2 * cx18 ADEC audio functions
4 * Derived from cx25840-audio.c
6 * Copyright (C) 2007 Hans Verkuil <hverkuil@xs4all.nl>
7 * Copyright (C) 2008 Andy Walls <awalls@radix.net>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version 2
12 * of the License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
25 #include "cx18-driver.h"
27 static int set_audclk_freq(struct cx18 *cx, u32 freq)
29 struct cx18_av_state *state = &cx->av_state;
31 if (freq != 32000 && freq != 44100 && freq != 48000)
35 * The PLL parameters are based on the external crystal frequency that
38 * NTSC Color subcarrier freq * 8 =
39 * 4.5 MHz/286 * 455/2 * 8 = 28.63636363... MHz
41 * The accidents of history and rationale that explain from where this
42 * combination of magic numbers originate can be found in:
44 * [1] Abrahams, I. C., "Choice of Chrominance Subcarrier Frequency in
45 * the NTSC Standards", Proceedings of the I-R-E, January 1954, pp 79-80
47 * [2] Abrahams, I. C., "The 'Frequency Interleaving' Principle in the
48 * NTSC Standards", Proceedings of the I-R-E, January 1954, pp 81-83
50 * As Mike Bradley has rightly pointed out, it's not the exact crystal
51 * frequency that matters, only that all parts of the driver and
52 * firmware are using the same value (close to the ideal value).
54 * Since I have a strong suspicion that, if the firmware ever assumes a
55 * crystal value at all, it will assume 28.636360 MHz, the crystal
56 * freq used in calculations in this driver will be:
58 * xtal_freq = 28.636360 MHz
60 * an error of less than 0.13 ppm which is way, way better than any off
61 * the shelf crystal will have for accuracy anyway.
63 * Below I aim to run the PLLs' VCOs near 400 MHz to minimze error.
65 * Many thanks to Jeff Campbell and Mike Bradley for their extensive
66 * investigation, experimentation, testing, and suggested solutions of
67 * of audio/video sync problems with SVideo and CVBS captures.
70 if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
74 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
75 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
77 cx18_av_write4(cx, 0x108, 0x200d040f);
79 /* VID_PLL Fraction = 0x2be2fe */
80 /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
81 cx18_av_write4(cx, 0x10c, 0x002be2fe);
83 /* AUX_PLL Fraction = 0x176740c */
84 /* xtal * 0xd.bb3a060/0x20 = 32000 * 384: 393 MHz p-pd*/
85 cx18_av_write4(cx, 0x110, 0x0176740c);
88 /* 0x1.f77f = (4 * xtal/8*2/455) / 32000 */
89 cx18_av_write4(cx, 0x900, 0x0801f77f);
90 cx18_av_write4(cx, 0x904, 0x0801f77f);
91 cx18_av_write4(cx, 0x90c, 0x0801f77f);
93 /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
94 cx18_av_write(cx, 0x127, 0x60);
96 /* AUD_COUNT = 0x2fff = 8 samples * 4 * 384 - 1 */
97 cx18_av_write4(cx, 0x12c, 0x11202fff);
101 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
102 * ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
104 cx18_av_write4(cx, 0x128, 0xa00d2ef8);
109 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
110 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x18
112 cx18_av_write4(cx, 0x108, 0x180e040f);
114 /* VID_PLL Fraction = 0x2be2fe */
115 /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
116 cx18_av_write4(cx, 0x10c, 0x002be2fe);
118 /* AUX_PLL Fraction = 0x062a1f2 */
119 /* xtal * 0xe.3150f90/0x18 = 44100 * 384: 406 MHz p-pd*/
120 cx18_av_write4(cx, 0x110, 0x0062a1f2);
123 /* 0x1.6d59 = (4 * xtal/8*2/455) / 44100 */
124 cx18_av_write4(cx, 0x900, 0x08016d59);
125 cx18_av_write4(cx, 0x904, 0x08016d59);
126 cx18_av_write4(cx, 0x90c, 0x08016d59);
128 /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x18 */
129 cx18_av_write(cx, 0x127, 0x58);
131 /* AUD_COUNT = 0x92ff = 49 samples * 2 * 384 - 1 */
132 cx18_av_write4(cx, 0x12c, 0x112092ff);
136 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
137 * ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
139 cx18_av_write4(cx, 0x128, 0xa01d4bf8);
144 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
145 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x16
147 cx18_av_write4(cx, 0x108, 0x160e040f);
149 /* VID_PLL Fraction = 0x2be2fe */
150 /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
151 cx18_av_write4(cx, 0x10c, 0x002be2fe);
153 /* AUX_PLL Fraction = 0x05227ad */
154 /* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz p-pd*/
155 cx18_av_write4(cx, 0x110, 0x005227ad);
158 /* 0x1.4faa = (4 * xtal/8*2/455) / 48000 */
159 cx18_av_write4(cx, 0x900, 0x08014faa);
160 cx18_av_write4(cx, 0x904, 0x08014faa);
161 cx18_av_write4(cx, 0x90c, 0x08014faa);
163 /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */
164 cx18_av_write(cx, 0x127, 0x56);
166 /* AUD_COUNT = 0x5fff = 4 samples * 16 * 384 - 1 */
167 cx18_av_write4(cx, 0x12c, 0x11205fff);
171 * VID_COUNT = 0x1193f8 = 143999.000 * 8 =
172 * ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
174 cx18_av_write4(cx, 0x128, 0xa01193f8);
181 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
182 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x30
184 cx18_av_write4(cx, 0x108, 0x300d040f);
186 /* VID_PLL Fraction = 0x2be2fe */
187 /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
188 cx18_av_write4(cx, 0x10c, 0x002be2fe);
190 /* AUX_PLL Fraction = 0x176740c */
191 /* xtal * 0xd.bb3a060/0x30 = 32000 * 256: 393 MHz p-pd*/
192 cx18_av_write4(cx, 0x110, 0x0176740c);
195 /* 0x1.0000 = 32000/32000 */
196 cx18_av_write4(cx, 0x8f8, 0x08010000);
199 /* 0x2.0000 = 2 * (32000/32000) */
200 cx18_av_write4(cx, 0x900, 0x08020000);
201 cx18_av_write4(cx, 0x904, 0x08020000);
202 cx18_av_write4(cx, 0x90c, 0x08020000);
204 /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x30 */
205 cx18_av_write(cx, 0x127, 0x70);
207 /* AUD_COUNT = 0x1fff = 8 samples * 4 * 256 - 1 */
208 cx18_av_write4(cx, 0x12c, 0x11201fff);
212 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
213 * ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
215 cx18_av_write4(cx, 0x128, 0xa00d2ef8);
220 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
221 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x24
223 cx18_av_write4(cx, 0x108, 0x240e040f);
225 /* VID_PLL Fraction = 0x2be2fe */
226 /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
227 cx18_av_write4(cx, 0x10c, 0x002be2fe);
229 /* AUX_PLL Fraction = 0x062a1f2 */
230 /* xtal * 0xe.3150f90/0x24 = 44100 * 256: 406 MHz p-pd*/
231 cx18_av_write4(cx, 0x110, 0x0062a1f2);
234 /* 0x1.60cd = 44100/32000 */
235 cx18_av_write4(cx, 0x8f8, 0x080160cd);
238 /* 0x1.7385 = 2 * (32000/44100) */
239 cx18_av_write4(cx, 0x900, 0x08017385);
240 cx18_av_write4(cx, 0x904, 0x08017385);
241 cx18_av_write4(cx, 0x90c, 0x08017385);
243 /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x24 */
244 cx18_av_write(cx, 0x127, 0x64);
246 /* AUD_COUNT = 0x61ff = 49 samples * 2 * 256 - 1 */
247 cx18_av_write4(cx, 0x12c, 0x112061ff);
251 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
252 * ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
254 cx18_av_write4(cx, 0x128, 0xa01d4bf8);
259 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
260 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
262 cx18_av_write4(cx, 0x108, 0x200d040f);
264 /* VID_PLL Fraction = 0x2be2fe */
265 /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
266 cx18_av_write4(cx, 0x10c, 0x002be2fe);
268 /* AUX_PLL Fraction = 0x176740c */
269 /* xtal * 0xd.bb3a060/0x20 = 48000 * 256: 393 MHz p-pd*/
270 cx18_av_write4(cx, 0x110, 0x0176740c);
273 /* 0x1.8000 = 48000/32000 */
274 cx18_av_write4(cx, 0x8f8, 0x08018000);
277 /* 0x1.5555 = 2 * (32000/48000) */
278 cx18_av_write4(cx, 0x900, 0x08015555);
279 cx18_av_write4(cx, 0x904, 0x08015555);
280 cx18_av_write4(cx, 0x90c, 0x08015555);
282 /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
283 cx18_av_write(cx, 0x127, 0x60);
285 /* AUD_COUNT = 0x3fff = 4 samples * 16 * 256 - 1 */
286 cx18_av_write4(cx, 0x12c, 0x11203fff);
290 * VID_COUNT = 0x1193f8 = 143999.000 * 8 =
291 * ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
293 cx18_av_write4(cx, 0x128, 0xa01193f8);
298 state->audclk_freq = freq;
303 void cx18_av_audio_set_path(struct cx18 *cx)
305 struct cx18_av_state *state = &cx->av_state;
308 /* stop microcontroller */
309 v = cx18_av_read(cx, 0x803) & ~0x10;
310 cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
312 /* assert soft reset */
313 v = cx18_av_read(cx, 0x810) | 0x01;
314 cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
316 /* Mute everything to prevent the PFFT! */
317 cx18_av_write(cx, 0x8d3, 0x1f);
319 if (state->aud_input <= CX18_AV_AUDIO_SERIAL2) {
320 /* Set Path1 to Serial Audio Input */
321 cx18_av_write4(cx, 0x8d0, 0x01011012);
323 /* The microcontroller should not be started for the
324 * non-tuner inputs: autodetection is specific for
327 /* Set Path1 to Analog Demod Main Channel */
328 cx18_av_write4(cx, 0x8d0, 0x1f063870);
331 set_audclk_freq(cx, state->audclk_freq);
333 /* deassert soft reset */
334 v = cx18_av_read(cx, 0x810) & ~0x01;
335 cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
337 if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
338 /* When the microcontroller detects the
339 * audio format, it will unmute the lines */
340 v = cx18_av_read(cx, 0x803) | 0x10;
341 cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
345 static int get_volume(struct cx18 *cx)
347 /* Volume runs +18dB to -96dB in 1/2dB steps
348 * change to fit the msp3400 -114dB to +12dB range */
350 /* check PATH1_VOLUME */
351 int vol = 228 - cx18_av_read(cx, 0x8d4);
352 vol = (vol / 2) + 23;
356 static void set_volume(struct cx18 *cx, int volume)
358 /* First convert the volume to msp3400 values (0-127) */
359 int vol = volume >> 9;
360 /* now scale it up to cx18_av values
361 * -114dB to -96dB maps to 0
362 * this should be 19, but in my testing that was 4dB too loud */
369 cx18_av_write(cx, 0x8d4, 228 - (vol * 2));
372 static int get_bass(struct cx18 *cx)
374 /* bass is 49 steps +12dB to -12dB */
376 /* check PATH1_EQ_BASS_VOL */
377 int bass = cx18_av_read(cx, 0x8d9) & 0x3f;
378 bass = (((48 - bass) * 0xffff) + 47) / 48;
382 static void set_bass(struct cx18 *cx, int bass)
384 /* PATH1_EQ_BASS_VOL */
385 cx18_av_and_or(cx, 0x8d9, ~0x3f, 48 - (bass * 48 / 0xffff));
388 static int get_treble(struct cx18 *cx)
390 /* treble is 49 steps +12dB to -12dB */
392 /* check PATH1_EQ_TREBLE_VOL */
393 int treble = cx18_av_read(cx, 0x8db) & 0x3f;
394 treble = (((48 - treble) * 0xffff) + 47) / 48;
398 static void set_treble(struct cx18 *cx, int treble)
400 /* PATH1_EQ_TREBLE_VOL */
401 cx18_av_and_or(cx, 0x8db, ~0x3f, 48 - (treble * 48 / 0xffff));
404 static int get_balance(struct cx18 *cx)
406 /* balance is 7 bit, 0 to -96dB */
408 /* check PATH1_BAL_LEVEL */
409 int balance = cx18_av_read(cx, 0x8d5) & 0x7f;
410 /* check PATH1_BAL_LEFT */
411 if ((cx18_av_read(cx, 0x8d5) & 0x80) == 0)
412 balance = 0x80 - balance;
414 balance = 0x80 + balance;
418 static void set_balance(struct cx18 *cx, int balance)
420 int bal = balance >> 8;
423 cx18_av_and_or(cx, 0x8d5, 0x7f, 0x80);
424 /* PATH1_BAL_LEVEL */
425 cx18_av_and_or(cx, 0x8d5, ~0x7f, bal & 0x7f);
428 cx18_av_and_or(cx, 0x8d5, 0x7f, 0x00);
429 /* PATH1_BAL_LEVEL */
430 cx18_av_and_or(cx, 0x8d5, ~0x7f, 0x80 - bal);
434 static int get_mute(struct cx18 *cx)
436 /* check SRC1_MUTE_EN */
437 return cx18_av_read(cx, 0x8d3) & 0x2 ? 1 : 0;
440 static void set_mute(struct cx18 *cx, int mute)
442 struct cx18_av_state *state = &cx->av_state;
445 if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
446 /* Must turn off microcontroller in order to mute sound.
447 * Not sure if this is the best method, but it does work.
448 * If the microcontroller is running, then it will undo any
449 * changes to the mute register. */
450 v = cx18_av_read(cx, 0x803);
452 /* disable microcontroller */
454 cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
455 cx18_av_write(cx, 0x8d3, 0x1f);
457 /* enable microcontroller */
459 cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
463 cx18_av_and_or(cx, 0x8d3, ~0x2, mute ? 0x02 : 0x00);
467 int cx18_av_s_clock_freq(struct v4l2_subdev *sd, u32 freq)
469 struct cx18 *cx = v4l2_get_subdevdata(sd);
470 struct cx18_av_state *state = &cx->av_state;
474 if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
475 v = cx18_av_read(cx, 0x803) & ~0x10;
476 cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
477 cx18_av_write(cx, 0x8d3, 0x1f);
479 v = cx18_av_read(cx, 0x810) | 0x1;
480 cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
482 retval = set_audclk_freq(cx, freq);
484 v = cx18_av_read(cx, 0x810) & ~0x1;
485 cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
486 if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
487 v = cx18_av_read(cx, 0x803) | 0x10;
488 cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
493 int cx18_av_audio_g_ctrl(struct cx18 *cx, struct v4l2_control *ctrl)
496 case V4L2_CID_AUDIO_VOLUME:
497 ctrl->value = get_volume(cx);
499 case V4L2_CID_AUDIO_BASS:
500 ctrl->value = get_bass(cx);
502 case V4L2_CID_AUDIO_TREBLE:
503 ctrl->value = get_treble(cx);
505 case V4L2_CID_AUDIO_BALANCE:
506 ctrl->value = get_balance(cx);
508 case V4L2_CID_AUDIO_MUTE:
509 ctrl->value = get_mute(cx);
517 int cx18_av_audio_s_ctrl(struct cx18 *cx, struct v4l2_control *ctrl)
520 case V4L2_CID_AUDIO_VOLUME:
521 set_volume(cx, ctrl->value);
523 case V4L2_CID_AUDIO_BASS:
524 set_bass(cx, ctrl->value);
526 case V4L2_CID_AUDIO_TREBLE:
527 set_treble(cx, ctrl->value);
529 case V4L2_CID_AUDIO_BALANCE:
530 set_balance(cx, ctrl->value);
532 case V4L2_CID_AUDIO_MUTE:
533 set_mute(cx, ctrl->value);