2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
64 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
65 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
66 static void ata_set_mode(struct ata_port *ap);
67 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
68 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
69 static int fgb(u32 bitmap);
70 static int ata_choose_xfer_mode(const struct ata_port *ap,
72 unsigned int *xfer_shift_out);
73 static void ata_pio_error(struct ata_port *ap);
75 static unsigned int ata_unique_id = 1;
76 static struct workqueue_struct *ata_wq;
78 int atapi_enabled = 0;
79 module_param(atapi_enabled, int, 0444);
80 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82 MODULE_AUTHOR("Jeff Garzik");
83 MODULE_DESCRIPTION("Library module for ATA devices");
84 MODULE_LICENSE("GPL");
85 MODULE_VERSION(DRV_VERSION);
88 * ata_tf_load_pio - send taskfile registers to host controller
89 * @ap: Port to which output is sent
90 * @tf: ATA taskfile register set
92 * Outputs ATA taskfile to standard ATA host controller.
95 * Inherited from caller.
98 static void ata_tf_load_pio(struct ata_port *ap, const struct ata_taskfile *tf)
100 struct ata_ioports *ioaddr = &ap->ioaddr;
101 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
103 if (tf->ctl != ap->last_ctl) {
104 outb(tf->ctl, ioaddr->ctl_addr);
105 ap->last_ctl = tf->ctl;
109 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
110 outb(tf->hob_feature, ioaddr->feature_addr);
111 outb(tf->hob_nsect, ioaddr->nsect_addr);
112 outb(tf->hob_lbal, ioaddr->lbal_addr);
113 outb(tf->hob_lbam, ioaddr->lbam_addr);
114 outb(tf->hob_lbah, ioaddr->lbah_addr);
115 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
124 outb(tf->feature, ioaddr->feature_addr);
125 outb(tf->nsect, ioaddr->nsect_addr);
126 outb(tf->lbal, ioaddr->lbal_addr);
127 outb(tf->lbam, ioaddr->lbam_addr);
128 outb(tf->lbah, ioaddr->lbah_addr);
129 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
137 if (tf->flags & ATA_TFLAG_DEVICE) {
138 outb(tf->device, ioaddr->device_addr);
139 VPRINTK("device 0x%X\n", tf->device);
146 * ata_tf_load_mmio - send taskfile registers to host controller
147 * @ap: Port to which output is sent
148 * @tf: ATA taskfile register set
150 * Outputs ATA taskfile to standard ATA host controller using MMIO.
153 * Inherited from caller.
156 static void ata_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
158 struct ata_ioports *ioaddr = &ap->ioaddr;
159 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
161 if (tf->ctl != ap->last_ctl) {
162 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
163 ap->last_ctl = tf->ctl;
167 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
168 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
169 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
170 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
171 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
172 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
173 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
182 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
183 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
184 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
185 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
186 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
187 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
195 if (tf->flags & ATA_TFLAG_DEVICE) {
196 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
197 VPRINTK("device 0x%X\n", tf->device);
205 * ata_tf_load - send taskfile registers to host controller
206 * @ap: Port to which output is sent
207 * @tf: ATA taskfile register set
209 * Outputs ATA taskfile to standard ATA host controller using MMIO
210 * or PIO as indicated by the ATA_FLAG_MMIO flag.
211 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
212 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
213 * hob_lbal, hob_lbam, and hob_lbah.
215 * This function waits for idle (!BUSY and !DRQ) after writing
216 * registers. If the control register has a new value, this
217 * function also waits for idle after writing control and before
218 * writing the remaining registers.
220 * May be used as the tf_load() entry in ata_port_operations.
223 * Inherited from caller.
225 void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
227 if (ap->flags & ATA_FLAG_MMIO)
228 ata_tf_load_mmio(ap, tf);
230 ata_tf_load_pio(ap, tf);
234 * ata_exec_command_pio - issue ATA command to host controller
235 * @ap: port to which command is being issued
236 * @tf: ATA taskfile register set
238 * Issues PIO write to ATA command register, with proper
239 * synchronization with interrupt handler / other threads.
242 * spin_lock_irqsave(host_set lock)
245 static void ata_exec_command_pio(struct ata_port *ap, const struct ata_taskfile *tf)
247 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
249 outb(tf->command, ap->ioaddr.command_addr);
255 * ata_exec_command_mmio - issue ATA command to host controller
256 * @ap: port to which command is being issued
257 * @tf: ATA taskfile register set
259 * Issues MMIO write to ATA command register, with proper
260 * synchronization with interrupt handler / other threads.
263 * spin_lock_irqsave(host_set lock)
266 static void ata_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
268 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
270 writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
276 * ata_exec_command - issue ATA command to host controller
277 * @ap: port to which command is being issued
278 * @tf: ATA taskfile register set
280 * Issues PIO/MMIO write to ATA command register, with proper
281 * synchronization with interrupt handler / other threads.
284 * spin_lock_irqsave(host_set lock)
286 void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
288 if (ap->flags & ATA_FLAG_MMIO)
289 ata_exec_command_mmio(ap, tf);
291 ata_exec_command_pio(ap, tf);
295 * ata_tf_to_host - issue ATA taskfile to host controller
296 * @ap: port to which command is being issued
297 * @tf: ATA taskfile register set
299 * Issues ATA taskfile register set to ATA host controller,
300 * with proper synchronization with interrupt handler and
304 * spin_lock_irqsave(host_set lock)
307 static inline void ata_tf_to_host(struct ata_port *ap,
308 const struct ata_taskfile *tf)
310 ap->ops->tf_load(ap, tf);
311 ap->ops->exec_command(ap, tf);
315 * ata_tf_read_pio - input device's ATA taskfile shadow registers
316 * @ap: Port from which input is read
317 * @tf: ATA taskfile register set for storing input
319 * Reads ATA taskfile registers for currently-selected device
323 * Inherited from caller.
326 static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
328 struct ata_ioports *ioaddr = &ap->ioaddr;
330 tf->command = ata_check_status(ap);
331 tf->feature = inb(ioaddr->error_addr);
332 tf->nsect = inb(ioaddr->nsect_addr);
333 tf->lbal = inb(ioaddr->lbal_addr);
334 tf->lbam = inb(ioaddr->lbam_addr);
335 tf->lbah = inb(ioaddr->lbah_addr);
336 tf->device = inb(ioaddr->device_addr);
338 if (tf->flags & ATA_TFLAG_LBA48) {
339 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
340 tf->hob_feature = inb(ioaddr->error_addr);
341 tf->hob_nsect = inb(ioaddr->nsect_addr);
342 tf->hob_lbal = inb(ioaddr->lbal_addr);
343 tf->hob_lbam = inb(ioaddr->lbam_addr);
344 tf->hob_lbah = inb(ioaddr->lbah_addr);
349 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
350 * @ap: Port from which input is read
351 * @tf: ATA taskfile register set for storing input
353 * Reads ATA taskfile registers for currently-selected device
357 * Inherited from caller.
360 static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
362 struct ata_ioports *ioaddr = &ap->ioaddr;
364 tf->command = ata_check_status(ap);
365 tf->feature = readb((void __iomem *)ioaddr->error_addr);
366 tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
367 tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
368 tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
369 tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
370 tf->device = readb((void __iomem *)ioaddr->device_addr);
372 if (tf->flags & ATA_TFLAG_LBA48) {
373 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
374 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
375 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
376 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
377 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
378 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
384 * ata_tf_read - input device's ATA taskfile shadow registers
385 * @ap: Port from which input is read
386 * @tf: ATA taskfile register set for storing input
388 * Reads ATA taskfile registers for currently-selected device
391 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
392 * is set, also reads the hob registers.
394 * May be used as the tf_read() entry in ata_port_operations.
397 * Inherited from caller.
399 void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
401 if (ap->flags & ATA_FLAG_MMIO)
402 ata_tf_read_mmio(ap, tf);
404 ata_tf_read_pio(ap, tf);
408 * ata_check_status_pio - Read device status reg & clear interrupt
409 * @ap: port where the device is
411 * Reads ATA taskfile status register for currently-selected device
412 * and return its value. This also clears pending interrupts
416 * Inherited from caller.
418 static u8 ata_check_status_pio(struct ata_port *ap)
420 return inb(ap->ioaddr.status_addr);
424 * ata_check_status_mmio - Read device status reg & clear interrupt
425 * @ap: port where the device is
427 * Reads ATA taskfile status register for currently-selected device
428 * via MMIO and return its value. This also clears pending interrupts
432 * Inherited from caller.
434 static u8 ata_check_status_mmio(struct ata_port *ap)
436 return readb((void __iomem *) ap->ioaddr.status_addr);
441 * ata_check_status - Read device status reg & clear interrupt
442 * @ap: port where the device is
444 * Reads ATA taskfile status register for currently-selected device
445 * and return its value. This also clears pending interrupts
448 * May be used as the check_status() entry in ata_port_operations.
451 * Inherited from caller.
453 u8 ata_check_status(struct ata_port *ap)
455 if (ap->flags & ATA_FLAG_MMIO)
456 return ata_check_status_mmio(ap);
457 return ata_check_status_pio(ap);
462 * ata_altstatus - Read device alternate status reg
463 * @ap: port where the device is
465 * Reads ATA taskfile alternate status register for
466 * currently-selected device and return its value.
468 * Note: may NOT be used as the check_altstatus() entry in
469 * ata_port_operations.
472 * Inherited from caller.
474 u8 ata_altstatus(struct ata_port *ap)
476 if (ap->ops->check_altstatus)
477 return ap->ops->check_altstatus(ap);
479 if (ap->flags & ATA_FLAG_MMIO)
480 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
481 return inb(ap->ioaddr.altstatus_addr);
486 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
487 * @tf: Taskfile to convert
488 * @fis: Buffer into which data will output
489 * @pmp: Port multiplier port
491 * Converts a standard ATA taskfile to a Serial ATA
492 * FIS structure (Register - Host to Device).
495 * Inherited from caller.
498 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
500 fis[0] = 0x27; /* Register - Host to Device FIS */
501 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
502 bit 7 indicates Command FIS */
503 fis[2] = tf->command;
504 fis[3] = tf->feature;
511 fis[8] = tf->hob_lbal;
512 fis[9] = tf->hob_lbam;
513 fis[10] = tf->hob_lbah;
514 fis[11] = tf->hob_feature;
517 fis[13] = tf->hob_nsect;
528 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
529 * @fis: Buffer from which data will be input
530 * @tf: Taskfile to output
532 * Converts a serial ATA FIS structure to a standard ATA taskfile.
535 * Inherited from caller.
538 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
540 tf->command = fis[2]; /* status */
541 tf->feature = fis[3]; /* error */
548 tf->hob_lbal = fis[8];
549 tf->hob_lbam = fis[9];
550 tf->hob_lbah = fis[10];
553 tf->hob_nsect = fis[13];
556 static const u8 ata_rw_cmds[] = {
560 ATA_CMD_READ_MULTI_EXT,
561 ATA_CMD_WRITE_MULTI_EXT,
565 ATA_CMD_WRITE_MULTI_FUA_EXT,
569 ATA_CMD_PIO_READ_EXT,
570 ATA_CMD_PIO_WRITE_EXT,
583 ATA_CMD_WRITE_FUA_EXT
587 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
588 * @qc: command to examine and configure
590 * Examine the device configuration and tf->flags to calculate
591 * the proper read/write commands and protocol to use.
596 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
598 struct ata_taskfile *tf = &qc->tf;
599 struct ata_device *dev = qc->dev;
602 int index, fua, lba48, write;
604 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
605 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
606 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
608 if (dev->flags & ATA_DFLAG_PIO) {
609 tf->protocol = ATA_PROT_PIO;
610 index = dev->multi_count ? 0 : 8;
611 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
612 /* Unable to use DMA due to host limitation */
613 tf->protocol = ATA_PROT_PIO;
614 index = dev->multi_count ? 0 : 8;
616 tf->protocol = ATA_PROT_DMA;
620 cmd = ata_rw_cmds[index + fua + lba48 + write];
628 static const char * const xfer_mode_str[] = {
648 * ata_udma_string - convert UDMA bit offset to string
649 * @mask: mask of bits supported; only highest bit counts.
651 * Determine string which represents the highest speed
652 * (highest bit in @udma_mask).
658 * Constant C string representing highest speed listed in
659 * @udma_mask, or the constant C string "<n/a>".
662 static const char *ata_mode_string(unsigned int mask)
666 for (i = 7; i >= 0; i--)
669 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
672 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
679 return xfer_mode_str[i];
683 * ata_pio_devchk - PATA device presence detection
684 * @ap: ATA channel to examine
685 * @device: Device to examine (starting at zero)
687 * This technique was originally described in
688 * Hale Landis's ATADRVR (www.ata-atapi.com), and
689 * later found its way into the ATA/ATAPI spec.
691 * Write a pattern to the ATA shadow registers,
692 * and if a device is present, it will respond by
693 * correctly storing and echoing back the
694 * ATA shadow register contents.
700 static unsigned int ata_pio_devchk(struct ata_port *ap,
703 struct ata_ioports *ioaddr = &ap->ioaddr;
706 ap->ops->dev_select(ap, device);
708 outb(0x55, ioaddr->nsect_addr);
709 outb(0xaa, ioaddr->lbal_addr);
711 outb(0xaa, ioaddr->nsect_addr);
712 outb(0x55, ioaddr->lbal_addr);
714 outb(0x55, ioaddr->nsect_addr);
715 outb(0xaa, ioaddr->lbal_addr);
717 nsect = inb(ioaddr->nsect_addr);
718 lbal = inb(ioaddr->lbal_addr);
720 if ((nsect == 0x55) && (lbal == 0xaa))
721 return 1; /* we found a device */
723 return 0; /* nothing found */
727 * ata_mmio_devchk - PATA device presence detection
728 * @ap: ATA channel to examine
729 * @device: Device to examine (starting at zero)
731 * This technique was originally described in
732 * Hale Landis's ATADRVR (www.ata-atapi.com), and
733 * later found its way into the ATA/ATAPI spec.
735 * Write a pattern to the ATA shadow registers,
736 * and if a device is present, it will respond by
737 * correctly storing and echoing back the
738 * ATA shadow register contents.
744 static unsigned int ata_mmio_devchk(struct ata_port *ap,
747 struct ata_ioports *ioaddr = &ap->ioaddr;
750 ap->ops->dev_select(ap, device);
752 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
753 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
755 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
756 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
758 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
759 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
761 nsect = readb((void __iomem *) ioaddr->nsect_addr);
762 lbal = readb((void __iomem *) ioaddr->lbal_addr);
764 if ((nsect == 0x55) && (lbal == 0xaa))
765 return 1; /* we found a device */
767 return 0; /* nothing found */
771 * ata_devchk - PATA device presence detection
772 * @ap: ATA channel to examine
773 * @device: Device to examine (starting at zero)
775 * Dispatch ATA device presence detection, depending
776 * on whether we are using PIO or MMIO to talk to the
777 * ATA shadow registers.
783 static unsigned int ata_devchk(struct ata_port *ap,
786 if (ap->flags & ATA_FLAG_MMIO)
787 return ata_mmio_devchk(ap, device);
788 return ata_pio_devchk(ap, device);
792 * ata_dev_classify - determine device type based on ATA-spec signature
793 * @tf: ATA taskfile register set for device to be identified
795 * Determine from taskfile register contents whether a device is
796 * ATA or ATAPI, as per "Signature and persistence" section
797 * of ATA/PI spec (volume 1, sect 5.14).
803 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
804 * the event of failure.
807 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
809 /* Apple's open source Darwin code hints that some devices only
810 * put a proper signature into the LBA mid/high registers,
811 * So, we only check those. It's sufficient for uniqueness.
814 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
815 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
816 DPRINTK("found ATA device by sig\n");
820 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
821 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
822 DPRINTK("found ATAPI device by sig\n");
823 return ATA_DEV_ATAPI;
826 DPRINTK("unknown device\n");
827 return ATA_DEV_UNKNOWN;
831 * ata_dev_try_classify - Parse returned ATA device signature
832 * @ap: ATA channel to examine
833 * @device: Device to examine (starting at zero)
834 * @r_err: Value of error register on completion
836 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
837 * an ATA/ATAPI-defined set of values is placed in the ATA
838 * shadow registers, indicating the results of device detection
841 * Select the ATA device, and read the values from the ATA shadow
842 * registers. Then parse according to the Error register value,
843 * and the spec-defined values examined by ata_dev_classify().
849 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
853 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
855 struct ata_taskfile tf;
859 ap->ops->dev_select(ap, device);
861 memset(&tf, 0, sizeof(tf));
863 ap->ops->tf_read(ap, &tf);
868 /* see if device passed diags */
871 else if ((device == 0) && (err == 0x81))
876 /* determine if device is ATA or ATAPI */
877 class = ata_dev_classify(&tf);
879 if (class == ATA_DEV_UNKNOWN)
881 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
887 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
888 * @id: IDENTIFY DEVICE results we will examine
889 * @s: string into which data is output
890 * @ofs: offset into identify device page
891 * @len: length of string to return. must be an even number.
893 * The strings in the IDENTIFY DEVICE page are broken up into
894 * 16-bit chunks. Run through the string, and output each
895 * 8-bit chunk linearly, regardless of platform.
901 void ata_dev_id_string(const u16 *id, unsigned char *s,
902 unsigned int ofs, unsigned int len)
922 * ata_noop_dev_select - Select device 0/1 on ATA bus
923 * @ap: ATA channel to manipulate
924 * @device: ATA device (numbered from zero) to select
926 * This function performs no actual function.
928 * May be used as the dev_select() entry in ata_port_operations.
933 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
939 * ata_std_dev_select - Select device 0/1 on ATA bus
940 * @ap: ATA channel to manipulate
941 * @device: ATA device (numbered from zero) to select
943 * Use the method defined in the ATA specification to
944 * make either device 0, or device 1, active on the
945 * ATA channel. Works with both PIO and MMIO.
947 * May be used as the dev_select() entry in ata_port_operations.
953 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
958 tmp = ATA_DEVICE_OBS;
960 tmp = ATA_DEVICE_OBS | ATA_DEV1;
962 if (ap->flags & ATA_FLAG_MMIO) {
963 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
965 outb(tmp, ap->ioaddr.device_addr);
967 ata_pause(ap); /* needed; also flushes, for mmio */
971 * ata_dev_select - Select device 0/1 on ATA bus
972 * @ap: ATA channel to manipulate
973 * @device: ATA device (numbered from zero) to select
974 * @wait: non-zero to wait for Status register BSY bit to clear
975 * @can_sleep: non-zero if context allows sleeping
977 * Use the method defined in the ATA specification to
978 * make either device 0, or device 1, active on the
981 * This is a high-level version of ata_std_dev_select(),
982 * which additionally provides the services of inserting
983 * the proper pauses and status polling, where needed.
989 void ata_dev_select(struct ata_port *ap, unsigned int device,
990 unsigned int wait, unsigned int can_sleep)
992 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
993 ap->id, device, wait);
998 ap->ops->dev_select(ap, device);
1001 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1008 * ata_dump_id - IDENTIFY DEVICE info debugging output
1009 * @dev: Device whose IDENTIFY DEVICE page we will dump
1011 * Dump selected 16-bit words from a detected device's
1012 * IDENTIFY PAGE page.
1018 static inline void ata_dump_id(const struct ata_device *dev)
1020 DPRINTK("49==0x%04x "
1030 DPRINTK("80==0x%04x "
1040 DPRINTK("88==0x%04x "
1047 * Compute the PIO modes available for this device. This is not as
1048 * trivial as it seems if we must consider early devices correctly.
1050 * FIXME: pre IDE drive timing (do we care ?).
1053 static unsigned int ata_pio_modes(const struct ata_device *adev)
1057 /* Usual case. Word 53 indicates word 64 is valid */
1058 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1059 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
1065 /* If word 64 isn't valid then Word 51 high byte holds the PIO timing
1066 number for the maximum. Turn it into a mask and return it */
1067 modes = (2 << ((adev->id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF)) - 1 ;
1069 /* But wait.. there's more. Design your standards by committee and
1070 you too can get a free iordy field to process. However its the
1071 speeds not the modes that are supported... Note drivers using the
1072 timing API will get this right anyway */
1076 ata_queue_pio_task(struct ata_port *ap)
1078 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
1079 queue_work(ata_wq, &ap->pio_task);
1083 ata_queue_delayed_pio_task(struct ata_port *ap, unsigned long delay)
1085 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
1086 queue_delayed_work(ata_wq, &ap->pio_task, delay);
1090 * ata_flush_pio_tasks - Flush pio_task and packet_task
1091 * @ap: the target ata_port
1093 * After this function completes, pio_task and packet_task are
1094 * guranteed not to be running or scheduled.
1097 * Kernel thread context (may sleep)
1100 static void ata_flush_pio_tasks(struct ata_port *ap)
1103 unsigned long flags;
1107 spin_lock_irqsave(&ap->host_set->lock, flags);
1108 ap->flags |= ATA_FLAG_FLUSH_PIO_TASK;
1109 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1111 DPRINTK("flush #1\n");
1112 flush_workqueue(ata_wq);
1115 * At this point, if a task is running, it's guaranteed to see
1116 * the FLUSH flag; thus, it will never queue pio tasks again.
1119 tmp |= cancel_delayed_work(&ap->pio_task);
1120 tmp |= cancel_delayed_work(&ap->packet_task);
1122 DPRINTK("flush #2\n");
1123 flush_workqueue(ata_wq);
1126 spin_lock_irqsave(&ap->host_set->lock, flags);
1127 ap->flags &= ~ATA_FLAG_FLUSH_PIO_TASK;
1128 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1133 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1135 struct completion *waiting = qc->private_data;
1137 qc->ap->ops->tf_read(qc->ap, &qc->tf);
1142 * ata_exec_internal - execute libata internal command
1143 * @ap: Port to which the command is sent
1144 * @dev: Device to which the command is sent
1145 * @tf: Taskfile registers for the command and the result
1146 * @dma_dir: Data tranfer direction of the command
1147 * @buf: Data buffer of the command
1148 * @buflen: Length of data buffer
1150 * Executes libata internal command with timeout. @tf contains
1151 * command on entry and result on return. Timeout and error
1152 * conditions are reported via return value. No recovery action
1153 * is taken after a command times out. It's caller's duty to
1154 * clean up after timeout.
1157 * None. Should be called with kernel context, might sleep.
1161 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
1162 struct ata_taskfile *tf,
1163 int dma_dir, void *buf, unsigned int buflen)
1165 u8 command = tf->command;
1166 struct ata_queued_cmd *qc;
1167 DECLARE_COMPLETION(wait);
1168 unsigned long flags;
1169 unsigned int err_mask;
1171 spin_lock_irqsave(&ap->host_set->lock, flags);
1173 qc = ata_qc_new_init(ap, dev);
1177 qc->dma_dir = dma_dir;
1178 if (dma_dir != DMA_NONE) {
1179 ata_sg_init_one(qc, buf, buflen);
1180 qc->nsect = buflen / ATA_SECT_SIZE;
1183 qc->private_data = &wait;
1184 qc->complete_fn = ata_qc_complete_internal;
1186 qc->err_mask = ata_qc_issue(qc);
1188 ata_qc_complete(qc);
1190 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1192 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1193 spin_lock_irqsave(&ap->host_set->lock, flags);
1195 /* We're racing with irq here. If we lose, the
1196 * following test prevents us from completing the qc
1197 * again. If completion irq occurs after here but
1198 * before the caller cleans up, it will result in a
1199 * spurious interrupt. We can live with that.
1201 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1202 qc->err_mask = AC_ERR_TIMEOUT;
1203 ata_qc_complete(qc);
1204 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1208 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1212 err_mask = qc->err_mask;
1220 * ata_pio_need_iordy - check if iordy needed
1223 * Check if the current speed of the device requires IORDY. Used
1224 * by various controllers for chip configuration.
1227 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1230 int speed = adev->pio_mode - XFER_PIO_0;
1237 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1239 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1240 pio = adev->id[ATA_ID_EIDE_PIO];
1241 /* Is the speed faster than the drive allows non IORDY ? */
1243 /* This is cycle times not frequency - watch the logic! */
1244 if (pio > 240) /* PIO2 is 240nS per cycle */
1253 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1254 * @ap: port on which device we wish to probe resides
1255 * @device: device bus address, starting at zero
1257 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1258 * command, and read back the 512-byte device information page.
1259 * The device information page is fed to us via the standard
1260 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1261 * using standard PIO-IN paths)
1263 * After reading the device information page, we use several
1264 * bits of information from it to initialize data structures
1265 * that will be used during the lifetime of the ata_device.
1266 * Other data from the info page is used to disqualify certain
1267 * older ATA devices we do not wish to support.
1270 * Inherited from caller. Some functions called by this function
1271 * obtain the host_set lock.
1274 static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1276 struct ata_device *dev = &ap->device[device];
1277 unsigned int major_version;
1279 unsigned long xfer_modes;
1280 unsigned int using_edd;
1281 struct ata_taskfile tf;
1282 unsigned int err_mask;
1285 if (!ata_dev_present(dev)) {
1286 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1291 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1296 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1298 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1299 dev->class == ATA_DEV_NONE);
1301 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1304 ata_tf_init(ap, &tf, device);
1306 if (dev->class == ATA_DEV_ATA) {
1307 tf.command = ATA_CMD_ID_ATA;
1308 DPRINTK("do ATA identify\n");
1310 tf.command = ATA_CMD_ID_ATAPI;
1311 DPRINTK("do ATAPI identify\n");
1314 tf.protocol = ATA_PROT_PIO;
1316 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
1317 dev->id, sizeof(dev->id));
1320 if (err_mask & ~AC_ERR_DEV)
1324 * arg! EDD works for all test cases, but seems to return
1325 * the ATA signature for some ATAPI devices. Until the
1326 * reason for this is found and fixed, we fix up the mess
1327 * here. If IDENTIFY DEVICE returns command aborted
1328 * (as ATAPI devices do), then we issue an
1329 * IDENTIFY PACKET DEVICE.
1331 * ATA software reset (SRST, the default) does not appear
1332 * to have this problem.
1334 if ((using_edd) && (dev->class == ATA_DEV_ATA)) {
1335 u8 err = tf.feature;
1336 if (err & ATA_ABORTED) {
1337 dev->class = ATA_DEV_ATAPI;
1344 swap_buf_le16(dev->id, ATA_ID_WORDS);
1346 /* print device capabilities */
1347 printk(KERN_DEBUG "ata%u: dev %u cfg "
1348 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1349 ap->id, device, dev->id[49],
1350 dev->id[82], dev->id[83], dev->id[84],
1351 dev->id[85], dev->id[86], dev->id[87],
1355 * common ATA, ATAPI feature tests
1358 /* we require DMA support (bits 8 of word 49) */
1359 if (!ata_id_has_dma(dev->id)) {
1360 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1364 /* quick-n-dirty find max transfer mode; for printk only */
1365 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1367 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1369 xfer_modes = ata_pio_modes(dev);
1373 /* ATA-specific feature tests */
1374 if (dev->class == ATA_DEV_ATA) {
1375 if (!ata_id_is_ata(dev->id)) /* sanity check */
1378 /* get major version */
1379 tmp = dev->id[ATA_ID_MAJOR_VER];
1380 for (major_version = 14; major_version >= 1; major_version--)
1381 if (tmp & (1 << major_version))
1385 * The exact sequence expected by certain pre-ATA4 drives is:
1388 * INITIALIZE DEVICE PARAMETERS
1390 * Some drives were very specific about that exact sequence.
1392 if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
1393 ata_dev_init_params(ap, dev);
1395 /* current CHS translation info (id[53-58]) might be
1396 * changed. reread the identify device info.
1398 ata_dev_reread_id(ap, dev);
1401 if (ata_id_has_lba(dev->id)) {
1402 dev->flags |= ATA_DFLAG_LBA;
1404 if (ata_id_has_lba48(dev->id)) {
1405 dev->flags |= ATA_DFLAG_LBA48;
1406 dev->n_sectors = ata_id_u64(dev->id, 100);
1408 dev->n_sectors = ata_id_u32(dev->id, 60);
1411 /* print device info to dmesg */
1412 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1415 ata_mode_string(xfer_modes),
1416 (unsigned long long)dev->n_sectors,
1417 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1421 /* Default translation */
1422 dev->cylinders = dev->id[1];
1423 dev->heads = dev->id[3];
1424 dev->sectors = dev->id[6];
1425 dev->n_sectors = dev->cylinders * dev->heads * dev->sectors;
1427 if (ata_id_current_chs_valid(dev->id)) {
1428 /* Current CHS translation is valid. */
1429 dev->cylinders = dev->id[54];
1430 dev->heads = dev->id[55];
1431 dev->sectors = dev->id[56];
1433 dev->n_sectors = ata_id_u32(dev->id, 57);
1436 /* print device info to dmesg */
1437 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1440 ata_mode_string(xfer_modes),
1441 (unsigned long long)dev->n_sectors,
1442 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1446 if (dev->id[59] & 0x100) {
1447 dev->multi_count = dev->id[59] & 0xff;
1448 DPRINTK("ata%u: dev %u multi count %u\n",
1449 ap->id, device, dev->multi_count);
1452 ap->host->max_cmd_len = 16;
1455 /* ATAPI-specific feature tests */
1456 else if (dev->class == ATA_DEV_ATAPI) {
1457 if (ata_id_is_ata(dev->id)) /* sanity check */
1460 rc = atapi_cdb_len(dev->id);
1461 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1462 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1465 ap->cdb_len = (unsigned int) rc;
1466 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1468 if (ata_id_cdb_intr(dev->id))
1469 dev->flags |= ATA_DFLAG_CDB_INTR;
1471 /* print device info to dmesg */
1472 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1474 ata_mode_string(xfer_modes));
1477 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1481 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1484 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1485 DPRINTK("EXIT, err\n");
1489 static inline u8 ata_dev_knobble(const struct ata_port *ap)
1491 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1495 * ata_dev_config - Run device specific handlers & check for SATA->PATA bridges
1502 void ata_dev_config(struct ata_port *ap, unsigned int i)
1504 /* limit bridge transfers to udma5, 200 sectors */
1505 if (ata_dev_knobble(ap)) {
1506 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1507 ap->id, ap->device->devno);
1508 ap->udma_mask &= ATA_UDMA5;
1509 ap->host->max_sectors = ATA_MAX_SECTORS;
1510 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1511 ap->device[i].flags |= ATA_DFLAG_LOCK_SECTORS;
1514 if (ap->ops->dev_config)
1515 ap->ops->dev_config(ap, &ap->device[i]);
1519 * ata_bus_probe - Reset and probe ATA bus
1522 * Master ATA bus probing function. Initiates a hardware-dependent
1523 * bus reset, then attempts to identify any devices found on
1527 * PCI/etc. bus probe sem.
1530 * Zero on success, non-zero on error.
1533 static int ata_bus_probe(struct ata_port *ap)
1535 unsigned int i, found = 0;
1537 if (ap->ops->probe_reset) {
1538 unsigned int classes[ATA_MAX_DEVICES];
1543 rc = ap->ops->probe_reset(ap, classes);
1545 for (i = 0; i < ATA_MAX_DEVICES; i++)
1546 ap->device[i].class = classes[i];
1548 printk(KERN_ERR "ata%u: probe reset failed, "
1549 "disabling port\n", ap->id);
1550 ata_port_disable(ap);
1553 ap->ops->phy_reset(ap);
1555 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1558 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1559 ata_dev_identify(ap, i);
1560 if (ata_dev_present(&ap->device[i])) {
1562 ata_dev_config(ap,i);
1566 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1567 goto err_out_disable;
1570 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1571 goto err_out_disable;
1576 ap->ops->port_disable(ap);
1582 * ata_port_probe - Mark port as enabled
1583 * @ap: Port for which we indicate enablement
1585 * Modify @ap data structure such that the system
1586 * thinks that the entire port is enabled.
1588 * LOCKING: host_set lock, or some other form of
1592 void ata_port_probe(struct ata_port *ap)
1594 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1598 * sata_print_link_status - Print SATA link status
1599 * @ap: SATA port to printk link status about
1601 * This function prints link speed and status of a SATA link.
1606 static void sata_print_link_status(struct ata_port *ap)
1611 if (!ap->ops->scr_read)
1614 sstatus = scr_read(ap, SCR_STATUS);
1616 if (sata_dev_present(ap)) {
1617 tmp = (sstatus >> 4) & 0xf;
1620 else if (tmp & (1 << 1))
1623 speed = "<unknown>";
1624 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1625 ap->id, speed, sstatus);
1627 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1633 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1634 * @ap: SATA port associated with target SATA PHY.
1636 * This function issues commands to standard SATA Sxxx
1637 * PHY registers, to wake up the phy (and device), and
1638 * clear any reset condition.
1641 * PCI/etc. bus probe sem.
1644 void __sata_phy_reset(struct ata_port *ap)
1647 unsigned long timeout = jiffies + (HZ * 5);
1649 if (ap->flags & ATA_FLAG_SATA_RESET) {
1650 /* issue phy wake/reset */
1651 scr_write_flush(ap, SCR_CONTROL, 0x301);
1652 /* Couldn't find anything in SATA I/II specs, but
1653 * AHCI-1.1 10.4.2 says at least 1 ms. */
1656 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1658 /* wait for phy to become ready, if necessary */
1661 sstatus = scr_read(ap, SCR_STATUS);
1662 if ((sstatus & 0xf) != 1)
1664 } while (time_before(jiffies, timeout));
1666 /* print link status */
1667 sata_print_link_status(ap);
1669 /* TODO: phy layer with polling, timeouts, etc. */
1670 if (sata_dev_present(ap))
1673 ata_port_disable(ap);
1675 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1678 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1679 ata_port_disable(ap);
1683 ap->cbl = ATA_CBL_SATA;
1687 * sata_phy_reset - Reset SATA bus.
1688 * @ap: SATA port associated with target SATA PHY.
1690 * This function resets the SATA bus, and then probes
1691 * the bus for devices.
1694 * PCI/etc. bus probe sem.
1697 void sata_phy_reset(struct ata_port *ap)
1699 __sata_phy_reset(ap);
1700 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1706 * ata_port_disable - Disable port.
1707 * @ap: Port to be disabled.
1709 * Modify @ap data structure such that the system
1710 * thinks that the entire port is disabled, and should
1711 * never attempt to probe or communicate with devices
1714 * LOCKING: host_set lock, or some other form of
1718 void ata_port_disable(struct ata_port *ap)
1720 ap->device[0].class = ATA_DEV_NONE;
1721 ap->device[1].class = ATA_DEV_NONE;
1722 ap->flags |= ATA_FLAG_PORT_DISABLED;
1726 * This mode timing computation functionality is ported over from
1727 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1730 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1731 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1732 * for PIO 5, which is a nonstandard extension and UDMA6, which
1733 * is currently supported only by Maxtor drives.
1736 static const struct ata_timing ata_timing[] = {
1738 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1739 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1740 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1741 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1743 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1744 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1745 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1747 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1749 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1750 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1751 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1753 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1754 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1755 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1757 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1758 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1759 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1761 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1762 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1763 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1765 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1770 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1771 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1773 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1775 q->setup = EZ(t->setup * 1000, T);
1776 q->act8b = EZ(t->act8b * 1000, T);
1777 q->rec8b = EZ(t->rec8b * 1000, T);
1778 q->cyc8b = EZ(t->cyc8b * 1000, T);
1779 q->active = EZ(t->active * 1000, T);
1780 q->recover = EZ(t->recover * 1000, T);
1781 q->cycle = EZ(t->cycle * 1000, T);
1782 q->udma = EZ(t->udma * 1000, UT);
1785 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1786 struct ata_timing *m, unsigned int what)
1788 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1789 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1790 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1791 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1792 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1793 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1794 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1795 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1798 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1800 const struct ata_timing *t;
1802 for (t = ata_timing; t->mode != speed; t++)
1803 if (t->mode == 0xFF)
1808 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1809 struct ata_timing *t, int T, int UT)
1811 const struct ata_timing *s;
1812 struct ata_timing p;
1818 if (!(s = ata_timing_find_mode(speed)))
1821 memcpy(t, s, sizeof(*s));
1824 * If the drive is an EIDE drive, it can tell us it needs extended
1825 * PIO/MW_DMA cycle timing.
1828 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1829 memset(&p, 0, sizeof(p));
1830 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1831 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1832 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1833 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1834 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1836 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1840 * Convert the timing to bus clock counts.
1843 ata_timing_quantize(t, t, T, UT);
1846 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1847 * S.M.A.R.T * and some other commands. We have to ensure that the
1848 * DMA cycle timing is slower/equal than the fastest PIO timing.
1851 if (speed > XFER_PIO_4) {
1852 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1853 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1857 * Lengthen active & recovery time so that cycle time is correct.
1860 if (t->act8b + t->rec8b < t->cyc8b) {
1861 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1862 t->rec8b = t->cyc8b - t->act8b;
1865 if (t->active + t->recover < t->cycle) {
1866 t->active += (t->cycle - (t->active + t->recover)) / 2;
1867 t->recover = t->cycle - t->active;
1873 static const struct {
1876 } xfer_mode_classes[] = {
1877 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1878 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1879 { ATA_SHIFT_PIO, XFER_PIO_0 },
1882 static u8 base_from_shift(unsigned int shift)
1886 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1887 if (xfer_mode_classes[i].shift == shift)
1888 return xfer_mode_classes[i].base;
1893 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1898 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1901 if (dev->xfer_shift == ATA_SHIFT_PIO)
1902 dev->flags |= ATA_DFLAG_PIO;
1904 ata_dev_set_xfermode(ap, dev);
1906 base = base_from_shift(dev->xfer_shift);
1907 ofs = dev->xfer_mode - base;
1908 idx = ofs + dev->xfer_shift;
1909 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1911 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1912 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1914 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1915 ap->id, dev->devno, xfer_mode_str[idx]);
1918 static int ata_host_set_pio(struct ata_port *ap)
1924 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1927 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1931 base = base_from_shift(ATA_SHIFT_PIO);
1932 xfer_mode = base + x;
1934 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1935 (int)base, (int)xfer_mode, mask, x);
1937 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1938 struct ata_device *dev = &ap->device[i];
1939 if (ata_dev_present(dev)) {
1940 dev->pio_mode = xfer_mode;
1941 dev->xfer_mode = xfer_mode;
1942 dev->xfer_shift = ATA_SHIFT_PIO;
1943 if (ap->ops->set_piomode)
1944 ap->ops->set_piomode(ap, dev);
1951 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1952 unsigned int xfer_shift)
1956 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1957 struct ata_device *dev = &ap->device[i];
1958 if (ata_dev_present(dev)) {
1959 dev->dma_mode = xfer_mode;
1960 dev->xfer_mode = xfer_mode;
1961 dev->xfer_shift = xfer_shift;
1962 if (ap->ops->set_dmamode)
1963 ap->ops->set_dmamode(ap, dev);
1969 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1970 * @ap: port on which timings will be programmed
1972 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1975 * PCI/etc. bus probe sem.
1977 static void ata_set_mode(struct ata_port *ap)
1979 unsigned int xfer_shift;
1983 /* step 1: always set host PIO timings */
1984 rc = ata_host_set_pio(ap);
1988 /* step 2: choose the best data xfer mode */
1989 xfer_mode = xfer_shift = 0;
1990 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1994 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1995 if (xfer_shift != ATA_SHIFT_PIO)
1996 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1998 /* step 4: update devices' xfer mode */
1999 ata_dev_set_mode(ap, &ap->device[0]);
2000 ata_dev_set_mode(ap, &ap->device[1]);
2002 if (ap->flags & ATA_FLAG_PORT_DISABLED)
2005 if (ap->ops->post_set_mode)
2006 ap->ops->post_set_mode(ap);
2011 ata_port_disable(ap);
2015 * ata_busy_sleep - sleep until BSY clears, or timeout
2016 * @ap: port containing status register to be polled
2017 * @tmout_pat: impatience timeout
2018 * @tmout: overall timeout
2020 * Sleep until ATA Status register bit BSY clears,
2021 * or a timeout occurs.
2026 unsigned int ata_busy_sleep (struct ata_port *ap,
2027 unsigned long tmout_pat, unsigned long tmout)
2029 unsigned long timer_start, timeout;
2032 status = ata_busy_wait(ap, ATA_BUSY, 300);
2033 timer_start = jiffies;
2034 timeout = timer_start + tmout_pat;
2035 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2037 status = ata_busy_wait(ap, ATA_BUSY, 3);
2040 if (status & ATA_BUSY)
2041 printk(KERN_WARNING "ata%u is slow to respond, "
2042 "please be patient\n", ap->id);
2044 timeout = timer_start + tmout;
2045 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2047 status = ata_chk_status(ap);
2050 if (status & ATA_BUSY) {
2051 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
2052 ap->id, tmout / HZ);
2059 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2061 struct ata_ioports *ioaddr = &ap->ioaddr;
2062 unsigned int dev0 = devmask & (1 << 0);
2063 unsigned int dev1 = devmask & (1 << 1);
2064 unsigned long timeout;
2066 /* if device 0 was found in ata_devchk, wait for its
2070 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2072 /* if device 1 was found in ata_devchk, wait for
2073 * register access, then wait for BSY to clear
2075 timeout = jiffies + ATA_TMOUT_BOOT;
2079 ap->ops->dev_select(ap, 1);
2080 if (ap->flags & ATA_FLAG_MMIO) {
2081 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2082 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2084 nsect = inb(ioaddr->nsect_addr);
2085 lbal = inb(ioaddr->lbal_addr);
2087 if ((nsect == 1) && (lbal == 1))
2089 if (time_after(jiffies, timeout)) {
2093 msleep(50); /* give drive a breather */
2096 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2098 /* is all this really necessary? */
2099 ap->ops->dev_select(ap, 0);
2101 ap->ops->dev_select(ap, 1);
2103 ap->ops->dev_select(ap, 0);
2107 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
2108 * @ap: Port to reset and probe
2110 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
2111 * probe the bus. Not often used these days.
2114 * PCI/etc. bus probe sem.
2115 * Obtains host_set lock.
2119 static unsigned int ata_bus_edd(struct ata_port *ap)
2121 struct ata_taskfile tf;
2122 unsigned long flags;
2124 /* set up execute-device-diag (bus reset) taskfile */
2125 /* also, take interrupts to a known state (disabled) */
2126 DPRINTK("execute-device-diag\n");
2127 ata_tf_init(ap, &tf, 0);
2129 tf.command = ATA_CMD_EDD;
2130 tf.protocol = ATA_PROT_NODATA;
2133 spin_lock_irqsave(&ap->host_set->lock, flags);
2134 ata_tf_to_host(ap, &tf);
2135 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2137 /* spec says at least 2ms. but who knows with those
2138 * crazy ATAPI devices...
2142 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2145 static unsigned int ata_bus_softreset(struct ata_port *ap,
2146 unsigned int devmask)
2148 struct ata_ioports *ioaddr = &ap->ioaddr;
2150 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2152 /* software reset. causes dev0 to be selected */
2153 if (ap->flags & ATA_FLAG_MMIO) {
2154 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2155 udelay(20); /* FIXME: flush */
2156 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2157 udelay(20); /* FIXME: flush */
2158 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2160 outb(ap->ctl, ioaddr->ctl_addr);
2162 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2164 outb(ap->ctl, ioaddr->ctl_addr);
2167 /* spec mandates ">= 2ms" before checking status.
2168 * We wait 150ms, because that was the magic delay used for
2169 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2170 * between when the ATA command register is written, and then
2171 * status is checked. Because waiting for "a while" before
2172 * checking status is fine, post SRST, we perform this magic
2173 * delay here as well.
2177 ata_bus_post_reset(ap, devmask);
2183 * ata_bus_reset - reset host port and associated ATA channel
2184 * @ap: port to reset
2186 * This is typically the first time we actually start issuing
2187 * commands to the ATA channel. We wait for BSY to clear, then
2188 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2189 * result. Determine what devices, if any, are on the channel
2190 * by looking at the device 0/1 error register. Look at the signature
2191 * stored in each device's taskfile registers, to determine if
2192 * the device is ATA or ATAPI.
2195 * PCI/etc. bus probe sem.
2196 * Obtains host_set lock.
2199 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2202 void ata_bus_reset(struct ata_port *ap)
2204 struct ata_ioports *ioaddr = &ap->ioaddr;
2205 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2207 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
2209 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2211 /* determine if device 0/1 are present */
2212 if (ap->flags & ATA_FLAG_SATA_RESET)
2215 dev0 = ata_devchk(ap, 0);
2217 dev1 = ata_devchk(ap, 1);
2221 devmask |= (1 << 0);
2223 devmask |= (1 << 1);
2225 /* select device 0 again */
2226 ap->ops->dev_select(ap, 0);
2228 /* issue bus reset */
2229 if (ap->flags & ATA_FLAG_SRST)
2230 rc = ata_bus_softreset(ap, devmask);
2231 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
2232 /* set up device control */
2233 if (ap->flags & ATA_FLAG_MMIO)
2234 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2236 outb(ap->ctl, ioaddr->ctl_addr);
2237 rc = ata_bus_edd(ap);
2244 * determine by signature whether we have ATA or ATAPI devices
2246 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2247 if ((slave_possible) && (err != 0x81))
2248 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2250 /* re-enable interrupts */
2251 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2254 /* is double-select really necessary? */
2255 if (ap->device[1].class != ATA_DEV_NONE)
2256 ap->ops->dev_select(ap, 1);
2257 if (ap->device[0].class != ATA_DEV_NONE)
2258 ap->ops->dev_select(ap, 0);
2260 /* if no devices were detected, disable this port */
2261 if ((ap->device[0].class == ATA_DEV_NONE) &&
2262 (ap->device[1].class == ATA_DEV_NONE))
2265 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2266 /* set up device control for ATA_FLAG_SATA_RESET */
2267 if (ap->flags & ATA_FLAG_MMIO)
2268 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2270 outb(ap->ctl, ioaddr->ctl_addr);
2277 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2278 ap->ops->port_disable(ap);
2283 static int sata_phy_resume(struct ata_port *ap)
2285 unsigned long timeout = jiffies + (HZ * 5);
2288 scr_write_flush(ap, SCR_CONTROL, 0x300);
2290 /* Wait for phy to become ready, if necessary. */
2293 sstatus = scr_read(ap, SCR_STATUS);
2294 if ((sstatus & 0xf) != 1)
2296 } while (time_before(jiffies, timeout));
2302 * ata_std_probeinit - initialize probing
2303 * @ap: port to be probed
2305 * @ap is about to be probed. Initialize it. This function is
2306 * to be used as standard callback for ata_drive_probe_reset().
2308 extern void ata_std_probeinit(struct ata_port *ap)
2310 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
2311 sata_phy_resume(ap);
2315 * ata_std_softreset - reset host port via ATA SRST
2316 * @ap: port to reset
2317 * @verbose: fail verbosely
2318 * @classes: resulting classes of attached devices
2320 * Reset host port using ATA SRST. This function is to be used
2321 * as standard callback for ata_drive_*_reset() functions.
2324 * Kernel thread context (may sleep)
2327 * 0 on success, -errno otherwise.
2329 int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2331 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2332 unsigned int devmask = 0, err_mask;
2337 /* determine if device 0/1 are present */
2338 if (ata_devchk(ap, 0))
2339 devmask |= (1 << 0);
2340 if (slave_possible && ata_devchk(ap, 1))
2341 devmask |= (1 << 1);
2343 /* devchk reports device presence without actual device on
2344 * most SATA controllers. Check SStatus and turn devmask off
2345 * if link is offline. Note that we should continue resetting
2346 * even when it seems like there's no device.
2348 if (ap->ops->scr_read && !sata_dev_present(ap))
2351 /* select device 0 again */
2352 ap->ops->dev_select(ap, 0);
2354 /* issue bus reset */
2355 DPRINTK("about to softreset, devmask=%x\n", devmask);
2356 err_mask = ata_bus_softreset(ap, devmask);
2359 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2362 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2367 /* determine by signature whether we have ATA or ATAPI devices */
2368 classes[0] = ata_dev_try_classify(ap, 0, &err);
2369 if (slave_possible && err != 0x81)
2370 classes[1] = ata_dev_try_classify(ap, 1, &err);
2372 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2377 * sata_std_hardreset - reset host port via SATA phy reset
2378 * @ap: port to reset
2379 * @verbose: fail verbosely
2380 * @class: resulting class of attached device
2382 * SATA phy-reset host port using DET bits of SControl register.
2383 * This function is to be used as standard callback for
2384 * ata_drive_*_reset().
2387 * Kernel thread context (may sleep)
2390 * 0 on success, -errno otherwise.
2392 int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2398 /* Issue phy wake/reset */
2399 scr_write_flush(ap, SCR_CONTROL, 0x301);
2402 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2403 * 10.4.2 says at least 1 ms.
2407 /* Bring phy back */
2408 sata_phy_resume(ap);
2411 serror = scr_read(ap, SCR_ERROR);
2412 scr_write(ap, SCR_ERROR, serror);
2414 /* TODO: phy layer with polling, timeouts, etc. */
2415 if (!sata_dev_present(ap)) {
2416 *class = ATA_DEV_NONE;
2417 DPRINTK("EXIT, link offline\n");
2421 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2423 printk(KERN_ERR "ata%u: COMRESET failed "
2424 "(device not ready)\n", ap->id);
2426 DPRINTK("EXIT, device not ready\n");
2430 *class = ata_dev_try_classify(ap, 0, NULL);
2432 DPRINTK("EXIT, class=%u\n", *class);
2437 * ata_std_postreset - standard postreset callback
2438 * @ap: the target ata_port
2439 * @classes: classes of attached devices
2441 * This function is invoked after a successful reset. Note that
2442 * the device might have been reset more than once using
2443 * different reset methods before postreset is invoked.
2444 * postreset is also reponsible for setting cable type.
2446 * This function is to be used as standard callback for
2447 * ata_drive_*_reset().
2450 * Kernel thread context (may sleep)
2452 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2456 /* set cable type */
2457 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2458 ap->cbl = ATA_CBL_SATA;
2460 /* print link status */
2461 if (ap->cbl == ATA_CBL_SATA)
2462 sata_print_link_status(ap);
2464 /* bail out if no device is present */
2465 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2466 DPRINTK("EXIT, no device\n");
2470 /* is double-select really necessary? */
2471 if (classes[0] != ATA_DEV_NONE)
2472 ap->ops->dev_select(ap, 1);
2473 if (classes[1] != ATA_DEV_NONE)
2474 ap->ops->dev_select(ap, 0);
2476 /* re-enable interrupts & set up device control */
2477 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2484 * ata_std_probe_reset - standard probe reset method
2485 * @ap: prot to perform probe-reset
2486 * @classes: resulting classes of attached devices
2488 * The stock off-the-shelf ->probe_reset method.
2491 * Kernel thread context (may sleep)
2494 * 0 on success, -errno otherwise.
2496 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2498 ata_reset_fn_t hardreset;
2501 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
2502 hardreset = sata_std_hardreset;
2504 return ata_drive_probe_reset(ap, ata_std_probeinit,
2505 ata_std_softreset, hardreset,
2506 ata_std_postreset, classes);
2509 static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2510 ata_postreset_fn_t postreset,
2511 unsigned int *classes)
2515 for (i = 0; i < ATA_MAX_DEVICES; i++)
2516 classes[i] = ATA_DEV_UNKNOWN;
2518 rc = reset(ap, 0, classes);
2522 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2523 * is complete and convert all ATA_DEV_UNKNOWN to
2526 for (i = 0; i < ATA_MAX_DEVICES; i++)
2527 if (classes[i] != ATA_DEV_UNKNOWN)
2530 if (i < ATA_MAX_DEVICES)
2531 for (i = 0; i < ATA_MAX_DEVICES; i++)
2532 if (classes[i] == ATA_DEV_UNKNOWN)
2533 classes[i] = ATA_DEV_NONE;
2536 postreset(ap, classes);
2538 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2542 * ata_drive_probe_reset - Perform probe reset with given methods
2543 * @ap: port to reset
2544 * @probeinit: probeinit method (can be NULL)
2545 * @softreset: softreset method (can be NULL)
2546 * @hardreset: hardreset method (can be NULL)
2547 * @postreset: postreset method (can be NULL)
2548 * @classes: resulting classes of attached devices
2550 * Reset the specified port and classify attached devices using
2551 * given methods. This function prefers softreset but tries all
2552 * possible reset sequences to reset and classify devices. This
2553 * function is intended to be used for constructing ->probe_reset
2554 * callback by low level drivers.
2556 * Reset methods should follow the following rules.
2558 * - Return 0 on sucess, -errno on failure.
2559 * - If classification is supported, fill classes[] with
2560 * recognized class codes.
2561 * - If classification is not supported, leave classes[] alone.
2562 * - If verbose is non-zero, print error message on failure;
2563 * otherwise, shut up.
2566 * Kernel thread context (may sleep)
2569 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2570 * if classification fails, and any error code from reset
2573 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2574 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2575 ata_postreset_fn_t postreset, unsigned int *classes)
2583 rc = do_probe_reset(ap, softreset, postreset, classes);
2591 rc = do_probe_reset(ap, hardreset, postreset, classes);
2592 if (rc == 0 || rc != -ENODEV)
2596 rc = do_probe_reset(ap, softreset, postreset, classes);
2601 static void ata_pr_blacklisted(const struct ata_port *ap,
2602 const struct ata_device *dev)
2604 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2605 ap->id, dev->devno);
2608 static const char * const ata_dma_blacklist [] = {
2627 "Toshiba CD-ROM XM-6202B",
2628 "TOSHIBA CD-ROM XM-1702BC",
2630 "E-IDE CD-ROM CR-840",
2633 "SAMSUNG CD-ROM SC-148C",
2634 "SAMSUNG CD-ROM SC",
2636 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2640 static int ata_dma_blacklisted(const struct ata_device *dev)
2642 unsigned char model_num[40];
2647 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2650 len = strnlen(s, sizeof(model_num));
2652 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2653 while ((len > 0) && (s[len - 1] == ' ')) {
2658 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2659 if (!strncmp(ata_dma_blacklist[i], s, len))
2665 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
2667 const struct ata_device *master, *slave;
2670 master = &ap->device[0];
2671 slave = &ap->device[1];
2673 assert (ata_dev_present(master) || ata_dev_present(slave));
2675 if (shift == ATA_SHIFT_UDMA) {
2676 mask = ap->udma_mask;
2677 if (ata_dev_present(master)) {
2678 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
2679 if (ata_dma_blacklisted(master)) {
2681 ata_pr_blacklisted(ap, master);
2684 if (ata_dev_present(slave)) {
2685 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
2686 if (ata_dma_blacklisted(slave)) {
2688 ata_pr_blacklisted(ap, slave);
2692 else if (shift == ATA_SHIFT_MWDMA) {
2693 mask = ap->mwdma_mask;
2694 if (ata_dev_present(master)) {
2695 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2696 if (ata_dma_blacklisted(master)) {
2698 ata_pr_blacklisted(ap, master);
2701 if (ata_dev_present(slave)) {
2702 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2703 if (ata_dma_blacklisted(slave)) {
2705 ata_pr_blacklisted(ap, slave);
2709 else if (shift == ATA_SHIFT_PIO) {
2710 mask = ap->pio_mask;
2711 if (ata_dev_present(master)) {
2712 /* spec doesn't return explicit support for
2713 * PIO0-2, so we fake it
2715 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2720 if (ata_dev_present(slave)) {
2721 /* spec doesn't return explicit support for
2722 * PIO0-2, so we fake it
2724 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2731 mask = 0xffffffff; /* shut up compiler warning */
2738 /* find greatest bit */
2739 static int fgb(u32 bitmap)
2744 for (i = 0; i < 32; i++)
2745 if (bitmap & (1 << i))
2752 * ata_choose_xfer_mode - attempt to find best transfer mode
2753 * @ap: Port for which an xfer mode will be selected
2754 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2755 * @xfer_shift_out: (output) bit shift that selects this mode
2757 * Based on host and device capabilities, determine the
2758 * maximum transfer mode that is amenable to all.
2761 * PCI/etc. bus probe sem.
2764 * Zero on success, negative on error.
2767 static int ata_choose_xfer_mode(const struct ata_port *ap,
2769 unsigned int *xfer_shift_out)
2771 unsigned int mask, shift;
2774 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2775 shift = xfer_mode_classes[i].shift;
2776 mask = ata_get_mode_mask(ap, shift);
2780 *xfer_mode_out = xfer_mode_classes[i].base + x;
2781 *xfer_shift_out = shift;
2790 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2791 * @ap: Port associated with device @dev
2792 * @dev: Device to which command will be sent
2794 * Issue SET FEATURES - XFER MODE command to device @dev
2798 * PCI/etc. bus probe sem.
2801 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2803 struct ata_taskfile tf;
2805 /* set up set-features taskfile */
2806 DPRINTK("set features - xfer mode\n");
2808 ata_tf_init(ap, &tf, dev->devno);
2809 tf.command = ATA_CMD_SET_FEATURES;
2810 tf.feature = SETFEATURES_XFER;
2811 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2812 tf.protocol = ATA_PROT_NODATA;
2813 tf.nsect = dev->xfer_mode;
2815 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2816 printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
2818 ata_port_disable(ap);
2825 * ata_dev_reread_id - Reread the device identify device info
2826 * @ap: port where the device is
2827 * @dev: device to reread the identify device info
2832 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
2834 struct ata_taskfile tf;
2836 ata_tf_init(ap, &tf, dev->devno);
2838 if (dev->class == ATA_DEV_ATA) {
2839 tf.command = ATA_CMD_ID_ATA;
2840 DPRINTK("do ATA identify\n");
2842 tf.command = ATA_CMD_ID_ATAPI;
2843 DPRINTK("do ATAPI identify\n");
2846 tf.flags |= ATA_TFLAG_DEVICE;
2847 tf.protocol = ATA_PROT_PIO;
2849 if (ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
2850 dev->id, sizeof(dev->id)))
2853 swap_buf_le16(dev->id, ATA_ID_WORDS);
2861 printk(KERN_ERR "ata%u: failed to reread ID, disabled\n", ap->id);
2862 ata_port_disable(ap);
2866 * ata_dev_init_params - Issue INIT DEV PARAMS command
2867 * @ap: Port associated with device @dev
2868 * @dev: Device to which command will be sent
2873 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
2875 struct ata_taskfile tf;
2876 u16 sectors = dev->id[6];
2877 u16 heads = dev->id[3];
2879 /* Number of sectors per track 1-255. Number of heads 1-16 */
2880 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2883 /* set up init dev params taskfile */
2884 DPRINTK("init dev params \n");
2886 ata_tf_init(ap, &tf, dev->devno);
2887 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2888 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2889 tf.protocol = ATA_PROT_NODATA;
2891 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2893 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2894 printk(KERN_ERR "ata%u: failed to init parameters, disabled\n",
2896 ata_port_disable(ap);
2903 * ata_sg_clean - Unmap DMA memory associated with command
2904 * @qc: Command containing DMA memory to be released
2906 * Unmap all mapped DMA memory associated with this command.
2909 * spin_lock_irqsave(host_set lock)
2912 static void ata_sg_clean(struct ata_queued_cmd *qc)
2914 struct ata_port *ap = qc->ap;
2915 struct scatterlist *sg = qc->__sg;
2916 int dir = qc->dma_dir;
2917 void *pad_buf = NULL;
2919 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2922 if (qc->flags & ATA_QCFLAG_SINGLE)
2923 assert(qc->n_elem == 1);
2925 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
2927 /* if we padded the buffer out to 32-bit bound, and data
2928 * xfer direction is from-device, we must copy from the
2929 * pad buffer back into the supplied buffer
2931 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2932 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2934 if (qc->flags & ATA_QCFLAG_SG) {
2936 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2937 /* restore last sg */
2938 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2940 struct scatterlist *psg = &qc->pad_sgent;
2941 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2942 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2943 kunmap_atomic(addr, KM_IRQ0);
2946 if (sg_dma_len(&sg[0]) > 0)
2947 dma_unmap_single(ap->host_set->dev,
2948 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2951 sg->length += qc->pad_len;
2953 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2954 pad_buf, qc->pad_len);
2957 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2962 * ata_fill_sg - Fill PCI IDE PRD table
2963 * @qc: Metadata associated with taskfile to be transferred
2965 * Fill PCI IDE PRD (scatter-gather) table with segments
2966 * associated with the current disk command.
2969 * spin_lock_irqsave(host_set lock)
2972 static void ata_fill_sg(struct ata_queued_cmd *qc)
2974 struct ata_port *ap = qc->ap;
2975 struct scatterlist *sg;
2978 assert(qc->__sg != NULL);
2979 assert(qc->n_elem > 0);
2982 ata_for_each_sg(sg, qc) {
2986 /* determine if physical DMA addr spans 64K boundary.
2987 * Note h/w doesn't support 64-bit, so we unconditionally
2988 * truncate dma_addr_t to u32.
2990 addr = (u32) sg_dma_address(sg);
2991 sg_len = sg_dma_len(sg);
2994 offset = addr & 0xffff;
2996 if ((offset + sg_len) > 0x10000)
2997 len = 0x10000 - offset;
2999 ap->prd[idx].addr = cpu_to_le32(addr);
3000 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3001 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3010 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3013 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3014 * @qc: Metadata associated with taskfile to check
3016 * Allow low-level driver to filter ATA PACKET commands, returning
3017 * a status indicating whether or not it is OK to use DMA for the
3018 * supplied PACKET command.
3021 * spin_lock_irqsave(host_set lock)
3023 * RETURNS: 0 when ATAPI DMA can be used
3026 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3028 struct ata_port *ap = qc->ap;
3029 int rc = 0; /* Assume ATAPI DMA is OK by default */
3031 if (ap->ops->check_atapi_dma)
3032 rc = ap->ops->check_atapi_dma(qc);
3037 * ata_qc_prep - Prepare taskfile for submission
3038 * @qc: Metadata associated with taskfile to be prepared
3040 * Prepare ATA taskfile for submission.
3043 * spin_lock_irqsave(host_set lock)
3045 void ata_qc_prep(struct ata_queued_cmd *qc)
3047 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3054 * ata_sg_init_one - Associate command with memory buffer
3055 * @qc: Command to be associated
3056 * @buf: Memory buffer
3057 * @buflen: Length of memory buffer, in bytes.
3059 * Initialize the data-related elements of queued_cmd @qc
3060 * to point to a single memory buffer, @buf of byte length @buflen.
3063 * spin_lock_irqsave(host_set lock)
3066 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3068 struct scatterlist *sg;
3070 qc->flags |= ATA_QCFLAG_SINGLE;
3072 memset(&qc->sgent, 0, sizeof(qc->sgent));
3073 qc->__sg = &qc->sgent;
3075 qc->orig_n_elem = 1;
3079 sg_init_one(sg, buf, buflen);
3083 * ata_sg_init - Associate command with scatter-gather table.
3084 * @qc: Command to be associated
3085 * @sg: Scatter-gather table.
3086 * @n_elem: Number of elements in s/g table.
3088 * Initialize the data-related elements of queued_cmd @qc
3089 * to point to a scatter-gather table @sg, containing @n_elem
3093 * spin_lock_irqsave(host_set lock)
3096 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3097 unsigned int n_elem)
3099 qc->flags |= ATA_QCFLAG_SG;
3101 qc->n_elem = n_elem;
3102 qc->orig_n_elem = n_elem;
3106 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3107 * @qc: Command with memory buffer to be mapped.
3109 * DMA-map the memory buffer associated with queued_cmd @qc.
3112 * spin_lock_irqsave(host_set lock)
3115 * Zero on success, negative on error.
3118 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3120 struct ata_port *ap = qc->ap;
3121 int dir = qc->dma_dir;
3122 struct scatterlist *sg = qc->__sg;
3123 dma_addr_t dma_address;
3125 /* we must lengthen transfers to end on a 32-bit boundary */
3126 qc->pad_len = sg->length & 3;
3128 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3129 struct scatterlist *psg = &qc->pad_sgent;
3131 assert(qc->dev->class == ATA_DEV_ATAPI);
3133 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3135 if (qc->tf.flags & ATA_TFLAG_WRITE)
3136 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3139 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3140 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3142 sg->length -= qc->pad_len;
3144 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3145 sg->length, qc->pad_len);
3149 sg_dma_address(sg) = 0;
3153 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
3155 if (dma_mapping_error(dma_address)) {
3157 sg->length += qc->pad_len;
3161 sg_dma_address(sg) = dma_address;
3163 sg_dma_len(sg) = sg->length;
3165 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3166 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3172 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3173 * @qc: Command with scatter-gather table to be mapped.
3175 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3178 * spin_lock_irqsave(host_set lock)
3181 * Zero on success, negative on error.
3185 static int ata_sg_setup(struct ata_queued_cmd *qc)
3187 struct ata_port *ap = qc->ap;
3188 struct scatterlist *sg = qc->__sg;
3189 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3190 int n_elem, pre_n_elem, dir, trim_sg = 0;
3192 VPRINTK("ENTER, ata%u\n", ap->id);
3193 assert(qc->flags & ATA_QCFLAG_SG);
3195 /* we must lengthen transfers to end on a 32-bit boundary */
3196 qc->pad_len = lsg->length & 3;
3198 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3199 struct scatterlist *psg = &qc->pad_sgent;
3200 unsigned int offset;
3202 assert(qc->dev->class == ATA_DEV_ATAPI);
3204 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3207 * psg->page/offset are used to copy to-be-written
3208 * data in this function or read data in ata_sg_clean.
3210 offset = lsg->offset + lsg->length - qc->pad_len;
3211 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3212 psg->offset = offset_in_page(offset);
3214 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3215 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3216 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3217 kunmap_atomic(addr, KM_IRQ0);
3220 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3221 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3223 lsg->length -= qc->pad_len;
3224 if (lsg->length == 0)
3227 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3228 qc->n_elem - 1, lsg->length, qc->pad_len);
3231 pre_n_elem = qc->n_elem;
3232 if (trim_sg && pre_n_elem)
3241 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
3243 /* restore last sg */
3244 lsg->length += qc->pad_len;
3248 DPRINTK("%d sg elements mapped\n", n_elem);
3251 qc->n_elem = n_elem;
3257 * ata_poll_qc_complete - turn irq back on and finish qc
3258 * @qc: Command to complete
3259 * @err_mask: ATA status register content
3262 * None. (grabs host lock)
3265 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
3267 struct ata_port *ap = qc->ap;
3268 unsigned long flags;
3270 spin_lock_irqsave(&ap->host_set->lock, flags);
3272 ata_qc_complete(qc);
3273 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3277 * ata_pio_poll - poll using PIO, depending on current state
3278 * @ap: the target ata_port
3281 * None. (executing in kernel thread context)
3284 * timeout value to use
3287 static unsigned long ata_pio_poll(struct ata_port *ap)
3289 struct ata_queued_cmd *qc;
3291 unsigned int poll_state = HSM_ST_UNKNOWN;
3292 unsigned int reg_state = HSM_ST_UNKNOWN;
3294 qc = ata_qc_from_tag(ap, ap->active_tag);
3297 switch (ap->hsm_task_state) {
3300 poll_state = HSM_ST_POLL;
3304 case HSM_ST_LAST_POLL:
3305 poll_state = HSM_ST_LAST_POLL;
3306 reg_state = HSM_ST_LAST;
3313 status = ata_chk_status(ap);
3314 if (status & ATA_BUSY) {
3315 if (time_after(jiffies, ap->pio_task_timeout)) {
3316 qc->err_mask |= AC_ERR_TIMEOUT;
3317 ap->hsm_task_state = HSM_ST_TMOUT;
3320 ap->hsm_task_state = poll_state;
3321 return ATA_SHORT_PAUSE;
3324 ap->hsm_task_state = reg_state;
3329 * ata_pio_complete - check if drive is busy or idle
3330 * @ap: the target ata_port
3333 * None. (executing in kernel thread context)
3336 * Zero if qc completed.
3337 * Non-zero if has next.
3340 static int ata_pio_complete (struct ata_port *ap)
3342 struct ata_queued_cmd *qc;
3346 * This is purely heuristic. This is a fast path. Sometimes when
3347 * we enter, BSY will be cleared in a chk-status or two. If not,
3348 * the drive is probably seeking or something. Snooze for a couple
3349 * msecs, then chk-status again. If still busy, fall back to
3350 * HSM_ST_LAST_POLL state.
3352 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3353 if (drv_stat & ATA_BUSY) {
3355 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3356 if (drv_stat & ATA_BUSY) {
3357 ap->hsm_task_state = HSM_ST_LAST_POLL;
3358 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3363 qc = ata_qc_from_tag(ap, ap->active_tag);
3366 drv_stat = ata_wait_idle(ap);
3367 if (!ata_ok(drv_stat)) {
3368 qc->err_mask |= __ac_err_mask(drv_stat);
3369 ap->hsm_task_state = HSM_ST_ERR;
3373 ap->hsm_task_state = HSM_ST_IDLE;
3375 assert(qc->err_mask == 0);
3376 ata_poll_qc_complete(qc);
3378 /* another command may start at this point */
3385 * swap_buf_le16 - swap halves of 16-bit words in place
3386 * @buf: Buffer to swap
3387 * @buf_words: Number of 16-bit words in buffer.
3389 * Swap halves of 16-bit words if needed to convert from
3390 * little-endian byte order to native cpu byte order, or
3394 * Inherited from caller.
3396 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3401 for (i = 0; i < buf_words; i++)
3402 buf[i] = le16_to_cpu(buf[i]);
3403 #endif /* __BIG_ENDIAN */
3407 * ata_mmio_data_xfer - Transfer data by MMIO
3408 * @ap: port to read/write
3410 * @buflen: buffer length
3411 * @write_data: read/write
3413 * Transfer data from/to the device data register by MMIO.
3416 * Inherited from caller.
3419 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3420 unsigned int buflen, int write_data)
3423 unsigned int words = buflen >> 1;
3424 u16 *buf16 = (u16 *) buf;
3425 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3427 /* Transfer multiple of 2 bytes */
3429 for (i = 0; i < words; i++)
3430 writew(le16_to_cpu(buf16[i]), mmio);
3432 for (i = 0; i < words; i++)
3433 buf16[i] = cpu_to_le16(readw(mmio));
3436 /* Transfer trailing 1 byte, if any. */
3437 if (unlikely(buflen & 0x01)) {
3438 u16 align_buf[1] = { 0 };
3439 unsigned char *trailing_buf = buf + buflen - 1;
3442 memcpy(align_buf, trailing_buf, 1);
3443 writew(le16_to_cpu(align_buf[0]), mmio);
3445 align_buf[0] = cpu_to_le16(readw(mmio));
3446 memcpy(trailing_buf, align_buf, 1);
3452 * ata_pio_data_xfer - Transfer data by PIO
3453 * @ap: port to read/write
3455 * @buflen: buffer length
3456 * @write_data: read/write
3458 * Transfer data from/to the device data register by PIO.
3461 * Inherited from caller.
3464 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3465 unsigned int buflen, int write_data)
3467 unsigned int words = buflen >> 1;
3469 /* Transfer multiple of 2 bytes */
3471 outsw(ap->ioaddr.data_addr, buf, words);
3473 insw(ap->ioaddr.data_addr, buf, words);
3475 /* Transfer trailing 1 byte, if any. */
3476 if (unlikely(buflen & 0x01)) {
3477 u16 align_buf[1] = { 0 };
3478 unsigned char *trailing_buf = buf + buflen - 1;
3481 memcpy(align_buf, trailing_buf, 1);
3482 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3484 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3485 memcpy(trailing_buf, align_buf, 1);
3491 * ata_data_xfer - Transfer data from/to the data register.
3492 * @ap: port to read/write
3494 * @buflen: buffer length
3495 * @do_write: read/write
3497 * Transfer data from/to the device data register.
3500 * Inherited from caller.
3503 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3504 unsigned int buflen, int do_write)
3506 /* Make the crap hardware pay the costs not the good stuff */
3507 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3508 unsigned long flags;
3509 local_irq_save(flags);
3510 if (ap->flags & ATA_FLAG_MMIO)
3511 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3513 ata_pio_data_xfer(ap, buf, buflen, do_write);
3514 local_irq_restore(flags);
3516 if (ap->flags & ATA_FLAG_MMIO)
3517 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3519 ata_pio_data_xfer(ap, buf, buflen, do_write);
3524 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3525 * @qc: Command on going
3527 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3530 * Inherited from caller.
3533 static void ata_pio_sector(struct ata_queued_cmd *qc)
3535 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3536 struct scatterlist *sg = qc->__sg;
3537 struct ata_port *ap = qc->ap;
3539 unsigned int offset;
3542 if (qc->cursect == (qc->nsect - 1))
3543 ap->hsm_task_state = HSM_ST_LAST;
3545 page = sg[qc->cursg].page;
3546 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3548 /* get the current page and offset */
3549 page = nth_page(page, (offset >> PAGE_SHIFT));
3550 offset %= PAGE_SIZE;
3552 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3554 if (PageHighMem(page)) {
3555 unsigned long flags;
3557 local_irq_save(flags);
3558 buf = kmap_atomic(page, KM_IRQ0);
3560 /* do the actual data transfer */
3561 ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write);
3563 kunmap_atomic(buf, KM_IRQ0);
3564 local_irq_restore(flags);
3566 buf = page_address(page);
3567 ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write);
3573 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3580 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3581 * @qc: Command on going
3583 * Transfer one or many ATA_SECT_SIZE of data from/to the
3584 * ATA device for the DRQ request.
3587 * Inherited from caller.
3590 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3592 if (is_multi_taskfile(&qc->tf)) {
3593 /* READ/WRITE MULTIPLE */
3596 assert(qc->dev->multi_count);
3598 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3606 * atapi_send_cdb - Write CDB bytes to hardware
3607 * @ap: Port to which ATAPI device is attached.
3608 * @qc: Taskfile currently active
3610 * When device has indicated its readiness to accept
3611 * a CDB, this function is called. Send the CDB.
3617 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3620 DPRINTK("send cdb\n");
3621 assert(ap->cdb_len >= 12);
3623 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
3624 ata_altstatus(ap); /* flush */
3626 switch (qc->tf.protocol) {
3627 case ATA_PROT_ATAPI:
3628 ap->hsm_task_state = HSM_ST;
3630 case ATA_PROT_ATAPI_NODATA:
3631 ap->hsm_task_state = HSM_ST_LAST;
3633 case ATA_PROT_ATAPI_DMA:
3634 ap->hsm_task_state = HSM_ST_LAST;
3635 /* initiate bmdma */
3636 ap->ops->bmdma_start(qc);
3642 * ata_pio_first_block - Write first data block to hardware
3643 * @ap: Port to which ATA/ATAPI device is attached.
3645 * When device has indicated its readiness to accept
3646 * the data, this function sends out the CDB or
3647 * the first data block by PIO.
3649 * - If polling, ata_pio_task() handles the rest.
3650 * - Otherwise, interrupt handler takes over.
3653 * Kernel thread context (may sleep)
3656 * Zero if irq handler takes over
3657 * Non-zero if has next (polling).
3660 static int ata_pio_first_block(struct ata_port *ap)
3662 struct ata_queued_cmd *qc;
3664 unsigned long flags;
3667 qc = ata_qc_from_tag(ap, ap->active_tag);
3669 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3671 /* if polling, we will stay in the work queue after sending the data.
3672 * otherwise, interrupt handler takes over after sending the data.
3674 has_next = (qc->tf.flags & ATA_TFLAG_POLLING);
3676 /* sleep-wait for BSY to clear */
3677 DPRINTK("busy wait\n");
3678 if (ata_busy_sleep(ap, ATA_TMOUT_DATAOUT_QUICK, ATA_TMOUT_DATAOUT)) {
3679 qc->err_mask |= AC_ERR_TIMEOUT;
3680 ap->hsm_task_state = HSM_ST_TMOUT;
3684 /* make sure DRQ is set */
3685 status = ata_chk_status(ap);
3686 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3687 /* device status error */
3688 qc->err_mask |= AC_ERR_HSM;
3689 ap->hsm_task_state = HSM_ST_ERR;
3693 /* Send the CDB (atapi) or the first data block (ata pio out).
3694 * During the state transition, interrupt handler shouldn't
3695 * be invoked before the data transfer is complete and
3696 * hsm_task_state is changed. Hence, the following locking.
3698 spin_lock_irqsave(&ap->host_set->lock, flags);
3700 if (qc->tf.protocol == ATA_PROT_PIO) {
3701 /* PIO data out protocol.
3702 * send first data block.
3705 /* ata_pio_sectors() might change the state to HSM_ST_LAST.
3706 * so, the state is changed here before ata_pio_sectors().
3708 ap->hsm_task_state = HSM_ST;
3709 ata_pio_sectors(qc);
3710 ata_altstatus(ap); /* flush */
3713 atapi_send_cdb(ap, qc);
3715 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3717 /* if polling, ata_pio_task() handles the rest.
3718 * otherwise, interrupt handler takes over from here.
3723 return 1; /* has next */
3727 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3728 * @qc: Command on going
3729 * @bytes: number of bytes
3731 * Transfer Transfer data from/to the ATAPI device.
3734 * Inherited from caller.
3738 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3740 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3741 struct scatterlist *sg = qc->__sg;
3742 struct ata_port *ap = qc->ap;
3745 unsigned int offset, count;
3747 if (qc->curbytes + bytes >= qc->nbytes)
3748 ap->hsm_task_state = HSM_ST_LAST;
3751 if (unlikely(qc->cursg >= qc->n_elem)) {
3753 * The end of qc->sg is reached and the device expects
3754 * more data to transfer. In order not to overrun qc->sg
3755 * and fulfill length specified in the byte count register,
3756 * - for read case, discard trailing data from the device
3757 * - for write case, padding zero data to the device
3759 u16 pad_buf[1] = { 0 };
3760 unsigned int words = bytes >> 1;
3763 if (words) /* warning if bytes > 1 */
3764 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3767 for (i = 0; i < words; i++)
3768 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3770 ap->hsm_task_state = HSM_ST_LAST;
3774 sg = &qc->__sg[qc->cursg];
3777 offset = sg->offset + qc->cursg_ofs;
3779 /* get the current page and offset */
3780 page = nth_page(page, (offset >> PAGE_SHIFT));
3781 offset %= PAGE_SIZE;
3783 /* don't overrun current sg */
3784 count = min(sg->length - qc->cursg_ofs, bytes);
3786 /* don't cross page boundaries */
3787 count = min(count, (unsigned int)PAGE_SIZE - offset);
3789 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3791 if (PageHighMem(page)) {
3792 unsigned long flags;
3794 local_irq_save(flags);
3795 buf = kmap_atomic(page, KM_IRQ0);
3797 /* do the actual data transfer */
3798 ata_data_xfer(ap, buf + offset, count, do_write);
3800 kunmap_atomic(buf, KM_IRQ0);
3801 local_irq_restore(flags);
3803 buf = page_address(page);
3804 ata_data_xfer(ap, buf + offset, count, do_write);
3808 qc->curbytes += count;
3809 qc->cursg_ofs += count;
3811 if (qc->cursg_ofs == sg->length) {
3821 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3822 * @qc: Command on going
3824 * Transfer Transfer data from/to the ATAPI device.
3827 * Inherited from caller.
3830 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3832 struct ata_port *ap = qc->ap;
3833 struct ata_device *dev = qc->dev;
3834 unsigned int ireason, bc_lo, bc_hi, bytes;
3835 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3837 ap->ops->tf_read(ap, &qc->tf);
3838 ireason = qc->tf.nsect;
3839 bc_lo = qc->tf.lbam;
3840 bc_hi = qc->tf.lbah;
3841 bytes = (bc_hi << 8) | bc_lo;
3843 /* shall be cleared to zero, indicating xfer of data */
3844 if (ireason & (1 << 0))
3847 /* make sure transfer direction matches expected */
3848 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3849 if (do_write != i_write)
3852 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3854 __atapi_pio_bytes(qc, bytes);
3859 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3860 ap->id, dev->devno);
3861 qc->err_mask |= AC_ERR_HSM;
3862 ap->hsm_task_state = HSM_ST_ERR;
3866 * ata_pio_block - start PIO on a block
3867 * @ap: the target ata_port
3870 * None. (executing in kernel thread context)
3873 static void ata_pio_block(struct ata_port *ap)
3875 struct ata_queued_cmd *qc;
3879 * This is purely heuristic. This is a fast path.
3880 * Sometimes when we enter, BSY will be cleared in
3881 * a chk-status or two. If not, the drive is probably seeking
3882 * or something. Snooze for a couple msecs, then
3883 * chk-status again. If still busy, fall back to
3884 * HSM_ST_POLL state.
3886 status = ata_busy_wait(ap, ATA_BUSY, 5);
3887 if (status & ATA_BUSY) {
3889 status = ata_busy_wait(ap, ATA_BUSY, 10);
3890 if (status & ATA_BUSY) {
3891 ap->hsm_task_state = HSM_ST_POLL;
3892 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3897 qc = ata_qc_from_tag(ap, ap->active_tag);
3901 if (status & (ATA_ERR | ATA_DF)) {
3902 qc->err_mask |= AC_ERR_DEV;
3903 ap->hsm_task_state = HSM_ST_ERR;
3907 /* transfer data if any */
3908 if (is_atapi_taskfile(&qc->tf)) {
3909 /* DRQ=0 means no more data to transfer */
3910 if ((status & ATA_DRQ) == 0) {
3911 ap->hsm_task_state = HSM_ST_LAST;
3915 atapi_pio_bytes(qc);
3917 /* handle BSY=0, DRQ=0 as error */
3918 if ((status & ATA_DRQ) == 0) {
3919 qc->err_mask |= AC_ERR_HSM;
3920 ap->hsm_task_state = HSM_ST_ERR;
3924 ata_pio_sectors(qc);
3927 ata_altstatus(ap); /* flush */
3930 static void ata_pio_error(struct ata_port *ap)
3932 struct ata_queued_cmd *qc;
3934 qc = ata_qc_from_tag(ap, ap->active_tag);
3937 if (qc->tf.command != ATA_CMD_PACKET)
3938 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3940 /* make sure qc->err_mask is available to
3941 * know what's wrong and recover
3943 assert(qc->err_mask);
3945 ap->hsm_task_state = HSM_ST_IDLE;
3947 ata_poll_qc_complete(qc);
3950 static void ata_pio_task(void *_data)
3952 struct ata_port *ap = _data;
3953 unsigned long timeout;
3960 switch (ap->hsm_task_state) {
3962 has_next = ata_pio_first_block(ap);
3970 has_next = ata_pio_complete(ap);
3974 case HSM_ST_LAST_POLL:
3975 timeout = ata_pio_poll(ap);
3989 ata_queue_delayed_pio_task(ap, timeout);
3995 * ata_qc_timeout - Handle timeout of queued command
3996 * @qc: Command that timed out
3998 * Some part of the kernel (currently, only the SCSI layer)
3999 * has noticed that the active command on port @ap has not
4000 * completed after a specified length of time. Handle this
4001 * condition by disabling DMA (if necessary) and completing
4002 * transactions, with error if necessary.
4004 * This also handles the case of the "lost interrupt", where
4005 * for some reason (possibly hardware bug, possibly driver bug)
4006 * an interrupt was not delivered to the driver, even though the
4007 * transaction completed successfully.
4010 * Inherited from SCSI layer (none, can sleep)
4013 static void ata_qc_timeout(struct ata_queued_cmd *qc)
4015 struct ata_port *ap = qc->ap;
4016 struct ata_host_set *host_set = ap->host_set;
4017 u8 host_stat = 0, drv_stat;
4018 unsigned long flags;
4022 ata_flush_pio_tasks(ap);
4023 ap->hsm_task_state = HSM_ST_IDLE;
4025 spin_lock_irqsave(&host_set->lock, flags);
4027 switch (qc->tf.protocol) {
4030 case ATA_PROT_ATAPI_DMA:
4031 host_stat = ap->ops->bmdma_status(ap);
4033 /* before we do anything else, clear DMA-Start bit */
4034 ap->ops->bmdma_stop(qc);
4040 drv_stat = ata_chk_status(ap);
4042 /* ack bmdma irq events */
4043 ap->ops->irq_clear(ap);
4045 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
4046 ap->id, qc->tf.command, drv_stat, host_stat);
4048 ap->hsm_task_state = HSM_ST_IDLE;
4050 /* complete taskfile transaction */
4051 qc->err_mask |= AC_ERR_TIMEOUT;
4055 spin_unlock_irqrestore(&host_set->lock, flags);
4057 ata_eh_qc_complete(qc);
4063 * ata_eng_timeout - Handle timeout of queued command
4064 * @ap: Port on which timed-out command is active
4066 * Some part of the kernel (currently, only the SCSI layer)
4067 * has noticed that the active command on port @ap has not
4068 * completed after a specified length of time. Handle this
4069 * condition by disabling DMA (if necessary) and completing
4070 * transactions, with error if necessary.
4072 * This also handles the case of the "lost interrupt", where
4073 * for some reason (possibly hardware bug, possibly driver bug)
4074 * an interrupt was not delivered to the driver, even though the
4075 * transaction completed successfully.
4078 * Inherited from SCSI layer (none, can sleep)
4081 void ata_eng_timeout(struct ata_port *ap)
4083 struct ata_queued_cmd *qc;
4087 qc = ata_qc_from_tag(ap, ap->active_tag);
4091 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
4101 * ata_qc_new - Request an available ATA command, for queueing
4102 * @ap: Port associated with device @dev
4103 * @dev: Device from whom we request an available command structure
4109 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4111 struct ata_queued_cmd *qc = NULL;
4114 for (i = 0; i < ATA_MAX_QUEUE; i++)
4115 if (!test_and_set_bit(i, &ap->qactive)) {
4116 qc = ata_qc_from_tag(ap, i);
4127 * ata_qc_new_init - Request an available ATA command, and initialize it
4128 * @ap: Port associated with device @dev
4129 * @dev: Device from whom we request an available command structure
4135 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
4136 struct ata_device *dev)
4138 struct ata_queued_cmd *qc;
4140 qc = ata_qc_new(ap);
4153 * ata_qc_free - free unused ata_queued_cmd
4154 * @qc: Command to complete
4156 * Designed to free unused ata_queued_cmd object
4157 * in case something prevents using it.
4160 * spin_lock_irqsave(host_set lock)
4162 void ata_qc_free(struct ata_queued_cmd *qc)
4164 struct ata_port *ap = qc->ap;
4167 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
4171 if (likely(ata_tag_valid(tag))) {
4172 if (tag == ap->active_tag)
4173 ap->active_tag = ATA_TAG_POISON;
4174 qc->tag = ATA_TAG_POISON;
4175 clear_bit(tag, &ap->qactive);
4180 * ata_qc_complete - Complete an active ATA command
4181 * @qc: Command to complete
4182 * @err_mask: ATA Status register contents
4184 * Indicate to the mid and upper layers that an ATA
4185 * command has completed, with either an ok or not-ok status.
4188 * spin_lock_irqsave(host_set lock)
4191 void ata_qc_complete(struct ata_queued_cmd *qc)
4193 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
4194 assert(qc->flags & ATA_QCFLAG_ACTIVE);
4196 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4199 /* atapi: mark qc as inactive to prevent the interrupt handler
4200 * from completing the command twice later, before the error handler
4201 * is called. (when rc != 0 and atapi request sense is needed)
4203 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4205 /* call completion callback */
4206 qc->complete_fn(qc);
4209 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4211 struct ata_port *ap = qc->ap;
4213 switch (qc->tf.protocol) {
4215 case ATA_PROT_ATAPI_DMA:
4218 case ATA_PROT_ATAPI:
4220 case ATA_PROT_PIO_MULT:
4221 if (ap->flags & ATA_FLAG_PIO_DMA)
4234 * ata_qc_issue - issue taskfile to device
4235 * @qc: command to issue to device
4237 * Prepare an ATA command to submission to device.
4238 * This includes mapping the data into a DMA-able
4239 * area, filling in the S/G table, and finally
4240 * writing the taskfile to hardware, starting the command.
4243 * spin_lock_irqsave(host_set lock)
4246 * Zero on success, AC_ERR_* mask on failure
4249 unsigned int ata_qc_issue(struct ata_queued_cmd *qc)
4251 struct ata_port *ap = qc->ap;
4253 if (ata_should_dma_map(qc)) {
4254 if (qc->flags & ATA_QCFLAG_SG) {
4255 if (ata_sg_setup(qc))
4257 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4258 if (ata_sg_setup_one(qc))
4262 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4265 ap->ops->qc_prep(qc);
4267 qc->ap->active_tag = qc->tag;
4268 qc->flags |= ATA_QCFLAG_ACTIVE;
4270 return ap->ops->qc_issue(qc);
4273 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4274 return AC_ERR_SYSTEM;
4279 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4280 * @qc: command to issue to device
4282 * Using various libata functions and hooks, this function
4283 * starts an ATA command. ATA commands are grouped into
4284 * classes called "protocols", and issuing each type of protocol
4285 * is slightly different.
4287 * May be used as the qc_issue() entry in ata_port_operations.
4290 * spin_lock_irqsave(host_set lock)
4293 * Zero on success, AC_ERR_* mask on failure
4296 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4298 struct ata_port *ap = qc->ap;
4300 /* Use polling pio if the LLD doesn't handle
4301 * interrupt driven pio and atapi CDB interrupt.
4303 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4304 switch (qc->tf.protocol) {
4306 case ATA_PROT_ATAPI:
4307 case ATA_PROT_ATAPI_NODATA:
4308 qc->tf.flags |= ATA_TFLAG_POLLING;
4310 case ATA_PROT_ATAPI_DMA:
4311 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4319 /* select the device */
4320 ata_dev_select(ap, qc->dev->devno, 1, 0);
4322 /* start the command */
4323 switch (qc->tf.protocol) {
4324 case ATA_PROT_NODATA:
4325 if (qc->tf.flags & ATA_TFLAG_POLLING)
4326 ata_qc_set_polling(qc);
4328 ata_tf_to_host(ap, &qc->tf);
4329 ap->hsm_task_state = HSM_ST_LAST;
4331 if (qc->tf.flags & ATA_TFLAG_POLLING)
4332 ata_queue_pio_task(ap);
4337 assert(!(qc->tf.flags & ATA_TFLAG_POLLING));
4339 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4340 ap->ops->bmdma_setup(qc); /* set up bmdma */
4341 ap->ops->bmdma_start(qc); /* initiate bmdma */
4342 ap->hsm_task_state = HSM_ST_LAST;
4346 if (qc->tf.flags & ATA_TFLAG_POLLING)
4347 ata_qc_set_polling(qc);
4349 ata_tf_to_host(ap, &qc->tf);
4351 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4352 /* PIO data out protocol */
4353 ap->hsm_task_state = HSM_ST_FIRST;
4354 ata_queue_pio_task(ap);
4356 /* always send first data block using
4357 * the ata_pio_task() codepath.
4360 /* PIO data in protocol */
4361 ap->hsm_task_state = HSM_ST;
4363 if (qc->tf.flags & ATA_TFLAG_POLLING)
4364 ata_queue_pio_task(ap);
4366 /* if polling, ata_pio_task() handles the rest.
4367 * otherwise, interrupt handler takes over from here.
4373 case ATA_PROT_ATAPI:
4374 case ATA_PROT_ATAPI_NODATA:
4375 if (qc->tf.flags & ATA_TFLAG_POLLING)
4376 ata_qc_set_polling(qc);
4378 ata_tf_to_host(ap, &qc->tf);
4380 ap->hsm_task_state = HSM_ST_FIRST;
4382 /* send cdb by polling if no cdb interrupt */
4383 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4384 (qc->tf.flags & ATA_TFLAG_POLLING))
4385 ata_queue_pio_task(ap);
4388 case ATA_PROT_ATAPI_DMA:
4389 assert(!(qc->tf.flags & ATA_TFLAG_POLLING));
4391 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4392 ap->ops->bmdma_setup(qc); /* set up bmdma */
4393 ap->hsm_task_state = HSM_ST_FIRST;
4395 /* send cdb by polling if no cdb interrupt */
4396 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4397 ata_queue_pio_task(ap);
4402 return AC_ERR_SYSTEM;
4409 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
4410 * @qc: Info associated with this ATA transaction.
4413 * spin_lock_irqsave(host_set lock)
4416 static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
4418 struct ata_port *ap = qc->ap;
4419 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
4421 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4423 /* load PRD table addr. */
4424 mb(); /* make sure PRD table writes are visible to controller */
4425 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
4427 /* specify data direction, triple-check start bit is clear */
4428 dmactl = readb(mmio + ATA_DMA_CMD);
4429 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
4431 dmactl |= ATA_DMA_WR;
4432 writeb(dmactl, mmio + ATA_DMA_CMD);
4434 /* issue r/w command */
4435 ap->ops->exec_command(ap, &qc->tf);
4439 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
4440 * @qc: Info associated with this ATA transaction.
4443 * spin_lock_irqsave(host_set lock)
4446 static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
4448 struct ata_port *ap = qc->ap;
4449 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4452 /* start host DMA transaction */
4453 dmactl = readb(mmio + ATA_DMA_CMD);
4454 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
4456 /* Strictly, one may wish to issue a readb() here, to
4457 * flush the mmio write. However, control also passes
4458 * to the hardware at this point, and it will interrupt
4459 * us when we are to resume control. So, in effect,
4460 * we don't care when the mmio write flushes.
4461 * Further, a read of the DMA status register _immediately_
4462 * following the write may not be what certain flaky hardware
4463 * is expected, so I think it is best to not add a readb()
4464 * without first all the MMIO ATA cards/mobos.
4465 * Or maybe I'm just being paranoid.
4470 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
4471 * @qc: Info associated with this ATA transaction.
4474 * spin_lock_irqsave(host_set lock)
4477 static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
4479 struct ata_port *ap = qc->ap;
4480 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
4483 /* load PRD table addr. */
4484 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
4486 /* specify data direction, triple-check start bit is clear */
4487 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4488 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
4490 dmactl |= ATA_DMA_WR;
4491 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4493 /* issue r/w command */
4494 ap->ops->exec_command(ap, &qc->tf);
4498 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
4499 * @qc: Info associated with this ATA transaction.
4502 * spin_lock_irqsave(host_set lock)
4505 static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
4507 struct ata_port *ap = qc->ap;
4510 /* start host DMA transaction */
4511 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4512 outb(dmactl | ATA_DMA_START,
4513 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4518 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
4519 * @qc: Info associated with this ATA transaction.
4521 * Writes the ATA_DMA_START flag to the DMA command register.
4523 * May be used as the bmdma_start() entry in ata_port_operations.
4526 * spin_lock_irqsave(host_set lock)
4528 void ata_bmdma_start(struct ata_queued_cmd *qc)
4530 if (qc->ap->flags & ATA_FLAG_MMIO)
4531 ata_bmdma_start_mmio(qc);
4533 ata_bmdma_start_pio(qc);
4538 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
4539 * @qc: Info associated with this ATA transaction.
4541 * Writes address of PRD table to device's PRD Table Address
4542 * register, sets the DMA control register, and calls
4543 * ops->exec_command() to start the transfer.
4545 * May be used as the bmdma_setup() entry in ata_port_operations.
4548 * spin_lock_irqsave(host_set lock)
4550 void ata_bmdma_setup(struct ata_queued_cmd *qc)
4552 if (qc->ap->flags & ATA_FLAG_MMIO)
4553 ata_bmdma_setup_mmio(qc);
4555 ata_bmdma_setup_pio(qc);
4560 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
4561 * @ap: Port associated with this ATA transaction.
4563 * Clear interrupt and error flags in DMA status register.
4565 * May be used as the irq_clear() entry in ata_port_operations.
4568 * spin_lock_irqsave(host_set lock)
4571 void ata_bmdma_irq_clear(struct ata_port *ap)
4573 if (ap->flags & ATA_FLAG_MMIO) {
4574 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
4575 writeb(readb(mmio), mmio);
4577 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
4578 outb(inb(addr), addr);
4585 * ata_bmdma_status - Read PCI IDE BMDMA status
4586 * @ap: Port associated with this ATA transaction.
4588 * Read and return BMDMA status register.
4590 * May be used as the bmdma_status() entry in ata_port_operations.
4593 * spin_lock_irqsave(host_set lock)
4596 u8 ata_bmdma_status(struct ata_port *ap)
4599 if (ap->flags & ATA_FLAG_MMIO) {
4600 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4601 host_stat = readb(mmio + ATA_DMA_STATUS);
4603 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
4609 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
4610 * @qc: Command we are ending DMA for
4612 * Clears the ATA_DMA_START flag in the dma control register
4614 * May be used as the bmdma_stop() entry in ata_port_operations.
4617 * spin_lock_irqsave(host_set lock)
4620 void ata_bmdma_stop(struct ata_queued_cmd *qc)
4622 struct ata_port *ap = qc->ap;
4623 if (ap->flags & ATA_FLAG_MMIO) {
4624 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4626 /* clear start/stop bit */
4627 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
4628 mmio + ATA_DMA_CMD);
4630 /* clear start/stop bit */
4631 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
4632 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4635 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
4636 ata_altstatus(ap); /* dummy read */
4640 * ata_host_intr - Handle host interrupt for given (port, task)
4641 * @ap: Port on which interrupt arrived (possibly...)
4642 * @qc: Taskfile currently active in engine
4644 * Handle host interrupt for given queued command. Currently,
4645 * only DMA interrupts are handled. All other commands are
4646 * handled via polling with interrupts disabled (nIEN bit).
4649 * spin_lock_irqsave(host_set lock)
4652 * One if interrupt was handled, zero if not (shared irq).
4655 inline unsigned int ata_host_intr (struct ata_port *ap,
4656 struct ata_queued_cmd *qc)
4658 u8 status, host_stat = 0;
4660 VPRINTK("ata%u: protocol %d task_state %d\n",
4661 ap->id, qc->tf.protocol, ap->hsm_task_state);
4663 /* Check whether we are expecting interrupt in this state */
4664 switch (ap->hsm_task_state) {
4666 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4667 * The flag was turned on only for atapi devices.
4668 * No need to check is_atapi_taskfile(&qc->tf) again.
4670 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4674 if (qc->tf.protocol == ATA_PROT_DMA ||
4675 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4676 /* check status of DMA engine */
4677 host_stat = ap->ops->bmdma_status(ap);
4678 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4680 /* if it's not our irq... */
4681 if (!(host_stat & ATA_DMA_INTR))
4684 /* before we do anything else, clear DMA-Start bit */
4685 ap->ops->bmdma_stop(qc);
4687 if (unlikely(host_stat & ATA_DMA_ERR)) {
4688 /* error when transfering data to/from memory */
4689 qc->err_mask |= AC_ERR_HOST_BUS;
4690 ap->hsm_task_state = HSM_ST_ERR;
4700 /* check altstatus */
4701 status = ata_altstatus(ap);
4702 if (status & ATA_BUSY)
4705 /* check main status, clearing INTRQ */
4706 status = ata_chk_status(ap);
4707 if (unlikely(status & ATA_BUSY))
4710 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4711 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4713 /* ack bmdma irq events */
4714 ap->ops->irq_clear(ap);
4717 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4718 qc->err_mask |= AC_ERR_DEV;
4719 ap->hsm_task_state = HSM_ST_ERR;
4723 switch (ap->hsm_task_state) {
4725 /* Some pre-ATAPI-4 devices assert INTRQ
4726 * at this state when ready to receive CDB.
4729 /* check device status */
4730 if (unlikely((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ)) {
4731 /* Wrong status. Let EH handle this */
4732 qc->err_mask |= AC_ERR_HSM;
4733 ap->hsm_task_state = HSM_ST_ERR;
4737 atapi_send_cdb(ap, qc);
4742 /* complete command or read/write the data register */
4743 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4744 /* ATAPI PIO protocol */
4745 if ((status & ATA_DRQ) == 0) {
4746 /* no more data to transfer */
4747 ap->hsm_task_state = HSM_ST_LAST;
4751 atapi_pio_bytes(qc);
4753 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4754 /* bad ireason reported by device */
4758 /* ATA PIO protocol */
4759 if (unlikely((status & ATA_DRQ) == 0)) {
4760 /* handle BSY=0, DRQ=0 as error */
4761 qc->err_mask |= AC_ERR_HSM;
4762 ap->hsm_task_state = HSM_ST_ERR;
4766 ata_pio_sectors(qc);
4768 if (ap->hsm_task_state == HSM_ST_LAST &&
4769 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4772 status = ata_chk_status(ap);
4777 ata_altstatus(ap); /* flush */
4781 if (unlikely(status & ATA_DRQ)) {
4782 /* handle DRQ=1 as error */
4783 qc->err_mask |= AC_ERR_HSM;
4784 ap->hsm_task_state = HSM_ST_ERR;
4788 /* no more data to transfer */
4789 DPRINTK("ata%u: command complete, drv_stat 0x%x\n",
4792 ap->hsm_task_state = HSM_ST_IDLE;
4794 /* complete taskfile transaction */
4795 qc->err_mask |= ac_err_mask(status);
4796 ata_qc_complete(qc);
4800 if (qc->tf.command != ATA_CMD_PACKET)
4801 printk(KERN_ERR "ata%u: command error, drv_stat 0x%x host_stat 0x%x\n",
4802 ap->id, status, host_stat);
4804 /* make sure qc->err_mask is available to
4805 * know what's wrong and recover
4807 assert(qc->err_mask);
4809 ap->hsm_task_state = HSM_ST_IDLE;
4810 ata_qc_complete(qc);
4816 return 1; /* irq handled */
4819 ap->stats.idle_irq++;
4822 if ((ap->stats.idle_irq % 1000) == 0) {
4824 ata_irq_ack(ap, 0); /* debug trap */
4825 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4828 return 0; /* irq not handled */
4832 * ata_interrupt - Default ATA host interrupt handler
4833 * @irq: irq line (unused)
4834 * @dev_instance: pointer to our ata_host_set information structure
4837 * Default interrupt handler for PCI IDE devices. Calls
4838 * ata_host_intr() for each port that is not disabled.
4841 * Obtains host_set lock during operation.
4844 * IRQ_NONE or IRQ_HANDLED.
4847 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4849 struct ata_host_set *host_set = dev_instance;
4851 unsigned int handled = 0;
4852 unsigned long flags;
4854 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4855 spin_lock_irqsave(&host_set->lock, flags);
4857 for (i = 0; i < host_set->n_ports; i++) {
4858 struct ata_port *ap;
4860 ap = host_set->ports[i];
4862 !(ap->flags & ATA_FLAG_PORT_DISABLED)) {
4863 struct ata_queued_cmd *qc;
4865 qc = ata_qc_from_tag(ap, ap->active_tag);
4866 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4867 (qc->flags & ATA_QCFLAG_ACTIVE))
4868 handled |= ata_host_intr(ap, qc);
4872 spin_unlock_irqrestore(&host_set->lock, flags);
4874 return IRQ_RETVAL(handled);
4878 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4879 * without filling any other registers
4881 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4884 struct ata_taskfile tf;
4887 ata_tf_init(ap, &tf, dev->devno);
4890 tf.flags |= ATA_TFLAG_DEVICE;
4891 tf.protocol = ATA_PROT_NODATA;
4893 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4895 printk(KERN_ERR "%s: ata command failed: %d\n",
4901 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4905 if (!ata_try_flush_cache(dev))
4908 if (ata_id_has_flush_ext(dev->id))
4909 cmd = ATA_CMD_FLUSH_EXT;
4911 cmd = ATA_CMD_FLUSH;
4913 return ata_do_simple_cmd(ap, dev, cmd);
4916 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4918 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4921 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4923 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4927 * ata_device_resume - wakeup a previously suspended devices
4928 * @ap: port the device is connected to
4929 * @dev: the device to resume
4931 * Kick the drive back into action, by sending it an idle immediate
4932 * command and making sure its transfer mode matches between drive
4936 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4938 if (ap->flags & ATA_FLAG_SUSPENDED) {
4939 ap->flags &= ~ATA_FLAG_SUSPENDED;
4942 if (!ata_dev_present(dev))
4944 if (dev->class == ATA_DEV_ATA)
4945 ata_start_drive(ap, dev);
4951 * ata_device_suspend - prepare a device for suspend
4952 * @ap: port the device is connected to
4953 * @dev: the device to suspend
4955 * Flush the cache on the drive, if appropriate, then issue a
4956 * standbynow command.
4958 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
4960 if (!ata_dev_present(dev))
4962 if (dev->class == ATA_DEV_ATA)
4963 ata_flush_cache(ap, dev);
4965 ata_standby_drive(ap, dev);
4966 ap->flags |= ATA_FLAG_SUSPENDED;
4971 * ata_port_start - Set port up for dma.
4972 * @ap: Port to initialize
4974 * Called just after data structures for each port are
4975 * initialized. Allocates space for PRD table.
4977 * May be used as the port_start() entry in ata_port_operations.
4980 * Inherited from caller.
4983 int ata_port_start (struct ata_port *ap)
4985 struct device *dev = ap->host_set->dev;
4988 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4992 rc = ata_pad_alloc(ap, dev);
4994 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4998 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5005 * ata_port_stop - Undo ata_port_start()
5006 * @ap: Port to shut down
5008 * Frees the PRD table.
5010 * May be used as the port_stop() entry in ata_port_operations.
5013 * Inherited from caller.
5016 void ata_port_stop (struct ata_port *ap)
5018 struct device *dev = ap->host_set->dev;
5020 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5021 ata_pad_free(ap, dev);
5024 void ata_host_stop (struct ata_host_set *host_set)
5026 if (host_set->mmio_base)
5027 iounmap(host_set->mmio_base);
5032 * ata_host_remove - Unregister SCSI host structure with upper layers
5033 * @ap: Port to unregister
5034 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5037 * Inherited from caller.
5040 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5042 struct Scsi_Host *sh = ap->host;
5047 scsi_remove_host(sh);
5049 ap->ops->port_stop(ap);
5053 * ata_host_init - Initialize an ata_port structure
5054 * @ap: Structure to initialize
5055 * @host: associated SCSI mid-layer structure
5056 * @host_set: Collection of hosts to which @ap belongs
5057 * @ent: Probe information provided by low-level driver
5058 * @port_no: Port number associated with this ata_port
5060 * Initialize a new ata_port structure, and its associated
5064 * Inherited from caller.
5067 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5068 struct ata_host_set *host_set,
5069 const struct ata_probe_ent *ent, unsigned int port_no)
5075 host->max_channel = 1;
5076 host->unique_id = ata_unique_id++;
5077 host->max_cmd_len = 12;
5079 ap->flags = ATA_FLAG_PORT_DISABLED;
5080 ap->id = host->unique_id;
5082 ap->ctl = ATA_DEVCTL_OBS;
5083 ap->host_set = host_set;
5084 ap->port_no = port_no;
5086 ent->legacy_mode ? ent->hard_port_no : port_no;
5087 ap->pio_mask = ent->pio_mask;
5088 ap->mwdma_mask = ent->mwdma_mask;
5089 ap->udma_mask = ent->udma_mask;
5090 ap->flags |= ent->host_flags;
5091 ap->ops = ent->port_ops;
5092 ap->cbl = ATA_CBL_NONE;
5093 ap->active_tag = ATA_TAG_POISON;
5094 ap->last_ctl = 0xFF;
5096 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
5097 INIT_LIST_HEAD(&ap->eh_done_q);
5099 for (i = 0; i < ATA_MAX_DEVICES; i++)
5100 ap->device[i].devno = i;
5103 ap->stats.unhandled_irq = 1;
5104 ap->stats.idle_irq = 1;
5107 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5111 * ata_host_add - Attach low-level ATA driver to system
5112 * @ent: Information provided by low-level driver
5113 * @host_set: Collections of ports to which we add
5114 * @port_no: Port number associated with this host
5116 * Attach low-level ATA driver to system.
5119 * PCI/etc. bus probe sem.
5122 * New ata_port on success, for NULL on error.
5125 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
5126 struct ata_host_set *host_set,
5127 unsigned int port_no)
5129 struct Scsi_Host *host;
5130 struct ata_port *ap;
5134 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5138 ap = (struct ata_port *) &host->hostdata[0];
5140 ata_host_init(ap, host, host_set, ent, port_no);
5142 rc = ap->ops->port_start(ap);
5149 scsi_host_put(host);
5154 * ata_device_add - Register hardware device with ATA and SCSI layers
5155 * @ent: Probe information describing hardware device to be registered
5157 * This function processes the information provided in the probe
5158 * information struct @ent, allocates the necessary ATA and SCSI
5159 * host information structures, initializes them, and registers
5160 * everything with requisite kernel subsystems.
5162 * This function requests irqs, probes the ATA bus, and probes
5166 * PCI/etc. bus probe sem.
5169 * Number of ports registered. Zero on error (no ports registered).
5172 int ata_device_add(const struct ata_probe_ent *ent)
5174 unsigned int count = 0, i;
5175 struct device *dev = ent->dev;
5176 struct ata_host_set *host_set;
5179 /* alloc a container for our list of ATA ports (buses) */
5180 host_set = kzalloc(sizeof(struct ata_host_set) +
5181 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5184 spin_lock_init(&host_set->lock);
5186 host_set->dev = dev;
5187 host_set->n_ports = ent->n_ports;
5188 host_set->irq = ent->irq;
5189 host_set->mmio_base = ent->mmio_base;
5190 host_set->private_data = ent->private_data;
5191 host_set->ops = ent->port_ops;
5193 /* register each port bound to this device */
5194 for (i = 0; i < ent->n_ports; i++) {
5195 struct ata_port *ap;
5196 unsigned long xfer_mode_mask;
5198 ap = ata_host_add(ent, host_set, i);
5202 host_set->ports[i] = ap;
5203 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5204 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5205 (ap->pio_mask << ATA_SHIFT_PIO);
5207 /* print per-port info to dmesg */
5208 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
5209 "bmdma 0x%lX irq %lu\n",
5211 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5212 ata_mode_string(xfer_mode_mask),
5213 ap->ioaddr.cmd_addr,
5214 ap->ioaddr.ctl_addr,
5215 ap->ioaddr.bmdma_addr,
5219 host_set->ops->irq_clear(ap);
5226 /* obtain irq, that is shared between channels */
5227 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5228 DRV_NAME, host_set))
5231 /* perform each probe synchronously */
5232 DPRINTK("probe begin\n");
5233 for (i = 0; i < count; i++) {
5234 struct ata_port *ap;
5237 ap = host_set->ports[i];
5239 DPRINTK("ata%u: bus probe begin\n", ap->id);
5240 rc = ata_bus_probe(ap);
5241 DPRINTK("ata%u: bus probe end\n", ap->id);
5244 /* FIXME: do something useful here?
5245 * Current libata behavior will
5246 * tear down everything when
5247 * the module is removed
5248 * or the h/w is unplugged.
5252 rc = scsi_add_host(ap->host, dev);
5254 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
5256 /* FIXME: do something useful here */
5257 /* FIXME: handle unconditional calls to
5258 * scsi_scan_host and ata_host_remove, below,
5264 /* probes are done, now scan each port's disk(s) */
5265 DPRINTK("host probe begin\n");
5266 for (i = 0; i < count; i++) {
5267 struct ata_port *ap = host_set->ports[i];
5269 ata_scsi_scan_host(ap);
5272 dev_set_drvdata(dev, host_set);
5274 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5275 return ent->n_ports; /* success */
5278 for (i = 0; i < count; i++) {
5279 ata_host_remove(host_set->ports[i], 1);
5280 scsi_host_put(host_set->ports[i]->host);
5284 VPRINTK("EXIT, returning 0\n");
5289 * ata_host_set_remove - PCI layer callback for device removal
5290 * @host_set: ATA host set that was removed
5292 * Unregister all objects associated with this host set. Free those
5296 * Inherited from calling layer (may sleep).
5299 void ata_host_set_remove(struct ata_host_set *host_set)
5301 struct ata_port *ap;
5304 for (i = 0; i < host_set->n_ports; i++) {
5305 ap = host_set->ports[i];
5306 scsi_remove_host(ap->host);
5309 free_irq(host_set->irq, host_set);
5311 for (i = 0; i < host_set->n_ports; i++) {
5312 ap = host_set->ports[i];
5314 ata_scsi_release(ap->host);
5316 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5317 struct ata_ioports *ioaddr = &ap->ioaddr;
5319 if (ioaddr->cmd_addr == 0x1f0)
5320 release_region(0x1f0, 8);
5321 else if (ioaddr->cmd_addr == 0x170)
5322 release_region(0x170, 8);
5325 scsi_host_put(ap->host);
5328 if (host_set->ops->host_stop)
5329 host_set->ops->host_stop(host_set);
5335 * ata_scsi_release - SCSI layer callback hook for host unload
5336 * @host: libata host to be unloaded
5338 * Performs all duties necessary to shut down a libata port...
5339 * Kill port kthread, disable port, and release resources.
5342 * Inherited from SCSI layer.
5348 int ata_scsi_release(struct Scsi_Host *host)
5350 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
5354 ap->ops->port_disable(ap);
5355 ata_host_remove(ap, 0);
5362 * ata_std_ports - initialize ioaddr with standard port offsets.
5363 * @ioaddr: IO address structure to be initialized
5365 * Utility function which initializes data_addr, error_addr,
5366 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5367 * device_addr, status_addr, and command_addr to standard offsets
5368 * relative to cmd_addr.
5370 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5373 void ata_std_ports(struct ata_ioports *ioaddr)
5375 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5376 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5377 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5378 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5379 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5380 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5381 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5382 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5383 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5384 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5387 static struct ata_probe_ent *
5388 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5390 struct ata_probe_ent *probe_ent;
5392 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5394 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5395 kobject_name(&(dev->kobj)));
5399 INIT_LIST_HEAD(&probe_ent->node);
5400 probe_ent->dev = dev;
5402 probe_ent->sht = port->sht;
5403 probe_ent->host_flags = port->host_flags;
5404 probe_ent->pio_mask = port->pio_mask;
5405 probe_ent->mwdma_mask = port->mwdma_mask;
5406 probe_ent->udma_mask = port->udma_mask;
5407 probe_ent->port_ops = port->port_ops;
5416 void ata_pci_host_stop (struct ata_host_set *host_set)
5418 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5420 pci_iounmap(pdev, host_set->mmio_base);
5424 * ata_pci_init_native_mode - Initialize native-mode driver
5425 * @pdev: pci device to be initialized
5426 * @port: array[2] of pointers to port info structures.
5427 * @ports: bitmap of ports present
5429 * Utility function which allocates and initializes an
5430 * ata_probe_ent structure for a standard dual-port
5431 * PIO-based IDE controller. The returned ata_probe_ent
5432 * structure can be passed to ata_device_add(). The returned
5433 * ata_probe_ent structure should then be freed with kfree().
5435 * The caller need only pass the address of the primary port, the
5436 * secondary will be deduced automatically. If the device has non
5437 * standard secondary port mappings this function can be called twice,
5438 * once for each interface.
5441 struct ata_probe_ent *
5442 ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports)
5444 struct ata_probe_ent *probe_ent =
5445 ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
5451 probe_ent->irq = pdev->irq;
5452 probe_ent->irq_flags = SA_SHIRQ;
5453 probe_ent->private_data = port[0]->private_data;
5455 if (ports & ATA_PORT_PRIMARY) {
5456 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0);
5457 probe_ent->port[p].altstatus_addr =
5458 probe_ent->port[p].ctl_addr =
5459 pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
5460 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4);
5461 ata_std_ports(&probe_ent->port[p]);
5465 if (ports & ATA_PORT_SECONDARY) {
5466 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2);
5467 probe_ent->port[p].altstatus_addr =
5468 probe_ent->port[p].ctl_addr =
5469 pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
5470 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4) + 8;
5471 ata_std_ports(&probe_ent->port[p]);
5475 probe_ent->n_ports = p;
5479 static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, struct ata_port_info *port, int port_num)
5481 struct ata_probe_ent *probe_ent;
5483 probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port);
5487 probe_ent->legacy_mode = 1;
5488 probe_ent->n_ports = 1;
5489 probe_ent->hard_port_no = port_num;
5490 probe_ent->private_data = port->private_data;
5495 probe_ent->irq = 14;
5496 probe_ent->port[0].cmd_addr = 0x1f0;
5497 probe_ent->port[0].altstatus_addr =
5498 probe_ent->port[0].ctl_addr = 0x3f6;
5501 probe_ent->irq = 15;
5502 probe_ent->port[0].cmd_addr = 0x170;
5503 probe_ent->port[0].altstatus_addr =
5504 probe_ent->port[0].ctl_addr = 0x376;
5507 probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4) + 8 * port_num;
5508 ata_std_ports(&probe_ent->port[0]);
5513 * ata_pci_init_one - Initialize/register PCI IDE host controller
5514 * @pdev: Controller to be initialized
5515 * @port_info: Information from low-level host driver
5516 * @n_ports: Number of ports attached to host controller
5518 * This is a helper function which can be called from a driver's
5519 * xxx_init_one() probe function if the hardware uses traditional
5520 * IDE taskfile registers.
5522 * This function calls pci_enable_device(), reserves its register
5523 * regions, sets the dma mask, enables bus master mode, and calls
5527 * Inherited from PCI layer (may sleep).
5530 * Zero on success, negative on errno-based value on error.
5533 int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
5534 unsigned int n_ports)
5536 struct ata_probe_ent *probe_ent = NULL, *probe_ent2 = NULL;
5537 struct ata_port_info *port[2];
5539 unsigned int legacy_mode = 0;
5540 int disable_dev_on_err = 1;
5545 port[0] = port_info[0];
5547 port[1] = port_info[1];
5551 if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0
5552 && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
5553 /* TODO: What if one channel is in native mode ... */
5554 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
5555 mask = (1 << 2) | (1 << 0);
5556 if ((tmp8 & mask) != mask)
5557 legacy_mode = (1 << 3);
5561 if ((!legacy_mode) && (n_ports > 2)) {
5562 printk(KERN_ERR "ata: BUG: native mode, n_ports > 2\n");
5567 /* FIXME: Really for ATA it isn't safe because the device may be
5568 multi-purpose and we want to leave it alone if it was already
5569 enabled. Secondly for shared use as Arjan says we want refcounting
5571 Checking dev->is_enabled is insufficient as this is not set at
5572 boot for the primary video which is BIOS enabled
5575 rc = pci_enable_device(pdev);
5579 rc = pci_request_regions(pdev, DRV_NAME);
5581 disable_dev_on_err = 0;
5585 /* FIXME: Should use platform specific mappers for legacy port ranges */
5587 if (!request_region(0x1f0, 8, "libata")) {
5588 struct resource *conflict, res;
5590 res.end = 0x1f0 + 8 - 1;
5591 conflict = ____request_resource(&ioport_resource, &res);
5592 if (!strcmp(conflict->name, "libata"))
5593 legacy_mode |= (1 << 0);
5595 disable_dev_on_err = 0;
5596 printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n");
5599 legacy_mode |= (1 << 0);
5601 if (!request_region(0x170, 8, "libata")) {
5602 struct resource *conflict, res;
5604 res.end = 0x170 + 8 - 1;
5605 conflict = ____request_resource(&ioport_resource, &res);
5606 if (!strcmp(conflict->name, "libata"))
5607 legacy_mode |= (1 << 1);
5609 disable_dev_on_err = 0;
5610 printk(KERN_WARNING "ata: 0x170 IDE port busy\n");
5613 legacy_mode |= (1 << 1);
5616 /* we have legacy mode, but all ports are unavailable */
5617 if (legacy_mode == (1 << 3)) {
5619 goto err_out_regions;
5622 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
5624 goto err_out_regions;
5625 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
5627 goto err_out_regions;
5630 if (legacy_mode & (1 << 0))
5631 probe_ent = ata_pci_init_legacy_port(pdev, port[0], 0);
5632 if (legacy_mode & (1 << 1))
5633 probe_ent2 = ata_pci_init_legacy_port(pdev, port[1], 1);
5636 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY);
5638 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY);
5640 if (!probe_ent && !probe_ent2) {
5642 goto err_out_regions;
5645 pci_set_master(pdev);
5647 /* FIXME: check ata_device_add return */
5649 if (legacy_mode & (1 << 0))
5650 ata_device_add(probe_ent);
5651 if (legacy_mode & (1 << 1))
5652 ata_device_add(probe_ent2);
5654 ata_device_add(probe_ent);
5662 if (legacy_mode & (1 << 0))
5663 release_region(0x1f0, 8);
5664 if (legacy_mode & (1 << 1))
5665 release_region(0x170, 8);
5666 pci_release_regions(pdev);
5668 if (disable_dev_on_err)
5669 pci_disable_device(pdev);
5674 * ata_pci_remove_one - PCI layer callback for device removal
5675 * @pdev: PCI device that was removed
5677 * PCI layer indicates to libata via this hook that
5678 * hot-unplug or module unload event has occurred.
5679 * Handle this by unregistering all objects associated
5680 * with this PCI device. Free those objects. Then finally
5681 * release PCI resources and disable device.
5684 * Inherited from PCI layer (may sleep).
5687 void ata_pci_remove_one (struct pci_dev *pdev)
5689 struct device *dev = pci_dev_to_dev(pdev);
5690 struct ata_host_set *host_set = dev_get_drvdata(dev);
5692 ata_host_set_remove(host_set);
5693 pci_release_regions(pdev);
5694 pci_disable_device(pdev);
5695 dev_set_drvdata(dev, NULL);
5698 /* move to PCI subsystem */
5699 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5701 unsigned long tmp = 0;
5703 switch (bits->width) {
5706 pci_read_config_byte(pdev, bits->reg, &tmp8);
5712 pci_read_config_word(pdev, bits->reg, &tmp16);
5718 pci_read_config_dword(pdev, bits->reg, &tmp32);
5729 return (tmp == bits->val) ? 1 : 0;
5732 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5734 pci_save_state(pdev);
5735 pci_disable_device(pdev);
5736 pci_set_power_state(pdev, PCI_D3hot);
5740 int ata_pci_device_resume(struct pci_dev *pdev)
5742 pci_set_power_state(pdev, PCI_D0);
5743 pci_restore_state(pdev);
5744 pci_enable_device(pdev);
5745 pci_set_master(pdev);
5748 #endif /* CONFIG_PCI */
5751 static int __init ata_init(void)
5753 ata_wq = create_workqueue("ata");
5757 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5761 static void __exit ata_exit(void)
5763 destroy_workqueue(ata_wq);
5766 module_init(ata_init);
5767 module_exit(ata_exit);
5769 static unsigned long ratelimit_time;
5770 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5772 int ata_ratelimit(void)
5775 unsigned long flags;
5777 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5779 if (time_after(jiffies, ratelimit_time)) {
5781 ratelimit_time = jiffies + (HZ/5);
5785 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5791 * libata is essentially a library of internal helper functions for
5792 * low-level ATA host controller drivers. As such, the API/ABI is
5793 * likely to change as new drivers are added and updated.
5794 * Do not depend on ABI/API stability.
5797 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5798 EXPORT_SYMBOL_GPL(ata_std_ports);
5799 EXPORT_SYMBOL_GPL(ata_device_add);
5800 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5801 EXPORT_SYMBOL_GPL(ata_sg_init);
5802 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5803 EXPORT_SYMBOL_GPL(ata_qc_complete);
5804 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5805 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5806 EXPORT_SYMBOL_GPL(ata_tf_load);
5807 EXPORT_SYMBOL_GPL(ata_tf_read);
5808 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5809 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5810 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5811 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5812 EXPORT_SYMBOL_GPL(ata_check_status);
5813 EXPORT_SYMBOL_GPL(ata_altstatus);
5814 EXPORT_SYMBOL_GPL(ata_exec_command);
5815 EXPORT_SYMBOL_GPL(ata_port_start);
5816 EXPORT_SYMBOL_GPL(ata_port_stop);
5817 EXPORT_SYMBOL_GPL(ata_host_stop);
5818 EXPORT_SYMBOL_GPL(ata_interrupt);
5819 EXPORT_SYMBOL_GPL(ata_qc_prep);
5820 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5821 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5822 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5823 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5824 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5825 EXPORT_SYMBOL_GPL(ata_port_probe);
5826 EXPORT_SYMBOL_GPL(sata_phy_reset);
5827 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5828 EXPORT_SYMBOL_GPL(ata_bus_reset);
5829 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5830 EXPORT_SYMBOL_GPL(ata_std_softreset);
5831 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5832 EXPORT_SYMBOL_GPL(ata_std_postreset);
5833 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5834 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5835 EXPORT_SYMBOL_GPL(ata_port_disable);
5836 EXPORT_SYMBOL_GPL(ata_ratelimit);
5837 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5838 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5839 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5840 EXPORT_SYMBOL_GPL(ata_scsi_error);
5841 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5842 EXPORT_SYMBOL_GPL(ata_scsi_release);
5843 EXPORT_SYMBOL_GPL(ata_host_intr);
5844 EXPORT_SYMBOL_GPL(ata_dev_classify);
5845 EXPORT_SYMBOL_GPL(ata_dev_id_string);
5846 EXPORT_SYMBOL_GPL(ata_dev_config);
5847 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5848 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5849 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5851 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5852 EXPORT_SYMBOL_GPL(ata_timing_compute);
5853 EXPORT_SYMBOL_GPL(ata_timing_merge);
5856 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5857 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5858 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5859 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5860 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5861 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5862 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5863 #endif /* CONFIG_PCI */
5865 EXPORT_SYMBOL_GPL(ata_device_suspend);
5866 EXPORT_SYMBOL_GPL(ata_device_resume);
5867 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5868 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);