e1000: simplify case handling gigabit at half duplex
[linux-2.6] / drivers / net / sunhme.c
1 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
2  *           auto carrier detecting ethernet driver.  Also known as the
3  *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
4  *
5  * Copyright (C) 1996, 1998, 1999, 2002, 2003,
6                  2006 David S. Miller (davem@davemloft.net)
7  *
8  * Changes :
9  * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
10  *   - port to non-sparc architectures. Tested only on x86 and
11  *     only currently works with QFE PCI cards.
12  *   - ability to specify the MAC address at module load time by passing this
13  *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
14  */
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/fcntl.h>
20 #include <linux/interrupt.h>
21 #include <linux/ioport.h>
22 #include <linux/in.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/ethtool.h>
28 #include <linux/mii.h>
29 #include <linux/crc32.h>
30 #include <linux/random.h>
31 #include <linux/errno.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/mm.h>
36 #include <linux/bitops.h>
37
38 #include <asm/system.h>
39 #include <asm/io.h>
40 #include <asm/dma.h>
41 #include <asm/byteorder.h>
42
43 #ifdef CONFIG_SPARC
44 #include <asm/idprom.h>
45 #include <asm/sbus.h>
46 #include <asm/openprom.h>
47 #include <asm/oplib.h>
48 #include <asm/prom.h>
49 #include <asm/auxio.h>
50 #endif
51 #include <asm/uaccess.h>
52
53 #include <asm/pgtable.h>
54 #include <asm/irq.h>
55
56 #ifdef CONFIG_PCI
57 #include <linux/pci.h>
58 #ifdef CONFIG_SPARC
59 #include <asm/pbm.h>
60 #endif
61 #endif
62
63 #include "sunhme.h"
64
65 #define DRV_NAME        "sunhme"
66 #define DRV_VERSION     "3.00"
67 #define DRV_RELDATE     "June 23, 2006"
68 #define DRV_AUTHOR      "David S. Miller (davem@davemloft.net)"
69
70 static char version[] =
71         DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
72
73 MODULE_VERSION(DRV_VERSION);
74 MODULE_AUTHOR(DRV_AUTHOR);
75 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
76 MODULE_LICENSE("GPL");
77
78 static int macaddr[6];
79
80 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
81 module_param_array(macaddr, int, NULL, 0);
82 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
83
84 #ifdef CONFIG_SBUS
85 static struct quattro *qfe_sbus_list;
86 #endif
87
88 #ifdef CONFIG_PCI
89 static struct quattro *qfe_pci_list;
90 #endif
91
92 #undef HMEDEBUG
93 #undef SXDEBUG
94 #undef RXDEBUG
95 #undef TXDEBUG
96 #undef TXLOGGING
97
98 #ifdef TXLOGGING
99 struct hme_tx_logent {
100         unsigned int tstamp;
101         int tx_new, tx_old;
102         unsigned int action;
103 #define TXLOG_ACTION_IRQ        0x01
104 #define TXLOG_ACTION_TXMIT      0x02
105 #define TXLOG_ACTION_TBUSY      0x04
106 #define TXLOG_ACTION_NBUFS      0x08
107         unsigned int status;
108 };
109 #define TX_LOG_LEN      128
110 static struct hme_tx_logent tx_log[TX_LOG_LEN];
111 static int txlog_cur_entry;
112 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
113 {
114         struct hme_tx_logent *tlp;
115         unsigned long flags;
116
117         save_and_cli(flags);
118         tlp = &tx_log[txlog_cur_entry];
119         tlp->tstamp = (unsigned int)jiffies;
120         tlp->tx_new = hp->tx_new;
121         tlp->tx_old = hp->tx_old;
122         tlp->action = a;
123         tlp->status = s;
124         txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
125         restore_flags(flags);
126 }
127 static __inline__ void tx_dump_log(void)
128 {
129         int i, this;
130
131         this = txlog_cur_entry;
132         for (i = 0; i < TX_LOG_LEN; i++) {
133                 printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
134                        tx_log[this].tstamp,
135                        tx_log[this].tx_new, tx_log[this].tx_old,
136                        tx_log[this].action, tx_log[this].status);
137                 this = (this + 1) & (TX_LOG_LEN - 1);
138         }
139 }
140 static __inline__ void tx_dump_ring(struct happy_meal *hp)
141 {
142         struct hmeal_init_block *hb = hp->happy_block;
143         struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
144         int i;
145
146         for (i = 0; i < TX_RING_SIZE; i+=4) {
147                 printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
148                        i, i + 4,
149                        le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
150                        le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
151                        le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
152                        le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
153         }
154 }
155 #else
156 #define tx_add_log(hp, a, s)            do { } while(0)
157 #define tx_dump_log()                   do { } while(0)
158 #define tx_dump_ring(hp)                do { } while(0)
159 #endif
160
161 #ifdef HMEDEBUG
162 #define HMD(x)  printk x
163 #else
164 #define HMD(x)
165 #endif
166
167 /* #define AUTO_SWITCH_DEBUG */
168
169 #ifdef AUTO_SWITCH_DEBUG
170 #define ASD(x)  printk x
171 #else
172 #define ASD(x)
173 #endif
174
175 #define DEFAULT_IPG0      16 /* For lance-mode only */
176 #define DEFAULT_IPG1       8 /* For all modes */
177 #define DEFAULT_IPG2       4 /* For all modes */
178 #define DEFAULT_JAMSIZE    4 /* Toe jam */
179
180 /* NOTE: In the descriptor writes one _must_ write the address
181  *       member _first_.  The card must not be allowed to see
182  *       the updated descriptor flags until the address is
183  *       correct.  I've added a write memory barrier between
184  *       the two stores so that I can sleep well at night... -DaveM
185  */
186
187 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
188 static void sbus_hme_write32(void __iomem *reg, u32 val)
189 {
190         sbus_writel(val, reg);
191 }
192
193 static u32 sbus_hme_read32(void __iomem *reg)
194 {
195         return sbus_readl(reg);
196 }
197
198 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
199 {
200         rxd->rx_addr = addr;
201         wmb();
202         rxd->rx_flags = flags;
203 }
204
205 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
206 {
207         txd->tx_addr = addr;
208         wmb();
209         txd->tx_flags = flags;
210 }
211
212 static u32 sbus_hme_read_desc32(u32 *p)
213 {
214         return *p;
215 }
216
217 static void pci_hme_write32(void __iomem *reg, u32 val)
218 {
219         writel(val, reg);
220 }
221
222 static u32 pci_hme_read32(void __iomem *reg)
223 {
224         return readl(reg);
225 }
226
227 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
228 {
229         rxd->rx_addr = cpu_to_le32(addr);
230         wmb();
231         rxd->rx_flags = cpu_to_le32(flags);
232 }
233
234 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
235 {
236         txd->tx_addr = cpu_to_le32(addr);
237         wmb();
238         txd->tx_flags = cpu_to_le32(flags);
239 }
240
241 static u32 pci_hme_read_desc32(u32 *p)
242 {
243         return cpu_to_le32p(p);
244 }
245
246 #define hme_write32(__hp, __reg, __val) \
247         ((__hp)->write32((__reg), (__val)))
248 #define hme_read32(__hp, __reg) \
249         ((__hp)->read32(__reg))
250 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
251         ((__hp)->write_rxd((__rxd), (__flags), (__addr)))
252 #define hme_write_txd(__hp, __txd, __flags, __addr) \
253         ((__hp)->write_txd((__txd), (__flags), (__addr)))
254 #define hme_read_desc32(__hp, __p) \
255         ((__hp)->read_desc32(__p))
256 #define hme_dma_map(__hp, __ptr, __size, __dir) \
257         ((__hp)->dma_map((__hp)->happy_dev, (__ptr), (__size), (__dir)))
258 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
259         ((__hp)->dma_unmap((__hp)->happy_dev, (__addr), (__size), (__dir)))
260 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
261         ((__hp)->dma_sync_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir)))
262 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
263         ((__hp)->dma_sync_for_device((__hp)->happy_dev, (__addr), (__size), (__dir)))
264 #else
265 #ifdef CONFIG_SBUS
266 /* SBUS only compilation */
267 #define hme_write32(__hp, __reg, __val) \
268         sbus_writel((__val), (__reg))
269 #define hme_read32(__hp, __reg) \
270         sbus_readl(__reg)
271 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
272 do {    (__rxd)->rx_addr = (__addr); \
273         wmb(); \
274         (__rxd)->rx_flags = (__flags); \
275 } while(0)
276 #define hme_write_txd(__hp, __txd, __flags, __addr) \
277 do {    (__txd)->tx_addr = (__addr); \
278         wmb(); \
279         (__txd)->tx_flags = (__flags); \
280 } while(0)
281 #define hme_read_desc32(__hp, __p)      (*(__p))
282 #define hme_dma_map(__hp, __ptr, __size, __dir) \
283         sbus_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir))
284 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
285         sbus_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir))
286 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
287         sbus_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))
288 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
289         sbus_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))
290 #else
291 /* PCI only compilation */
292 #define hme_write32(__hp, __reg, __val) \
293         writel((__val), (__reg))
294 #define hme_read32(__hp, __reg) \
295         readl(__reg)
296 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
297 do {    (__rxd)->rx_addr = cpu_to_le32(__addr); \
298         wmb(); \
299         (__rxd)->rx_flags = cpu_to_le32(__flags); \
300 } while(0)
301 #define hme_write_txd(__hp, __txd, __flags, __addr) \
302 do {    (__txd)->tx_addr = cpu_to_le32(__addr); \
303         wmb(); \
304         (__txd)->tx_flags = cpu_to_le32(__flags); \
305 } while(0)
306 #define hme_read_desc32(__hp, __p)      cpu_to_le32p(__p)
307 #define hme_dma_map(__hp, __ptr, __size, __dir) \
308         pci_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir))
309 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
310         pci_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir))
311 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
312         pci_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))
313 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
314         pci_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))
315 #endif
316 #endif
317
318
319 #ifdef SBUS_DMA_BIDIRECTIONAL
320 #       define DMA_BIDIRECTIONAL        SBUS_DMA_BIDIRECTIONAL
321 #else
322 #       define DMA_BIDIRECTIONAL        0
323 #endif
324
325 #ifdef SBUS_DMA_FROMDEVICE
326 #       define DMA_FROMDEVICE           SBUS_DMA_FROMDEVICE
327 #else
328 #       define DMA_TODEVICE             1
329 #endif
330
331 #ifdef SBUS_DMA_TODEVICE
332 #       define DMA_TODEVICE             SBUS_DMA_TODEVICE
333 #else
334 #       define DMA_FROMDEVICE           2
335 #endif
336
337
338 /* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
339 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
340 {
341         hme_write32(hp, tregs + TCVR_BBDATA, bit);
342         hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
343         hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
344 }
345
346 #if 0
347 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
348 {
349         u32 ret;
350
351         hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
352         hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
353         ret = hme_read32(hp, tregs + TCVR_CFG);
354         if (internal)
355                 ret &= TCV_CFG_MDIO0;
356         else
357                 ret &= TCV_CFG_MDIO1;
358
359         return ret;
360 }
361 #endif
362
363 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
364 {
365         u32 retval;
366
367         hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
368         udelay(1);
369         retval = hme_read32(hp, tregs + TCVR_CFG);
370         if (internal)
371                 retval &= TCV_CFG_MDIO0;
372         else
373                 retval &= TCV_CFG_MDIO1;
374         hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
375
376         return retval;
377 }
378
379 #define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
380
381 static int happy_meal_bb_read(struct happy_meal *hp,
382                               void __iomem *tregs, int reg)
383 {
384         u32 tmp;
385         int retval = 0;
386         int i;
387
388         ASD(("happy_meal_bb_read: reg=%d ", reg));
389
390         /* Enable the MIF BitBang outputs. */
391         hme_write32(hp, tregs + TCVR_BBOENAB, 1);
392
393         /* Force BitBang into the idle state. */
394         for (i = 0; i < 32; i++)
395                 BB_PUT_BIT(hp, tregs, 1);
396
397         /* Give it the read sequence. */
398         BB_PUT_BIT(hp, tregs, 0);
399         BB_PUT_BIT(hp, tregs, 1);
400         BB_PUT_BIT(hp, tregs, 1);
401         BB_PUT_BIT(hp, tregs, 0);
402
403         /* Give it the PHY address. */
404         tmp = hp->paddr & 0xff;
405         for (i = 4; i >= 0; i--)
406                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
407
408         /* Tell it what register we want to read. */
409         tmp = (reg & 0xff);
410         for (i = 4; i >= 0; i--)
411                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
412
413         /* Close down the MIF BitBang outputs. */
414         hme_write32(hp, tregs + TCVR_BBOENAB, 0);
415
416         /* Now read in the value. */
417         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
418         for (i = 15; i >= 0; i--)
419                 retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
420         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
421         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
422         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
423         ASD(("value=%x\n", retval));
424         return retval;
425 }
426
427 static void happy_meal_bb_write(struct happy_meal *hp,
428                                 void __iomem *tregs, int reg,
429                                 unsigned short value)
430 {
431         u32 tmp;
432         int i;
433
434         ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
435
436         /* Enable the MIF BitBang outputs. */
437         hme_write32(hp, tregs + TCVR_BBOENAB, 1);
438
439         /* Force BitBang into the idle state. */
440         for (i = 0; i < 32; i++)
441                 BB_PUT_BIT(hp, tregs, 1);
442
443         /* Give it write sequence. */
444         BB_PUT_BIT(hp, tregs, 0);
445         BB_PUT_BIT(hp, tregs, 1);
446         BB_PUT_BIT(hp, tregs, 0);
447         BB_PUT_BIT(hp, tregs, 1);
448
449         /* Give it the PHY address. */
450         tmp = (hp->paddr & 0xff);
451         for (i = 4; i >= 0; i--)
452                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
453
454         /* Tell it what register we will be writing. */
455         tmp = (reg & 0xff);
456         for (i = 4; i >= 0; i--)
457                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
458
459         /* Tell it to become ready for the bits. */
460         BB_PUT_BIT(hp, tregs, 1);
461         BB_PUT_BIT(hp, tregs, 0);
462
463         for (i = 15; i >= 0; i--)
464                 BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
465
466         /* Close down the MIF BitBang outputs. */
467         hme_write32(hp, tregs + TCVR_BBOENAB, 0);
468 }
469
470 #define TCVR_READ_TRIES   16
471
472 static int happy_meal_tcvr_read(struct happy_meal *hp,
473                                 void __iomem *tregs, int reg)
474 {
475         int tries = TCVR_READ_TRIES;
476         int retval;
477
478         ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
479         if (hp->tcvr_type == none) {
480                 ASD(("no transceiver, value=TCVR_FAILURE\n"));
481                 return TCVR_FAILURE;
482         }
483
484         if (!(hp->happy_flags & HFLAG_FENABLE)) {
485                 ASD(("doing bit bang\n"));
486                 return happy_meal_bb_read(hp, tregs, reg);
487         }
488
489         hme_write32(hp, tregs + TCVR_FRAME,
490                     (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
491         while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
492                 udelay(20);
493         if (!tries) {
494                 printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
495                 return TCVR_FAILURE;
496         }
497         retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
498         ASD(("value=%04x\n", retval));
499         return retval;
500 }
501
502 #define TCVR_WRITE_TRIES  16
503
504 static void happy_meal_tcvr_write(struct happy_meal *hp,
505                                   void __iomem *tregs, int reg,
506                                   unsigned short value)
507 {
508         int tries = TCVR_WRITE_TRIES;
509
510         ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
511
512         /* Welcome to Sun Microsystems, can I take your order please? */
513         if (!(hp->happy_flags & HFLAG_FENABLE)) {
514                 happy_meal_bb_write(hp, tregs, reg, value);
515                 return;
516         }
517
518         /* Would you like fries with that? */
519         hme_write32(hp, tregs + TCVR_FRAME,
520                     (FRAME_WRITE | (hp->paddr << 23) |
521                      ((reg & 0xff) << 18) | (value & 0xffff)));
522         while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
523                 udelay(20);
524
525         /* Anything else? */
526         if (!tries)
527                 printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
528
529         /* Fifty-two cents is your change, have a nice day. */
530 }
531
532 /* Auto negotiation.  The scheme is very simple.  We have a timer routine
533  * that keeps watching the auto negotiation process as it progresses.
534  * The DP83840 is first told to start doing it's thing, we set up the time
535  * and place the timer state machine in it's initial state.
536  *
537  * Here the timer peeks at the DP83840 status registers at each click to see
538  * if the auto negotiation has completed, we assume here that the DP83840 PHY
539  * will time out at some point and just tell us what (didn't) happen.  For
540  * complete coverage we only allow so many of the ticks at this level to run,
541  * when this has expired we print a warning message and try another strategy.
542  * This "other" strategy is to force the interface into various speed/duplex
543  * configurations and we stop when we see a link-up condition before the
544  * maximum number of "peek" ticks have occurred.
545  *
546  * Once a valid link status has been detected we configure the BigMAC and
547  * the rest of the Happy Meal to speak the most efficient protocol we could
548  * get a clean link for.  The priority for link configurations, highest first
549  * is:
550  *                 100 Base-T Full Duplex
551  *                 100 Base-T Half Duplex
552  *                 10 Base-T Full Duplex
553  *                 10 Base-T Half Duplex
554  *
555  * We start a new timer now, after a successful auto negotiation status has
556  * been detected.  This timer just waits for the link-up bit to get set in
557  * the BMCR of the DP83840.  When this occurs we print a kernel log message
558  * describing the link type in use and the fact that it is up.
559  *
560  * If a fatal error of some sort is signalled and detected in the interrupt
561  * service routine, and the chip is reset, or the link is ifconfig'd down
562  * and then back up, this entire process repeats itself all over again.
563  */
564 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
565 {
566         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
567
568         /* Downgrade from full to half duplex.  Only possible
569          * via ethtool.
570          */
571         if (hp->sw_bmcr & BMCR_FULLDPLX) {
572                 hp->sw_bmcr &= ~(BMCR_FULLDPLX);
573                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
574                 return 0;
575         }
576
577         /* Downgrade from 100 to 10. */
578         if (hp->sw_bmcr & BMCR_SPEED100) {
579                 hp->sw_bmcr &= ~(BMCR_SPEED100);
580                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
581                 return 0;
582         }
583
584         /* We've tried everything. */
585         return -1;
586 }
587
588 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
589 {
590         printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
591         if (hp->tcvr_type == external)
592                 printk("external ");
593         else
594                 printk("internal ");
595         printk("transceiver at ");
596         hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
597         if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
598                 if (hp->sw_lpa & LPA_100FULL)
599                         printk("100Mb/s, Full Duplex.\n");
600                 else
601                         printk("100Mb/s, Half Duplex.\n");
602         } else {
603                 if (hp->sw_lpa & LPA_10FULL)
604                         printk("10Mb/s, Full Duplex.\n");
605                 else
606                         printk("10Mb/s, Half Duplex.\n");
607         }
608 }
609
610 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
611 {
612         printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
613         if (hp->tcvr_type == external)
614                 printk("external ");
615         else
616                 printk("internal ");
617         printk("transceiver at ");
618         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
619         if (hp->sw_bmcr & BMCR_SPEED100)
620                 printk("100Mb/s, ");
621         else
622                 printk("10Mb/s, ");
623         if (hp->sw_bmcr & BMCR_FULLDPLX)
624                 printk("Full Duplex.\n");
625         else
626                 printk("Half Duplex.\n");
627 }
628
629 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
630 {
631         int full;
632
633         /* All we care about is making sure the bigmac tx_cfg has a
634          * proper duplex setting.
635          */
636         if (hp->timer_state == arbwait) {
637                 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
638                 if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
639                         goto no_response;
640                 if (hp->sw_lpa & LPA_100FULL)
641                         full = 1;
642                 else if (hp->sw_lpa & LPA_100HALF)
643                         full = 0;
644                 else if (hp->sw_lpa & LPA_10FULL)
645                         full = 1;
646                 else
647                         full = 0;
648         } else {
649                 /* Forcing a link mode. */
650                 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
651                 if (hp->sw_bmcr & BMCR_FULLDPLX)
652                         full = 1;
653                 else
654                         full = 0;
655         }
656
657         /* Before changing other bits in the tx_cfg register, and in
658          * general any of other the TX config registers too, you
659          * must:
660          * 1) Clear Enable
661          * 2) Poll with reads until that bit reads back as zero
662          * 3) Make TX configuration changes
663          * 4) Set Enable once more
664          */
665         hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
666                     hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
667                     ~(BIGMAC_TXCFG_ENABLE));
668         while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
669                 barrier();
670         if (full) {
671                 hp->happy_flags |= HFLAG_FULL;
672                 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
673                             hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
674                             BIGMAC_TXCFG_FULLDPLX);
675         } else {
676                 hp->happy_flags &= ~(HFLAG_FULL);
677                 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
678                             hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
679                             ~(BIGMAC_TXCFG_FULLDPLX));
680         }
681         hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
682                     hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
683                     BIGMAC_TXCFG_ENABLE);
684         return 0;
685 no_response:
686         return 1;
687 }
688
689 static int happy_meal_init(struct happy_meal *hp);
690
691 static int is_lucent_phy(struct happy_meal *hp)
692 {
693         void __iomem *tregs = hp->tcvregs;
694         unsigned short mr2, mr3;
695         int ret = 0;
696
697         mr2 = happy_meal_tcvr_read(hp, tregs, 2);
698         mr3 = happy_meal_tcvr_read(hp, tregs, 3);
699         if ((mr2 & 0xffff) == 0x0180 &&
700             ((mr3 & 0xffff) >> 10) == 0x1d)
701                 ret = 1;
702
703         return ret;
704 }
705
706 static void happy_meal_timer(unsigned long data)
707 {
708         struct happy_meal *hp = (struct happy_meal *) data;
709         void __iomem *tregs = hp->tcvregs;
710         int restart_timer = 0;
711
712         spin_lock_irq(&hp->happy_lock);
713
714         hp->timer_ticks++;
715         switch(hp->timer_state) {
716         case arbwait:
717                 /* Only allow for 5 ticks, thats 10 seconds and much too
718                  * long to wait for arbitration to complete.
719                  */
720                 if (hp->timer_ticks >= 10) {
721                         /* Enter force mode. */
722         do_force_mode:
723                         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
724                         printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
725                                hp->dev->name);
726                         hp->sw_bmcr = BMCR_SPEED100;
727                         happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
728
729                         if (!is_lucent_phy(hp)) {
730                                 /* OK, seems we need do disable the transceiver for the first
731                                  * tick to make sure we get an accurate link state at the
732                                  * second tick.
733                                  */
734                                 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
735                                 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
736                                 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
737                         }
738                         hp->timer_state = ltrywait;
739                         hp->timer_ticks = 0;
740                         restart_timer = 1;
741                 } else {
742                         /* Anything interesting happen? */
743                         hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
744                         if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
745                                 int ret;
746
747                                 /* Just what we've been waiting for... */
748                                 ret = set_happy_link_modes(hp, tregs);
749                                 if (ret) {
750                                         /* Ooops, something bad happened, go to force
751                                          * mode.
752                                          *
753                                          * XXX Broken hubs which don't support 802.3u
754                                          * XXX auto-negotiation make this happen as well.
755                                          */
756                                         goto do_force_mode;
757                                 }
758
759                                 /* Success, at least so far, advance our state engine. */
760                                 hp->timer_state = lupwait;
761                                 restart_timer = 1;
762                         } else {
763                                 restart_timer = 1;
764                         }
765                 }
766                 break;
767
768         case lupwait:
769                 /* Auto negotiation was successful and we are awaiting a
770                  * link up status.  I have decided to let this timer run
771                  * forever until some sort of error is signalled, reporting
772                  * a message to the user at 10 second intervals.
773                  */
774                 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
775                 if (hp->sw_bmsr & BMSR_LSTATUS) {
776                         /* Wheee, it's up, display the link mode in use and put
777                          * the timer to sleep.
778                          */
779                         display_link_mode(hp, tregs);
780                         hp->timer_state = asleep;
781                         restart_timer = 0;
782                 } else {
783                         if (hp->timer_ticks >= 10) {
784                                 printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
785                                        "not completely up.\n", hp->dev->name);
786                                 hp->timer_ticks = 0;
787                                 restart_timer = 1;
788                         } else {
789                                 restart_timer = 1;
790                         }
791                 }
792                 break;
793
794         case ltrywait:
795                 /* Making the timeout here too long can make it take
796                  * annoyingly long to attempt all of the link mode
797                  * permutations, but then again this is essentially
798                  * error recovery code for the most part.
799                  */
800                 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
801                 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
802                 if (hp->timer_ticks == 1) {
803                         if (!is_lucent_phy(hp)) {
804                                 /* Re-enable transceiver, we'll re-enable the transceiver next
805                                  * tick, then check link state on the following tick.
806                                  */
807                                 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
808                                 happy_meal_tcvr_write(hp, tregs,
809                                                       DP83840_CSCONFIG, hp->sw_csconfig);
810                         }
811                         restart_timer = 1;
812                         break;
813                 }
814                 if (hp->timer_ticks == 2) {
815                         if (!is_lucent_phy(hp)) {
816                                 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
817                                 happy_meal_tcvr_write(hp, tregs,
818                                                       DP83840_CSCONFIG, hp->sw_csconfig);
819                         }
820                         restart_timer = 1;
821                         break;
822                 }
823                 if (hp->sw_bmsr & BMSR_LSTATUS) {
824                         /* Force mode selection success. */
825                         display_forced_link_mode(hp, tregs);
826                         set_happy_link_modes(hp, tregs); /* XXX error? then what? */
827                         hp->timer_state = asleep;
828                         restart_timer = 0;
829                 } else {
830                         if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
831                                 int ret;
832
833                                 ret = try_next_permutation(hp, tregs);
834                                 if (ret == -1) {
835                                         /* Aieee, tried them all, reset the
836                                          * chip and try all over again.
837                                          */
838
839                                         /* Let the user know... */
840                                         printk(KERN_NOTICE "%s: Link down, cable problem?\n",
841                                                hp->dev->name);
842
843                                         ret = happy_meal_init(hp);
844                                         if (ret) {
845                                                 /* ho hum... */
846                                                 printk(KERN_ERR "%s: Error, cannot re-init the "
847                                                        "Happy Meal.\n", hp->dev->name);
848                                         }
849                                         goto out;
850                                 }
851                                 if (!is_lucent_phy(hp)) {
852                                         hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
853                                                                                DP83840_CSCONFIG);
854                                         hp->sw_csconfig |= CSCONFIG_TCVDISAB;
855                                         happy_meal_tcvr_write(hp, tregs,
856                                                               DP83840_CSCONFIG, hp->sw_csconfig);
857                                 }
858                                 hp->timer_ticks = 0;
859                                 restart_timer = 1;
860                         } else {
861                                 restart_timer = 1;
862                         }
863                 }
864                 break;
865
866         case asleep:
867         default:
868                 /* Can't happens.... */
869                 printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
870                        hp->dev->name);
871                 restart_timer = 0;
872                 hp->timer_ticks = 0;
873                 hp->timer_state = asleep; /* foo on you */
874                 break;
875         };
876
877         if (restart_timer) {
878                 hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
879                 add_timer(&hp->happy_timer);
880         }
881
882 out:
883         spin_unlock_irq(&hp->happy_lock);
884 }
885
886 #define TX_RESET_TRIES     32
887 #define RX_RESET_TRIES     32
888
889 /* hp->happy_lock must be held */
890 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
891 {
892         int tries = TX_RESET_TRIES;
893
894         HMD(("happy_meal_tx_reset: reset, "));
895
896         /* Would you like to try our SMCC Delux? */
897         hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
898         while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
899                 udelay(20);
900
901         /* Lettuce, tomato, buggy hardware (no extra charge)? */
902         if (!tries)
903                 printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
904
905         /* Take care. */
906         HMD(("done\n"));
907 }
908
909 /* hp->happy_lock must be held */
910 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
911 {
912         int tries = RX_RESET_TRIES;
913
914         HMD(("happy_meal_rx_reset: reset, "));
915
916         /* We have a special on GNU/Viking hardware bugs today. */
917         hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
918         while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
919                 udelay(20);
920
921         /* Will that be all? */
922         if (!tries)
923                 printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
924
925         /* Don't forget your vik_1137125_wa.  Have a nice day. */
926         HMD(("done\n"));
927 }
928
929 #define STOP_TRIES         16
930
931 /* hp->happy_lock must be held */
932 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
933 {
934         int tries = STOP_TRIES;
935
936         HMD(("happy_meal_stop: reset, "));
937
938         /* We're consolidating our STB products, it's your lucky day. */
939         hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
940         while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
941                 udelay(20);
942
943         /* Come back next week when we are "Sun Microelectronics". */
944         if (!tries)
945                 printk(KERN_ERR "happy meal: Fry guys.");
946
947         /* Remember: "Different name, same old buggy as shit hardware." */
948         HMD(("done\n"));
949 }
950
951 /* hp->happy_lock must be held */
952 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
953 {
954         struct net_device_stats *stats = &hp->net_stats;
955
956         stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
957         hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
958
959         stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
960         hme_write32(hp, bregs + BMAC_UNALECTR, 0);
961
962         stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
963         hme_write32(hp, bregs + BMAC_GLECTR, 0);
964
965         stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
966
967         stats->collisions +=
968                 (hme_read32(hp, bregs + BMAC_EXCTR) +
969                  hme_read32(hp, bregs + BMAC_LTCTR));
970         hme_write32(hp, bregs + BMAC_EXCTR, 0);
971         hme_write32(hp, bregs + BMAC_LTCTR, 0);
972 }
973
974 /* hp->happy_lock must be held */
975 static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
976 {
977         ASD(("happy_meal_poll_stop: "));
978
979         /* If polling disabled or not polling already, nothing to do. */
980         if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
981            (HFLAG_POLLENABLE | HFLAG_POLL)) {
982                 HMD(("not polling, return\n"));
983                 return;
984         }
985
986         /* Shut up the MIF. */
987         ASD(("were polling, mif ints off, "));
988         hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
989
990         /* Turn off polling. */
991         ASD(("polling off, "));
992         hme_write32(hp, tregs + TCVR_CFG,
993                     hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
994
995         /* We are no longer polling. */
996         hp->happy_flags &= ~(HFLAG_POLL);
997
998         /* Let the bits set. */
999         udelay(200);
1000         ASD(("done\n"));
1001 }
1002
1003 /* Only Sun can take such nice parts and fuck up the programming interface
1004  * like this.  Good job guys...
1005  */
1006 #define TCVR_RESET_TRIES       16 /* It should reset quickly        */
1007 #define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
1008
1009 /* hp->happy_lock must be held */
1010 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
1011 {
1012         u32 tconfig;
1013         int result, tries = TCVR_RESET_TRIES;
1014
1015         tconfig = hme_read32(hp, tregs + TCVR_CFG);
1016         ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
1017         if (hp->tcvr_type == external) {
1018                 ASD(("external<"));
1019                 hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1020                 hp->tcvr_type = internal;
1021                 hp->paddr = TCV_PADDR_ITX;
1022                 ASD(("ISOLATE,"));
1023                 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1024                                       (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1025                 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1026                 if (result == TCVR_FAILURE) {
1027                         ASD(("phyread_fail>\n"));
1028                         return -1;
1029                 }
1030                 ASD(("phyread_ok,PSELECT>"));
1031                 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1032                 hp->tcvr_type = external;
1033                 hp->paddr = TCV_PADDR_ETX;
1034         } else {
1035                 if (tconfig & TCV_CFG_MDIO1) {
1036                         ASD(("internal<PSELECT,"));
1037                         hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1038                         ASD(("ISOLATE,"));
1039                         happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1040                                               (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1041                         result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1042                         if (result == TCVR_FAILURE) {
1043                                 ASD(("phyread_fail>\n"));
1044                                 return -1;
1045                         }
1046                         ASD(("phyread_ok,~PSELECT>"));
1047                         hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1048                         hp->tcvr_type = internal;
1049                         hp->paddr = TCV_PADDR_ITX;
1050                 }
1051         }
1052
1053         ASD(("BMCR_RESET "));
1054         happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1055
1056         while (--tries) {
1057                 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1058                 if (result == TCVR_FAILURE)
1059                         return -1;
1060                 hp->sw_bmcr = result;
1061                 if (!(result & BMCR_RESET))
1062                         break;
1063                 udelay(20);
1064         }
1065         if (!tries) {
1066                 ASD(("BMCR RESET FAILED!\n"));
1067                 return -1;
1068         }
1069         ASD(("RESET_OK\n"));
1070
1071         /* Get fresh copies of the PHY registers. */
1072         hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1073         hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1074         hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1075         hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1076
1077         ASD(("UNISOLATE"));
1078         hp->sw_bmcr &= ~(BMCR_ISOLATE);
1079         happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1080
1081         tries = TCVR_UNISOLATE_TRIES;
1082         while (--tries) {
1083                 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1084                 if (result == TCVR_FAILURE)
1085                         return -1;
1086                 if (!(result & BMCR_ISOLATE))
1087                         break;
1088                 udelay(20);
1089         }
1090         if (!tries) {
1091                 ASD((" FAILED!\n"));
1092                 return -1;
1093         }
1094         ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1095         if (!is_lucent_phy(hp)) {
1096                 result = happy_meal_tcvr_read(hp, tregs,
1097                                               DP83840_CSCONFIG);
1098                 happy_meal_tcvr_write(hp, tregs,
1099                                       DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1100         }
1101         return 0;
1102 }
1103
1104 /* Figure out whether we have an internal or external transceiver.
1105  *
1106  * hp->happy_lock must be held
1107  */
1108 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1109 {
1110         unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1111
1112         ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1113         if (hp->happy_flags & HFLAG_POLL) {
1114                 /* If we are polling, we must stop to get the transceiver type. */
1115                 ASD(("<polling> "));
1116                 if (hp->tcvr_type == internal) {
1117                         if (tconfig & TCV_CFG_MDIO1) {
1118                                 ASD(("<internal> <poll stop> "));
1119                                 happy_meal_poll_stop(hp, tregs);
1120                                 hp->paddr = TCV_PADDR_ETX;
1121                                 hp->tcvr_type = external;
1122                                 ASD(("<external>\n"));
1123                                 tconfig &= ~(TCV_CFG_PENABLE);
1124                                 tconfig |= TCV_CFG_PSELECT;
1125                                 hme_write32(hp, tregs + TCVR_CFG, tconfig);
1126                         }
1127                 } else {
1128                         if (hp->tcvr_type == external) {
1129                                 ASD(("<external> "));
1130                                 if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1131                                         ASD(("<poll stop> "));
1132                                         happy_meal_poll_stop(hp, tregs);
1133                                         hp->paddr = TCV_PADDR_ITX;
1134                                         hp->tcvr_type = internal;
1135                                         ASD(("<internal>\n"));
1136                                         hme_write32(hp, tregs + TCVR_CFG,
1137                                                     hme_read32(hp, tregs + TCVR_CFG) &
1138                                                     ~(TCV_CFG_PSELECT));
1139                                 }
1140                                 ASD(("\n"));
1141                         } else {
1142                                 ASD(("<none>\n"));
1143                         }
1144                 }
1145         } else {
1146                 u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1147
1148                 /* Else we can just work off of the MDIO bits. */
1149                 ASD(("<not polling> "));
1150                 if (reread & TCV_CFG_MDIO1) {
1151                         hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1152                         hp->paddr = TCV_PADDR_ETX;
1153                         hp->tcvr_type = external;
1154                         ASD(("<external>\n"));
1155                 } else {
1156                         if (reread & TCV_CFG_MDIO0) {
1157                                 hme_write32(hp, tregs + TCVR_CFG,
1158                                             tconfig & ~(TCV_CFG_PSELECT));
1159                                 hp->paddr = TCV_PADDR_ITX;
1160                                 hp->tcvr_type = internal;
1161                                 ASD(("<internal>\n"));
1162                         } else {
1163                                 printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1164                                 hp->tcvr_type = none; /* Grrr... */
1165                                 ASD(("<none>\n"));
1166                         }
1167                 }
1168         }
1169 }
1170
1171 /* The receive ring buffers are a bit tricky to get right.  Here goes...
1172  *
1173  * The buffers we dma into must be 64 byte aligned.  So we use a special
1174  * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1175  * we really need.
1176  *
1177  * We use skb_reserve() to align the data block we get in the skb.  We
1178  * also program the etxregs->cfg register to use an offset of 2.  This
1179  * imperical constant plus the ethernet header size will always leave
1180  * us with a nicely aligned ip header once we pass things up to the
1181  * protocol layers.
1182  *
1183  * The numbers work out to:
1184  *
1185  *         Max ethernet frame size         1518
1186  *         Ethernet header size              14
1187  *         Happy Meal base offset             2
1188  *
1189  * Say a skb data area is at 0xf001b010, and its size alloced is
1190  * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1191  *
1192  * First our alloc_skb() routine aligns the data base to a 64 byte
1193  * boundary.  We now have 0xf001b040 as our skb data address.  We
1194  * plug this into the receive descriptor address.
1195  *
1196  * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1197  * So now the data we will end up looking at starts at 0xf001b042.  When
1198  * the packet arrives, we will check out the size received and subtract
1199  * this from the skb->length.  Then we just pass the packet up to the
1200  * protocols as is, and allocate a new skb to replace this slot we have
1201  * just received from.
1202  *
1203  * The ethernet layer will strip the ether header from the front of the
1204  * skb we just sent to it, this leaves us with the ip header sitting
1205  * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
1206  * Happy Meal has even checksummed the tcp/udp data for us.  The 16
1207  * bit checksum is obtained from the low bits of the receive descriptor
1208  * flags, thus:
1209  *
1210  *      skb->csum = rxd->rx_flags & 0xffff;
1211  *      skb->ip_summed = CHECKSUM_COMPLETE;
1212  *
1213  * before sending off the skb to the protocols, and we are good as gold.
1214  */
1215 static void happy_meal_clean_rings(struct happy_meal *hp)
1216 {
1217         int i;
1218
1219         for (i = 0; i < RX_RING_SIZE; i++) {
1220                 if (hp->rx_skbs[i] != NULL) {
1221                         struct sk_buff *skb = hp->rx_skbs[i];
1222                         struct happy_meal_rxd *rxd;
1223                         u32 dma_addr;
1224
1225                         rxd = &hp->happy_block->happy_meal_rxd[i];
1226                         dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1227                         hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE);
1228                         dev_kfree_skb_any(skb);
1229                         hp->rx_skbs[i] = NULL;
1230                 }
1231         }
1232
1233         for (i = 0; i < TX_RING_SIZE; i++) {
1234                 if (hp->tx_skbs[i] != NULL) {
1235                         struct sk_buff *skb = hp->tx_skbs[i];
1236                         struct happy_meal_txd *txd;
1237                         u32 dma_addr;
1238                         int frag;
1239
1240                         hp->tx_skbs[i] = NULL;
1241
1242                         for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1243                                 txd = &hp->happy_block->happy_meal_txd[i];
1244                                 dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1245                                 hme_dma_unmap(hp, dma_addr,
1246                                               (hme_read_desc32(hp, &txd->tx_flags)
1247                                                & TXFLAG_SIZE),
1248                                               DMA_TODEVICE);
1249
1250                                 if (frag != skb_shinfo(skb)->nr_frags)
1251                                         i++;
1252                         }
1253
1254                         dev_kfree_skb_any(skb);
1255                 }
1256         }
1257 }
1258
1259 /* hp->happy_lock must be held */
1260 static void happy_meal_init_rings(struct happy_meal *hp)
1261 {
1262         struct hmeal_init_block *hb = hp->happy_block;
1263         struct net_device *dev = hp->dev;
1264         int i;
1265
1266         HMD(("happy_meal_init_rings: counters to zero, "));
1267         hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1268
1269         /* Free any skippy bufs left around in the rings. */
1270         HMD(("clean, "));
1271         happy_meal_clean_rings(hp);
1272
1273         /* Now get new skippy bufs for the receive ring. */
1274         HMD(("init rxring, "));
1275         for (i = 0; i < RX_RING_SIZE; i++) {
1276                 struct sk_buff *skb;
1277
1278                 skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1279                 if (!skb) {
1280                         hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1281                         continue;
1282                 }
1283                 hp->rx_skbs[i] = skb;
1284                 skb->dev = dev;
1285
1286                 /* Because we reserve afterwards. */
1287                 skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET));
1288                 hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1289                               (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1290                               hme_dma_map(hp, skb->data, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE));
1291                 skb_reserve(skb, RX_OFFSET);
1292         }
1293
1294         HMD(("init txring, "));
1295         for (i = 0; i < TX_RING_SIZE; i++)
1296                 hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1297
1298         HMD(("done\n"));
1299 }
1300
1301 /* hp->happy_lock must be held */
1302 static void happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1303                                               void __iomem *tregs,
1304                                               struct ethtool_cmd *ep)
1305 {
1306         int timeout;
1307
1308         /* Read all of the registers we are interested in now. */
1309         hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1310         hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1311         hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1312         hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1313
1314         /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1315
1316         hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1317         if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1318                 /* Advertise everything we can support. */
1319                 if (hp->sw_bmsr & BMSR_10HALF)
1320                         hp->sw_advertise |= (ADVERTISE_10HALF);
1321                 else
1322                         hp->sw_advertise &= ~(ADVERTISE_10HALF);
1323
1324                 if (hp->sw_bmsr & BMSR_10FULL)
1325                         hp->sw_advertise |= (ADVERTISE_10FULL);
1326                 else
1327                         hp->sw_advertise &= ~(ADVERTISE_10FULL);
1328                 if (hp->sw_bmsr & BMSR_100HALF)
1329                         hp->sw_advertise |= (ADVERTISE_100HALF);
1330                 else
1331                         hp->sw_advertise &= ~(ADVERTISE_100HALF);
1332                 if (hp->sw_bmsr & BMSR_100FULL)
1333                         hp->sw_advertise |= (ADVERTISE_100FULL);
1334                 else
1335                         hp->sw_advertise &= ~(ADVERTISE_100FULL);
1336                 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1337
1338                 /* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1339                  * XXX and this is because the DP83840 does not support it, changes
1340                  * XXX would need to be made to the tx/rx logic in the driver as well
1341                  * XXX so I completely skip checking for it in the BMSR for now.
1342                  */
1343
1344 #ifdef AUTO_SWITCH_DEBUG
1345                 ASD(("%s: Advertising [ ", hp->dev->name));
1346                 if (hp->sw_advertise & ADVERTISE_10HALF)
1347                         ASD(("10H "));
1348                 if (hp->sw_advertise & ADVERTISE_10FULL)
1349                         ASD(("10F "));
1350                 if (hp->sw_advertise & ADVERTISE_100HALF)
1351                         ASD(("100H "));
1352                 if (hp->sw_advertise & ADVERTISE_100FULL)
1353                         ASD(("100F "));
1354 #endif
1355
1356                 /* Enable Auto-Negotiation, this is usually on already... */
1357                 hp->sw_bmcr |= BMCR_ANENABLE;
1358                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1359
1360                 /* Restart it to make sure it is going. */
1361                 hp->sw_bmcr |= BMCR_ANRESTART;
1362                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1363
1364                 /* BMCR_ANRESTART self clears when the process has begun. */
1365
1366                 timeout = 64;  /* More than enough. */
1367                 while (--timeout) {
1368                         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1369                         if (!(hp->sw_bmcr & BMCR_ANRESTART))
1370                                 break; /* got it. */
1371                         udelay(10);
1372                 }
1373                 if (!timeout) {
1374                         printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1375                                "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1376                         printk(KERN_NOTICE "%s: Performing force link detection.\n",
1377                                hp->dev->name);
1378                         goto force_link;
1379                 } else {
1380                         hp->timer_state = arbwait;
1381                 }
1382         } else {
1383 force_link:
1384                 /* Force the link up, trying first a particular mode.
1385                  * Either we are here at the request of ethtool or
1386                  * because the Happy Meal would not start to autoneg.
1387                  */
1388
1389                 /* Disable auto-negotiation in BMCR, enable the duplex and
1390                  * speed setting, init the timer state machine, and fire it off.
1391                  */
1392                 if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1393                         hp->sw_bmcr = BMCR_SPEED100;
1394                 } else {
1395                         if (ep->speed == SPEED_100)
1396                                 hp->sw_bmcr = BMCR_SPEED100;
1397                         else
1398                                 hp->sw_bmcr = 0;
1399                         if (ep->duplex == DUPLEX_FULL)
1400                                 hp->sw_bmcr |= BMCR_FULLDPLX;
1401                 }
1402                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1403
1404                 if (!is_lucent_phy(hp)) {
1405                         /* OK, seems we need do disable the transceiver for the first
1406                          * tick to make sure we get an accurate link state at the
1407                          * second tick.
1408                          */
1409                         hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1410                                                                DP83840_CSCONFIG);
1411                         hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1412                         happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1413                                               hp->sw_csconfig);
1414                 }
1415                 hp->timer_state = ltrywait;
1416         }
1417
1418         hp->timer_ticks = 0;
1419         hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
1420         hp->happy_timer.data = (unsigned long) hp;
1421         hp->happy_timer.function = &happy_meal_timer;
1422         add_timer(&hp->happy_timer);
1423 }
1424
1425 /* hp->happy_lock must be held */
1426 static int happy_meal_init(struct happy_meal *hp)
1427 {
1428         void __iomem *gregs        = hp->gregs;
1429         void __iomem *etxregs      = hp->etxregs;
1430         void __iomem *erxregs      = hp->erxregs;
1431         void __iomem *bregs        = hp->bigmacregs;
1432         void __iomem *tregs        = hp->tcvregs;
1433         u32 regtmp, rxcfg;
1434         unsigned char *e = &hp->dev->dev_addr[0];
1435
1436         /* If auto-negotiation timer is running, kill it. */
1437         del_timer(&hp->happy_timer);
1438
1439         HMD(("happy_meal_init: happy_flags[%08x] ",
1440              hp->happy_flags));
1441         if (!(hp->happy_flags & HFLAG_INIT)) {
1442                 HMD(("set HFLAG_INIT, "));
1443                 hp->happy_flags |= HFLAG_INIT;
1444                 happy_meal_get_counters(hp, bregs);
1445         }
1446
1447         /* Stop polling. */
1448         HMD(("to happy_meal_poll_stop\n"));
1449         happy_meal_poll_stop(hp, tregs);
1450
1451         /* Stop transmitter and receiver. */
1452         HMD(("happy_meal_init: to happy_meal_stop\n"));
1453         happy_meal_stop(hp, gregs);
1454
1455         /* Alloc and reset the tx/rx descriptor chains. */
1456         HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1457         happy_meal_init_rings(hp);
1458
1459         /* Shut up the MIF. */
1460         HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1461              hme_read32(hp, tregs + TCVR_IMASK)));
1462         hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1463
1464         /* See if we can enable the MIF frame on this card to speak to the DP83840. */
1465         if (hp->happy_flags & HFLAG_FENABLE) {
1466                 HMD(("use frame old[%08x], ",
1467                      hme_read32(hp, tregs + TCVR_CFG)));
1468                 hme_write32(hp, tregs + TCVR_CFG,
1469                             hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1470         } else {
1471                 HMD(("use bitbang old[%08x], ",
1472                      hme_read32(hp, tregs + TCVR_CFG)));
1473                 hme_write32(hp, tregs + TCVR_CFG,
1474                             hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1475         }
1476
1477         /* Check the state of the transceiver. */
1478         HMD(("to happy_meal_transceiver_check\n"));
1479         happy_meal_transceiver_check(hp, tregs);
1480
1481         /* Put the Big Mac into a sane state. */
1482         HMD(("happy_meal_init: "));
1483         switch(hp->tcvr_type) {
1484         case none:
1485                 /* Cannot operate if we don't know the transceiver type! */
1486                 HMD(("AAIEEE no transceiver type, EAGAIN"));
1487                 return -EAGAIN;
1488
1489         case internal:
1490                 /* Using the MII buffers. */
1491                 HMD(("internal, using MII, "));
1492                 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1493                 break;
1494
1495         case external:
1496                 /* Not using the MII, disable it. */
1497                 HMD(("external, disable MII, "));
1498                 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1499                 break;
1500         };
1501
1502         if (happy_meal_tcvr_reset(hp, tregs))
1503                 return -EAGAIN;
1504
1505         /* Reset the Happy Meal Big Mac transceiver and the receiver. */
1506         HMD(("tx/rx reset, "));
1507         happy_meal_tx_reset(hp, bregs);
1508         happy_meal_rx_reset(hp, bregs);
1509
1510         /* Set jam size and inter-packet gaps to reasonable defaults. */
1511         HMD(("jsize/ipg1/ipg2, "));
1512         hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1513         hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1514         hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1515
1516         /* Load up the MAC address and random seed. */
1517         HMD(("rseed/macaddr, "));
1518
1519         /* The docs recommend to use the 10LSB of our MAC here. */
1520         hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1521
1522         hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1523         hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1524         hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1525
1526         HMD(("htable, "));
1527         if ((hp->dev->flags & IFF_ALLMULTI) ||
1528             (hp->dev->mc_count > 64)) {
1529                 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1530                 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1531                 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1532                 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1533         } else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1534                 u16 hash_table[4];
1535                 struct dev_mc_list *dmi = hp->dev->mc_list;
1536                 char *addrs;
1537                 int i;
1538                 u32 crc;
1539
1540                 for (i = 0; i < 4; i++)
1541                         hash_table[i] = 0;
1542
1543                 for (i = 0; i < hp->dev->mc_count; i++) {
1544                         addrs = dmi->dmi_addr;
1545                         dmi = dmi->next;
1546
1547                         if (!(*addrs & 1))
1548                                 continue;
1549
1550                         crc = ether_crc_le(6, addrs);
1551                         crc >>= 26;
1552                         hash_table[crc >> 4] |= 1 << (crc & 0xf);
1553                 }
1554                 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1555                 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1556                 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1557                 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1558         } else {
1559                 hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1560                 hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1561                 hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1562                 hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1563         }
1564
1565         /* Set the RX and TX ring ptrs. */
1566         HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1567              ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1568              ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1569         hme_write32(hp, erxregs + ERX_RING,
1570                     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1571         hme_write32(hp, etxregs + ETX_RING,
1572                     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1573
1574         /* Parity issues in the ERX unit of some HME revisions can cause some
1575          * registers to not be written unless their parity is even.  Detect such
1576          * lost writes and simply rewrite with a low bit set (which will be ignored
1577          * since the rxring needs to be 2K aligned).
1578          */
1579         if (hme_read32(hp, erxregs + ERX_RING) !=
1580             ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1581                 hme_write32(hp, erxregs + ERX_RING,
1582                             ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1583                             | 0x4);
1584
1585         /* Set the supported burst sizes. */
1586         HMD(("happy_meal_init: old[%08x] bursts<",
1587              hme_read32(hp, gregs + GREG_CFG)));
1588
1589 #ifndef CONFIG_SPARC
1590         /* It is always PCI and can handle 64byte bursts. */
1591         hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1592 #else
1593         if ((hp->happy_bursts & DMA_BURST64) &&
1594             ((hp->happy_flags & HFLAG_PCI) != 0
1595 #ifdef CONFIG_SBUS
1596              || sbus_can_burst64(hp->happy_dev)
1597 #endif
1598              || 0)) {
1599                 u32 gcfg = GREG_CFG_BURST64;
1600
1601                 /* I have no idea if I should set the extended
1602                  * transfer mode bit for Cheerio, so for now I
1603                  * do not.  -DaveM
1604                  */
1605 #ifdef CONFIG_SBUS
1606                 if ((hp->happy_flags & HFLAG_PCI) == 0 &&
1607                     sbus_can_dma_64bit(hp->happy_dev)) {
1608                         sbus_set_sbus64(hp->happy_dev,
1609                                         hp->happy_bursts);
1610                         gcfg |= GREG_CFG_64BIT;
1611                 }
1612 #endif
1613
1614                 HMD(("64>"));
1615                 hme_write32(hp, gregs + GREG_CFG, gcfg);
1616         } else if (hp->happy_bursts & DMA_BURST32) {
1617                 HMD(("32>"));
1618                 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1619         } else if (hp->happy_bursts & DMA_BURST16) {
1620                 HMD(("16>"));
1621                 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1622         } else {
1623                 HMD(("XXX>"));
1624                 hme_write32(hp, gregs + GREG_CFG, 0);
1625         }
1626 #endif /* CONFIG_SPARC */
1627
1628         /* Turn off interrupts we do not want to hear. */
1629         HMD((", enable global interrupts, "));
1630         hme_write32(hp, gregs + GREG_IMASK,
1631                     (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1632                      GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1633
1634         /* Set the transmit ring buffer size. */
1635         HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1636              hme_read32(hp, etxregs + ETX_RSIZE)));
1637         hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1638
1639         /* Enable transmitter DVMA. */
1640         HMD(("tx dma enable old[%08x], ",
1641              hme_read32(hp, etxregs + ETX_CFG)));
1642         hme_write32(hp, etxregs + ETX_CFG,
1643                     hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1644
1645         /* This chip really rots, for the receiver sometimes when you
1646          * write to its control registers not all the bits get there
1647          * properly.  I cannot think of a sane way to provide complete
1648          * coverage for this hardware bug yet.
1649          */
1650         HMD(("erx regs bug old[%08x]\n",
1651              hme_read32(hp, erxregs + ERX_CFG)));
1652         hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1653         regtmp = hme_read32(hp, erxregs + ERX_CFG);
1654         hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1655         if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1656                 printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1657                 printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1658                        ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1659                 /* XXX Should return failure here... */
1660         }
1661
1662         /* Enable Big Mac hash table filter. */
1663         HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1664              hme_read32(hp, bregs + BMAC_RXCFG)));
1665         rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1666         if (hp->dev->flags & IFF_PROMISC)
1667                 rxcfg |= BIGMAC_RXCFG_PMISC;
1668         hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1669
1670         /* Let the bits settle in the chip. */
1671         udelay(10);
1672
1673         /* Ok, configure the Big Mac transmitter. */
1674         HMD(("BIGMAC init, "));
1675         regtmp = 0;
1676         if (hp->happy_flags & HFLAG_FULL)
1677                 regtmp |= BIGMAC_TXCFG_FULLDPLX;
1678
1679         /* Don't turn on the "don't give up" bit for now.  It could cause hme
1680          * to deadlock with the PHY if a Jabber occurs.
1681          */
1682         hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1683
1684         /* Give up after 16 TX attempts. */
1685         hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1686
1687         /* Enable the output drivers no matter what. */
1688         regtmp = BIGMAC_XCFG_ODENABLE;
1689
1690         /* If card can do lance mode, enable it. */
1691         if (hp->happy_flags & HFLAG_LANCE)
1692                 regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1693
1694         /* Disable the MII buffers if using external transceiver. */
1695         if (hp->tcvr_type == external)
1696                 regtmp |= BIGMAC_XCFG_MIIDISAB;
1697
1698         HMD(("XIF config old[%08x], ",
1699              hme_read32(hp, bregs + BMAC_XIFCFG)));
1700         hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1701
1702         /* Start things up. */
1703         HMD(("tx old[%08x] and rx [%08x] ON!\n",
1704              hme_read32(hp, bregs + BMAC_TXCFG),
1705              hme_read32(hp, bregs + BMAC_RXCFG)));
1706         hme_write32(hp, bregs + BMAC_TXCFG,
1707                     hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1708         hme_write32(hp, bregs + BMAC_RXCFG,
1709                     hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1710
1711         /* Get the autonegotiation started, and the watch timer ticking. */
1712         happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1713
1714         /* Success. */
1715         return 0;
1716 }
1717
1718 /* hp->happy_lock must be held */
1719 static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1720 {
1721         void __iomem *tregs     = hp->tcvregs;
1722         void __iomem *bregs     = hp->bigmacregs;
1723         void __iomem *gregs     = hp->gregs;
1724
1725         happy_meal_stop(hp, gregs);
1726         hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1727         if (hp->happy_flags & HFLAG_FENABLE)
1728                 hme_write32(hp, tregs + TCVR_CFG,
1729                             hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1730         else
1731                 hme_write32(hp, tregs + TCVR_CFG,
1732                             hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1733         happy_meal_transceiver_check(hp, tregs);
1734         switch(hp->tcvr_type) {
1735         case none:
1736                 return;
1737         case internal:
1738                 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1739                 break;
1740         case external:
1741                 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1742                 break;
1743         };
1744         if (happy_meal_tcvr_reset(hp, tregs))
1745                 return;
1746
1747         /* Latch PHY registers as of now. */
1748         hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1749         hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1750
1751         /* Advertise everything we can support. */
1752         if (hp->sw_bmsr & BMSR_10HALF)
1753                 hp->sw_advertise |= (ADVERTISE_10HALF);
1754         else
1755                 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1756
1757         if (hp->sw_bmsr & BMSR_10FULL)
1758                 hp->sw_advertise |= (ADVERTISE_10FULL);
1759         else
1760                 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1761         if (hp->sw_bmsr & BMSR_100HALF)
1762                 hp->sw_advertise |= (ADVERTISE_100HALF);
1763         else
1764                 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1765         if (hp->sw_bmsr & BMSR_100FULL)
1766                 hp->sw_advertise |= (ADVERTISE_100FULL);
1767         else
1768                 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1769
1770         /* Update the PHY advertisement register. */
1771         happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1772 }
1773
1774 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1775  * the hardware, so we cannot re-read it and get a correct value.
1776  *
1777  * hp->happy_lock must be held
1778  */
1779 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1780 {
1781         int reset = 0;
1782
1783         /* Only print messages for non-counter related interrupts. */
1784         if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1785                       GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1786                       GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1787                       GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1788                       GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1789                       GREG_STAT_SLVPERR))
1790                 printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1791                        hp->dev->name, status);
1792
1793         if (status & GREG_STAT_RFIFOVF) {
1794                 /* Receive FIFO overflow is harmless and the hardware will take
1795                    care of it, just some packets are lost. Who cares. */
1796                 printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1797         }
1798
1799         if (status & GREG_STAT_STSTERR) {
1800                 /* BigMAC SQE link test failed. */
1801                 printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1802                 reset = 1;
1803         }
1804
1805         if (status & GREG_STAT_TFIFO_UND) {
1806                 /* Transmit FIFO underrun, again DMA error likely. */
1807                 printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1808                        hp->dev->name);
1809                 reset = 1;
1810         }
1811
1812         if (status & GREG_STAT_MAXPKTERR) {
1813                 /* Driver error, tried to transmit something larger
1814                  * than ethernet max mtu.
1815                  */
1816                 printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1817                 reset = 1;
1818         }
1819
1820         if (status & GREG_STAT_NORXD) {
1821                 /* This is harmless, it just means the system is
1822                  * quite loaded and the incoming packet rate was
1823                  * faster than the interrupt handler could keep up
1824                  * with.
1825                  */
1826                 printk(KERN_INFO "%s: Happy Meal out of receive "
1827                        "descriptors, packet dropped.\n",
1828                        hp->dev->name);
1829         }
1830
1831         if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1832                 /* All sorts of DMA receive errors. */
1833                 printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1834                 if (status & GREG_STAT_RXERR)
1835                         printk("GenericError ");
1836                 if (status & GREG_STAT_RXPERR)
1837                         printk("ParityError ");
1838                 if (status & GREG_STAT_RXTERR)
1839                         printk("RxTagBotch ");
1840                 printk("]\n");
1841                 reset = 1;
1842         }
1843
1844         if (status & GREG_STAT_EOPERR) {
1845                 /* Driver bug, didn't set EOP bit in tx descriptor given
1846                  * to the happy meal.
1847                  */
1848                 printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1849                        hp->dev->name);
1850                 reset = 1;
1851         }
1852
1853         if (status & GREG_STAT_MIFIRQ) {
1854                 /* MIF signalled an interrupt, were we polling it? */
1855                 printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1856         }
1857
1858         if (status &
1859             (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1860                 /* All sorts of transmit DMA errors. */
1861                 printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1862                 if (status & GREG_STAT_TXEACK)
1863                         printk("GenericError ");
1864                 if (status & GREG_STAT_TXLERR)
1865                         printk("LateError ");
1866                 if (status & GREG_STAT_TXPERR)
1867                         printk("ParityErro ");
1868                 if (status & GREG_STAT_TXTERR)
1869                         printk("TagBotch ");
1870                 printk("]\n");
1871                 reset = 1;
1872         }
1873
1874         if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1875                 /* Bus or parity error when cpu accessed happy meal registers
1876                  * or it's internal FIFO's.  Should never see this.
1877                  */
1878                 printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1879                        hp->dev->name,
1880                        (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1881                 reset = 1;
1882         }
1883
1884         if (reset) {
1885                 printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1886                 happy_meal_init(hp);
1887                 return 1;
1888         }
1889         return 0;
1890 }
1891
1892 /* hp->happy_lock must be held */
1893 static void happy_meal_mif_interrupt(struct happy_meal *hp)
1894 {
1895         void __iomem *tregs = hp->tcvregs;
1896
1897         printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1898         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1899         hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1900
1901         /* Use the fastest transmission protocol possible. */
1902         if (hp->sw_lpa & LPA_100FULL) {
1903                 printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1904                 hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1905         } else if (hp->sw_lpa & LPA_100HALF) {
1906                 printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1907                 hp->sw_bmcr |= BMCR_SPEED100;
1908         } else if (hp->sw_lpa & LPA_10FULL) {
1909                 printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1910                 hp->sw_bmcr |= BMCR_FULLDPLX;
1911         } else {
1912                 printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1913         }
1914         happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1915
1916         /* Finally stop polling and shut up the MIF. */
1917         happy_meal_poll_stop(hp, tregs);
1918 }
1919
1920 #ifdef TXDEBUG
1921 #define TXD(x) printk x
1922 #else
1923 #define TXD(x)
1924 #endif
1925
1926 /* hp->happy_lock must be held */
1927 static void happy_meal_tx(struct happy_meal *hp)
1928 {
1929         struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1930         struct happy_meal_txd *this;
1931         struct net_device *dev = hp->dev;
1932         int elem;
1933
1934         elem = hp->tx_old;
1935         TXD(("TX<"));
1936         while (elem != hp->tx_new) {
1937                 struct sk_buff *skb;
1938                 u32 flags, dma_addr, dma_len;
1939                 int frag;
1940
1941                 TXD(("[%d]", elem));
1942                 this = &txbase[elem];
1943                 flags = hme_read_desc32(hp, &this->tx_flags);
1944                 if (flags & TXFLAG_OWN)
1945                         break;
1946                 skb = hp->tx_skbs[elem];
1947                 if (skb_shinfo(skb)->nr_frags) {
1948                         int last;
1949
1950                         last = elem + skb_shinfo(skb)->nr_frags;
1951                         last &= (TX_RING_SIZE - 1);
1952                         flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1953                         if (flags & TXFLAG_OWN)
1954                                 break;
1955                 }
1956                 hp->tx_skbs[elem] = NULL;
1957                 hp->net_stats.tx_bytes += skb->len;
1958
1959                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1960                         dma_addr = hme_read_desc32(hp, &this->tx_addr);
1961                         dma_len = hme_read_desc32(hp, &this->tx_flags);
1962
1963                         dma_len &= TXFLAG_SIZE;
1964                         hme_dma_unmap(hp, dma_addr, dma_len, DMA_TODEVICE);
1965
1966                         elem = NEXT_TX(elem);
1967                         this = &txbase[elem];
1968                 }
1969
1970                 dev_kfree_skb_irq(skb);
1971                 hp->net_stats.tx_packets++;
1972         }
1973         hp->tx_old = elem;
1974         TXD((">"));
1975
1976         if (netif_queue_stopped(dev) &&
1977             TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1978                 netif_wake_queue(dev);
1979 }
1980
1981 #ifdef RXDEBUG
1982 #define RXD(x) printk x
1983 #else
1984 #define RXD(x)
1985 #endif
1986
1987 /* Originally I used to handle the allocation failure by just giving back just
1988  * that one ring buffer to the happy meal.  Problem is that usually when that
1989  * condition is triggered, the happy meal expects you to do something reasonable
1990  * with all of the packets it has DMA'd in.  So now I just drop the entire
1991  * ring when we cannot get a new skb and give them all back to the happy meal,
1992  * maybe things will be "happier" now.
1993  *
1994  * hp->happy_lock must be held
1995  */
1996 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1997 {
1998         struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1999         struct happy_meal_rxd *this;
2000         int elem = hp->rx_new, drops = 0;
2001         u32 flags;
2002
2003         RXD(("RX<"));
2004         this = &rxbase[elem];
2005         while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
2006                 struct sk_buff *skb;
2007                 int len = flags >> 16;
2008                 u16 csum = flags & RXFLAG_CSUM;
2009                 u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
2010
2011                 RXD(("[%d ", elem));
2012
2013                 /* Check for errors. */
2014                 if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2015                         RXD(("ERR(%08x)]", flags));
2016                         hp->net_stats.rx_errors++;
2017                         if (len < ETH_ZLEN)
2018                                 hp->net_stats.rx_length_errors++;
2019                         if (len & (RXFLAG_OVERFLOW >> 16)) {
2020                                 hp->net_stats.rx_over_errors++;
2021                                 hp->net_stats.rx_fifo_errors++;
2022                         }
2023
2024                         /* Return it to the Happy meal. */
2025         drop_it:
2026                         hp->net_stats.rx_dropped++;
2027                         hme_write_rxd(hp, this,
2028                                       (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2029                                       dma_addr);
2030                         goto next;
2031                 }
2032                 skb = hp->rx_skbs[elem];
2033                 if (len > RX_COPY_THRESHOLD) {
2034                         struct sk_buff *new_skb;
2035
2036                         /* Now refill the entry, if we can. */
2037                         new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2038                         if (new_skb == NULL) {
2039                                 drops++;
2040                                 goto drop_it;
2041                         }
2042                         hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE);
2043                         hp->rx_skbs[elem] = new_skb;
2044                         new_skb->dev = dev;
2045                         skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET));
2046                         hme_write_rxd(hp, this,
2047                                       (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2048                                       hme_dma_map(hp, new_skb->data, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE));
2049                         skb_reserve(new_skb, RX_OFFSET);
2050
2051                         /* Trim the original skb for the netif. */
2052                         skb_trim(skb, len);
2053                 } else {
2054                         struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
2055
2056                         if (copy_skb == NULL) {
2057                                 drops++;
2058                                 goto drop_it;
2059                         }
2060
2061                         copy_skb->dev = dev;
2062                         skb_reserve(copy_skb, 2);
2063                         skb_put(copy_skb, len);
2064                         hme_dma_sync_for_cpu(hp, dma_addr, len, DMA_FROMDEVICE);
2065                         memcpy(copy_skb->data, skb->data, len);
2066                         hme_dma_sync_for_device(hp, dma_addr, len, DMA_FROMDEVICE);
2067
2068                         /* Reuse original ring buffer. */
2069                         hme_write_rxd(hp, this,
2070                                       (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2071                                       dma_addr);
2072
2073                         skb = copy_skb;
2074                 }
2075
2076                 /* This card is _fucking_ hot... */
2077                 skb->csum = ntohs(csum ^ 0xffff);
2078                 skb->ip_summed = CHECKSUM_COMPLETE;
2079
2080                 RXD(("len=%d csum=%4x]", len, csum));
2081                 skb->protocol = eth_type_trans(skb, dev);
2082                 netif_rx(skb);
2083
2084                 dev->last_rx = jiffies;
2085                 hp->net_stats.rx_packets++;
2086                 hp->net_stats.rx_bytes += len;
2087         next:
2088                 elem = NEXT_RX(elem);
2089                 this = &rxbase[elem];
2090         }
2091         hp->rx_new = elem;
2092         if (drops)
2093                 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2094         RXD((">"));
2095 }
2096
2097 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2098 {
2099         struct net_device *dev = dev_id;
2100         struct happy_meal *hp  = netdev_priv(dev);
2101         u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2102
2103         HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2104
2105         spin_lock(&hp->happy_lock);
2106
2107         if (happy_status & GREG_STAT_ERRORS) {
2108                 HMD(("ERRORS "));
2109                 if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2110                         goto out;
2111         }
2112
2113         if (happy_status & GREG_STAT_MIFIRQ) {
2114                 HMD(("MIFIRQ "));
2115                 happy_meal_mif_interrupt(hp);
2116         }
2117
2118         if (happy_status & GREG_STAT_TXALL) {
2119                 HMD(("TXALL "));
2120                 happy_meal_tx(hp);
2121         }
2122
2123         if (happy_status & GREG_STAT_RXTOHOST) {
2124                 HMD(("RXTOHOST "));
2125                 happy_meal_rx(hp, dev);
2126         }
2127
2128         HMD(("done\n"));
2129 out:
2130         spin_unlock(&hp->happy_lock);
2131
2132         return IRQ_HANDLED;
2133 }
2134
2135 #ifdef CONFIG_SBUS
2136 static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2137 {
2138         struct quattro *qp = (struct quattro *) cookie;
2139         int i;
2140
2141         for (i = 0; i < 4; i++) {
2142                 struct net_device *dev = qp->happy_meals[i];
2143                 struct happy_meal *hp  = dev->priv;
2144                 u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2145
2146                 HMD(("quattro_interrupt: status=%08x ", happy_status));
2147
2148                 if (!(happy_status & (GREG_STAT_ERRORS |
2149                                       GREG_STAT_MIFIRQ |
2150                                       GREG_STAT_TXALL |
2151                                       GREG_STAT_RXTOHOST)))
2152                         continue;
2153
2154                 spin_lock(&hp->happy_lock);
2155
2156                 if (happy_status & GREG_STAT_ERRORS) {
2157                         HMD(("ERRORS "));
2158                         if (happy_meal_is_not_so_happy(hp, happy_status))
2159                                 goto next;
2160                 }
2161
2162                 if (happy_status & GREG_STAT_MIFIRQ) {
2163                         HMD(("MIFIRQ "));
2164                         happy_meal_mif_interrupt(hp);
2165                 }
2166
2167                 if (happy_status & GREG_STAT_TXALL) {
2168                         HMD(("TXALL "));
2169                         happy_meal_tx(hp);
2170                 }
2171
2172                 if (happy_status & GREG_STAT_RXTOHOST) {
2173                         HMD(("RXTOHOST "));
2174                         happy_meal_rx(hp, dev);
2175                 }
2176
2177         next:
2178                 spin_unlock(&hp->happy_lock);
2179         }
2180         HMD(("done\n"));
2181
2182         return IRQ_HANDLED;
2183 }
2184 #endif
2185
2186 static int happy_meal_open(struct net_device *dev)
2187 {
2188         struct happy_meal *hp = dev->priv;
2189         int res;
2190
2191         HMD(("happy_meal_open: "));
2192
2193         /* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2194          * into a single source which we register handling at probe time.
2195          */
2196         if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2197                 if (request_irq(dev->irq, &happy_meal_interrupt,
2198                                 IRQF_SHARED, dev->name, (void *)dev)) {
2199                         HMD(("EAGAIN\n"));
2200                         printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2201                                dev->irq);
2202
2203                         return -EAGAIN;
2204                 }
2205         }
2206
2207         HMD(("to happy_meal_init\n"));
2208
2209         spin_lock_irq(&hp->happy_lock);
2210         res = happy_meal_init(hp);
2211         spin_unlock_irq(&hp->happy_lock);
2212
2213         if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2214                 free_irq(dev->irq, dev);
2215         return res;
2216 }
2217
2218 static int happy_meal_close(struct net_device *dev)
2219 {
2220         struct happy_meal *hp = dev->priv;
2221
2222         spin_lock_irq(&hp->happy_lock);
2223         happy_meal_stop(hp, hp->gregs);
2224         happy_meal_clean_rings(hp);
2225
2226         /* If auto-negotiation timer is running, kill it. */
2227         del_timer(&hp->happy_timer);
2228
2229         spin_unlock_irq(&hp->happy_lock);
2230
2231         /* On Quattro QFE cards, all hme interrupts are concentrated
2232          * into a single source which we register handling at probe
2233          * time and never unregister.
2234          */
2235         if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2236                 free_irq(dev->irq, dev);
2237
2238         return 0;
2239 }
2240
2241 #ifdef SXDEBUG
2242 #define SXD(x) printk x
2243 #else
2244 #define SXD(x)
2245 #endif
2246
2247 static void happy_meal_tx_timeout(struct net_device *dev)
2248 {
2249         struct happy_meal *hp = dev->priv;
2250
2251         printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2252         tx_dump_log();
2253         printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2254                 hme_read32(hp, hp->gregs + GREG_STAT),
2255                 hme_read32(hp, hp->etxregs + ETX_CFG),
2256                 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2257
2258         spin_lock_irq(&hp->happy_lock);
2259         happy_meal_init(hp);
2260         spin_unlock_irq(&hp->happy_lock);
2261
2262         netif_wake_queue(dev);
2263 }
2264
2265 static int happy_meal_start_xmit(struct sk_buff *skb, struct net_device *dev)
2266 {
2267         struct happy_meal *hp = dev->priv;
2268         int entry;
2269         u32 tx_flags;
2270
2271         tx_flags = TXFLAG_OWN;
2272         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2273                 u32 csum_start_off, csum_stuff_off;
2274
2275                 csum_start_off = (u32) (skb->h.raw - skb->data);
2276                 csum_stuff_off = csum_start_off + skb->csum_offset;
2277
2278                 tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2279                             ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2280                             ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2281         }
2282
2283         spin_lock_irq(&hp->happy_lock);
2284
2285         if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2286                 netif_stop_queue(dev);
2287                 spin_unlock_irq(&hp->happy_lock);
2288                 printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2289                        dev->name);
2290                 return 1;
2291         }
2292
2293         entry = hp->tx_new;
2294         SXD(("SX<l[%d]e[%d]>", len, entry));
2295         hp->tx_skbs[entry] = skb;
2296
2297         if (skb_shinfo(skb)->nr_frags == 0) {
2298                 u32 mapping, len;
2299
2300                 len = skb->len;
2301                 mapping = hme_dma_map(hp, skb->data, len, DMA_TODEVICE);
2302                 tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2303                 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2304                               (tx_flags | (len & TXFLAG_SIZE)),
2305                               mapping);
2306                 entry = NEXT_TX(entry);
2307         } else {
2308                 u32 first_len, first_mapping;
2309                 int frag, first_entry = entry;
2310
2311                 /* We must give this initial chunk to the device last.
2312                  * Otherwise we could race with the device.
2313                  */
2314                 first_len = skb_headlen(skb);
2315                 first_mapping = hme_dma_map(hp, skb->data, first_len, DMA_TODEVICE);
2316                 entry = NEXT_TX(entry);
2317
2318                 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2319                         skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2320                         u32 len, mapping, this_txflags;
2321
2322                         len = this_frag->size;
2323                         mapping = hme_dma_map(hp,
2324                                               ((void *) page_address(this_frag->page) +
2325                                                this_frag->page_offset),
2326                                               len, DMA_TODEVICE);
2327                         this_txflags = tx_flags;
2328                         if (frag == skb_shinfo(skb)->nr_frags - 1)
2329                                 this_txflags |= TXFLAG_EOP;
2330                         hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2331                                       (this_txflags | (len & TXFLAG_SIZE)),
2332                                       mapping);
2333                         entry = NEXT_TX(entry);
2334                 }
2335                 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2336                               (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2337                               first_mapping);
2338         }
2339
2340         hp->tx_new = entry;
2341
2342         if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2343                 netif_stop_queue(dev);
2344
2345         /* Get it going. */
2346         hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2347
2348         spin_unlock_irq(&hp->happy_lock);
2349
2350         dev->trans_start = jiffies;
2351
2352         tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2353         return 0;
2354 }
2355
2356 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2357 {
2358         struct happy_meal *hp = dev->priv;
2359
2360         spin_lock_irq(&hp->happy_lock);
2361         happy_meal_get_counters(hp, hp->bigmacregs);
2362         spin_unlock_irq(&hp->happy_lock);
2363
2364         return &hp->net_stats;
2365 }
2366
2367 static void happy_meal_set_multicast(struct net_device *dev)
2368 {
2369         struct happy_meal *hp = dev->priv;
2370         void __iomem *bregs = hp->bigmacregs;
2371         struct dev_mc_list *dmi = dev->mc_list;
2372         char *addrs;
2373         int i;
2374         u32 crc;
2375
2376         spin_lock_irq(&hp->happy_lock);
2377
2378         netif_stop_queue(dev);
2379
2380         if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
2381                 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2382                 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2383                 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2384                 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2385         } else if (dev->flags & IFF_PROMISC) {
2386                 hme_write32(hp, bregs + BMAC_RXCFG,
2387                             hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2388         } else {
2389                 u16 hash_table[4];
2390
2391                 for (i = 0; i < 4; i++)
2392                         hash_table[i] = 0;
2393
2394                 for (i = 0; i < dev->mc_count; i++) {
2395                         addrs = dmi->dmi_addr;
2396                         dmi = dmi->next;
2397
2398                         if (!(*addrs & 1))
2399                                 continue;
2400
2401                         crc = ether_crc_le(6, addrs);
2402                         crc >>= 26;
2403                         hash_table[crc >> 4] |= 1 << (crc & 0xf);
2404                 }
2405                 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2406                 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2407                 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2408                 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2409         }
2410
2411         netif_wake_queue(dev);
2412
2413         spin_unlock_irq(&hp->happy_lock);
2414 }
2415
2416 /* Ethtool support... */
2417 static int hme_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2418 {
2419         struct happy_meal *hp = dev->priv;
2420
2421         cmd->supported =
2422                 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2423                  SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2424                  SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2425
2426         /* XXX hardcoded stuff for now */
2427         cmd->port = PORT_TP; /* XXX no MII support */
2428         cmd->transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */
2429         cmd->phy_address = 0; /* XXX fixed PHYAD */
2430
2431         /* Record PHY settings. */
2432         spin_lock_irq(&hp->happy_lock);
2433         hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2434         hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2435         spin_unlock_irq(&hp->happy_lock);
2436
2437         if (hp->sw_bmcr & BMCR_ANENABLE) {
2438                 cmd->autoneg = AUTONEG_ENABLE;
2439                 cmd->speed =
2440                         (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2441                         SPEED_100 : SPEED_10;
2442                 if (cmd->speed == SPEED_100)
2443                         cmd->duplex =
2444                                 (hp->sw_lpa & (LPA_100FULL)) ?
2445                                 DUPLEX_FULL : DUPLEX_HALF;
2446                 else
2447                         cmd->duplex =
2448                                 (hp->sw_lpa & (LPA_10FULL)) ?
2449                                 DUPLEX_FULL : DUPLEX_HALF;
2450         } else {
2451                 cmd->autoneg = AUTONEG_DISABLE;
2452                 cmd->speed =
2453                         (hp->sw_bmcr & BMCR_SPEED100) ?
2454                         SPEED_100 : SPEED_10;
2455                 cmd->duplex =
2456                         (hp->sw_bmcr & BMCR_FULLDPLX) ?
2457                         DUPLEX_FULL : DUPLEX_HALF;
2458         }
2459         return 0;
2460 }
2461
2462 static int hme_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2463 {
2464         struct happy_meal *hp = dev->priv;
2465
2466         /* Verify the settings we care about. */
2467         if (cmd->autoneg != AUTONEG_ENABLE &&
2468             cmd->autoneg != AUTONEG_DISABLE)
2469                 return -EINVAL;
2470         if (cmd->autoneg == AUTONEG_DISABLE &&
2471             ((cmd->speed != SPEED_100 &&
2472               cmd->speed != SPEED_10) ||
2473              (cmd->duplex != DUPLEX_HALF &&
2474               cmd->duplex != DUPLEX_FULL)))
2475                 return -EINVAL;
2476
2477         /* Ok, do it to it. */
2478         spin_lock_irq(&hp->happy_lock);
2479         del_timer(&hp->happy_timer);
2480         happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2481         spin_unlock_irq(&hp->happy_lock);
2482
2483         return 0;
2484 }
2485
2486 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2487 {
2488         struct happy_meal *hp = dev->priv;
2489
2490         strcpy(info->driver, "sunhme");
2491         strcpy(info->version, "2.02");
2492         if (hp->happy_flags & HFLAG_PCI) {
2493                 struct pci_dev *pdev = hp->happy_dev;
2494                 strcpy(info->bus_info, pci_name(pdev));
2495         }
2496 #ifdef CONFIG_SBUS
2497         else {
2498                 struct sbus_dev *sdev = hp->happy_dev;
2499                 sprintf(info->bus_info, "SBUS:%d",
2500                         sdev->slot);
2501         }
2502 #endif
2503 }
2504
2505 static u32 hme_get_link(struct net_device *dev)
2506 {
2507         struct happy_meal *hp = dev->priv;
2508
2509         spin_lock_irq(&hp->happy_lock);
2510         hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2511         spin_unlock_irq(&hp->happy_lock);
2512
2513         return (hp->sw_bmsr & BMSR_LSTATUS);
2514 }
2515
2516 static const struct ethtool_ops hme_ethtool_ops = {
2517         .get_settings           = hme_get_settings,
2518         .set_settings           = hme_set_settings,
2519         .get_drvinfo            = hme_get_drvinfo,
2520         .get_link               = hme_get_link,
2521 };
2522
2523 static int hme_version_printed;
2524
2525 #ifdef CONFIG_SBUS
2526 void __devinit quattro_get_ranges(struct quattro *qp)
2527 {
2528         struct sbus_dev *sdev = qp->quattro_dev;
2529         int err;
2530
2531         err = prom_getproperty(sdev->prom_node,
2532                                "ranges",
2533                                (char *)&qp->ranges[0],
2534                                sizeof(qp->ranges));
2535         if (err == 0 || err == -1) {
2536                 qp->nranges = 0;
2537                 return;
2538         }
2539         qp->nranges = (err / sizeof(struct linux_prom_ranges));
2540 }
2541
2542 static void __devinit quattro_apply_ranges(struct quattro *qp, struct happy_meal *hp)
2543 {
2544         struct sbus_dev *sdev = hp->happy_dev;
2545         int rng;
2546
2547         for (rng = 0; rng < qp->nranges; rng++) {
2548                 struct linux_prom_ranges *rngp = &qp->ranges[rng];
2549                 int reg;
2550
2551                 for (reg = 0; reg < 5; reg++) {
2552                         if (sdev->reg_addrs[reg].which_io ==
2553                             rngp->ot_child_space)
2554                                 break;
2555                 }
2556                 if (reg == 5)
2557                         continue;
2558
2559                 sdev->reg_addrs[reg].which_io = rngp->ot_parent_space;
2560                 sdev->reg_addrs[reg].phys_addr += rngp->ot_parent_base;
2561         }
2562 }
2563
2564 /* Given a happy meal sbus device, find it's quattro parent.
2565  * If none exist, allocate and return a new one.
2566  *
2567  * Return NULL on failure.
2568  */
2569 static struct quattro * __devinit quattro_sbus_find(struct sbus_dev *goal_sdev)
2570 {
2571         struct sbus_dev *sdev;
2572         struct quattro *qp;
2573         int i;
2574
2575         for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2576                 for (i = 0, sdev = qp->quattro_dev;
2577                      (sdev != NULL) && (i < 4);
2578                      sdev = sdev->next, i++) {
2579                         if (sdev == goal_sdev)
2580                                 return qp;
2581                 }
2582         }
2583
2584         qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2585         if (qp != NULL) {
2586                 int i;
2587
2588                 for (i = 0; i < 4; i++)
2589                         qp->happy_meals[i] = NULL;
2590
2591                 qp->quattro_dev = goal_sdev;
2592                 qp->next = qfe_sbus_list;
2593                 qfe_sbus_list = qp;
2594                 quattro_get_ranges(qp);
2595         }
2596         return qp;
2597 }
2598
2599 /* After all quattro cards have been probed, we call these functions
2600  * to register the IRQ handlers.
2601  */
2602 static void __init quattro_sbus_register_irqs(void)
2603 {
2604         struct quattro *qp;
2605
2606         for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2607                 struct sbus_dev *sdev = qp->quattro_dev;
2608                 int err;
2609
2610                 err = request_irq(sdev->irqs[0],
2611                                   quattro_sbus_interrupt,
2612                                   IRQF_SHARED, "Quattro",
2613                                   qp);
2614                 if (err != 0) {
2615                         printk(KERN_ERR "Quattro: Fatal IRQ registery error %d.\n", err);
2616                         panic("QFE request irq");
2617                 }
2618         }
2619 }
2620
2621 static void quattro_sbus_free_irqs(void)
2622 {
2623         struct quattro *qp;
2624
2625         for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2626                 struct sbus_dev *sdev = qp->quattro_dev;
2627
2628                 free_irq(sdev->irqs[0], qp);
2629         }
2630 }
2631 #endif /* CONFIG_SBUS */
2632
2633 #ifdef CONFIG_PCI
2634 static struct quattro * __init quattro_pci_find(struct pci_dev *pdev)
2635 {
2636         struct pci_dev *bdev = pdev->bus->self;
2637         struct quattro *qp;
2638
2639         if (!bdev) return NULL;
2640         for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2641                 struct pci_dev *qpdev = qp->quattro_dev;
2642
2643                 if (qpdev == bdev)
2644                         return qp;
2645         }
2646         qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2647         if (qp != NULL) {
2648                 int i;
2649
2650                 for (i = 0; i < 4; i++)
2651                         qp->happy_meals[i] = NULL;
2652
2653                 qp->quattro_dev = bdev;
2654                 qp->next = qfe_pci_list;
2655                 qfe_pci_list = qp;
2656
2657                 /* No range tricks necessary on PCI. */
2658                 qp->nranges = 0;
2659         }
2660         return qp;
2661 }
2662 #endif /* CONFIG_PCI */
2663
2664 #ifdef CONFIG_SBUS
2665 static int __devinit happy_meal_sbus_probe_one(struct sbus_dev *sdev, int is_qfe)
2666 {
2667         struct device_node *dp = sdev->ofdev.node;
2668         struct quattro *qp = NULL;
2669         struct happy_meal *hp;
2670         struct net_device *dev;
2671         int i, qfe_slot = -1;
2672         int err = -ENODEV;
2673
2674         if (is_qfe) {
2675                 qp = quattro_sbus_find(sdev);
2676                 if (qp == NULL)
2677                         goto err_out;
2678                 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2679                         if (qp->happy_meals[qfe_slot] == NULL)
2680                                 break;
2681                 if (qfe_slot == 4)
2682                         goto err_out;
2683         }
2684
2685         err = -ENOMEM;
2686         dev = alloc_etherdev(sizeof(struct happy_meal));
2687         if (!dev)
2688                 goto err_out;
2689         SET_MODULE_OWNER(dev);
2690         SET_NETDEV_DEV(dev, &sdev->ofdev.dev);
2691
2692         if (hme_version_printed++ == 0)
2693                 printk(KERN_INFO "%s", version);
2694
2695         /* If user did not specify a MAC address specifically, use
2696          * the Quattro local-mac-address property...
2697          */
2698         for (i = 0; i < 6; i++) {
2699                 if (macaddr[i] != 0)
2700                         break;
2701         }
2702         if (i < 6) { /* a mac address was given */
2703                 for (i = 0; i < 6; i++)
2704                         dev->dev_addr[i] = macaddr[i];
2705                 macaddr[5]++;
2706         } else {
2707                 unsigned char *addr;
2708                 int len;
2709
2710                 addr = of_get_property(dp, "local-mac-address", &len);
2711
2712                 if (qfe_slot != -1 && addr && len == 6)
2713                         memcpy(dev->dev_addr, addr, 6);
2714                 else
2715                         memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
2716         }
2717
2718         hp = dev->priv;
2719
2720         hp->happy_dev = sdev;
2721
2722         spin_lock_init(&hp->happy_lock);
2723
2724         err = -ENODEV;
2725         if (sdev->num_registers != 5) {
2726                 printk(KERN_ERR "happymeal: Device needs 5 regs, has %d.\n",
2727                        sdev->num_registers);
2728                 goto err_out_free_netdev;
2729         }
2730
2731         if (qp != NULL) {
2732                 hp->qfe_parent = qp;
2733                 hp->qfe_ent = qfe_slot;
2734                 qp->happy_meals[qfe_slot] = dev;
2735                 quattro_apply_ranges(qp, hp);
2736         }
2737
2738         hp->gregs = sbus_ioremap(&sdev->resource[0], 0,
2739                                  GREG_REG_SIZE, "HME Global Regs");
2740         if (!hp->gregs) {
2741                 printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2742                 goto err_out_free_netdev;
2743         }
2744
2745         hp->etxregs = sbus_ioremap(&sdev->resource[1], 0,
2746                                    ETX_REG_SIZE, "HME TX Regs");
2747         if (!hp->etxregs) {
2748                 printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2749                 goto err_out_iounmap;
2750         }
2751
2752         hp->erxregs = sbus_ioremap(&sdev->resource[2], 0,
2753                                    ERX_REG_SIZE, "HME RX Regs");
2754         if (!hp->erxregs) {
2755                 printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2756                 goto err_out_iounmap;
2757         }
2758
2759         hp->bigmacregs = sbus_ioremap(&sdev->resource[3], 0,
2760                                       BMAC_REG_SIZE, "HME BIGMAC Regs");
2761         if (!hp->bigmacregs) {
2762                 printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2763                 goto err_out_iounmap;
2764         }
2765
2766         hp->tcvregs = sbus_ioremap(&sdev->resource[4], 0,
2767                                    TCVR_REG_SIZE, "HME Tranceiver Regs");
2768         if (!hp->tcvregs) {
2769                 printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2770                 goto err_out_iounmap;
2771         }
2772
2773         hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2774         if (hp->hm_revision == 0xff)
2775                 hp->hm_revision = 0xa0;
2776
2777         /* Now enable the feature flags we can. */
2778         if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2779                 hp->happy_flags = HFLAG_20_21;
2780         else if (hp->hm_revision != 0xa0)
2781                 hp->happy_flags = HFLAG_NOT_A0;
2782
2783         if (qp != NULL)
2784                 hp->happy_flags |= HFLAG_QUATTRO;
2785
2786         /* Get the supported DVMA burst sizes from our Happy SBUS. */
2787         hp->happy_bursts = of_getintprop_default(sdev->bus->ofdev.node,
2788                                                  "burst-sizes", 0x00);
2789
2790         hp->happy_block = sbus_alloc_consistent(hp->happy_dev,
2791                                                 PAGE_SIZE,
2792                                                 &hp->hblock_dvma);
2793         err = -ENOMEM;
2794         if (!hp->happy_block) {
2795                 printk(KERN_ERR "happymeal: Cannot allocate descriptors.\n");
2796                 goto err_out_iounmap;
2797         }
2798
2799         /* Force check of the link first time we are brought up. */
2800         hp->linkcheck = 0;
2801
2802         /* Force timer state to 'asleep' with count of zero. */
2803         hp->timer_state = asleep;
2804         hp->timer_ticks = 0;
2805
2806         init_timer(&hp->happy_timer);
2807
2808         hp->dev = dev;
2809         dev->open = &happy_meal_open;
2810         dev->stop = &happy_meal_close;
2811         dev->hard_start_xmit = &happy_meal_start_xmit;
2812         dev->get_stats = &happy_meal_get_stats;
2813         dev->set_multicast_list = &happy_meal_set_multicast;
2814         dev->tx_timeout = &happy_meal_tx_timeout;
2815         dev->watchdog_timeo = 5*HZ;
2816         dev->ethtool_ops = &hme_ethtool_ops;
2817
2818         /* Happy Meal can do it all... except VLAN. */
2819         dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_VLAN_CHALLENGED;
2820
2821         dev->irq = sdev->irqs[0];
2822
2823 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2824         /* Hook up PCI register/dma accessors. */
2825         hp->read_desc32 = sbus_hme_read_desc32;
2826         hp->write_txd = sbus_hme_write_txd;
2827         hp->write_rxd = sbus_hme_write_rxd;
2828         hp->dma_map = (u32 (*)(void *, void *, long, int))sbus_map_single;
2829         hp->dma_unmap = (void (*)(void *, u32, long, int))sbus_unmap_single;
2830         hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int))
2831                 sbus_dma_sync_single_for_cpu;
2832         hp->dma_sync_for_device = (void (*)(void *, u32, long, int))
2833                 sbus_dma_sync_single_for_device;
2834         hp->read32 = sbus_hme_read32;
2835         hp->write32 = sbus_hme_write32;
2836 #endif
2837
2838         /* Grrr, Happy Meal comes up by default not advertising
2839          * full duplex 100baseT capabilities, fix this.
2840          */
2841         spin_lock_irq(&hp->happy_lock);
2842         happy_meal_set_initial_advertisement(hp);
2843         spin_unlock_irq(&hp->happy_lock);
2844
2845         if (register_netdev(hp->dev)) {
2846                 printk(KERN_ERR "happymeal: Cannot register net device, "
2847                        "aborting.\n");
2848                 goto err_out_free_consistent;
2849         }
2850
2851         dev_set_drvdata(&sdev->ofdev.dev, hp);
2852
2853         if (qfe_slot != -1)
2854                 printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2855                        dev->name, qfe_slot);
2856         else
2857                 printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2858                        dev->name);
2859
2860         for (i = 0; i < 6; i++)
2861                 printk("%2.2x%c",
2862                        dev->dev_addr[i], i == 5 ? ' ' : ':');
2863         printk("\n");
2864
2865         return 0;
2866
2867 err_out_free_consistent:
2868         sbus_free_consistent(hp->happy_dev,
2869                              PAGE_SIZE,
2870                              hp->happy_block,
2871                              hp->hblock_dvma);
2872
2873 err_out_iounmap:
2874         if (hp->gregs)
2875                 sbus_iounmap(hp->gregs, GREG_REG_SIZE);
2876         if (hp->etxregs)
2877                 sbus_iounmap(hp->etxregs, ETX_REG_SIZE);
2878         if (hp->erxregs)
2879                 sbus_iounmap(hp->erxregs, ERX_REG_SIZE);
2880         if (hp->bigmacregs)
2881                 sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE);
2882         if (hp->tcvregs)
2883                 sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE);
2884
2885 err_out_free_netdev:
2886         free_netdev(dev);
2887
2888 err_out:
2889         return err;
2890 }
2891 #endif
2892
2893 #ifdef CONFIG_PCI
2894 #ifndef CONFIG_SPARC
2895 static int is_quattro_p(struct pci_dev *pdev)
2896 {
2897         struct pci_dev *busdev = pdev->bus->self;
2898         struct list_head *tmp;
2899         int n_hmes;
2900
2901         if (busdev == NULL ||
2902             busdev->vendor != PCI_VENDOR_ID_DEC ||
2903             busdev->device != PCI_DEVICE_ID_DEC_21153)
2904                 return 0;
2905
2906         n_hmes = 0;
2907         tmp = pdev->bus->devices.next;
2908         while (tmp != &pdev->bus->devices) {
2909                 struct pci_dev *this_pdev = pci_dev_b(tmp);
2910
2911                 if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2912                     this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2913                         n_hmes++;
2914
2915                 tmp = tmp->next;
2916         }
2917
2918         if (n_hmes != 4)
2919                 return 0;
2920
2921         return 1;
2922 }
2923
2924 /* Fetch MAC address from vital product data of PCI ROM. */
2925 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2926 {
2927         int this_offset;
2928
2929         for (this_offset = 0x20; this_offset < len; this_offset++) {
2930                 void __iomem *p = rom_base + this_offset;
2931
2932                 if (readb(p + 0) != 0x90 ||
2933                     readb(p + 1) != 0x00 ||
2934                     readb(p + 2) != 0x09 ||
2935                     readb(p + 3) != 0x4e ||
2936                     readb(p + 4) != 0x41 ||
2937                     readb(p + 5) != 0x06)
2938                         continue;
2939
2940                 this_offset += 6;
2941                 p += 6;
2942
2943                 if (index == 0) {
2944                         int i;
2945
2946                         for (i = 0; i < 6; i++)
2947                                 dev_addr[i] = readb(p + i);
2948                         return 1;
2949                 }
2950                 index--;
2951         }
2952         return 0;
2953 }
2954
2955 static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2956 {
2957         size_t size;
2958         void __iomem *p = pci_map_rom(pdev, &size);
2959
2960         if (p) {
2961                 int index = 0;
2962                 int found;
2963
2964                 if (is_quattro_p(pdev))
2965                         index = PCI_SLOT(pdev->devfn);
2966
2967                 found = readb(p) == 0x55 &&
2968                         readb(p + 1) == 0xaa &&
2969                         find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2970                 pci_unmap_rom(pdev, p);
2971                 if (found)
2972                         return;
2973         }
2974
2975         /* Sun MAC prefix then 3 random bytes. */
2976         dev_addr[0] = 0x08;
2977         dev_addr[1] = 0x00;
2978         dev_addr[2] = 0x20;
2979         get_random_bytes(&dev_addr[3], 3);
2980         return;
2981 }
2982 #endif /* !(CONFIG_SPARC) */
2983
2984 static int __devinit happy_meal_pci_probe(struct pci_dev *pdev,
2985                                           const struct pci_device_id *ent)
2986 {
2987         struct quattro *qp = NULL;
2988 #ifdef CONFIG_SPARC
2989         struct pcidev_cookie *pcp;
2990 #endif
2991         struct happy_meal *hp;
2992         struct net_device *dev;
2993         void __iomem *hpreg_base;
2994         unsigned long hpreg_res;
2995         int i, qfe_slot = -1;
2996         char prom_name[64];
2997         int err;
2998
2999         /* Now make sure pci_dev cookie is there. */
3000 #ifdef CONFIG_SPARC
3001         pcp = pdev->sysdata;
3002         if (pcp == NULL) {
3003                 printk(KERN_ERR "happymeal(PCI): Some PCI device info missing\n");
3004                 return -ENODEV;
3005         }
3006
3007         strcpy(prom_name, pcp->prom_node->name);
3008 #else
3009         if (is_quattro_p(pdev))
3010                 strcpy(prom_name, "SUNW,qfe");
3011         else
3012                 strcpy(prom_name, "SUNW,hme");
3013 #endif
3014
3015         err = -ENODEV;
3016
3017         if (pci_enable_device(pdev))
3018                 goto err_out;
3019         pci_set_master(pdev);
3020
3021         if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
3022                 qp = quattro_pci_find(pdev);
3023                 if (qp == NULL)
3024                         goto err_out;
3025                 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
3026                         if (qp->happy_meals[qfe_slot] == NULL)
3027                                 break;
3028                 if (qfe_slot == 4)
3029                         goto err_out;
3030         }
3031
3032         dev = alloc_etherdev(sizeof(struct happy_meal));
3033         err = -ENOMEM;
3034         if (!dev)
3035                 goto err_out;
3036         SET_MODULE_OWNER(dev);
3037         SET_NETDEV_DEV(dev, &pdev->dev);
3038
3039         if (hme_version_printed++ == 0)
3040                 printk(KERN_INFO "%s", version);
3041
3042         dev->base_addr = (long) pdev;
3043
3044         hp = (struct happy_meal *)dev->priv;
3045         memset(hp, 0, sizeof(*hp));
3046
3047         hp->happy_dev = pdev;
3048
3049         spin_lock_init(&hp->happy_lock);
3050
3051         if (qp != NULL) {
3052                 hp->qfe_parent = qp;
3053                 hp->qfe_ent = qfe_slot;
3054                 qp->happy_meals[qfe_slot] = dev;
3055         }
3056
3057         hpreg_res = pci_resource_start(pdev, 0);
3058         err = -ENODEV;
3059         if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3060                 printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3061                 goto err_out_clear_quattro;
3062         }
3063         if (pci_request_regions(pdev, DRV_NAME)) {
3064                 printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3065                        "aborting.\n");
3066                 goto err_out_clear_quattro;
3067         }
3068
3069         if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == 0) {
3070                 printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3071                 goto err_out_free_res;
3072         }
3073
3074         for (i = 0; i < 6; i++) {
3075                 if (macaddr[i] != 0)
3076                         break;
3077         }
3078         if (i < 6) { /* a mac address was given */
3079                 for (i = 0; i < 6; i++)
3080                         dev->dev_addr[i] = macaddr[i];
3081                 macaddr[5]++;
3082         } else {
3083 #ifdef CONFIG_SPARC
3084                 unsigned char *addr;
3085                 int len;
3086
3087                 if (qfe_slot != -1 &&
3088                     (addr = of_get_property(pcp->prom_node,
3089                                             "local-mac-address", &len)) != NULL
3090                     && len == 6) {
3091                         memcpy(dev->dev_addr, addr, 6);
3092                 } else {
3093                         memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
3094                 }
3095 #else
3096                 get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
3097 #endif
3098         }
3099
3100         /* Layout registers. */
3101         hp->gregs      = (hpreg_base + 0x0000UL);
3102         hp->etxregs    = (hpreg_base + 0x2000UL);
3103         hp->erxregs    = (hpreg_base + 0x4000UL);
3104         hp->bigmacregs = (hpreg_base + 0x6000UL);
3105         hp->tcvregs    = (hpreg_base + 0x7000UL);
3106
3107 #ifdef CONFIG_SPARC
3108         hp->hm_revision = of_getintprop_default(pcp->prom_node, "hm-rev", 0xff);
3109         if (hp->hm_revision == 0xff) {
3110                 unsigned char prev;
3111
3112                 pci_read_config_byte(pdev, PCI_REVISION_ID, &prev);
3113                 hp->hm_revision = 0xc0 | (prev & 0x0f);
3114         }
3115 #else
3116         /* works with this on non-sparc hosts */
3117         hp->hm_revision = 0x20;
3118 #endif
3119
3120         /* Now enable the feature flags we can. */
3121         if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3122                 hp->happy_flags = HFLAG_20_21;
3123         else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3124                 hp->happy_flags = HFLAG_NOT_A0;
3125
3126         if (qp != NULL)
3127                 hp->happy_flags |= HFLAG_QUATTRO;
3128
3129         /* And of course, indicate this is PCI. */
3130         hp->happy_flags |= HFLAG_PCI;
3131
3132 #ifdef CONFIG_SPARC
3133         /* Assume PCI happy meals can handle all burst sizes. */
3134         hp->happy_bursts = DMA_BURSTBITS;
3135 #endif
3136
3137         hp->happy_block = (struct hmeal_init_block *)
3138                 pci_alloc_consistent(pdev, PAGE_SIZE, &hp->hblock_dvma);
3139
3140         err = -ENODEV;
3141         if (!hp->happy_block) {
3142                 printk(KERN_ERR "happymeal(PCI): Cannot get hme init block.\n");
3143                 goto err_out_iounmap;
3144         }
3145
3146         hp->linkcheck = 0;
3147         hp->timer_state = asleep;
3148         hp->timer_ticks = 0;
3149
3150         init_timer(&hp->happy_timer);
3151
3152         hp->dev = dev;
3153         dev->open = &happy_meal_open;
3154         dev->stop = &happy_meal_close;
3155         dev->hard_start_xmit = &happy_meal_start_xmit;
3156         dev->get_stats = &happy_meal_get_stats;
3157         dev->set_multicast_list = &happy_meal_set_multicast;
3158         dev->tx_timeout = &happy_meal_tx_timeout;
3159         dev->watchdog_timeo = 5*HZ;
3160         dev->ethtool_ops = &hme_ethtool_ops;
3161         dev->irq = pdev->irq;
3162         dev->dma = 0;
3163
3164         /* Happy Meal can do it all... */
3165         dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
3166
3167 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3168         /* Hook up PCI register/dma accessors. */
3169         hp->read_desc32 = pci_hme_read_desc32;
3170         hp->write_txd = pci_hme_write_txd;
3171         hp->write_rxd = pci_hme_write_rxd;
3172         hp->dma_map = (u32 (*)(void *, void *, long, int))pci_map_single;
3173         hp->dma_unmap = (void (*)(void *, u32, long, int))pci_unmap_single;
3174         hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int))
3175                 pci_dma_sync_single_for_cpu;
3176         hp->dma_sync_for_device = (void (*)(void *, u32, long, int))
3177                 pci_dma_sync_single_for_device;
3178         hp->read32 = pci_hme_read32;
3179         hp->write32 = pci_hme_write32;
3180 #endif
3181
3182         /* Grrr, Happy Meal comes up by default not advertising
3183          * full duplex 100baseT capabilities, fix this.
3184          */
3185         spin_lock_irq(&hp->happy_lock);
3186         happy_meal_set_initial_advertisement(hp);
3187         spin_unlock_irq(&hp->happy_lock);
3188
3189         if (register_netdev(hp->dev)) {
3190                 printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3191                        "aborting.\n");
3192                 goto err_out_iounmap;
3193         }
3194
3195         dev_set_drvdata(&pdev->dev, hp);
3196
3197         if (!qfe_slot) {
3198                 struct pci_dev *qpdev = qp->quattro_dev;
3199
3200                 prom_name[0] = 0;
3201                 if (!strncmp(dev->name, "eth", 3)) {
3202                         int i = simple_strtoul(dev->name + 3, NULL, 10);
3203                         sprintf(prom_name, "-%d", i + 3);
3204                 }
3205                 printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3206                 if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3207                     qpdev->device == PCI_DEVICE_ID_DEC_21153)
3208                         printk("DEC 21153 PCI Bridge\n");
3209                 else
3210                         printk("unknown bridge %04x.%04x\n",
3211                                 qpdev->vendor, qpdev->device);
3212         }
3213
3214         if (qfe_slot != -1)
3215                 printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3216                        dev->name, qfe_slot);
3217         else
3218                 printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3219                        dev->name);
3220
3221         for (i = 0; i < 6; i++)
3222                 printk("%2.2x%c", dev->dev_addr[i], i == 5 ? ' ' : ':');
3223
3224         printk("\n");
3225
3226         return 0;
3227
3228 err_out_iounmap:
3229         iounmap(hp->gregs);
3230
3231 err_out_free_res:
3232         pci_release_regions(pdev);
3233
3234 err_out_clear_quattro:
3235         if (qp != NULL)
3236                 qp->happy_meals[qfe_slot] = NULL;
3237
3238         free_netdev(dev);
3239
3240 err_out:
3241         return err;
3242 }
3243
3244 static void __devexit happy_meal_pci_remove(struct pci_dev *pdev)
3245 {
3246         struct happy_meal *hp = dev_get_drvdata(&pdev->dev);
3247         struct net_device *net_dev = hp->dev;
3248
3249         unregister_netdev(net_dev);
3250
3251         pci_free_consistent(hp->happy_dev,
3252                             PAGE_SIZE,
3253                             hp->happy_block,
3254                             hp->hblock_dvma);
3255         iounmap(hp->gregs);
3256         pci_release_regions(hp->happy_dev);
3257
3258         free_netdev(net_dev);
3259
3260         dev_set_drvdata(&pdev->dev, NULL);
3261 }
3262
3263 static struct pci_device_id happymeal_pci_ids[] = {
3264         { PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3265         { }                     /* Terminating entry */
3266 };
3267
3268 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3269
3270 static struct pci_driver hme_pci_driver = {
3271         .name           = "hme",
3272         .id_table       = happymeal_pci_ids,
3273         .probe          = happy_meal_pci_probe,
3274         .remove         = __devexit_p(happy_meal_pci_remove),
3275 };
3276
3277 static int __init happy_meal_pci_init(void)
3278 {
3279         return pci_register_driver(&hme_pci_driver);
3280 }
3281
3282 static void happy_meal_pci_exit(void)
3283 {
3284         pci_unregister_driver(&hme_pci_driver);
3285
3286         while (qfe_pci_list) {
3287                 struct quattro *qfe = qfe_pci_list;
3288                 struct quattro *next = qfe->next;
3289
3290                 kfree(qfe);
3291
3292                 qfe_pci_list = next;
3293         }
3294 }
3295
3296 #endif
3297
3298 #ifdef CONFIG_SBUS
3299 static int __devinit hme_sbus_probe(struct of_device *dev, const struct of_device_id *match)
3300 {
3301         struct sbus_dev *sdev = to_sbus_device(&dev->dev);
3302         struct device_node *dp = dev->node;
3303         char *model = of_get_property(dp, "model", NULL);
3304         int is_qfe = (match->data != NULL);
3305
3306         if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3307                 is_qfe = 1;
3308
3309         return happy_meal_sbus_probe_one(sdev, is_qfe);
3310 }
3311
3312 static int __devexit hme_sbus_remove(struct of_device *dev)
3313 {
3314         struct happy_meal *hp = dev_get_drvdata(&dev->dev);
3315         struct net_device *net_dev = hp->dev;
3316
3317         unregister_netdevice(net_dev);
3318
3319         /* XXX qfe parent interrupt... */
3320
3321         sbus_iounmap(hp->gregs, GREG_REG_SIZE);
3322         sbus_iounmap(hp->etxregs, ETX_REG_SIZE);
3323         sbus_iounmap(hp->erxregs, ERX_REG_SIZE);
3324         sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE);
3325         sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE);
3326         sbus_free_consistent(hp->happy_dev,
3327                              PAGE_SIZE,
3328                              hp->happy_block,
3329                              hp->hblock_dvma);
3330
3331         free_netdev(net_dev);
3332
3333         dev_set_drvdata(&dev->dev, NULL);
3334
3335         return 0;
3336 }
3337
3338 static struct of_device_id hme_sbus_match[] = {
3339         {
3340                 .name = "SUNW,hme",
3341         },
3342         {
3343                 .name = "SUNW,qfe",
3344                 .data = (void *) 1,
3345         },
3346         {
3347                 .name = "qfe",
3348                 .data = (void *) 1,
3349         },
3350         {},
3351 };
3352
3353 MODULE_DEVICE_TABLE(of, hme_sbus_match);
3354
3355 static struct of_platform_driver hme_sbus_driver = {
3356         .name           = "hme",
3357         .match_table    = hme_sbus_match,
3358         .probe          = hme_sbus_probe,
3359         .remove         = __devexit_p(hme_sbus_remove),
3360 };
3361
3362 static int __init happy_meal_sbus_init(void)
3363 {
3364         int err;
3365
3366         err = of_register_driver(&hme_sbus_driver, &sbus_bus_type);
3367         if (!err)
3368                 quattro_sbus_register_irqs();
3369
3370         return err;
3371 }
3372
3373 static void happy_meal_sbus_exit(void)
3374 {
3375         of_unregister_driver(&hme_sbus_driver);
3376         quattro_sbus_free_irqs();
3377
3378         while (qfe_sbus_list) {
3379                 struct quattro *qfe = qfe_sbus_list;
3380                 struct quattro *next = qfe->next;
3381
3382                 kfree(qfe);
3383
3384                 qfe_sbus_list = next;
3385         }
3386 }
3387 #endif
3388
3389 static int __init happy_meal_probe(void)
3390 {
3391         int err = 0;
3392
3393 #ifdef CONFIG_SBUS
3394         err = happy_meal_sbus_init();
3395 #endif
3396 #ifdef CONFIG_PCI
3397         if (!err) {
3398                 err = happy_meal_pci_init();
3399 #ifdef CONFIG_SBUS
3400                 if (err)
3401                         happy_meal_sbus_exit();
3402 #endif
3403         }
3404 #endif
3405
3406         return err;
3407 }
3408
3409
3410 static void __exit happy_meal_exit(void)
3411 {
3412 #ifdef CONFIG_SBUS
3413         happy_meal_sbus_exit();
3414 #endif
3415 #ifdef CONFIG_PCI
3416         happy_meal_pci_exit();
3417 #endif
3418 }
3419
3420 module_init(happy_meal_probe);
3421 module_exit(happy_meal_exit);