2 * drivers/sbus/char/jsflash.c
4 * Copyright (C) 1991, 1992 Linus Torvalds (drivers/char/mem.c)
5 * Copyright (C) 1997 Eddie C. Dost (drivers/sbus/char/flash.c)
6 * Copyright (C) 1997-2000 Pavel Machek <pavel@ucw.cz> (drivers/block/nbd.c)
7 * Copyright (C) 1999-2000 Pete Zaitcev
9 * This driver is used to program OS into a Flash SIMM on
10 * Krups and Espresso platforms.
12 * TODO: do not allow erase/programming if file systems are mounted.
13 * TODO: Erase/program both banks of a 8MB SIMM.
15 * It is anticipated that programming an OS Flash will be a routine
16 * procedure. In the same time it is exeedingly dangerous because
17 * a user can program its OBP flash with OS image and effectively
20 * This driver uses an interface different from Eddie's flash.c
21 * as a silly safeguard.
23 * XXX The flash.c manipulates page caching characteristics in a certain
24 * dubious way; also it assumes that remap_pfn_range() can remap
25 * PCI bus locations, which may be false. ioremap() must be used
26 * instead. We should discuss this.
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/errno.h>
32 #include <linux/miscdevice.h>
33 #include <linux/slab.h>
34 #include <linux/fcntl.h>
35 #include <linux/poll.h>
36 #include <linux/init.h>
37 #include <linux/string.h>
38 #include <linux/smp_lock.h>
39 #include <linux/genhd.h>
40 #include <linux/blkdev.h>
42 #define MAJOR_NR JSFD_MAJOR
44 #include <asm/uaccess.h>
45 #include <asm/pgtable.h>
48 #include <asm/oplib.h>
50 #include <asm/jsflash.h> /* ioctl arguments. <linux/> ?? */
51 #define JSFIDSZ (sizeof(struct jsflash_ident_arg))
52 #define JSFPRGSZ (sizeof(struct jsflash_program_arg))
55 * Our device numbers have no business in system headers.
56 * The only thing a user knows is the device name /dev/jsflash.
58 * Block devices are laid out like this:
59 * minor+0 - Bootstrap, for 8MB SIMM 0x20400000[0x800000]
60 * minor+1 - Filesystem to mount, normally 0x20400400[0x7ffc00]
61 * minor+2 - Whole flash area for any case... 0x20000000[0x01000000]
62 * Total 3 minors per flash device.
64 * It is easier to have static size vectors, so we define
65 * a total minor range JSF_MAX, which must cover all minors.
67 /* character device */
68 #define JSF_MINOR 178 /* 178 is registered with hpa */
70 #define JSF_MAX 3 /* 3 minors wasted total so far. */
71 #define JSF_NPART 3 /* 3 minors per flash device */
72 #define JSF_PART_BITS 2 /* 2 bits of minors to cover JSF_NPART */
73 #define JSF_PART_MASK 0x3 /* 2 bits mask */
77 * We could ioremap(), but it's easier this way.
79 static unsigned int jsf_inl(unsigned long addr)
83 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
85 "r" (addr), "i" (ASI_M_BYPASS));
89 static void jsf_outl(unsigned long addr, __u32 data)
92 __asm__ __volatile__("sta %0, [%1] %2\n\t" : :
93 "r" (data), "r" (addr), "i" (ASI_M_BYPASS) :
109 unsigned long busy; /* In use? */
110 struct jsflash_ident_arg id;
111 /* int mbase; */ /* Minor base, typically zero */
112 struct jsfd_part dv[JSF_NPART];
116 * We do not map normal memory or obio as a safety precaution.
117 * But offsets are real, for ease of userland programming.
119 #define JSF_BASE_TOP 0x30000000
120 #define JSF_BASE_ALL 0x20000000
122 #define JSF_BASE_JK 0x20400000
126 static struct gendisk *jsfd_disk[JSF_MAX];
129 * Let's pretend we may have several of these...
131 static struct jsflash jsf0;
134 * Wait for AMD to finish its embedded algorithm.
135 * We use the Toggle bit DQ6 (0x40) because it does not
136 * depend on the data value as /DATA bit DQ7 does.
138 * XXX Do we need any timeout here? So far it never hanged, beware broken hw.
140 static void jsf_wait(unsigned long p) {
146 if ((x1 & 0x40404040) == (x2 & 0x40404040)) return;
151 * Programming will only work if Flash is clean,
152 * we leave it to the programmer application.
154 * AMD must be programmed one byte at a time;
155 * thus, Simple Tech SIMM must be written 4 bytes at a time.
157 * Write waits for the chip to become ready after the write
158 * was finished. This is done so that application would read
159 * consistent data after the write is done.
161 static void jsf_write4(unsigned long fa, u32 data) {
163 jsf_outl(fa, 0xAAAAAAAA); /* Unlock 1 Write 1 */
164 jsf_outl(fa, 0x55555555); /* Unlock 1 Write 2 */
165 jsf_outl(fa, 0xA0A0A0A0); /* Byte Program */
173 static void jsfd_read(char *buf, unsigned long p, size_t togo) {
188 static void jsfd_do_request(request_queue_t *q)
192 while ((req = elv_next_request(q)) != NULL) {
193 struct jsfd_part *jdp = req->rq_disk->private_data;
194 unsigned long offset = req->sector << 9;
195 size_t len = req->current_nr_sectors << 9;
197 if ((offset + len) > jdp->dsize) {
202 if (rq_data_dir(req) != READ) {
203 printk(KERN_ERR "jsfd: write\n");
208 if ((jdp->dbase & 0xff000000) != 0x20000000) {
209 printk(KERN_ERR "jsfd: bad base %x\n", (int)jdp->dbase);
214 jsfd_read(req->buffer, jdp->dbase + offset, len);
221 * The memory devices use the full 32/64 bits of the offset, and so we cannot
222 * check against negative addresses: they are ok. The return value is weird,
223 * though, in that case (0).
225 * also note that seeking relative to the "end of file" isn't supported:
226 * it has no meaning, so it returns -EINVAL.
228 static loff_t jsf_lseek(struct file * file, loff_t offset, int orig)
235 file->f_pos = offset;
239 file->f_pos += offset;
250 * OS SIMM Cannot be read in other size but a 32bits word.
252 static ssize_t jsf_read(struct file * file, char * buf,
253 size_t togo, loff_t *ppos)
255 unsigned long p = *ppos;
263 if (p < JSF_BASE_ALL || p >= JSF_BASE_TOP) {
267 if ((p + togo) < p /* wrap */
268 || (p + togo) >= JSF_BASE_TOP) {
269 togo = JSF_BASE_TOP - p;
272 if (p < JSF_BASE_ALL && togo != 0) {
273 #if 0 /* __bzero XXX */
274 size_t x = JSF_BASE_ALL - p;
275 if (x > togo) x = togo;
282 * Implementation of clear_user() calls __bzero
283 * without regard to modversions,
284 * so we cannot build a module.
293 if (copy_to_user(tmp, b.s, 4))
300 * XXX Small togo may remain if 1 byte is ordered.
301 * It would be nice if we did a word size read and unpacked it.
308 static ssize_t jsf_write(struct file * file, const char * buf,
309 size_t count, loff_t *ppos)
316 static int jsf_ioctl_erase(unsigned long arg)
320 /* p = jsf0.base; hits wrong bank */
323 jsf_outl(p, 0xAAAAAAAA); /* Unlock 1 Write 1 */
324 jsf_outl(p, 0x55555555); /* Unlock 1 Write 2 */
325 jsf_outl(p, 0x80808080); /* Erase setup */
326 jsf_outl(p, 0xAAAAAAAA); /* Unlock 2 Write 1 */
327 jsf_outl(p, 0x55555555); /* Unlock 2 Write 2 */
328 jsf_outl(p, 0x10101010); /* Chip erase */
332 * This code is ok, except that counter based timeout
333 * has no place in this world. Let's just drop timeouts...
338 for (i = 0; i < 1000000; i++) {
340 if ((x & 0x80808080) == 0x80808080) break;
342 if ((x & 0x80808080) != 0x80808080) {
343 printk("jsf0: erase timeout with 0x%08x\n", x);
345 printk("jsf0: erase done with 0x%08x\n", x);
356 * Program a block of flash.
357 * Very simple because we can do it byte by byte anyway.
359 static int jsf_ioctl_program(unsigned long arg)
361 struct jsflash_program_arg abuf;
370 if (copy_from_user(&abuf, (char *)arg, JSFPRGSZ))
374 if ((togo & 3) || (p & 3)) return -EINVAL;
376 uptr = (char *) (unsigned long) abuf.data;
379 if (copy_from_user(&b.s[0], uptr, 4))
389 static int jsf_ioctl(struct inode *inode, struct file *f, unsigned int cmd,
394 if (!capable(CAP_SYS_ADMIN))
398 if (copy_to_user((void *)arg, &jsf0.id, JSFIDSZ))
402 error = jsf_ioctl_erase(arg);
404 case JSFLASH_PROGRAM:
405 error = jsf_ioctl_program(arg);
412 static int jsf_mmap(struct file * file, struct vm_area_struct * vma)
417 static int jsf_open(struct inode * inode, struct file * filp)
420 if (jsf0.base == 0) return -ENXIO;
421 if (test_and_set_bit(0, (void *)&jsf0.busy) != 0)
424 return 0; /* XXX What security? */
427 static int jsf_release(struct inode *inode, struct file *file)
433 static struct file_operations jsf_fops = {
434 .owner = THIS_MODULE,
441 .release = jsf_release,
444 static struct miscdevice jsf_dev = { JSF_MINOR, "jsflash", &jsf_fops };
446 static struct block_device_operations jsfd_fops = {
447 .owner = THIS_MODULE,
450 static int jsflash_init(void)
456 struct linux_prom_registers reg0;
458 node = prom_getchild(prom_root_node);
459 node = prom_searchsiblings(node, "flash-memory");
460 if (node != 0 && node != -1) {
461 if (prom_getproperty(node, "reg",
462 (char *)®0, sizeof(reg0)) == -1) {
463 printk("jsflash: no \"reg\" property\n");
466 if (reg0.which_io != 0) {
467 printk("jsflash: bus number nonzero: 0x%x:%x\n",
468 reg0.which_io, reg0.phys_addr);
472 * Flash may be somewhere else, for instance on Ebus.
473 * So, don't do the following check for IIep flash space.
476 if ((reg0.phys_addr >> 24) != 0x20) {
477 printk("jsflash: suspicious address: 0x%x:%x\n",
478 reg0.which_io, reg0.phys_addr);
482 if ((int)reg0.reg_size <= 0) {
483 printk("jsflash: bad size 0x%x\n", (int)reg0.reg_size);
487 /* XXX Remove this code once PROLL ID12 got widespread */
488 printk("jsflash: no /flash-memory node, use PROLL >= 12\n");
489 prom_getproperty(prom_root_node, "banner-name", banner, 128);
490 if (strcmp (banner, "JavaStation-NC") != 0 &&
491 strcmp (banner, "JavaStation-E") != 0) {
495 reg0.phys_addr = 0x20400000;
496 reg0.reg_size = 0x00800000;
499 /* Let us be really paranoid for modifications to probing code. */
500 /* extern enum sparc_cpu sparc_cpu_model; */ /* in <asm/system.h> */
501 if (sparc_cpu_model != sun4m) {
502 /* We must be on sun4m because we use MMU Bypass ASI. */
506 if (jsf0.base == 0) {
509 jsf->base = reg0.phys_addr;
510 jsf->size = reg0.reg_size;
512 /* XXX Redo the userland interface. */
513 jsf->id.off = JSF_BASE_ALL;
514 jsf->id.size = 0x01000000; /* 16M - all segments */
515 strcpy(jsf->id.name, "Krups_all");
517 jsf->dv[0].dbase = jsf->base;
518 jsf->dv[0].dsize = jsf->size;
519 jsf->dv[1].dbase = jsf->base + 1024;
520 jsf->dv[1].dsize = jsf->size - 1024;
521 jsf->dv[2].dbase = JSF_BASE_ALL;
522 jsf->dv[2].dsize = 0x01000000;
524 printk("Espresso Flash @0x%lx [%d MB]\n", jsf->base,
525 (int) (jsf->size / (1024*1024)));
528 if ((rc = misc_register(&jsf_dev)) != 0) {
529 printk(KERN_ERR "jsf: unable to get misc minor %d\n",
538 static struct request_queue *jsf_queue;
540 static int jsfd_init(void)
542 static DEFINE_SPINLOCK(lock);
544 struct jsfd_part *jdp;
552 for (i = 0; i < JSF_MAX; i++) {
553 struct gendisk *disk = alloc_disk(1);
559 if (register_blkdev(JSFD_MAJOR, "jsfd")) {
564 jsf_queue = blk_init_queue(jsfd_do_request, &lock);
567 unregister_blkdev(JSFD_MAJOR, "jsfd");
571 for (i = 0; i < JSF_MAX; i++) {
572 struct gendisk *disk = jsfd_disk[i];
573 if ((i & JSF_PART_MASK) >= JSF_NPART) continue;
574 jsf = &jsf0; /* actually, &jsfv[i >> JSF_PART_BITS] */
575 jdp = &jsf->dv[i&JSF_PART_MASK];
577 disk->major = JSFD_MAJOR;
578 disk->first_minor = i;
579 sprintf(disk->disk_name, "jsfd%d", i);
580 disk->fops = &jsfd_fops;
581 set_capacity(disk, jdp->dsize >> 9);
582 disk->private_data = jdp;
583 disk->queue = jsf_queue;
585 set_disk_ro(disk, 1);
590 put_disk(jsfd_disk[i]);
594 MODULE_LICENSE("GPL");
596 static int __init jsflash_init_module(void) {
599 if ((rc = jsflash_init()) == 0) {
606 static void __exit jsflash_cleanup_module(void)
610 for (i = 0; i < JSF_MAX; i++) {
611 if ((i & JSF_PART_MASK) >= JSF_NPART) continue;
612 del_gendisk(jsfd_disk[i]);
613 put_disk(jsfd_disk[i]);
616 printk("jsf0: cleaning busy unit\n");
620 misc_deregister(&jsf_dev);
621 if (unregister_blkdev(JSFD_MAJOR, "jsfd") != 0)
622 printk("jsfd: cleanup_module failed\n");
623 blk_cleanup_queue(jsf_queue);
626 module_init(jsflash_init_module);
627 module_exit(jsflash_cleanup_module);