6411 }
6412
6413 static int ipw2100_resume(struct pci_dev *pci_dev)
6414 {
6415         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6416         struct net_device *dev = priv->net_dev;
6417         u32 val;
6418
6419         if (IPW2100_PM_DISABLED)
6420                 return 0;
6421
6422         mutex_lock(&priv->action_mutex);
6423
6424         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6425
6426         pci_set_power_state(pci_dev, PCI_D0);
6427         pci_enable_device(pci_dev);
6428         pci_restore_state(pci_dev);
6429
6430         /*
6431          * Suspend/Resume resets the PCI configuration space, so we have to
6432          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6433          * from interfering with C3 CPU state. pci_restore_state won't help
6434          * here since it only restores the first 64 bytes pci config header.
6435          */
6436         pci_read_config_dword(pci_dev, 0x40, &val);
6437         if ((val & 0x0000ff00) != 0)
6438                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6439
6440         /* Set the device back into the PRESENT state; this will also wake
6441          * the queue of needed */
6442         netif_device_attach(dev);
6443
6444         /* Bring the device back up */
6445         if (!(priv->status & STATUS_RF_KILL_SW))
6446                 ipw2100_up(priv, 0);
6447
6448         mutex_unlock(&priv->action_mutex);
6449
6450         return 0;
6451 }
6452 #endif
6453
6454 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6455
6456 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6457         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6458         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6459         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6460         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6461         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6462         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6463         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6464         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6465         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6466         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6467         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6468         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6469         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6470
6471         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6472         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6473         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6474         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6475         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6476
6477         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6478         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6479         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6480         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6481         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6482         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6483         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6484
6485         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6486
6487         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6488         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6489         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6490         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6491         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6492         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6493         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6494
6495         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6496         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6497         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6498         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6499         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6500         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6501
6502         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6503         {0,},
6504 };
6505
6506 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6507
6508 static struct pci_driver ipw2100_pci_driver = {
6509         .name = DRV_NAME,
6510         .id_table = ipw2100_pci_id_table,
6511         .probe = ipw2100_pci_init_one,
6512         .remove = __devexit_p(ipw2100_pci_remove_one),
6513 #ifdef CONFIG_PM
6514         .suspend = ipw2100_suspend,
6515         .resume = ipw2100_resume,
6516 #endif
6517 };
6518
6519 /**
6520  * Initialize the ipw2100 driver/module
6521  *
6522  * @returns 0 if ok, < 0 errno node con error.
6523  *
6524  * Note: we cannot init the /proc stuff until the PCI driver is there,
6525  * or we risk an unlikely race condition on someone accessing
6526  * uninitialized data in the PCI dev struct through /proc.
6527  */
6528 static int __init ipw2100_init(void)
6529 {
6530         int ret;
6531
6532         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6533         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6534
6535         ret = pci_module_init(&ipw2100_pci_driver);
6536
6537 #ifdef CONFIG_IPW2100_DEBUG
6538         ipw2100_debug_level = debug;
6539         driver_create_file(&ipw2100_pci_driver.driver,
6540                            &driver_attr_debug_level);
6541 #endif
6542
6543         return ret;
6544 }
6545
6546 /**
6547  * Cleanup ipw2100 driver registration
6548  */
6549 static void __exit ipw2100_exit(void)
6550 {
6551         /* FIXME: IPG: check that we have no instances of the devices open */
6552 #ifdef CONFIG_IPW2100_DEBUG
6553         driver_remove_file(&ipw2100_pci_driver.driver,
6554                            &driver_attr_debug_level);
6555 #endif
6556         pci_unregister_driver(&ipw2100_pci_driver);
6557 }
6558
6559 module_init(ipw2100_init);
6560 module_exit(ipw2100_exit);
6561
6562 #define WEXT_USECHANNELS 1
6563
6564 static const long ipw2100_frequencies[] = {
6565         2412, 2417, 2422, 2427,
6566         2432, 2437, 2442, 2447,
6567         2452, 2457, 2462, 2467,
6568         2472, 2484
6569 };
6570
6571 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6572                     sizeof(ipw2100_frequencies[0]))
6573
6574 static const long ipw2100_rates_11b[] = {
6575         1000000,
6576         2000000,
6577         5500000,
6578         11000000
6579 };
6580
6581 #define RATE_COUNT (sizeof(ipw2100_rates_11b) / sizeof(ipw2100_rates_11b[0]))
6582
6583 static int ipw2100_wx_get_name(struct net_device *dev,
6584                                struct iw_request_info *info,
6585                                union iwreq_data *wrqu, char *extra)
6586 {
6587         /*
6588          * This can be called at any time.  No action lock required
6589          */
6590
6591         struct ipw2100_priv *priv = ieee80211_priv(dev);
6592         if (!(priv->status & STATUS_ASSOCIATED))
6593                 strcpy(wrqu->name, "unassociated");
6594         else
6595                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6596
6597         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6598         return 0;
6599 }
6600
6601 static int ipw2100_wx_set_freq(struct net_device *dev,
6602                                struct iw_request_info *info,
6603                                union iwreq_data *wrqu, char *extra)
6604 {
6605         struct ipw2100_priv *priv = ieee80211_priv(dev);
6606         struct iw_freq *fwrq = &wrqu->freq;
6607         int err = 0;
6608
6609         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6610                 return -EOPNOTSUPP;
6611
6612         mutex_lock(&priv->action_mutex);
6613         if (!(priv->status & STATUS_INITIALIZED)) {
6614                 err = -EIO;
6615                 goto done;
6616         }
6617
6618         /* if setting by freq convert to channel */
6619         if (fwrq->e == 1) {
6620                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6621                         int f = fwrq->m / 100000;
6622                         int c = 0;
6623
6624                         while ((c < REG_MAX_CHANNEL) &&
6625                                (f != ipw2100_frequencies[c]))
6626                                 c++;
6627
6628                         /* hack to fall through */
6629                         fwrq->e = 0;
6630                         fwrq->m = c + 1;
6631                 }
6632         }
6633
6634         if (fwrq->e > 0 || fwrq->m > 1000) {
6635                 err = -EOPNOTSUPP;
6636                 goto done;
6637         } else {                /* Set the channel */
6638                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6639                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6640         }
6641
6642       done:
6643         mutex_unlock(&priv->action_mutex);
6644         return err;
6645 }
6646
6647 static int ipw2100_wx_get_freq(struct net_device *dev,
6648                                struct iw_request_info *info,
6649                                union iwreq_data *wrqu, char *extra)
6650 {
6651         /*
6652          * This can be called at any time.  No action lock required
6653          */
6654
6655         struct ipw2100_priv *priv = ieee80211_priv(dev);
6656
6657         wrqu->freq.e = 0;
6658
6659         /* If we are associated, trying to associate, or have a statically
6660          * configured CHANNEL then return that; otherwise return ANY */
6661         if (priv->config & CFG_STATIC_CHANNEL ||
6662             priv->status & STATUS_ASSOCIATED)
6663                 wrqu->freq.m = priv->channel;
6664         else
6665                 wrqu->freq.m = 0;
6666
6667         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6668         return 0;
6669
6670 }
6671
6672 static int ipw2100_wx_set_mode(struct net_device *dev,
6673                                struct iw_request_info *info,
6674                                union iwreq_data *wrqu, char *extra)
6675 {
6676         struct ipw2100_priv *priv = ieee80211_priv(dev);
6677         int err = 0;
6678
6679         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6680
6681         if (wrqu->mode == priv->ieee->iw_mode)
6682                 return 0;
6683
6684         mutex_lock(&priv->action_mutex);
6685         if (!(priv->status & STATUS_INITIALIZED)) {
6686                 err = -EIO;
6687                 goto done;
6688         }
6689
6690         switch (wrqu->mode) {
6691 #ifdef CONFIG_IPW2100_MONITOR
6692         case IW_MODE_MONITOR:
6693                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6694                 break;
6695 #endif                          /* CONFIG_IPW2100_MONITOR */
6696         case IW_MODE_ADHOC:
6697                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6698                 break;
6699         case IW_MODE_INFRA:
6700         case IW_MODE_AUTO:
6701         default:
6702                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6703                 break;
6704         }
6705
6706       done:
6707         mutex_unlock(&priv->action_mutex);
6708         return err;
6709 }
6710
6711 static int ipw2100_wx_get_mode(struct net_device *dev,
6712                                struct iw_request_info *info,
6713                                union iwreq_data *wrqu, char *extra)
6714 {
6715         /*
6716          * This can be called at any time.  No action lock required
6717          */
6718
6719         struct ipw2100_priv *priv = ieee80211_priv(dev);
6720
6721         wrqu->mode = priv->ieee->iw_mode;
6722         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6723
6724         return 0;
6725 }
6726
6727 #define POWER_MODES 5
6728
6729 /* Values are in microsecond */
6730 static const s32 timeout_duration[POWER_MODES] = {
6731         350000,
6732         250000,
6733         75000,
6734         37000,
6735         25000,
6736 };
6737
6738 static const s32 period_duration[POWER_MODES] = {
6739         400000,
6740         700000,
6741         1000000,
6742         1000000,
6743         1000000
6744 };
6745
6746 static int ipw2100_wx_get_range(struct net_device *dev,
6747                                 struct iw_request_info *info,
6748                                 union iwreq_data *wrqu, char *extra)
6749 {
6750         /*
6751          * This can be called at any time.  No action lock required
6752          */
6753
6754         struct ipw2100_priv *priv = ieee80211_priv(dev);
6755         struct iw_range *range = (struct iw_range *)extra;
6756         u16 val;
6757         int i, level;
6758
6759         wrqu->data.length = sizeof(*range);
6760         memset(range, 0, sizeof(*range));
6761
6762         /* Let's try to keep this struct in the same order as in
6763          * linux/include/wireless.h
6764          */
6765
6766         /* TODO: See what values we can set, and remove the ones we can't
6767          * set, or fill them with some default data.
6768          */
6769
6770         /* ~5 Mb/s real (802.11b) */
6771         range->throughput = 5 * 1000 * 1000;
6772
6773 //      range->sensitivity;     /* signal level threshold range */
6774
6775         range->max_qual.qual = 100;
6776         /* TODO: Find real max RSSI and stick here */
6777         range->max_qual.level = 0;
6778         range->max_qual.noise = 0;
6779         range->max_qual.updated = 7;    /* Updated all three */
6780
6781         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6782         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6783         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6784         range->avg_qual.noise = 0;
6785         range->avg_qual.updated = 7;    /* Updated all three */
6786
6787         range->num_bitrates = RATE_COUNT;
6788
6789         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6790                 range->bitrate[i] = ipw2100_rates_11b[i];
6791         }
6792
6793         range->min_rts = MIN_RTS_THRESHOLD;
6794         range->max_rts = MAX_RTS_THRESHOLD;
6795         range->min_frag = MIN_FRAG_THRESHOLD;
6796         range->max_frag = MAX_FRAG_THRESHOLD;
6797
6798         range->min_pmp = period_duration[0];    /* Minimal PM period */
6799         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6800         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6801         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6802
6803         /* How to decode max/min PM period */
6804         range->pmp_flags = IW_POWER_PERIOD;
6805         /* How to decode max/min PM period */
6806         range->pmt_flags = IW_POWER_TIMEOUT;
6807         /* What PM options are supported */
6808         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6809
6810         range->encoding_size[0] = 5;
6811         range->encoding_size[1] = 13;   /* Different token sizes */
6812         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6813         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6814 //      range->encoding_login_index;            /* token index for login token */
6815
6816         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6817                 range->txpower_capa = IW_TXPOW_DBM;
6818                 range->num_txpower = IW_MAX_TXPOWER;
6819                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6820                      i < IW_MAX_TXPOWER;
6821                      i++, level -=
6822                      ((IPW_TX_POWER_MAX_DBM -
6823                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6824                         range->txpower[i] = level / 16;
6825         } else {
6826                 range->txpower_capa = 0;
6827                 range->num_txpower = 0;
6828         }
6829
6830         /* Set the Wireless Extension versions */
6831         range->we_version_compiled = WIRELESS_EXT;
6832         range->we_version_source = 18;
6833
6834 //      range->retry_capa;      /* What retry options are supported */
6835 //      range->retry_flags;     /* How to decode max/min retry limit */
6836 //      range->r_time_flags;    /* How to decode max/min retry life */
6837 //      range->min_retry;       /* Minimal number of retries */
6838 //      range->max_retry;       /* Maximal number of retries */
6839 //      range->min_r_time;      /* Minimal retry lifetime */
6840 //      range->max_r_time;      /* Maximal retry lifetime */
6841
6842         range->num_channels = FREQ_COUNT;
6843
6844         val = 0;
6845         for (i = 0; i < FREQ_COUNT; i++) {
6846                 // TODO: Include only legal frequencies for some countries
6847 //              if (local->channel_mask & (1 << i)) {
6848                 range->freq[val].i = i + 1;
6849                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6850                 range->freq[val].e = 1;
6851                 val++;
6852 //              }
6853                 if (val == IW_MAX_FREQUENCIES)
6854                         break;
6855         }
6856         range->num_frequency = val;
6857
6858         /* Event capability (kernel + driver) */
6859         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6860                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6861         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6862
6863         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6864                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6865
6866         IPW_DEBUG_WX("GET Range\n");
6867
6868         return 0;
6869 }
6870
6871 static int ipw2100_wx_set_wap(struct net_device *dev,
6872                               struct iw_request_info *info,
6873                               union iwreq_data *wrqu, char *extra)
6874 {
6875         struct ipw2100_priv *priv = ieee80211_priv(dev);
6876         int err = 0;
6877
6878         static const unsigned char any[] = {
6879                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6880         };
6881         static const unsigned char off[] = {
6882                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6883         };
6884
6885         // sanity checks
6886         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6887                 return -EINVAL;
6888
6889         mutex_lock(&priv->action_mutex);
6890         if (!(priv->status & STATUS_INITIALIZED)) {
6891                 err = -EIO;
6892                 goto done;
6893         }
6894
6895         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6896             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6897                 /* we disable mandatory BSSID association */
6898                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6899                 priv->config &= ~CFG_STATIC_BSSID;
6900                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6901                 goto done;
6902         }
6903
6904         priv->config |= CFG_STATIC_BSSID;
6905         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6906
6907         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6908
6909         IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6910                      wrqu->ap_addr.sa_data[0] & 0xff,
6911                      wrqu->ap_addr.sa_data[1] & 0xff,
6912                      wrqu->ap_addr.sa_data[2] & 0xff,
6913                      wrqu->ap_addr.sa_data[3] & 0xff,
6914                      wrqu->ap_addr.sa_data[4] & 0xff,
6915                      wrqu->ap_addr.sa_data[5] & 0xff);
6916
6917       done:
6918         mutex_unlock(&priv->action_mutex);
6919         return err;
6920 }
6921
6922 static int ipw2100_wx_get_wap(struct net_device *dev,
6923                               struct iw_request_info *info,
6924                               union iwreq_data *wrqu, char *extra)
6925 {
6926         /*
6927          * This can be called at any time.  No action lock required
6928          */
6929
6930         struct ipw2100_priv *priv = ieee80211_priv(dev);
6931
6932         /* If we are associated, trying to associate, or have a statically
6933          * configured BSSID then return that; otherwise return ANY */
6934         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6935                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6936                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6937         } else
6938                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6939
6940         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6941                      MAC_ARG(wrqu->ap_addr.sa_data));
6942         return 0;
6943 }
6944
6945 static int ipw2100_wx_set_essid(struct net_device *dev,
6946                                 struct iw_request_info *info,
6947                                 union iwreq_data *wrqu, char *extra)
6948 {
6949         struct ipw2100_priv *priv = ieee80211_priv(dev);
6950         char *essid = "";       /* ANY */
6951         int length = 0;
6952         int err = 0;
6953
6954         mutex_lock(&priv->action_mutex);
6955         if (!(priv->status & STATUS_INITIALIZED)) {
6956                 err = -EIO;
6957                 goto done;
6958         }
6959
6960         if (wrqu->essid.flags && wrqu->essid.length) {
6961                 length = wrqu->essid.length - 1;
6962                 essid = extra;
6963         }
6964
6965         if (length == 0) {
6966                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6967                 priv->config &= ~CFG_STATIC_ESSID;
6968                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6969                 goto done;
6970         }
6971
6972         length = min(length, IW_ESSID_MAX_SIZE);
6973
6974         priv->config |= CFG_STATIC_ESSID;
6975
6976         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6977                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6978                 err = 0;
6979                 goto done;
6980         }
6981
6982         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6983                      length);
6984
6985         priv->essid_len = length;
6986         memcpy(priv->essid, essid, priv->essid_len);
6987
6988         err = ipw2100_set_essid(priv, essid, length, 0);
6989
6990       done:
6991         mutex_unlock(&priv->action_mutex);
6992         return err;
6993 }
6994
6995 static int ipw2100_wx_get_essid(struct net_device *dev,
6996                                 struct iw_request_info *info,
6997                                 union iwreq_data *wrqu, char *extra)
6998 {
6999         /*
7000          * This can be called at any time.  No action lock required
7001          */
7002
7003         struct ipw2100_priv *priv = ieee80211_priv(dev);
7004
7005         /* If we are associated, trying to associate, or have a statically
7006          * configured ESSID then return that; otherwise return ANY */
7007         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7008                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7009                              escape_essid(priv->essid, priv->essid_len));
7010                 memcpy(extra, priv->essid, priv->essid_len);
7011                 wrqu->essid.length = priv->essid_len;
7012                 wrqu->essid.flags = 1;  /* active */
7013         } else {
7014                 IPW_DEBUG_WX("Getting essid: ANY\n");
7015                 wrqu->essid.length = 0;
7016                 wrqu->essid.flags = 0;  /* active */
7017         }
7018
7019         return 0;
7020 }
7021
7022 static int ipw2100_wx_set_nick(struct net_device *dev,
7023                                struct iw_request_info *info,
7024                                union iwreq_data *wrqu, char *extra)
7025 {
7026         /*
7027          * This can be called at any time.  No action lock required
7028          */
7029
7030         struct ipw2100_priv *priv = ieee80211_priv(dev);
7031
7032         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7033                 return -E2BIG;
7034
7035         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7036         memset(priv->nick, 0, sizeof(priv->nick));
7037         memcpy(priv->nick, extra, wrqu->data.length);
7038
7039         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7040
7041         return 0;
7042 }
7043
7044 static int ipw2100_wx_get_nick(struct net_device *dev,
7045                                struct iw_request_info *info,
7046                                union iwreq_data *wrqu, char *extra)
7047 {
7048         /*
7049          * This can be called at any time.  No action lock required
7050          */
7051
7052         struct ipw2100_priv *priv = ieee80211_priv(dev);
7053
7054         wrqu->data.length = strlen(priv->nick) + 1;
7055         memcpy(extra, priv->nick, wrqu->data.length);
7056         wrqu->data.flags = 1;   /* active */
7057
7058         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7059
7060         return 0;
7061 }
7062
7063 static int ipw2100_wx_set_rate(struct net_device *dev,
7064                                struct iw_request_info *info,
7065                                union iwreq_data *wrqu, char *extra)
7066 {
7067         struct ipw2100_priv *priv = ieee80211_priv(dev);
7068         u32 target_rate = wrqu->bitrate.value;
7069         u32 rate;
7070         int err = 0;
7071
7072         mutex_lock(&priv->action_mutex);
7073         if (!(priv->status & STATUS_INITIALIZED)) {
7074                 err = -EIO;
7075                 goto done;
7076         }
7077
7078         rate = 0;
7079
7080         if (target_rate == 1000000 ||
7081             (!wrqu->bitrate.fixed && target_rate > 1000000))
7082                 rate |= TX_RATE_1_MBIT;
7083         if (target_rate == 2000000 ||
7084             (!wrqu->bitrate.fixed && target_rate > 2000000))
7085                 rate |= TX_RATE_2_MBIT;
7086         if (target_rate == 5500000 ||
7087             (!wrqu->bitrate.fixed && target_rate > 5500000))
7088                 rate |= TX_RATE_5_5_MBIT;
7089         if (target_rate == 11000000 ||
7090             (!wrqu->bitrate.fixed && target_rate > 11000000))
7091                 rate |= TX_RATE_11_MBIT;
7092         if (rate == 0)
7093                 rate = DEFAULT_TX_RATES;
7094
7095         err = ipw2100_set_tx_rates(priv, rate, 0);
7096
7097         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7098       done:
7099         mutex_unlock(&priv->action_mutex);
7100         return err;
7101 }
7102
7103 static int ipw2100_wx_get_rate(struct net_device *dev,
7104                                struct iw_request_info *info,
7105                                union iwreq_data *wrqu, char *extra)
7106 {
7107         struct ipw2100_priv *priv = ieee80211_priv(dev);
7108         int val;
7109         int len = sizeof(val);
7110         int err = 0;
7111
7112         if (!(priv->status & STATUS_ENABLED) ||
7113             priv->status & STATUS_RF_KILL_MASK ||
7114             !(priv->status & STATUS_ASSOCIATED)) {
7115                 wrqu->bitrate.value = 0;
7116                 return 0;
7117         }
7118
7119         mutex_lock(&priv->action_mutex);
7120         if (!(priv->status & STATUS_INITIALIZED)) {
7121                 err = -EIO;
7122                 goto done;
7123         }
7124
7125         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7126         if (err) {
7127                 IPW_DEBUG_WX("failed querying ordinals.\n");
7128                 return err;
7129         }
7130
7131         switch (val & TX_RATE_MASK) {
7132         case TX_RATE_1_MBIT:
7133                 wrqu->bitrate.value = 1000000;
7134                 break;
7135         case TX_RATE_2_MBIT:
7136                 wrqu->bitrate.value = 2000000;
7137                 break;
7138         case TX_RATE_5_5_MBIT:
7139                 wrqu->bitrate.value = 5500000;
7140                 break;
7141         case TX_RATE_11_MBIT:
7142                 wrqu->bitrate.value = 11000000;
7143                 break;
7144         default:
7145                 wrqu->bitrate.value = 0;
7146         }
7147
7148         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7149
7150       done:
7151         mutex_unlock(&priv->action_mutex);
7152         return err;
7153 }
7154
7155 static int ipw2100_wx_set_rts(struct net_device *dev,
7156                               struct iw_request_info *info,
7157                               union iwreq_data *wrqu, char *extra)
7158 {
7159         struct ipw2100_priv *priv = ieee80211_priv(dev);
7160         int value, err;
7161
7162         /* Auto RTS not yet supported */
7163         if (wrqu->rts.fixed == 0)
7164                 return -EINVAL;
7165
7166         mutex_lock(&priv->action_mutex);
7167         if (!(priv->status & STATUS_INITIALIZED)) {
7168                 err = -EIO;
7169                 goto done;
7170         }
7171
7172         if (wrqu->rts.disabled)
7173                 value = priv->rts_threshold | RTS_DISABLED;
7174         else {
7175                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7176                         err = -EINVAL;
7177                         goto done;
7178                 }
7179                 value = wrqu->rts.value;
7180         }
7181
7182         err = ipw2100_set_rts_threshold(priv, value);
7183
7184         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7185       done:
7186         mutex_unlock(&priv->action_mutex);
7187         return err;
7188 }
7189
7190 static int ipw2100_wx_get_rts(struct net_device *dev,
7191                               struct iw_request_info *info,
7192                               union iwreq_data *wrqu, char *extra)
7193 {
7194         /*
7195          * This can be called at any time.  No action lock required
7196          */
7197
7198         struct ipw2100_priv *priv = ieee80211_priv(dev);
7199
7200         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7201         wrqu->rts.fixed = 1;    /* no auto select */
7202
7203         /* If RTS is set to the default value, then it is disabled */
7204         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7205
7206         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7207
7208         return 0;
7209 }
7210
7211 static int ipw2100_wx_set_txpow(struct net_device *dev,
7212                                 struct iw_request_info *info,
7213                                 union iwreq_data *wrqu, char *extra)
7214 {
7215         struct ipw2100_priv *priv = ieee80211_priv(dev);
7216         int err = 0, value;
7217         
7218         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7219                 return -EINPROGRESS;
7220
7221         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7222                 return 0;
7223
7224         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7225                 return -EINVAL;
7226
7227         if (wrqu->txpower.fixed == 0)
7228                 value = IPW_TX_POWER_DEFAULT;
7229         else {
7230                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7231                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7232                         return -EINVAL;
7233
7234                 value = wrqu->txpower.value;
7235         }
7236
7237         mutex_lock(&priv->action_mutex);
7238         if (!(priv->status & STATUS_INITIALIZED)) {
7239                 err = -EIO;
7240                 goto done;
7241         }
7242
7243         err = ipw2100_set_tx_power(priv, value);
7244
7245         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7246
7247       done:
7248         mutex_unlock(&priv->action_mutex);
7249         return err;
7250 }
7251
7252 static int ipw2100_wx_get_txpow(struct net_device *dev,
7253                                 struct iw_request_info *info,
7254                                 union iwreq_data *wrqu, char *extra)
7255 {
7256         /*
7257          * This can be called at any time.  No action lock required
7258          */
7259
7260         struct ipw2100_priv *priv = ieee80211_priv(dev);
7261
7262         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7263
7264         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7265                 wrqu->txpower.fixed = 0;
7266                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7267         } else {
7268                 wrqu->txpower.fixed = 1;
7269                 wrqu->txpower.value = priv->tx_power;
7270         }
7271
7272         wrqu->txpower.flags = IW_TXPOW_DBM;
7273
7274         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7275
7276         return 0;
7277 }
7278
7279 static int ipw2100_wx_set_frag(struct net_device *dev,
7280                                struct iw_request_info *info,
7281                                union iwreq_data *wrqu, char *extra)
7282 {
7283         /*
7284          * This can be called at any time.  No action lock required
7285          */
7286
7287         struct ipw2100_priv *priv = ieee80211_priv(dev);
7288
7289         if (!wrqu->frag.fixed)
7290                 return -EINVAL;
7291
7292         if (wrqu->frag.disabled) {
7293                 priv->frag_threshold |= FRAG_DISABLED;
7294                 priv->ieee->fts = DEFAULT_FTS;
7295         } else {
7296                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7297                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7298                         return -EINVAL;
7299
7300                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7301                 priv->frag_threshold = priv->ieee->fts;
7302         }
7303
7304         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7305
7306         return 0;
7307 }
7308
7309 static int ipw2100_wx_get_frag(struct net_device *dev,
7310                                struct iw_request_info *info,
7311                                union iwreq_data *wrqu, char *extra)
7312 {
7313         /*
7314          * This can be called at any time.  No action lock required
7315          */
7316
7317         struct ipw2100_priv *priv = ieee80211_priv(dev);
7318         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7319         wrqu->frag.fixed = 0;   /* no auto select */
7320         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7321
7322         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7323
7324         return 0;
7325 }
7326
7327 static int ipw2100_wx_set_retry(struct net_device *dev,
7328                                 struct iw_request_info *info,
7329                                 union iwreq_data *wrqu, char *extra)
7330 {
7331         struct ipw2100_priv *priv = ieee80211_priv(dev);
7332         int err = 0;
7333
7334         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7335                 return -EINVAL;
7336
7337         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7338                 return 0;
7339
7340         mutex_lock(&priv->action_mutex);
7341         if (!(priv->status & STATUS_INITIALIZED)) {
7342                 err = -EIO;
7343                 goto done;
7344         }
7345
7346         if (wrqu->retry.flags & IW_RETRY_MIN) {
7347                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7348                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7349                              wrqu->retry.value);
7350                 goto done;
7351         }
7352
7353         if (wrqu->retry.flags & IW_RETRY_MAX) {
7354                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7355                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7356                              wrqu->retry.value);
7357                 goto done;
7358         }
7359
7360         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7361         if (!err)
7362                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7363
7364         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7365
7366       done:
7367         mutex_unlock(&priv->action_mutex);
7368         return err;
7369 }
7370
7371 static int ipw2100_wx_get_retry(struct net_device *dev,
7372                                 struct iw_request_info *info,
7373                                 union iwreq_data *wrqu, char *extra)
7374 {
7375         /*
7376          * This can be called at any time.  No action lock required
7377          */
7378
7379         struct ipw2100_priv *priv = ieee80211_priv(dev);
7380
7381         wrqu->retry.disabled = 0;       /* can't be disabled */
7382
7383         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7384                 return -EINVAL;
7385
7386         if (wrqu->retry.flags & IW_RETRY_MAX) {
7387                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
7388                 wrqu->retry.value = priv->long_retry_limit;
7389         } else {
7390                 wrqu->retry.flags =
7391                     (priv->short_retry_limit !=
7392                      priv->long_retry_limit) ?
7393                     IW_RETRY_LIMIT | IW_RETRY_MIN : IW_RETRY_LIMIT;
7394
7395                 wrqu->retry.value = priv->short_retry_limit;
7396         }
7397
7398         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7399
7400         return 0;
7401 }
7402
7403 static int ipw2100_wx_set_scan(struct net_device *dev,
7404                                struct iw_request_info *info,
7405                                union iwreq_data *wrqu, char *extra)
7406 {
7407         struct ipw2100_priv *priv = ieee80211_priv(dev);
7408         int err = 0;
7409
7410         mutex_lock(&priv->action_mutex);
7411         if (!(priv->status & STATUS_INITIALIZED)) {
7412                 err = -EIO;
7413                 goto done;
7414         }
7415
7416         IPW_DEBUG_WX("Initiating scan...\n");
7417         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7418                 IPW_DEBUG_WX("Start scan failed.\n");
7419
7420                 /* TODO: Mark a scan as pending so when hardware initialized
7421                  *       a scan starts */
7422         }
7423
7424       done:
7425         mutex_unlock(&priv->action_mutex);
7426         return err;
7427 }
7428
7429 static int ipw2100_wx_get_scan(struct net_device *dev,
7430                                struct iw_request_info *info,
7431                                union iwreq_data *wrqu, char *extra)
7432 {
7433         /*
7434          * This can be called at any time.  No action lock required
7435          */
7436
7437         struct ipw2100_priv *priv = ieee80211_priv(dev);
7438         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7439 }
7440
7441 /*
7442  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7443  */
7444 static int ipw2100_wx_set_encode(struct net_device *dev,
7445                                  struct iw_request_info *info,
7446                                  union iwreq_data *wrqu, char *key)
7447 {
7448         /*
7449          * No check of STATUS_INITIALIZED required
7450          */
7451
7452         struct ipw2100_priv *priv = ieee80211_priv(dev);
7453         return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7454 }
7455
7456 static int ipw2100_wx_get_encode(struct net_device *dev,
7457                                  struct iw_request_info *info,
7458                                  union iwreq_data *wrqu, char *key)
7459 {
7460         /*
7461          * This can be called at any time.  No action lock required
7462          */
7463
7464         struct ipw2100_priv *priv = ieee80211_priv(dev);
7465         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7466 }
7467
7468 static int ipw2100_wx_set_power(struct net_device *dev,
7469                                 struct iw_request_info *info,
7470                                 union iwreq_data *wrqu, char *extra)
7471 {
7472         struct ipw2100_priv *priv = ieee80211_priv(dev);
7473         int err = 0;
7474
7475         mutex_lock(&priv->action_mutex);
7476         if (!(priv->status & STATUS_INITIALIZED)) {
7477                 err = -EIO;
7478                 goto done;
7479         }
7480
7481         if (wrqu->power.disabled) {
7482                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7483                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7484                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7485                 goto done;
7486         }
7487
7488         switch (wrqu->power.flags & IW_POWER_MODE) {
7489         case IW_POWER_ON:       /* If not specified */
7490         case IW_POWER_MODE:     /* If set all mask */
7491         case IW_POWER_ALL_R:    /* If explicitely state all */
7492                 break;
7493         default:                /* Otherwise we don't support it */
7494                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7495                              wrqu->power.flags);
7496                 err = -EOPNOTSUPP;
7497                 goto done;
7498         }
7499
7500         /* If the user hasn't specified a power management mode yet, default
7501          * to BATTERY */
7502         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7503         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7504
7505         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7506
7507       done:
7508         mutex_unlock(&priv->action_mutex);
7509         return err;
7510
7511 }
7512
7513 static int ipw2100_wx_get_power(struct net_device *dev,
7514                                 struct iw_request_info *info,
7515                                 union iwreq_data *wrqu, char *extra)
7516 {
7517         /*
7518          * This can be called at any time.  No action lock required
7519          */
7520
7521         struct ipw2100_priv *priv = ieee80211_priv(dev);
7522
7523         if (!(priv->power_mode & IPW_POWER_ENABLED))
7524                 wrqu->power.disabled = 1;
7525         else {
7526                 wrqu->power.disabled = 0;
7527                 wrqu->power.flags = 0;
7528         }
7529
7530         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7531
7532         return 0;
7533 }
7534
7535 /*
7536  * WE-18 WPA support
7537  */
7538
7539 /* SIOCSIWGENIE */
7540 static int ipw2100_wx_set_genie(struct net_device *dev,
7541                                 struct iw_request_info *info,
7542                                 union iwreq_data *wrqu, char *extra)
7543 {
7544
7545         struct ipw2100_priv *priv = ieee80211_priv(dev);
7546         struct ieee80211_device *ieee = priv->ieee;
7547         u8 *buf;
7548
7549         if (!ieee->wpa_enabled)
7550                 return -EOPNOTSUPP;
7551
7552         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7553             (wrqu->data.length && extra == NULL))
7554                 return -EINVAL;
7555
7556         if (wrqu->data.length) {
7557                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
7558                 if (buf == NULL)
7559                         return -ENOMEM;
7560
7561                 memcpy(buf, extra, wrqu->data.length);
7562                 kfree(ieee->wpa_ie);
7563                 ieee->wpa_ie = buf;
7564                 ieee->wpa_ie_len = wrqu->data.length;
7565         } else {
7566                 kfree(ieee->wpa_ie);
7567                 ieee->wpa_ie = NULL;
7568                 ieee->wpa_ie_len = 0;
7569         }
7570
7571         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7572
7573         return 0;
7574 }
7575
7576 /* SIOCGIWGENIE */
7577 static int ipw2100_wx_get_genie(struct net_device *dev,
7578                                 struct iw_request_info *info,
7579                                 union iwreq_data *wrqu, char *extra)
7580 {
7581         struct ipw2100_priv *priv = ieee80211_priv(dev);
7582         struct ieee80211_device *ieee = priv->ieee;
7583
7584         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7585                 wrqu->data.length = 0;
7586                 return 0;
7587         }
7588
7589         if (wrqu->data.length < ieee->wpa_ie_len)
7590                 return -E2BIG;
7591
7592         wrqu->data.length = ieee->wpa_ie_len;
7593         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7594
7595         return 0;
7596 }
7597
7598 /* SIOCSIWAUTH */
7599 static int ipw2100_wx_set_auth(struct net_device *dev,
7600                                struct iw_request_info *info,
7601                                union iwreq_data *wrqu, char *extra)
7602 {
7603         struct ipw2100_priv *priv = ieee80211_priv(dev);
7604         struct ieee80211_device *ieee = priv->ieee;
7605         struct iw_param *param = &wrqu->param;
7606         struct ieee80211_crypt_data *crypt;
7607         unsigned long flags;
7608         int ret = 0;
7609
7610         switch (param->flags & IW_AUTH_INDEX) {
7611         case IW_AUTH_WPA_VERSION:
7612         case IW_AUTH_CIPHER_PAIRWISE:
7613         case IW_AUTH_CIPHER_GROUP:
7614         case IW_AUTH_KEY_MGMT:
7615                 /*
7616                  * ipw2200 does not use these parameters
7617                  */
7618                 break;
7619
7620         case IW_AUTH_TKIP_COUNTERMEASURES:
7621                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7622                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7623                         break;
7624
7625                 flags = crypt->ops->get_flags(crypt->priv);
7626
7627                 if (param->value)
7628                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7629                 else
7630                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7631
7632                 crypt->ops->set_flags(flags, crypt->priv);
7633
7634                 break;
7635
7636         case IW_AUTH_DROP_UNENCRYPTED:{
7637                         /* HACK:
7638                          *
7639                          * wpa_supplicant calls set_wpa_enabled when the driver
7640                          * is loaded and unloaded, regardless of if WPA is being
7641                          * used.  No other calls are made which can be used to
7642                          * determine if encryption will be used or not prior to
7643                          * association being expected.  If encryption is not being
7644                          * used, drop_unencrypted is set to false, else true -- we
7645                          * can use this to determine if the CAP_PRIVACY_ON bit should
7646                          * be set.
7647                          */
7648                         struct ieee80211_security sec = {
7649                                 .flags = SEC_ENABLED,
7650                                 .enabled = param->value,
7651                         };
7652                         priv->ieee->drop_unencrypted = param->value;
7653                         /* We only change SEC_LEVEL for open mode. Others
7654                          * are set by ipw_wpa_set_encryption.
7655                          */
7656                         if (!param->value) {
7657                                 sec.flags |= SEC_LEVEL;
7658                                 sec.level = SEC_LEVEL_0;
7659                         } else {
7660                                 sec.flags |= SEC_LEVEL;
7661                                 sec.level = SEC_LEVEL_1;
7662                         }
7663                         if (priv->ieee->set_security)
7664                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7665                         break;
7666                 }
7667
7668         case IW_AUTH_80211_AUTH_ALG:
7669                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7670                 break;
7671
7672         case IW_AUTH_WPA_ENABLED:
7673                 ret = ipw2100_wpa_enable(priv, param->value);
7674                 break;
7675
7676         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7677                 ieee->ieee802_1x = param->value;
7678                 break;
7679
7680                 //case IW_AUTH_ROAMING_CONTROL:
7681         case IW_AUTH_PRIVACY_INVOKED:
7682                 ieee->privacy_invoked = param->value;
7683                 break;
7684
7685         default:
7686                 return -EOPNOTSUPP;
7687         }
7688         return ret;
7689 }
7690
7691 /* SIOCGIWAUTH */
7692 static int ipw2100_wx_get_auth(struct net_device *dev,
7693                                struct iw_request_info *info,
7694                                union iwreq_data *wrqu, char *extra)
7695 {
7696         struct ipw2100_priv *priv = ieee80211_priv(dev);
7697         struct ieee80211_device *ieee = priv->ieee;
7698         struct ieee80211_crypt_data *crypt;
7699         struct iw_param *param = &wrqu->param;
7700         int ret = 0;
7701
7702         switch (param->flags & IW_AUTH_INDEX) {
7703         case IW_AUTH_WPA_VERSION:
7704         case IW_AUTH_CIPHER_PAIRWISE:
7705         case IW_AUTH_CIPHER_GROUP:
7706         case IW_AUTH_KEY_MGMT:
7707                 /*
7708                  * wpa_supplicant will control these internally
7709                  */
7710                 ret = -EOPNOTSUPP;
7711                 break;
7712
7713         case IW_AUTH_TKIP_COUNTERMEASURES:
7714                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7715                 if (!crypt || !crypt->ops->get_flags) {
7716                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7717                                           "crypt not set!\n");
7718                         break;
7719                 }
7720
7721                 param->value = (crypt->ops->get_flags(crypt->priv) &
7722                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7723
7724                 break;
7725
7726         case IW_AUTH_DROP_UNENCRYPTED:
7727                 param->value = ieee->drop_unencrypted;
7728                 break;
7729
7730         case IW_AUTH_80211_AUTH_ALG:
7731                 param->value = priv->ieee->sec.auth_mode;
7732                 break;
7733
7734         case IW_AUTH_WPA_ENABLED:
7735                 param->value = ieee->wpa_enabled;
7736                 break;
7737
7738         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7739                 param->value = ieee->ieee802_1x;
7740                 break;
7741
7742         case IW_AUTH_ROAMING_CONTROL:
7743         case IW_AUTH_PRIVACY_INVOKED:
7744                 param->value = ieee->privacy_invoked;
7745                 break;
7746
7747         default:
7748                 return -EOPNOTSUPP;
7749         }
7750         return 0;
7751 }
7752
7753 /* SIOCSIWENCODEEXT */
7754 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7755                                     struct iw_request_info *info,
7756                                     union iwreq_data *wrqu, char *extra)
7757 {
7758         struct ipw2100_priv *priv = ieee80211_priv(dev);
7759         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7760 }
7761
7762 /* SIOCGIWENCODEEXT */
7763 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7764                                     struct iw_request_info *info,
7765                                     union iwreq_data *wrqu, char *extra)
7766 {
7767         struct ipw2100_priv *priv = ieee80211_priv(dev);
7768         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7769 }
7770
7771 /* SIOCSIWMLME */
7772 static int ipw2100_wx_set_mlme(struct net_device *dev,
7773                                struct iw_request_info *info,
7774                                union iwreq_data *wrqu, char *extra)
7775 {
7776         struct ipw2100_priv *priv = ieee80211_priv(dev);
7777         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7778         u16 reason;
7779
7780         reason = cpu_to_le16(mlme->reason_code);
7781
7782         switch (mlme->cmd) {
7783         case IW_MLME_DEAUTH:
7784                 // silently ignore
7785                 break;
7786
7787         case IW_MLME_DISASSOC:
7788                 ipw2100_disassociate_bssid(priv);
7789                 break;
7790
7791         default:
7792                 return -EOPNOTSUPP;
7793         }
7794         return 0;
7795 }
7796
7797 /*
7798  *
7799  * IWPRIV handlers
7800  *
7801  */
7802 #ifdef CONFIG_IPW2100_MONITOR
7803 static int ipw2100_wx_set_promisc(struct net_device *dev,
7804                                   struct iw_request_info *info,
7805                                   union iwreq_data *wrqu, char *extra)
7806 {
7807         struct ipw2100_priv *priv = ieee80211_priv(dev);
7808         int *parms = (int *)extra;
7809         int enable = (parms[0] > 0);
7810         int err = 0;
7811
7812         mutex_lock(&priv->action_mutex);
7813         if (!(priv->status & STATUS_INITIALIZED)) {
7814                 err = -EIO;
7815                 goto done;
7816         }
7817
7818         if (enable) {
7819                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7820                         err = ipw2100_set_channel(priv, parms[1], 0);
7821                         goto done;
7822                 }
7823                 priv->channel = parms[1];
7824                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7825         } else {
7826                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7827                         err = ipw2100_switch_mode(priv, priv->last_mode);
7828         }
7829       done:
7830         mutex_unlock(&priv->action_mutex);
7831         return err;
7832 }
7833
7834 static int ipw2100_wx_reset(struct net_device *dev,
7835                             struct iw_request_info *info,
7836                             union iwreq_data *wrqu, char *extra)
7837 {
7838         struct ipw2100_priv *priv = ieee80211_priv(dev);
7839         if (priv->status & STATUS_INITIALIZED)
7840                 schedule_reset(priv);
7841         return 0;
7842 }
7843
7844 #endif
7845
7846 static int ipw2100_wx_set_powermode(struct net_device *dev,
7847                                     struct iw_request_info *info,
7848                                     union iwreq_data *wrqu, char *extra)
7849 {
7850         struct ipw2100_priv *priv = ieee80211_priv(dev);
7851         int err = 0, mode = *(int *)extra;
7852
7853         mutex_lock(&priv->action_mutex);
7854         if (!(priv->status & STATUS_INITIALIZED)) {
7855                 err = -EIO;
7856                 goto done;
7857         }
7858
7859         if ((mode < 1) || (mode > POWER_MODES))
7860                 mode = IPW_POWER_AUTO;
7861
7862         if (priv->power_mode != mode)
7863                 err = ipw2100_set_power_mode(priv, mode);
7864       done:
7865         mutex_unlock(&priv->action_mutex);
7866         return err;
7867 }
7868
7869 #define MAX_POWER_STRING 80
7870 static int ipw2100_wx_get_powermode(struct net_device *dev,
7871                                     struct iw_request_info *info,
7872                                     union iwreq_data *wrqu, char *extra)
7873 {
7874         /*
7875          * This can be called at any time.  No action lock required
7876          */
7877
7878         struct ipw2100_priv *priv = ieee80211_priv(dev);
7879         int level = IPW_POWER_LEVEL(priv->power_mode);
7880         s32 timeout, period;
7881
7882         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7883                 snprintf(extra, MAX_POWER_STRING,
7884                          "Power save level: %d (Off)", level);
7885         } else {
7886                 switch (level) {
7887                 case IPW_POWER_MODE_CAM:
7888                         snprintf(extra, MAX_POWER_STRING,
7889                                  "Power save level: %d (None)", level);
7890                         break;
7891                 case IPW_POWER_AUTO:
7892                         snprintf(extra, MAX_POWER_STRING,
7893                                  "Power save level: %d (Auto)", 0);
7894                         break;
7895                 default:
7896                         timeout = timeout_duration[level - 1] / 1000;
7897                         period = period_duration[level - 1] / 1000;
7898                         snprintf(extra, MAX_POWER_STRING,
7899                                  "Power save level: %d "
7900                                  "(Timeout %dms, Period %dms)",
7901                                  level, timeout, period);
7902                 }
7903         }
7904
7905         wrqu->data.length = strlen(extra) + 1;
7906
7907         return 0;
7908 }
7909
7910 static int ipw2100_wx_set_preamble(struct net_device *dev,
7911                                    struct iw_request_info *info,
7912                                    union iwreq_data *wrqu, char *extra)
7913 {
7914         struct ipw2100_priv *priv = ieee80211_priv(dev);
7915         int err, mode = *(int *)extra;
7916
7917         mutex_lock(&priv->action_mutex);
7918         if (!(priv->status & STATUS_INITIALIZED)) {
7919                 err = -EIO;
7920                 goto done;
7921         }
7922
7923         if (mode == 1)
7924                 priv->config |= CFG_LONG_PREAMBLE;
7925         else if (mode == 0)
7926                 priv->config &= ~CFG_LONG_PREAMBLE;
7927         else {
7928                 err = -EINVAL;
7929                 goto done;
7930         }
7931
7932         err = ipw2100_system_config(priv, 0);
7933
7934       done:
7935         mutex_unlock(&priv->action_mutex);
7936         return err;
7937 }
7938
7939 static int ipw2100_wx_get_preamble(struct net_device *dev,
7940                                    struct iw_request_info *info,
7941                                    union iwreq_data *wrqu, char *extra)
7942 {
7943         /*
7944          * This can be called at any time.  No action lock required
7945          */
7946
7947         struct ipw2100_priv *priv = ieee80211_priv(dev);
7948
7949         if (priv->config & CFG_LONG_PREAMBLE)
7950                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7951         else
7952                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7953
7954         return 0;
7955 }
7956
7957 #ifdef CONFIG_IPW2100_MONITOR
7958 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7959                                     struct iw_request_info *info,
7960                                     union iwreq_data *wrqu, char *extra)
7961 {
7962         struct ipw2100_priv *priv = ieee80211_priv(dev);
7963         int err, mode = *(int *)extra;
7964
7965         mutex_lock(&priv->action_mutex);
7966         if (!(priv->status & STATUS_INITIALIZED)) {
7967                 err = -EIO;
7968                 goto done;
7969         }
7970
7971         if (mode == 1)
7972                 priv->config |= CFG_CRC_CHECK;
7973         else if (mode == 0)
7974                 priv->config &= ~CFG_CRC_CHECK;
7975         else {
7976                 err = -EINVAL;
7977                 goto done;
7978         }
7979         err = 0;
7980
7981       done:
7982         mutex_unlock(&priv->action_mutex);
7983         return err;
7984 }
7985
7986 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7987                                     struct iw_request_info *info,
7988                                     union iwreq_data *wrqu, char *extra)
7989 {
7990         /*
7991          * This can be called at any time.  No action lock required
7992          */
7993
7994         struct ipw2100_priv *priv = ieee80211_priv(dev);
7995
7996         if (priv->config & CFG_CRC_CHECK)
7997                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
7998         else
7999                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8000
8001         return 0;
8002 }
8003 #endif                          /* CONFIG_IPW2100_MONITOR */
8004
8005 static iw_handler ipw2100_wx_handlers[] = {
8006         NULL,                   /* SIOCSIWCOMMIT */
8007         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8008         NULL,                   /* SIOCSIWNWID */
8009         NULL,                   /* SIOCGIWNWID */
8010         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8011         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8012         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8013         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8014         NULL,                   /* SIOCSIWSENS */
8015         NULL,                   /* SIOCGIWSENS */
8016         NULL,                   /* SIOCSIWRANGE */
8017         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8018         NULL,                   /* SIOCSIWPRIV */
8019         NULL,                   /* SIOCGIWPRIV */
8020         NULL,                   /* SIOCSIWSTATS */
8021         NULL,                   /* SIOCGIWSTATS */
8022         NULL,                   /* SIOCSIWSPY */
8023         NULL,                   /* SIOCGIWSPY */
8024         NULL,                   /* SIOCGIWTHRSPY */
8025         NULL,                   /* SIOCWIWTHRSPY */
8026         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8027         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8028         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8029         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8030         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8031         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8032         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8033         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8034         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8035         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8036         NULL,                   /* -- hole -- */
8037         NULL,                   /* -- hole -- */
8038         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8039         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8040         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8041         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8042         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8043         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8044         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8045         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8046         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8047         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8048         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8049         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8050         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8051         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8052         NULL,                   /* -- hole -- */
8053         NULL,                   /* -- hole -- */
8054         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8055         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8056         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8057         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8058         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8059         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8060         NULL,                   /* SIOCSIWPMKSA */
8061 };
8062
8063 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8064 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8065 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8066 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8067 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8068 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8069 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8070 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8071
8072 static const struct iw_priv_args ipw2100_private_args[] = {
8073
8074 #ifdef CONFIG_IPW2100_MONITOR
8075         {
8076          IPW2100_PRIV_SET_MONITOR,
8077          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8078         {
8079          IPW2100_PRIV_RESET,
8080          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8081 #endif                          /* CONFIG_IPW2100_MONITOR */
8082
8083         {
8084          IPW2100_PRIV_SET_POWER,
8085          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8086         {
8087          IPW2100_PRIV_GET_POWER,
8088          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8089          "get_power"},
8090         {
8091          IPW2100_PRIV_SET_LONGPREAMBLE,
8092          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8093         {
8094          IPW2100_PRIV_GET_LONGPREAMBLE,
8095          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8096 #ifdef CONFIG_IPW2100_MONITOR
8097         {
8098          IPW2100_PRIV_SET_CRC_CHECK,
8099          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8100         {
8101          IPW2100_PRIV_GET_CRC_CHECK,
8102          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8103 #endif                          /* CONFIG_IPW2100_MONITOR */
8104 };
8105
8106 static iw_handler ipw2100_private_handler[] = {
8107 #ifdef CONFIG_IPW2100_MONITOR
8108         ipw2100_wx_set_promisc,
8109         ipw2100_wx_reset,
8110 #else                           /* CONFIG_IPW2100_MONITOR */
8111         NULL,
8112         NULL,
8113 #endif                          /* CONFIG_IPW2100_MONITOR */
8114         ipw2100_wx_set_powermode,
8115         ipw2100_wx_get_powermode,
8116         ipw2100_wx_set_preamble,
8117         ipw2100_wx_get_preamble,
8118 #ifdef CONFIG_IPW2100_MONITOR
8119         ipw2100_wx_set_crc_check,
8120         ipw2100_wx_get_crc_check,
8121 #else                           /* CONFIG_IPW2100_MONITOR */
8122         NULL,
8123         NULL,
8124 #endif                          /* CONFIG_IPW2100_MONITOR */
8125 };
8126
8127 /*
8128  * Get wireless statistics.
8129  * Called by /proc/net/wireless
8130  * Also called by SIOCGIWSTATS
8131  */
8132 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8133 {
8134         enum {
8135                 POOR = 30,
8136                 FAIR = 60,
8137                 GOOD = 80,
8138                 VERY_GOOD = 90,
8139                 EXCELLENT = 95,
8140                 PERFECT = 100
8141         };
8142         int rssi_qual;
8143         int tx_qual;
8144         int beacon_qual;
8145
8146         struct ipw2100_priv *priv = ieee80211_priv(dev);
8147         struct iw_statistics *wstats;
8148         u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8149         u32 ord_len = sizeof(u32);
8150
8151         if (!priv)
8152                 return (struct iw_statistics *)NULL;
8153
8154         wstats = &priv->wstats;
8155
8156         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8157          * ipw2100_wx_wireless_stats seems to be called before fw is
8158          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8159          * and associated; if not associcated, the values are all meaningless
8160          * anyway, so set them all to NULL and INVALID */
8161         if (!(priv->status & STATUS_ASSOCIATED)) {
8162                 wstats->miss.beacon = 0;
8163                 wstats->discard.retries = 0;
8164                 wstats->qual.qual = 0;
8165                 wstats->qual.level = 0;
8166                 wstats->qual.noise = 0;
8167                 wstats->qual.updated = 7;
8168                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8169                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8170                 return wstats;
8171         }
8172
8173         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8174                                 &missed_beacons, &ord_len))
8175                 goto fail_get_ordinal;
8176
8177         /* If we don't have a connection the quality and level is 0 */
8178         if (!(priv->status & STATUS_ASSOCIATED)) {
8179                 wstats->qual.qual = 0;
8180                 wstats->qual.level = 0;
8181         } else {
8182                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8183                                         &rssi, &ord_len))
8184                         goto fail_get_ordinal;
8185                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8186                 if (rssi < 10)
8187                         rssi_qual = rssi * POOR / 10;
8188                 else if (rssi < 15)
8189                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8190                 else if (rssi < 20)
8191                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8192                 else if (rssi < 30)
8193                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8194                             10 + GOOD;
8195                 else
8196                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8197                             10 + VERY_GOOD;
8198
8199                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8200                                         &tx_retries, &ord_len))
8201                         goto fail_get_ordinal;
8202
8203                 if (tx_retries > 75)
8204                         tx_qual = (90 - tx_retries) * POOR / 15;
8205                 else if (tx_retries > 70)
8206                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8207                 else if (tx_retries > 65)
8208                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8209                 else if (tx_retries > 50)
8210                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8211                             15 + GOOD;
8212                 else
8213                         tx_qual = (50 - tx_retries) *
8214                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8215
8216                 if (missed_beacons > 50)
8217                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8218                 else if (missed_beacons > 40)
8219                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8220                             10 + POOR;
8221                 else if (missed_beacons > 32)
8222                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8223                             18 + FAIR;
8224                 else if (missed_beacons > 20)
8225                         beacon_qual = (32 - missed_beacons) *
8226                             (VERY_GOOD - GOOD) / 20 + GOOD;
8227                 else
8228                         beacon_qual = (20 - missed_beacons) *
8229                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8230
8231                 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8232
8233 #ifdef CONFIG_IPW2100_DEBUG
8234                 if (beacon_qual == quality)
8235                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8236                 else if (tx_qual == quality)
8237                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8238                 else if (quality != 100)
8239                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8240                 else
8241                         IPW_DEBUG_WX("Quality not clamped.\n");
8242 #endif
8243
8244                 wstats->qual.qual = quality;
8245                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8246         }
8247
8248         wstats->qual.noise = 0;
8249         wstats->qual.updated = 7;
8250         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8251
8252         /* FIXME: this is percent and not a # */
8253         wstats->miss.beacon = missed_beacons;
8254
8255         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8256                                 &tx_failures, &ord_len))
8257                 goto fail_get_ordinal;
8258         wstats->discard.retries = tx_failures;
8259
8260         return wstats;
8261
8262       fail_get_ordinal:
8263         IPW_DEBUG_WX("failed querying ordinals.\n");
8264
8265         return (struct iw_statistics *)NULL;
8266 }
8267
8268 static struct iw_handler_def ipw2100_wx_handler_def = {
8269         .standard = ipw2100_wx_handlers,
8270         .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8271         .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8272         .num_private_args = sizeof(ipw2100_private_args) /
8273             sizeof(struct iw_priv_args),
8274         .private = (iw_handler *) ipw2100_private_handler,
8275         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8276         .get_wireless_stats = ipw2100_wx_wireless_stats,
8277 };
8278
8279 static void ipw2100_wx_event_work(struct ipw2100_priv *priv)
8280 {
8281         union iwreq_data wrqu;
8282         int len = ETH_ALEN;
8283
8284         if (priv->status & STATUS_STOPPING)
8285                 return;
8286
8287         mutex_lock(&priv->action_mutex);
8288
8289         IPW_DEBUG_WX("enter\n");
8290
8291         mutex_unlock(&priv->action_mutex);
8292
8293         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8294
8295         /* Fetch BSSID from the hardware */
8296         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8297             priv->status & STATUS_RF_KILL_MASK ||
8298             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8299                                 &priv->bssid, &len)) {
8300                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8301         } else {
8302                 /* We now have the BSSID, so can finish setting to the full
8303                  * associated state */
8304                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8305                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8306                 priv->status &= ~STATUS_ASSOCIATING;
8307                 priv->status |= STATUS_ASSOCIATED;
8308                 netif_carrier_on(priv->net_dev);
8309                 netif_wake_queue(priv->net_dev);
8310         }
8311
8312         if (!(priv->status & STATUS_ASSOCIATED)) {
8313                 IPW_DEBUG_WX("Configuring ESSID\n");
8314                 mutex_lock(&priv->action_mutex);
8315                 /* This is a disassociation event, so kick the firmware to
8316                  * look for another AP */
8317                 if (priv->config & CFG_STATIC_ESSID)
8318                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8319                                           0);
8320                 else
8321                         ipw2100_set_essid(priv, NULL, 0, 0);
8322                 mutex_unlock(&priv->action_mutex);
8323         }
8324
8325         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8326 }
8327
8328 #define IPW2100_FW_MAJOR_VERSION 1
8329 #define IPW2100_FW_MINOR_VERSION 3
8330
8331 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8332 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8333
8334 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8335                              IPW2100_FW_MAJOR_VERSION)
8336
8337 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8338 "." __stringify(IPW2100_FW_MINOR_VERSION)
8339
8340 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8341
8342 /*
8343
8344 BINARY FIRMWARE HEADER FORMAT
8345
8346 offset      length   desc
8347 0           2        version
8348 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8349 4           4        fw_len
8350 8           4        uc_len
8351 C           fw_len   firmware data
8352 12 + fw_len uc_len   microcode data
8353
8354 */
8355
8356 struct ipw2100_fw_header {
8357         short version;
8358         short mode;
8359         unsigned int fw_size;
8360         unsigned int uc_size;
8361 } __attribute__ ((packed));
8362
8363 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8364 {
8365         struct ipw2100_fw_header *h =
8366             (struct ipw2100_fw_header *)fw->fw_entry->data;
8367
8368         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8369                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8370                        "(detected version id of %u). "
8371                        "See Documentation/networking/README.ipw2100\n",
8372                        h->version);
8373                 return 1;
8374         }
8375
8376         fw->version = h->version;
8377         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8378         fw->fw.size = h->fw_size;
8379         fw->uc.data = fw->fw.data + h->fw_size;
8380         fw->uc.size = h->uc_size;
8381
8382         return 0;
8383 }
8384
8385 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8386                                 struct ipw2100_fw *fw)
8387 {
8388         char *fw_name;
8389         int rc;
8390
8391         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8392                        priv->net_dev->name);
8393
8394         switch (priv->ieee->iw_mode) {
8395         case IW_MODE_ADHOC:
8396                 fw_name = IPW2100_FW_NAME("-i");
8397                 break;
8398 #ifdef CONFIG_IPW2100_MONITOR
8399         case IW_MODE_MONITOR:
8400                 fw_name = IPW2100_FW_NAME("-p");
8401                 break;
8402 #endif
8403         case IW_MODE_INFRA:
8404         default:
8405                 fw_name = IPW2100_FW_NAME("");
8406                 break;
8407         }
8408
8409         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8410
8411         if (rc < 0) {
8412                 printk(KERN_ERR DRV_NAME ": "
8413                        "%s: Firmware '%s' not available or load failed.\n",
8414                        priv->net_dev->name, fw_name);
8415                 return rc;
8416         }
8417         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8418                        fw->fw_entry->size);
8419
8420         ipw2100_mod_firmware_load(fw);
8421
8422         return 0;
8423 }
8424
8425 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8426                                      struct ipw2100_fw *fw)
8427 {
8428         fw->version = 0;
8429         if (fw->fw_entry)
8430                 release_firmware(fw->fw_entry);
8431         fw->fw_entry = NULL;
8432 }
8433
8434 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8435                                  size_t max)
8436 {
8437         char ver[MAX_FW_VERSION_LEN];
8438         u32 len = MAX_FW_VERSION_LEN;
8439         u32 tmp;
8440         int i;
8441         /* firmware version is an ascii string (max len of 14) */
8442         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8443                 return -EIO;
8444         tmp = max;
8445         if (len >= max)
8446                 len = max - 1;
8447         for (i = 0; i < len; i++)
8448                 buf[i] = ver[i];
8449         buf[i] = '\0';
8450         return tmp;
8451 }
8452
8453 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8454                                     size_t max)
8455 {
8456         u32 ver;
8457         u32 len = sizeof(ver);
8458         /* microcode version is a 32 bit integer */
8459         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8460                 return -EIO;
8461         return snprintf(buf, max, "%08X", ver);
8462 }
8463
8464 /*
8465  * On exit, the firmware will have been freed from the fw list
8466  */
8467 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8468 {
8469         /* firmware is constructed of N contiguous entries, each entry is
8470          * structured as:
8471          *
8472          * offset    sie         desc
8473          * 0         4           address to write to
8474          * 4         2           length of data run
8475          * 6         length      data
8476          */
8477         unsigned int addr;
8478         unsigned short len;
8479
8480         const unsigned char *firmware_data = fw->fw.data;
8481         unsigned int firmware_data_left = fw->fw.size;
8482
8483         while (firmware_data_left > 0) {
8484                 addr = *(u32 *) (firmware_data);
8485                 firmware_data += 4;
8486                 firmware_data_left -= 4;
8487
8488                 len = *(u16 *) (firmware_data);
8489                 firmware_data += 2;
8490                 firmware_data_left -= 2;
8491
8492                 if (len > 32) {
8493                         printk(KERN_ERR DRV_NAME ": "
8494                                "Invalid firmware run-length of %d bytes\n",
8495                                len);
8496                         return -EINVAL;
8497                 }
8498
8499                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8500                 firmware_data += len;
8501                 firmware_data_left -= len;
8502         }
8503
8504         return 0;
8505 }
8506
8507 struct symbol_alive_response {
8508         u8 cmd_id;
8509         u8 seq_num;
8510         u8 ucode_rev;
8511         u8 eeprom_valid;
8512         u16 valid_flags;
8513         u8 IEEE_addr[6];
8514         u16 flags;
8515         u16 pcb_rev;
8516         u16 clock_settle_time;  // 1us LSB
8517         u16 powerup_settle_time;        // 1us LSB
8518         u16 hop_settle_time;    // 1us LSB
8519         u8 date[3];             // month, day, year
8520         u8 time[2];             // hours, minutes
8521         u8 ucode_valid;
8522 };
8523
8524 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8525                                   struct ipw2100_fw *fw)
8526 {
8527         struct net_device *dev = priv->net_dev;
8528         const unsigned char *microcode_data = fw->uc.data;
8529         unsigned int microcode_data_left = fw->uc.size;
8530         void __iomem *reg = (void __iomem *)dev->base_addr;
8531
8532         struct symbol_alive_response response;
8533         int i, j;
8534         u8 data;
8535
8536         /* Symbol control */
8537         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8538         readl(reg);
8539         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8540         readl(reg);
8541
8542         /* HW config */
8543         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8544         readl(reg);
8545         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8546         readl(reg);
8547
8548         /* EN_CS_ACCESS bit to reset control store pointer */
8549         write_nic_byte(dev, 0x210000, 0x40);
8550         readl(reg);
8551         write_nic_byte(dev, 0x210000, 0x0);
8552         readl(reg);
8553         write_nic_byte(dev, 0x210000, 0x40);
8554         readl(reg);
8555
8556         /* copy microcode from buffer into Symbol */
8557
8558         while (microcode_data_left > 0) {
8559                 write_nic_byte(dev, 0x210010, *microcode_data++);
8560                 write_nic_byte(dev, 0x210010, *microcode_data++);
8561                 microcode_data_left -= 2;
8562         }
8563
8564         /* EN_CS_ACCESS bit to reset the control store pointer */
8565         write_nic_byte(dev, 0x210000, 0x0);
8566         readl(reg);
8567
8568         /* Enable System (Reg 0)
8569          * first enable causes garbage in RX FIFO */
8570         write_nic_byte(dev, 0x210000, 0x0);
8571         readl(reg);
8572         write_nic_byte(dev, 0x210000, 0x80);
8573         readl(reg);
8574
8575         /* Reset External Baseband Reg */
8576         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8577         readl(reg);
8578         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8579         readl(reg);
8580
8581         /* HW Config (Reg 5) */
8582         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8583         readl(reg);
8584         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8585         readl(reg);
8586
8587         /* Enable System (Reg 0)
8588          * second enable should be OK */
8589         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8590         readl(reg);
8591         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8592
8593         /* check Symbol is enabled - upped this from 5 as it wasn't always
8594          * catching the update */
8595         for (i = 0; i < 10; i++) {
8596                 udelay(10);
8597
8598                 /* check Dino is enabled bit */
8599                 read_nic_byte(dev, 0x210000, &data);
8600                 if (data & 0x1)
8601                         break;
8602         }
8603
8604         if (i == 10) {
8605                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8606                        dev->name);
8607                 return -EIO;
8608         }
8609
8610         /* Get Symbol alive response */
8611         for (i = 0; i < 30; i++) {
8612                 /* Read alive response structure */
8613                 for (j = 0;
8614                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8615                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8616
8617                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8618                         break;
8619                 udelay(10);
8620         }
8621
8622         if (i == 30) {
8623                 printk(KERN_ERR DRV_NAME
8624                        ": %s: No response from Symbol - hw not alive\n",
8625                        dev->name);
8626                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8627                 return -EIO;
8628         }
8629
8630         return 0;
8631 }