1 /*****************************************************************************/
4 * stallion.c -- stallion multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /*****************************************************************************/
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/serial.h>
35 #include <linux/cd1400.h>
36 #include <linux/sc26198.h>
37 #include <linux/comstats.h>
38 #include <linux/stallion.h>
39 #include <linux/ioport.h>
40 #include <linux/init.h>
41 #include <linux/smp_lock.h>
42 #include <linux/device.h>
43 #include <linux/delay.h>
44 #include <linux/ctype.h>
47 #include <asm/uaccess.h>
49 #include <linux/pci.h>
51 /*****************************************************************************/
54 * Define different board types. Use the standard Stallion "assigned"
55 * board numbers. Boards supported in this driver are abbreviated as
56 * EIO = EasyIO and ECH = EasyConnection 8/32.
62 #define BRD_ECH64PCI 27
63 #define BRD_EASYIOPCI 28
69 unsigned long memaddr;
74 static unsigned int stl_nrbrds;
76 /*****************************************************************************/
79 * Define some important driver characteristics. Device major numbers
80 * allocated as per Linux Device Registry.
82 #ifndef STL_SIOMEMMAJOR
83 #define STL_SIOMEMMAJOR 28
85 #ifndef STL_SERIALMAJOR
86 #define STL_SERIALMAJOR 24
88 #ifndef STL_CALLOUTMAJOR
89 #define STL_CALLOUTMAJOR 25
93 * Set the TX buffer size. Bigger is better, but we don't want
94 * to chew too much memory with buffers!
96 #define STL_TXBUFLOW 512
97 #define STL_TXBUFSIZE 4096
99 /*****************************************************************************/
102 * Define our local driver identity first. Set up stuff to deal with
103 * all the local structures required by a serial tty driver.
105 static char *stl_drvtitle = "Stallion Multiport Serial Driver";
106 static char *stl_drvname = "stallion";
107 static char *stl_drvversion = "5.6.0";
109 static struct tty_driver *stl_serial;
112 * Define a local default termios struct. All ports will be created
113 * with this termios initially. Basically all it defines is a raw port
114 * at 9600, 8 data bits, 1 stop bit.
116 static struct ktermios stl_deftermios = {
117 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
124 * Define global place to put buffer overflow characters.
126 static char stl_unwanted[SC26198_RXFIFOSIZE];
128 /*****************************************************************************/
130 static DEFINE_MUTEX(stl_brdslock);
131 static struct stlbrd *stl_brds[STL_MAXBRDS];
134 * Per board state flags. Used with the state field of the board struct.
135 * Not really much here!
137 #define BRD_FOUND 0x1
138 #define STL_PROBED 0x2
142 * Define the port structure istate flags. These set of flags are
143 * modified at interrupt time - so setting and reseting them needs
144 * to be atomic. Use the bit clear/setting routines for this.
146 #define ASYI_TXBUSY 1
148 #define ASYI_DCDCHANGE 3
149 #define ASYI_TXFLOWED 4
152 * Define an array of board names as printable strings. Handy for
153 * referencing boards when printing trace and stuff.
155 static char *stl_brdnames[] = {
187 /*****************************************************************************/
190 * Define some string labels for arguments passed from the module
191 * load line. These allow for easy board definitions, and easy
192 * modification of the io, memory and irq resoucres.
194 static unsigned int stl_nargs;
195 static char *board0[4];
196 static char *board1[4];
197 static char *board2[4];
198 static char *board3[4];
200 static char **stl_brdsp[] = {
208 * Define a set of common board names, and types. This is used to
209 * parse any module arguments.
216 { "easyio", BRD_EASYIO },
217 { "eio", BRD_EASYIO },
218 { "20", BRD_EASYIO },
219 { "ec8/32", BRD_ECH },
220 { "ec8/32-at", BRD_ECH },
221 { "ec8/32-isa", BRD_ECH },
223 { "echat", BRD_ECH },
225 { "ec8/32-mc", BRD_ECHMC },
226 { "ec8/32-mca", BRD_ECHMC },
227 { "echmc", BRD_ECHMC },
228 { "echmca", BRD_ECHMC },
230 { "ec8/32-pc", BRD_ECHPCI },
231 { "ec8/32-pci", BRD_ECHPCI },
232 { "26", BRD_ECHPCI },
233 { "ec8/64-pc", BRD_ECH64PCI },
234 { "ec8/64-pci", BRD_ECH64PCI },
235 { "ech-pci", BRD_ECH64PCI },
236 { "echpci", BRD_ECH64PCI },
237 { "echpc", BRD_ECH64PCI },
238 { "27", BRD_ECH64PCI },
239 { "easyio-pc", BRD_EASYIOPCI },
240 { "easyio-pci", BRD_EASYIOPCI },
241 { "eio-pci", BRD_EASYIOPCI },
242 { "eiopci", BRD_EASYIOPCI },
243 { "28", BRD_EASYIOPCI },
247 * Define the module agruments.
250 module_param_array(board0, charp, &stl_nargs, 0);
251 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
252 module_param_array(board1, charp, &stl_nargs, 0);
253 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
254 module_param_array(board2, charp, &stl_nargs, 0);
255 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
256 module_param_array(board3, charp, &stl_nargs, 0);
257 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
259 /*****************************************************************************/
262 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
263 * to the directly accessible io ports of these boards (not the uarts -
264 * they are in cd1400.h and sc26198.h).
266 #define EIO_8PORTRS 0x04
267 #define EIO_4PORTRS 0x05
268 #define EIO_8PORTDI 0x00
269 #define EIO_8PORTM 0x06
271 #define EIO_IDBITMASK 0x07
273 #define EIO_BRDMASK 0xf0
276 #define ID_BRD16 0x30
278 #define EIO_INTRPEND 0x08
279 #define EIO_INTEDGE 0x00
280 #define EIO_INTLEVEL 0x08
284 #define ECH_IDBITMASK 0xe0
285 #define ECH_BRDENABLE 0x08
286 #define ECH_BRDDISABLE 0x00
287 #define ECH_INTENABLE 0x01
288 #define ECH_INTDISABLE 0x00
289 #define ECH_INTLEVEL 0x02
290 #define ECH_INTEDGE 0x00
291 #define ECH_INTRPEND 0x01
292 #define ECH_BRDRESET 0x01
294 #define ECHMC_INTENABLE 0x01
295 #define ECHMC_BRDRESET 0x02
297 #define ECH_PNLSTATUS 2
298 #define ECH_PNL16PORT 0x20
299 #define ECH_PNLIDMASK 0x07
300 #define ECH_PNLXPID 0x40
301 #define ECH_PNLINTRPEND 0x80
303 #define ECH_ADDR2MASK 0x1e0
306 * Define the vector mapping bits for the programmable interrupt board
307 * hardware. These bits encode the interrupt for the board to use - it
308 * is software selectable (except the EIO-8M).
310 static unsigned char stl_vecmap[] = {
311 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
312 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
316 * Lock ordering is that you may not take stallion_lock holding
320 static spinlock_t brd_lock; /* Guard the board mapping */
321 static spinlock_t stallion_lock; /* Guard the tty driver */
324 * Set up enable and disable macros for the ECH boards. They require
325 * the secondary io address space to be activated and deactivated.
326 * This way all ECH boards can share their secondary io region.
327 * If this is an ECH-PCI board then also need to set the page pointer
328 * to point to the correct page.
330 #define BRDENABLE(brdnr,pagenr) \
331 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
332 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
333 stl_brds[(brdnr)]->ioctrl); \
334 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
335 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
337 #define BRDDISABLE(brdnr) \
338 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
339 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
340 stl_brds[(brdnr)]->ioctrl);
342 #define STL_CD1400MAXBAUD 230400
343 #define STL_SC26198MAXBAUD 460800
345 #define STL_BAUDBASE 115200
346 #define STL_CLOSEDELAY (5 * HZ / 10)
348 /*****************************************************************************/
351 * Define the Stallion PCI vendor and device IDs.
353 #ifndef PCI_VENDOR_ID_STALLION
354 #define PCI_VENDOR_ID_STALLION 0x124d
356 #ifndef PCI_DEVICE_ID_ECHPCI832
357 #define PCI_DEVICE_ID_ECHPCI832 0x0000
359 #ifndef PCI_DEVICE_ID_ECHPCI864
360 #define PCI_DEVICE_ID_ECHPCI864 0x0002
362 #ifndef PCI_DEVICE_ID_EIOPCI
363 #define PCI_DEVICE_ID_EIOPCI 0x0003
367 * Define structure to hold all Stallion PCI boards.
370 static struct pci_device_id stl_pcibrds[] = {
371 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI864),
372 .driver_data = BRD_ECH64PCI },
373 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_EIOPCI),
374 .driver_data = BRD_EASYIOPCI },
375 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI832),
376 .driver_data = BRD_ECHPCI },
377 { PCI_DEVICE(PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87410),
378 .driver_data = BRD_ECHPCI },
381 MODULE_DEVICE_TABLE(pci, stl_pcibrds);
383 /*****************************************************************************/
386 * Define macros to extract a brd/port number from a minor number.
388 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
389 #define MINOR2PORT(min) ((min) & 0x3f)
392 * Define a baud rate table that converts termios baud rate selector
393 * into the actual baud rate value. All baud rate calculations are
394 * based on the actual baud rate required.
396 static unsigned int stl_baudrates[] = {
397 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
398 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
401 /*****************************************************************************/
404 * Declare all those functions in this driver!
407 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
408 static int stl_brdinit(struct stlbrd *brdp);
409 static int stl_getportstats(struct stlport *portp, comstats_t __user *cp);
410 static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp);
411 static int stl_waitcarrier(struct stlport *portp, struct file *filp);
414 * CD1400 uart specific handling functions.
416 static void stl_cd1400setreg(struct stlport *portp, int regnr, int value);
417 static int stl_cd1400getreg(struct stlport *portp, int regnr);
418 static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value);
419 static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
420 static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
421 static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp);
422 static int stl_cd1400getsignals(struct stlport *portp);
423 static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts);
424 static void stl_cd1400ccrwait(struct stlport *portp);
425 static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx);
426 static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx);
427 static void stl_cd1400disableintrs(struct stlport *portp);
428 static void stl_cd1400sendbreak(struct stlport *portp, int len);
429 static void stl_cd1400flowctrl(struct stlport *portp, int state);
430 static void stl_cd1400sendflow(struct stlport *portp, int state);
431 static void stl_cd1400flush(struct stlport *portp);
432 static int stl_cd1400datastate(struct stlport *portp);
433 static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase);
434 static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase);
435 static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr);
436 static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr);
437 static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr);
439 static inline int stl_cd1400breakisr(struct stlport *portp, int ioaddr);
442 * SC26198 uart specific handling functions.
444 static void stl_sc26198setreg(struct stlport *portp, int regnr, int value);
445 static int stl_sc26198getreg(struct stlport *portp, int regnr);
446 static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value);
447 static int stl_sc26198getglobreg(struct stlport *portp, int regnr);
448 static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
449 static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
450 static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp);
451 static int stl_sc26198getsignals(struct stlport *portp);
452 static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts);
453 static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx);
454 static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx);
455 static void stl_sc26198disableintrs(struct stlport *portp);
456 static void stl_sc26198sendbreak(struct stlport *portp, int len);
457 static void stl_sc26198flowctrl(struct stlport *portp, int state);
458 static void stl_sc26198sendflow(struct stlport *portp, int state);
459 static void stl_sc26198flush(struct stlport *portp);
460 static int stl_sc26198datastate(struct stlport *portp);
461 static void stl_sc26198wait(struct stlport *portp);
462 static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty);
463 static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase);
464 static void stl_sc26198txisr(struct stlport *port);
465 static void stl_sc26198rxisr(struct stlport *port, unsigned int iack);
466 static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch);
467 static void stl_sc26198rxbadchars(struct stlport *portp);
468 static void stl_sc26198otherisr(struct stlport *port, unsigned int iack);
470 /*****************************************************************************/
473 * Generic UART support structure.
475 typedef struct uart {
476 int (*panelinit)(struct stlbrd *brdp, struct stlpanel *panelp);
477 void (*portinit)(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
478 void (*setport)(struct stlport *portp, struct ktermios *tiosp);
479 int (*getsignals)(struct stlport *portp);
480 void (*setsignals)(struct stlport *portp, int dtr, int rts);
481 void (*enablerxtx)(struct stlport *portp, int rx, int tx);
482 void (*startrxtx)(struct stlport *portp, int rx, int tx);
483 void (*disableintrs)(struct stlport *portp);
484 void (*sendbreak)(struct stlport *portp, int len);
485 void (*flowctrl)(struct stlport *portp, int state);
486 void (*sendflow)(struct stlport *portp, int state);
487 void (*flush)(struct stlport *portp);
488 int (*datastate)(struct stlport *portp);
489 void (*intr)(struct stlpanel *panelp, unsigned int iobase);
493 * Define some macros to make calling these functions nice and clean.
495 #define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
496 #define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
497 #define stl_setport (* ((uart_t *) portp->uartp)->setport)
498 #define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
499 #define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
500 #define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
501 #define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
502 #define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
503 #define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
504 #define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
505 #define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
506 #define stl_flush (* ((uart_t *) portp->uartp)->flush)
507 #define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
509 /*****************************************************************************/
512 * CD1400 UART specific data initialization.
514 static uart_t stl_cd1400uart = {
518 stl_cd1400getsignals,
519 stl_cd1400setsignals,
520 stl_cd1400enablerxtx,
522 stl_cd1400disableintrs,
532 * Define the offsets within the register bank of a cd1400 based panel.
533 * These io address offsets are common to the EasyIO board as well.
541 #define EREG_BANKSIZE 8
543 #define CD1400_CLK 25000000
544 #define CD1400_CLK8M 20000000
547 * Define the cd1400 baud rate clocks. These are used when calculating
548 * what clock and divisor to use for the required baud rate. Also
549 * define the maximum baud rate allowed, and the default base baud.
551 static int stl_cd1400clkdivs[] = {
552 CD1400_CLK0, CD1400_CLK1, CD1400_CLK2, CD1400_CLK3, CD1400_CLK4
555 /*****************************************************************************/
558 * SC26198 UART specific data initization.
560 static uart_t stl_sc26198uart = {
561 stl_sc26198panelinit,
564 stl_sc26198getsignals,
565 stl_sc26198setsignals,
566 stl_sc26198enablerxtx,
567 stl_sc26198startrxtx,
568 stl_sc26198disableintrs,
569 stl_sc26198sendbreak,
573 stl_sc26198datastate,
578 * Define the offsets within the register bank of a sc26198 based panel.
586 #define XP_BANKSIZE 4
589 * Define the sc26198 baud rate table. Offsets within the table
590 * represent the actual baud rate selector of sc26198 registers.
592 static unsigned int sc26198_baudtable[] = {
593 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
594 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
595 230400, 460800, 921600
598 #define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
600 /*****************************************************************************/
603 * Define the driver info for a user level control device. Used mainly
604 * to get at port stats - only not using the port device itself.
606 static const struct file_operations stl_fsiomem = {
607 .owner = THIS_MODULE,
608 .ioctl = stl_memioctl,
611 static struct class *stallion_class;
614 * Check for any arguments passed in on the module load command line.
617 /*****************************************************************************/
620 * Parse the supplied argument string, into the board conf struct.
623 static int __init stl_parsebrd(struct stlconf *confp, char **argp)
628 pr_debug("stl_parsebrd(confp=%p,argp=%p)\n", confp, argp);
630 if ((argp[0] == NULL) || (*argp[0] == 0))
633 for (sp = argp[0], i = 0; (*sp != 0) && (i < 25); sp++, i++)
636 for (i = 0; i < ARRAY_SIZE(stl_brdstr); i++)
637 if (strcmp(stl_brdstr[i].name, argp[0]) == 0)
640 if (i == ARRAY_SIZE(stl_brdstr)) {
641 printk("STALLION: unknown board name, %s?\n", argp[0]);
645 confp->brdtype = stl_brdstr[i].type;
648 if ((argp[i] != NULL) && (*argp[i] != 0))
649 confp->ioaddr1 = simple_strtoul(argp[i], NULL, 0);
651 if (confp->brdtype == BRD_ECH) {
652 if ((argp[i] != NULL) && (*argp[i] != 0))
653 confp->ioaddr2 = simple_strtoul(argp[i], NULL, 0);
656 if ((argp[i] != NULL) && (*argp[i] != 0))
657 confp->irq = simple_strtoul(argp[i], NULL, 0);
661 /*****************************************************************************/
664 * Allocate a new board structure. Fill out the basic info in it.
667 static struct stlbrd *stl_allocbrd(void)
671 brdp = kzalloc(sizeof(struct stlbrd), GFP_KERNEL);
673 printk("STALLION: failed to allocate memory (size=%Zd)\n",
674 sizeof(struct stlbrd));
678 brdp->magic = STL_BOARDMAGIC;
682 /*****************************************************************************/
684 static int stl_open(struct tty_struct *tty, struct file *filp)
686 struct stlport *portp;
688 unsigned int minordev, brdnr, panelnr;
691 pr_debug("stl_open(tty=%p,filp=%p): device=%s\n", tty, filp, tty->name);
693 minordev = tty->index;
694 brdnr = MINOR2BRD(minordev);
695 if (brdnr >= stl_nrbrds)
697 brdp = stl_brds[brdnr];
700 minordev = MINOR2PORT(minordev);
701 for (portnr = -1, panelnr = 0; panelnr < STL_MAXPANELS; panelnr++) {
702 if (brdp->panels[panelnr] == NULL)
704 if (minordev < brdp->panels[panelnr]->nrports) {
708 minordev -= brdp->panels[panelnr]->nrports;
713 portp = brdp->panels[panelnr]->ports[portnr];
718 * On the first open of the device setup the port hardware, and
719 * initialize the per port data structure.
722 tty->driver_data = portp;
725 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
726 if (!portp->tx.buf) {
727 portp->tx.buf = kmalloc(STL_TXBUFSIZE, GFP_KERNEL);
730 portp->tx.head = portp->tx.buf;
731 portp->tx.tail = portp->tx.buf;
733 stl_setport(portp, tty->termios);
734 portp->sigs = stl_getsignals(portp);
735 stl_setsignals(portp, 1, 1);
736 stl_enablerxtx(portp, 1, 1);
737 stl_startrxtx(portp, 1, 0);
738 clear_bit(TTY_IO_ERROR, &tty->flags);
739 portp->flags |= ASYNC_INITIALIZED;
743 * Check if this port is in the middle of closing. If so then wait
744 * until it is closed then return error status, based on flag settings.
745 * The sleep here does not need interrupt protection since the wakeup
746 * for it is done with the same context.
748 if (portp->flags & ASYNC_CLOSING) {
749 interruptible_sleep_on(&portp->close_wait);
750 if (portp->flags & ASYNC_HUP_NOTIFY)
756 * Based on type of open being done check if it can overlap with any
757 * previous opens still in effect. If we are a normal serial device
758 * then also we might have to wait for carrier.
760 if (!(filp->f_flags & O_NONBLOCK))
761 if ((rc = stl_waitcarrier(portp, filp)) != 0)
764 portp->flags |= ASYNC_NORMAL_ACTIVE;
769 /*****************************************************************************/
772 * Possibly need to wait for carrier (DCD signal) to come high. Say
773 * maybe because if we are clocal then we don't need to wait...
776 static int stl_waitcarrier(struct stlport *portp, struct file *filp)
781 pr_debug("stl_waitcarrier(portp=%p,filp=%p)\n", portp, filp);
786 spin_lock_irqsave(&stallion_lock, flags);
788 if (portp->tty->termios->c_cflag & CLOCAL)
791 portp->openwaitcnt++;
792 if (! tty_hung_up_p(filp))
796 /* Takes brd_lock internally */
797 stl_setsignals(portp, 1, 1);
798 if (tty_hung_up_p(filp) ||
799 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
800 if (portp->flags & ASYNC_HUP_NOTIFY)
806 if (((portp->flags & ASYNC_CLOSING) == 0) &&
807 (doclocal || (portp->sigs & TIOCM_CD)))
809 if (signal_pending(current)) {
814 interruptible_sleep_on(&portp->open_wait);
817 if (! tty_hung_up_p(filp))
819 portp->openwaitcnt--;
820 spin_unlock_irqrestore(&stallion_lock, flags);
825 /*****************************************************************************/
827 static void stl_flushbuffer(struct tty_struct *tty)
829 struct stlport *portp;
831 pr_debug("stl_flushbuffer(tty=%p)\n", tty);
835 portp = tty->driver_data;
843 /*****************************************************************************/
845 static void stl_waituntilsent(struct tty_struct *tty, int timeout)
847 struct stlport *portp;
850 pr_debug("stl_waituntilsent(tty=%p,timeout=%d)\n", tty, timeout);
854 portp = tty->driver_data;
860 tend = jiffies + timeout;
862 while (stl_datastate(portp)) {
863 if (signal_pending(current))
865 msleep_interruptible(20);
866 if (time_after_eq(jiffies, tend))
871 /*****************************************************************************/
873 static void stl_close(struct tty_struct *tty, struct file *filp)
875 struct stlport *portp;
878 pr_debug("stl_close(tty=%p,filp=%p)\n", tty, filp);
880 portp = tty->driver_data;
884 spin_lock_irqsave(&stallion_lock, flags);
885 if (tty_hung_up_p(filp)) {
886 spin_unlock_irqrestore(&stallion_lock, flags);
889 if ((tty->count == 1) && (portp->refcount != 1))
891 if (portp->refcount-- > 1) {
892 spin_unlock_irqrestore(&stallion_lock, flags);
897 portp->flags |= ASYNC_CLOSING;
900 * May want to wait for any data to drain before closing. The BUSY
901 * flag keeps track of whether we are still sending or not - it is
902 * very accurate for the cd1400, not quite so for the sc26198.
903 * (The sc26198 has no "end-of-data" interrupt only empty FIFO)
907 spin_unlock_irqrestore(&stallion_lock, flags);
909 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
910 tty_wait_until_sent(tty, portp->closing_wait);
911 stl_waituntilsent(tty, (HZ / 2));
914 spin_lock_irqsave(&stallion_lock, flags);
915 portp->flags &= ~ASYNC_INITIALIZED;
916 spin_unlock_irqrestore(&stallion_lock, flags);
918 stl_disableintrs(portp);
919 if (tty->termios->c_cflag & HUPCL)
920 stl_setsignals(portp, 0, 0);
921 stl_enablerxtx(portp, 0, 0);
922 stl_flushbuffer(tty);
924 if (portp->tx.buf != NULL) {
925 kfree(portp->tx.buf);
926 portp->tx.buf = NULL;
927 portp->tx.head = NULL;
928 portp->tx.tail = NULL;
930 set_bit(TTY_IO_ERROR, &tty->flags);
931 tty_ldisc_flush(tty);
936 if (portp->openwaitcnt) {
937 if (portp->close_delay)
938 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
939 wake_up_interruptible(&portp->open_wait);
942 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
943 wake_up_interruptible(&portp->close_wait);
946 /*****************************************************************************/
949 * Write routine. Take data and stuff it in to the TX ring queue.
950 * If transmit interrupts are not running then start them.
953 static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count)
955 struct stlport *portp;
956 unsigned int len, stlen;
957 unsigned char *chbuf;
960 pr_debug("stl_write(tty=%p,buf=%p,count=%d)\n", tty, buf, count);
962 portp = tty->driver_data;
965 if (portp->tx.buf == NULL)
969 * If copying direct from user space we must cater for page faults,
970 * causing us to "sleep" here for a while. To handle this copy in all
971 * the data we need now, into a local buffer. Then when we got it all
972 * copy it into the TX buffer.
974 chbuf = (unsigned char *) buf;
976 head = portp->tx.head;
977 tail = portp->tx.tail;
979 len = STL_TXBUFSIZE - (head - tail) - 1;
980 stlen = STL_TXBUFSIZE - (head - portp->tx.buf);
982 len = tail - head - 1;
986 len = min(len, (unsigned int)count);
989 stlen = min(len, stlen);
990 memcpy(head, chbuf, stlen);
995 if (head >= (portp->tx.buf + STL_TXBUFSIZE)) {
996 head = portp->tx.buf;
1000 portp->tx.head = head;
1002 clear_bit(ASYI_TXLOW, &portp->istate);
1003 stl_startrxtx(portp, -1, 1);
1008 /*****************************************************************************/
1010 static void stl_putchar(struct tty_struct *tty, unsigned char ch)
1012 struct stlport *portp;
1016 pr_debug("stl_putchar(tty=%p,ch=%x)\n", tty, ch);
1020 portp = tty->driver_data;
1023 if (portp->tx.buf == NULL)
1026 head = portp->tx.head;
1027 tail = portp->tx.tail;
1029 len = (head >= tail) ? (STL_TXBUFSIZE - (head - tail)) : (tail - head);
1034 if (head >= (portp->tx.buf + STL_TXBUFSIZE))
1035 head = portp->tx.buf;
1037 portp->tx.head = head;
1040 /*****************************************************************************/
1043 * If there are any characters in the buffer then make sure that TX
1044 * interrupts are on and get'em out. Normally used after the putchar
1045 * routine has been called.
1048 static void stl_flushchars(struct tty_struct *tty)
1050 struct stlport *portp;
1052 pr_debug("stl_flushchars(tty=%p)\n", tty);
1056 portp = tty->driver_data;
1059 if (portp->tx.buf == NULL)
1062 stl_startrxtx(portp, -1, 1);
1065 /*****************************************************************************/
1067 static int stl_writeroom(struct tty_struct *tty)
1069 struct stlport *portp;
1072 pr_debug("stl_writeroom(tty=%p)\n", tty);
1076 portp = tty->driver_data;
1079 if (portp->tx.buf == NULL)
1082 head = portp->tx.head;
1083 tail = portp->tx.tail;
1084 return (head >= tail) ? (STL_TXBUFSIZE - (head - tail) - 1) : (tail - head - 1);
1087 /*****************************************************************************/
1090 * Return number of chars in the TX buffer. Normally we would just
1091 * calculate the number of chars in the buffer and return that, but if
1092 * the buffer is empty and TX interrupts are still on then we return
1093 * that the buffer still has 1 char in it. This way whoever called us
1094 * will not think that ALL chars have drained - since the UART still
1095 * must have some chars in it (we are busy after all).
1098 static int stl_charsinbuffer(struct tty_struct *tty)
1100 struct stlport *portp;
1104 pr_debug("stl_charsinbuffer(tty=%p)\n", tty);
1108 portp = tty->driver_data;
1111 if (portp->tx.buf == NULL)
1114 head = portp->tx.head;
1115 tail = portp->tx.tail;
1116 size = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
1117 if ((size == 0) && test_bit(ASYI_TXBUSY, &portp->istate))
1122 /*****************************************************************************/
1125 * Generate the serial struct info.
1128 static int stl_getserial(struct stlport *portp, struct serial_struct __user *sp)
1130 struct serial_struct sio;
1131 struct stlbrd *brdp;
1133 pr_debug("stl_getserial(portp=%p,sp=%p)\n", portp, sp);
1135 memset(&sio, 0, sizeof(struct serial_struct));
1136 sio.line = portp->portnr;
1137 sio.port = portp->ioaddr;
1138 sio.flags = portp->flags;
1139 sio.baud_base = portp->baud_base;
1140 sio.close_delay = portp->close_delay;
1141 sio.closing_wait = portp->closing_wait;
1142 sio.custom_divisor = portp->custom_divisor;
1144 if (portp->uartp == &stl_cd1400uart) {
1145 sio.type = PORT_CIRRUS;
1146 sio.xmit_fifo_size = CD1400_TXFIFOSIZE;
1148 sio.type = PORT_UNKNOWN;
1149 sio.xmit_fifo_size = SC26198_TXFIFOSIZE;
1152 brdp = stl_brds[portp->brdnr];
1154 sio.irq = brdp->irq;
1156 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ? -EFAULT : 0;
1159 /*****************************************************************************/
1162 * Set port according to the serial struct info.
1163 * At this point we do not do any auto-configure stuff, so we will
1164 * just quietly ignore any requests to change irq, etc.
1167 static int stl_setserial(struct stlport *portp, struct serial_struct __user *sp)
1169 struct serial_struct sio;
1171 pr_debug("stl_setserial(portp=%p,sp=%p)\n", portp, sp);
1173 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1175 if (!capable(CAP_SYS_ADMIN)) {
1176 if ((sio.baud_base != portp->baud_base) ||
1177 (sio.close_delay != portp->close_delay) ||
1178 ((sio.flags & ~ASYNC_USR_MASK) !=
1179 (portp->flags & ~ASYNC_USR_MASK)))
1183 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1184 (sio.flags & ASYNC_USR_MASK);
1185 portp->baud_base = sio.baud_base;
1186 portp->close_delay = sio.close_delay;
1187 portp->closing_wait = sio.closing_wait;
1188 portp->custom_divisor = sio.custom_divisor;
1189 stl_setport(portp, portp->tty->termios);
1193 /*****************************************************************************/
1195 static int stl_tiocmget(struct tty_struct *tty, struct file *file)
1197 struct stlport *portp;
1201 portp = tty->driver_data;
1204 if (tty->flags & (1 << TTY_IO_ERROR))
1207 return stl_getsignals(portp);
1210 static int stl_tiocmset(struct tty_struct *tty, struct file *file,
1211 unsigned int set, unsigned int clear)
1213 struct stlport *portp;
1214 int rts = -1, dtr = -1;
1218 portp = tty->driver_data;
1221 if (tty->flags & (1 << TTY_IO_ERROR))
1224 if (set & TIOCM_RTS)
1226 if (set & TIOCM_DTR)
1228 if (clear & TIOCM_RTS)
1230 if (clear & TIOCM_DTR)
1233 stl_setsignals(portp, dtr, rts);
1237 static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1239 struct stlport *portp;
1242 void __user *argp = (void __user *)arg;
1244 pr_debug("stl_ioctl(tty=%p,file=%p,cmd=%x,arg=%lx)\n", tty, file, cmd,
1249 portp = tty->driver_data;
1253 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1254 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS))
1255 if (tty->flags & (1 << TTY_IO_ERROR))
1262 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
1263 (unsigned __user *) argp);
1266 if (get_user(ival, (unsigned int __user *) arg))
1268 tty->termios->c_cflag =
1269 (tty->termios->c_cflag & ~CLOCAL) |
1270 (ival ? CLOCAL : 0);
1273 rc = stl_getserial(portp, argp);
1276 rc = stl_setserial(portp, argp);
1278 case COM_GETPORTSTATS:
1279 rc = stl_getportstats(portp, argp);
1281 case COM_CLRPORTSTATS:
1282 rc = stl_clrportstats(portp, argp);
1288 case TIOCSERGSTRUCT:
1289 case TIOCSERGETMULTI:
1290 case TIOCSERSETMULTI:
1299 /*****************************************************************************/
1302 * Start the transmitter again. Just turn TX interrupts back on.
1305 static void stl_start(struct tty_struct *tty)
1307 struct stlport *portp;
1309 pr_debug("stl_start(tty=%p)\n", tty);
1313 portp = tty->driver_data;
1316 stl_startrxtx(portp, -1, 1);
1319 /*****************************************************************************/
1321 static void stl_settermios(struct tty_struct *tty, struct ktermios *old)
1323 struct stlport *portp;
1324 struct ktermios *tiosp;
1326 pr_debug("stl_settermios(tty=%p,old=%p)\n", tty, old);
1330 portp = tty->driver_data;
1334 tiosp = tty->termios;
1335 if ((tiosp->c_cflag == old->c_cflag) &&
1336 (tiosp->c_iflag == old->c_iflag))
1339 stl_setport(portp, tiosp);
1340 stl_setsignals(portp, ((tiosp->c_cflag & (CBAUD & ~CBAUDEX)) ? 1 : 0),
1342 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0)) {
1343 tty->hw_stopped = 0;
1346 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1347 wake_up_interruptible(&portp->open_wait);
1350 /*****************************************************************************/
1353 * Attempt to flow control who ever is sending us data. Based on termios
1354 * settings use software or/and hardware flow control.
1357 static void stl_throttle(struct tty_struct *tty)
1359 struct stlport *portp;
1361 pr_debug("stl_throttle(tty=%p)\n", tty);
1365 portp = tty->driver_data;
1368 stl_flowctrl(portp, 0);
1371 /*****************************************************************************/
1374 * Unflow control the device sending us data...
1377 static void stl_unthrottle(struct tty_struct *tty)
1379 struct stlport *portp;
1381 pr_debug("stl_unthrottle(tty=%p)\n", tty);
1385 portp = tty->driver_data;
1388 stl_flowctrl(portp, 1);
1391 /*****************************************************************************/
1394 * Stop the transmitter. Basically to do this we will just turn TX
1398 static void stl_stop(struct tty_struct *tty)
1400 struct stlport *portp;
1402 pr_debug("stl_stop(tty=%p)\n", tty);
1406 portp = tty->driver_data;
1409 stl_startrxtx(portp, -1, 0);
1412 /*****************************************************************************/
1415 * Hangup this port. This is pretty much like closing the port, only
1416 * a little more brutal. No waiting for data to drain. Shutdown the
1417 * port and maybe drop signals.
1420 static void stl_hangup(struct tty_struct *tty)
1422 struct stlport *portp;
1424 pr_debug("stl_hangup(tty=%p)\n", tty);
1428 portp = tty->driver_data;
1432 portp->flags &= ~ASYNC_INITIALIZED;
1433 stl_disableintrs(portp);
1434 if (tty->termios->c_cflag & HUPCL)
1435 stl_setsignals(portp, 0, 0);
1436 stl_enablerxtx(portp, 0, 0);
1437 stl_flushbuffer(tty);
1439 set_bit(TTY_IO_ERROR, &tty->flags);
1440 if (portp->tx.buf != NULL) {
1441 kfree(portp->tx.buf);
1442 portp->tx.buf = NULL;
1443 portp->tx.head = NULL;
1444 portp->tx.tail = NULL;
1447 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
1448 portp->refcount = 0;
1449 wake_up_interruptible(&portp->open_wait);
1452 /*****************************************************************************/
1454 static void stl_breakctl(struct tty_struct *tty, int state)
1456 struct stlport *portp;
1458 pr_debug("stl_breakctl(tty=%p,state=%d)\n", tty, state);
1462 portp = tty->driver_data;
1466 stl_sendbreak(portp, ((state == -1) ? 1 : 2));
1469 /*****************************************************************************/
1471 static void stl_sendxchar(struct tty_struct *tty, char ch)
1473 struct stlport *portp;
1475 pr_debug("stl_sendxchar(tty=%p,ch=%x)\n", tty, ch);
1479 portp = tty->driver_data;
1483 if (ch == STOP_CHAR(tty))
1484 stl_sendflow(portp, 0);
1485 else if (ch == START_CHAR(tty))
1486 stl_sendflow(portp, 1);
1488 stl_putchar(tty, ch);
1491 /*****************************************************************************/
1496 * Format info for a specified port. The line is deliberately limited
1497 * to 80 characters. (If it is too long it will be truncated, if too
1498 * short then padded with spaces).
1501 static int stl_portinfo(struct stlport *portp, int portnr, char *pos)
1507 sp += sprintf(sp, "%d: uart:%s tx:%d rx:%d",
1508 portnr, (portp->hwid == 1) ? "SC26198" : "CD1400",
1509 (int) portp->stats.txtotal, (int) portp->stats.rxtotal);
1511 if (portp->stats.rxframing)
1512 sp += sprintf(sp, " fe:%d", (int) portp->stats.rxframing);
1513 if (portp->stats.rxparity)
1514 sp += sprintf(sp, " pe:%d", (int) portp->stats.rxparity);
1515 if (portp->stats.rxbreaks)
1516 sp += sprintf(sp, " brk:%d", (int) portp->stats.rxbreaks);
1517 if (portp->stats.rxoverrun)
1518 sp += sprintf(sp, " oe:%d", (int) portp->stats.rxoverrun);
1520 sigs = stl_getsignals(portp);
1521 cnt = sprintf(sp, "%s%s%s%s%s ",
1522 (sigs & TIOCM_RTS) ? "|RTS" : "",
1523 (sigs & TIOCM_CTS) ? "|CTS" : "",
1524 (sigs & TIOCM_DTR) ? "|DTR" : "",
1525 (sigs & TIOCM_CD) ? "|DCD" : "",
1526 (sigs & TIOCM_DSR) ? "|DSR" : "");
1530 for (cnt = sp - pos; cnt < (MAXLINE - 1); cnt++)
1533 pos[(MAXLINE - 2)] = '+';
1534 pos[(MAXLINE - 1)] = '\n';
1539 /*****************************************************************************/
1542 * Port info, read from the /proc file system.
1545 static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
1547 struct stlbrd *brdp;
1548 struct stlpanel *panelp;
1549 struct stlport *portp;
1550 unsigned int brdnr, panelnr, portnr;
1551 int totalport, curoff, maxoff;
1554 pr_debug("stl_readproc(page=%p,start=%p,off=%lx,count=%d,eof=%p,"
1555 "data=%p\n", page, start, off, count, eof, data);
1562 pos += sprintf(pos, "%s: version %s", stl_drvtitle,
1564 while (pos < (page + MAXLINE - 1))
1571 * We scan through for each board, panel and port. The offset is
1572 * calculated on the fly, and irrelevant ports are skipped.
1574 for (brdnr = 0; brdnr < stl_nrbrds; brdnr++) {
1575 brdp = stl_brds[brdnr];
1578 if (brdp->state == 0)
1581 maxoff = curoff + (brdp->nrports * MAXLINE);
1582 if (off >= maxoff) {
1587 totalport = brdnr * STL_MAXPORTS;
1588 for (panelnr = 0; panelnr < brdp->nrpanels; panelnr++) {
1589 panelp = brdp->panels[panelnr];
1593 maxoff = curoff + (panelp->nrports * MAXLINE);
1594 if (off >= maxoff) {
1596 totalport += panelp->nrports;
1600 for (portnr = 0; portnr < panelp->nrports; portnr++,
1602 portp = panelp->ports[portnr];
1605 if (off >= (curoff += MAXLINE))
1607 if ((pos - page + MAXLINE) > count)
1609 pos += stl_portinfo(portp, totalport, pos);
1621 /*****************************************************************************/
1624 * All board interrupts are vectored through here first. This code then
1625 * calls off to the approrpriate board interrupt handlers.
1628 static irqreturn_t stl_intr(int irq, void *dev_id)
1630 struct stlbrd *brdp = dev_id;
1632 pr_debug("stl_intr(brdp=%p,irq=%d)\n", brdp, irq);
1634 return IRQ_RETVAL((* brdp->isr)(brdp));
1637 /*****************************************************************************/
1640 * Interrupt service routine for EasyIO board types.
1643 static int stl_eiointr(struct stlbrd *brdp)
1645 struct stlpanel *panelp;
1646 unsigned int iobase;
1649 spin_lock(&brd_lock);
1650 panelp = brdp->panels[0];
1651 iobase = panelp->iobase;
1652 while (inb(brdp->iostatus) & EIO_INTRPEND) {
1654 (* panelp->isr)(panelp, iobase);
1656 spin_unlock(&brd_lock);
1660 /*****************************************************************************/
1663 * Interrupt service routine for ECH-AT board types.
1666 static int stl_echatintr(struct stlbrd *brdp)
1668 struct stlpanel *panelp;
1669 unsigned int ioaddr, bnknr;
1672 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
1674 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1676 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1677 ioaddr = brdp->bnkstataddr[bnknr];
1678 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1679 panelp = brdp->bnk2panel[bnknr];
1680 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1685 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
1690 /*****************************************************************************/
1693 * Interrupt service routine for ECH-MCA board types.
1696 static int stl_echmcaintr(struct stlbrd *brdp)
1698 struct stlpanel *panelp;
1699 unsigned int ioaddr, bnknr;
1702 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1704 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1705 ioaddr = brdp->bnkstataddr[bnknr];
1706 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1707 panelp = brdp->bnk2panel[bnknr];
1708 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1715 /*****************************************************************************/
1718 * Interrupt service routine for ECH-PCI board types.
1721 static int stl_echpciintr(struct stlbrd *brdp)
1723 struct stlpanel *panelp;
1724 unsigned int ioaddr, bnknr, recheck;
1729 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1730 outb(brdp->bnkpageaddr[bnknr], brdp->ioctrl);
1731 ioaddr = brdp->bnkstataddr[bnknr];
1732 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1733 panelp = brdp->bnk2panel[bnknr];
1734 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1745 /*****************************************************************************/
1748 * Interrupt service routine for ECH-8/64-PCI board types.
1751 static int stl_echpci64intr(struct stlbrd *brdp)
1753 struct stlpanel *panelp;
1754 unsigned int ioaddr, bnknr;
1757 while (inb(brdp->ioctrl) & 0x1) {
1759 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1760 ioaddr = brdp->bnkstataddr[bnknr];
1761 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1762 panelp = brdp->bnk2panel[bnknr];
1763 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1771 /*****************************************************************************/
1774 * Service an off-level request for some channel.
1776 static void stl_offintr(struct work_struct *work)
1778 struct stlport *portp = container_of(work, struct stlport, tqueue);
1779 struct tty_struct *tty;
1780 unsigned int oldsigs;
1782 pr_debug("stl_offintr(portp=%p)\n", portp);
1792 if (test_bit(ASYI_TXLOW, &portp->istate))
1795 if (test_bit(ASYI_DCDCHANGE, &portp->istate)) {
1796 clear_bit(ASYI_DCDCHANGE, &portp->istate);
1797 oldsigs = portp->sigs;
1798 portp->sigs = stl_getsignals(portp);
1799 if ((portp->sigs & TIOCM_CD) && ((oldsigs & TIOCM_CD) == 0))
1800 wake_up_interruptible(&portp->open_wait);
1801 if ((oldsigs & TIOCM_CD) && ((portp->sigs & TIOCM_CD) == 0))
1802 if (portp->flags & ASYNC_CHECK_CD)
1803 tty_hangup(tty); /* FIXME: module removal race here - AKPM */
1808 /*****************************************************************************/
1811 * Initialize all the ports on a panel.
1814 static int __devinit stl_initports(struct stlbrd *brdp, struct stlpanel *panelp)
1816 struct stlport *portp;
1820 pr_debug("stl_initports(brdp=%p,panelp=%p)\n", brdp, panelp);
1822 chipmask = stl_panelinit(brdp, panelp);
1825 * All UART's are initialized (if found!). Now go through and setup
1826 * each ports data structures.
1828 for (i = 0; i < panelp->nrports; i++) {
1829 portp = kzalloc(sizeof(struct stlport), GFP_KERNEL);
1831 printk("STALLION: failed to allocate memory "
1832 "(size=%Zd)\n", sizeof(struct stlport));
1836 portp->magic = STL_PORTMAGIC;
1838 portp->brdnr = panelp->brdnr;
1839 portp->panelnr = panelp->panelnr;
1840 portp->uartp = panelp->uartp;
1841 portp->clk = brdp->clk;
1842 portp->baud_base = STL_BAUDBASE;
1843 portp->close_delay = STL_CLOSEDELAY;
1844 portp->closing_wait = 30 * HZ;
1845 INIT_WORK(&portp->tqueue, stl_offintr);
1846 init_waitqueue_head(&portp->open_wait);
1847 init_waitqueue_head(&portp->close_wait);
1848 portp->stats.brd = portp->brdnr;
1849 portp->stats.panel = portp->panelnr;
1850 portp->stats.port = portp->portnr;
1851 panelp->ports[i] = portp;
1852 stl_portinit(brdp, panelp, portp);
1858 static void stl_cleanup_panels(struct stlbrd *brdp)
1860 struct stlpanel *panelp;
1861 struct stlport *portp;
1864 for (j = 0; j < STL_MAXPANELS; j++) {
1865 panelp = brdp->panels[j];
1868 for (k = 0; k < STL_PORTSPERPANEL; k++) {
1869 portp = panelp->ports[k];
1872 if (portp->tty != NULL)
1873 stl_hangup(portp->tty);
1874 kfree(portp->tx.buf);
1881 /*****************************************************************************/
1884 * Try to find and initialize an EasyIO board.
1887 static int __devinit stl_initeio(struct stlbrd *brdp)
1889 struct stlpanel *panelp;
1890 unsigned int status;
1894 pr_debug("stl_initeio(brdp=%p)\n", brdp);
1896 brdp->ioctrl = brdp->ioaddr1 + 1;
1897 brdp->iostatus = brdp->ioaddr1 + 2;
1899 status = inb(brdp->iostatus);
1900 if ((status & EIO_IDBITMASK) == EIO_MK3)
1904 * Handle board specific stuff now. The real difference is PCI
1907 if (brdp->brdtype == BRD_EASYIOPCI) {
1908 brdp->iosize1 = 0x80;
1909 brdp->iosize2 = 0x80;
1910 name = "serial(EIO-PCI)";
1911 outb(0x41, (brdp->ioaddr2 + 0x4c));
1914 name = "serial(EIO)";
1915 if ((brdp->irq < 0) || (brdp->irq > 15) ||
1916 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
1917 printk("STALLION: invalid irq=%d for brd=%d\n",
1918 brdp->irq, brdp->brdnr);
1922 outb((stl_vecmap[brdp->irq] | EIO_0WS |
1923 ((brdp->irqtype) ? EIO_INTLEVEL : EIO_INTEDGE)),
1928 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
1929 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
1930 "%x conflicts with another device\n", brdp->brdnr,
1935 if (brdp->iosize2 > 0)
1936 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
1937 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
1938 "address %x conflicts with another device\n",
1939 brdp->brdnr, brdp->ioaddr2);
1940 printk(KERN_WARNING "STALLION: Warning, also "
1941 "releasing board %d I/O address %x \n",
1942 brdp->brdnr, brdp->ioaddr1);
1947 * Everything looks OK, so let's go ahead and probe for the hardware.
1949 brdp->clk = CD1400_CLK;
1950 brdp->isr = stl_eiointr;
1953 switch (status & EIO_IDBITMASK) {
1955 brdp->clk = CD1400_CLK8M;
1965 switch (status & EIO_BRDMASK) {
1984 * We have verified that the board is actually present, so now we
1985 * can complete the setup.
1988 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
1990 printk(KERN_WARNING "STALLION: failed to allocate memory "
1991 "(size=%Zd)\n", sizeof(struct stlpanel));
1996 panelp->magic = STL_PANELMAGIC;
1997 panelp->brdnr = brdp->brdnr;
1998 panelp->panelnr = 0;
1999 panelp->nrports = brdp->nrports;
2000 panelp->iobase = brdp->ioaddr1;
2001 panelp->hwid = status;
2002 if ((status & EIO_IDBITMASK) == EIO_MK3) {
2003 panelp->uartp = &stl_sc26198uart;
2004 panelp->isr = stl_sc26198intr;
2006 panelp->uartp = &stl_cd1400uart;
2007 panelp->isr = stl_cd1400eiointr;
2010 brdp->panels[0] = panelp;
2012 brdp->state |= BRD_FOUND;
2013 brdp->hwid = status;
2014 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
2015 printk("STALLION: failed to register interrupt "
2016 "routine for %s irq=%d\n", name, brdp->irq);
2023 stl_cleanup_panels(brdp);
2025 if (brdp->iosize2 > 0)
2026 release_region(brdp->ioaddr2, brdp->iosize2);
2028 release_region(brdp->ioaddr1, brdp->iosize1);
2033 /*****************************************************************************/
2036 * Try to find an ECH board and initialize it. This code is capable of
2037 * dealing with all types of ECH board.
2040 static int __devinit stl_initech(struct stlbrd *brdp)
2042 struct stlpanel *panelp;
2043 unsigned int status, nxtid, ioaddr, conflict, panelnr, banknr, i;
2047 pr_debug("stl_initech(brdp=%p)\n", brdp);
2053 * Set up the initial board register contents for boards. This varies a
2054 * bit between the different board types. So we need to handle each
2055 * separately. Also do a check that the supplied IRQ is good.
2057 switch (brdp->brdtype) {
2060 brdp->isr = stl_echatintr;
2061 brdp->ioctrl = brdp->ioaddr1 + 1;
2062 brdp->iostatus = brdp->ioaddr1 + 1;
2063 status = inb(brdp->iostatus);
2064 if ((status & ECH_IDBITMASK) != ECH_ID) {
2068 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2069 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2070 printk("STALLION: invalid irq=%d for brd=%d\n",
2071 brdp->irq, brdp->brdnr);
2075 status = ((brdp->ioaddr2 & ECH_ADDR2MASK) >> 1);
2076 status |= (stl_vecmap[brdp->irq] << 1);
2077 outb((status | ECH_BRDRESET), brdp->ioaddr1);
2078 brdp->ioctrlval = ECH_INTENABLE |
2079 ((brdp->irqtype) ? ECH_INTLEVEL : ECH_INTEDGE);
2080 for (i = 0; i < 10; i++)
2081 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
2084 name = "serial(EC8/32)";
2085 outb(status, brdp->ioaddr1);
2089 brdp->isr = stl_echmcaintr;
2090 brdp->ioctrl = brdp->ioaddr1 + 0x20;
2091 brdp->iostatus = brdp->ioctrl;
2092 status = inb(brdp->iostatus);
2093 if ((status & ECH_IDBITMASK) != ECH_ID) {
2097 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2098 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2099 printk("STALLION: invalid irq=%d for brd=%d\n",
2100 brdp->irq, brdp->brdnr);
2104 outb(ECHMC_BRDRESET, brdp->ioctrl);
2105 outb(ECHMC_INTENABLE, brdp->ioctrl);
2107 name = "serial(EC8/32-MC)";
2111 brdp->isr = stl_echpciintr;
2112 brdp->ioctrl = brdp->ioaddr1 + 2;
2115 name = "serial(EC8/32-PCI)";
2119 brdp->isr = stl_echpci64intr;
2120 brdp->ioctrl = brdp->ioaddr2 + 0x40;
2121 outb(0x43, (brdp->ioaddr1 + 0x4c));
2122 brdp->iosize1 = 0x80;
2123 brdp->iosize2 = 0x80;
2124 name = "serial(EC8/64-PCI)";
2128 printk("STALLION: unknown board type=%d\n", brdp->brdtype);
2134 * Check boards for possible IO address conflicts and return fail status
2135 * if an IO conflict found.
2138 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2139 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2140 "%x conflicts with another device\n", brdp->brdnr,
2145 if (brdp->iosize2 > 0)
2146 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2147 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2148 "address %x conflicts with another device\n",
2149 brdp->brdnr, brdp->ioaddr2);
2150 printk(KERN_WARNING "STALLION: Warning, also "
2151 "releasing board %d I/O address %x \n",
2152 brdp->brdnr, brdp->ioaddr1);
2157 * Scan through the secondary io address space looking for panels.
2158 * As we find'em allocate and initialize panel structures for each.
2160 brdp->clk = CD1400_CLK;
2161 brdp->hwid = status;
2163 ioaddr = brdp->ioaddr2;
2168 for (i = 0; i < STL_MAXPANELS; i++) {
2169 if (brdp->brdtype == BRD_ECHPCI) {
2170 outb(nxtid, brdp->ioctrl);
2171 ioaddr = brdp->ioaddr2;
2173 status = inb(ioaddr + ECH_PNLSTATUS);
2174 if ((status & ECH_PNLIDMASK) != nxtid)
2176 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
2178 printk("STALLION: failed to allocate memory "
2179 "(size=%Zd)\n", sizeof(struct stlpanel));
2183 panelp->magic = STL_PANELMAGIC;
2184 panelp->brdnr = brdp->brdnr;
2185 panelp->panelnr = panelnr;
2186 panelp->iobase = ioaddr;
2187 panelp->pagenr = nxtid;
2188 panelp->hwid = status;
2189 brdp->bnk2panel[banknr] = panelp;
2190 brdp->bnkpageaddr[banknr] = nxtid;
2191 brdp->bnkstataddr[banknr++] = ioaddr + ECH_PNLSTATUS;
2193 if (status & ECH_PNLXPID) {
2194 panelp->uartp = &stl_sc26198uart;
2195 panelp->isr = stl_sc26198intr;
2196 if (status & ECH_PNL16PORT) {
2197 panelp->nrports = 16;
2198 brdp->bnk2panel[banknr] = panelp;
2199 brdp->bnkpageaddr[banknr] = nxtid;
2200 brdp->bnkstataddr[banknr++] = ioaddr + 4 +
2203 panelp->nrports = 8;
2205 panelp->uartp = &stl_cd1400uart;
2206 panelp->isr = stl_cd1400echintr;
2207 if (status & ECH_PNL16PORT) {
2208 panelp->nrports = 16;
2209 panelp->ackmask = 0x80;
2210 if (brdp->brdtype != BRD_ECHPCI)
2211 ioaddr += EREG_BANKSIZE;
2212 brdp->bnk2panel[banknr] = panelp;
2213 brdp->bnkpageaddr[banknr] = ++nxtid;
2214 brdp->bnkstataddr[banknr++] = ioaddr +
2217 panelp->nrports = 8;
2218 panelp->ackmask = 0xc0;
2223 ioaddr += EREG_BANKSIZE;
2224 brdp->nrports += panelp->nrports;
2225 brdp->panels[panelnr++] = panelp;
2226 if ((brdp->brdtype != BRD_ECHPCI) &&
2227 (ioaddr >= (brdp->ioaddr2 + brdp->iosize2))) {
2233 brdp->nrpanels = panelnr;
2234 brdp->nrbnks = banknr;
2235 if (brdp->brdtype == BRD_ECH)
2236 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
2238 brdp->state |= BRD_FOUND;
2239 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
2240 printk("STALLION: failed to register interrupt "
2241 "routine for %s irq=%d\n", name, brdp->irq);
2248 stl_cleanup_panels(brdp);
2249 if (brdp->iosize2 > 0)
2250 release_region(brdp->ioaddr2, brdp->iosize2);
2252 release_region(brdp->ioaddr1, brdp->iosize1);
2257 /*****************************************************************************/
2260 * Initialize and configure the specified board.
2261 * Scan through all the boards in the configuration and see what we
2262 * can find. Handle EIO and the ECH boards a little differently here
2263 * since the initial search and setup is very different.
2266 static int __devinit stl_brdinit(struct stlbrd *brdp)
2270 pr_debug("stl_brdinit(brdp=%p)\n", brdp);
2272 switch (brdp->brdtype) {
2275 retval = stl_initeio(brdp);
2283 retval = stl_initech(brdp);
2288 printk("STALLION: board=%d is unknown board type=%d\n",
2289 brdp->brdnr, brdp->brdtype);
2294 if ((brdp->state & BRD_FOUND) == 0) {
2295 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2296 stl_brdnames[brdp->brdtype], brdp->brdnr,
2297 brdp->ioaddr1, brdp->irq);
2301 for (i = 0; i < STL_MAXPANELS; i++)
2302 if (brdp->panels[i] != NULL)
2303 stl_initports(brdp, brdp->panels[i]);
2305 printk("STALLION: %s found, board=%d io=%x irq=%d "
2306 "nrpanels=%d nrports=%d\n", stl_brdnames[brdp->brdtype],
2307 brdp->brdnr, brdp->ioaddr1, brdp->irq, brdp->nrpanels,
2312 free_irq(brdp->irq, brdp);
2314 stl_cleanup_panels(brdp);
2316 release_region(brdp->ioaddr1, brdp->iosize1);
2317 if (brdp->iosize2 > 0)
2318 release_region(brdp->ioaddr2, brdp->iosize2);
2323 /*****************************************************************************/
2326 * Find the next available board number that is free.
2329 static int __devinit stl_getbrdnr(void)
2333 for (i = 0; i < STL_MAXBRDS; i++)
2334 if (stl_brds[i] == NULL) {
2335 if (i >= stl_nrbrds)
2343 /*****************************************************************************/
2345 * We have a Stallion board. Allocate a board structure and
2346 * initialize it. Read its IO and IRQ resources from PCI
2347 * configuration space.
2350 static int __devinit stl_pciprobe(struct pci_dev *pdev,
2351 const struct pci_device_id *ent)
2353 struct stlbrd *brdp;
2354 unsigned int i, brdtype = ent->driver_data;
2355 int brdnr, retval = -ENODEV;
2357 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE)
2360 dev_info(&pdev->dev, "please, report this to LKML: %x/%x/%x\n",
2361 pdev->vendor, pdev->device, pdev->class);
2363 retval = pci_enable_device(pdev);
2366 brdp = stl_allocbrd();
2371 mutex_lock(&stl_brdslock);
2372 brdnr = stl_getbrdnr();
2374 dev_err(&pdev->dev, "too many boards found, "
2375 "maximum supported %d\n", STL_MAXBRDS);
2376 mutex_unlock(&stl_brdslock);
2380 brdp->brdnr = (unsigned int)brdnr;
2381 stl_brds[brdp->brdnr] = brdp;
2382 mutex_unlock(&stl_brdslock);
2384 brdp->brdtype = brdtype;
2385 brdp->state |= STL_PROBED;
2388 * We have all resources from the board, so let's setup the actual
2389 * board structure now.
2393 brdp->ioaddr2 = pci_resource_start(pdev, 0);
2394 brdp->ioaddr1 = pci_resource_start(pdev, 1);
2397 brdp->ioaddr2 = pci_resource_start(pdev, 2);
2398 brdp->ioaddr1 = pci_resource_start(pdev, 1);
2401 brdp->ioaddr1 = pci_resource_start(pdev, 2);
2402 brdp->ioaddr2 = pci_resource_start(pdev, 1);
2405 dev_err(&pdev->dev, "unknown PCI board type=%u\n", brdtype);
2409 brdp->irq = pdev->irq;
2410 retval = stl_brdinit(brdp);
2414 pci_set_drvdata(pdev, brdp);
2416 for (i = 0; i < brdp->nrports; i++)
2417 tty_register_device(stl_serial,
2418 brdp->brdnr * STL_MAXPORTS + i, &pdev->dev);
2422 stl_brds[brdp->brdnr] = NULL;
2429 static void __devexit stl_pciremove(struct pci_dev *pdev)
2431 struct stlbrd *brdp = pci_get_drvdata(pdev);
2434 free_irq(brdp->irq, brdp);
2436 stl_cleanup_panels(brdp);
2438 release_region(brdp->ioaddr1, brdp->iosize1);
2439 if (brdp->iosize2 > 0)
2440 release_region(brdp->ioaddr2, brdp->iosize2);
2442 for (i = 0; i < brdp->nrports; i++)
2443 tty_unregister_device(stl_serial,
2444 brdp->brdnr * STL_MAXPORTS + i);
2446 stl_brds[brdp->brdnr] = NULL;
2450 static struct pci_driver stl_pcidriver = {
2452 .id_table = stl_pcibrds,
2453 .probe = stl_pciprobe,
2454 .remove = __devexit_p(stl_pciremove)
2457 /*****************************************************************************/
2460 * Return the board stats structure to user app.
2463 static int stl_getbrdstats(combrd_t __user *bp)
2465 combrd_t stl_brdstats;
2466 struct stlbrd *brdp;
2467 struct stlpanel *panelp;
2470 if (copy_from_user(&stl_brdstats, bp, sizeof(combrd_t)))
2472 if (stl_brdstats.brd >= STL_MAXBRDS)
2474 brdp = stl_brds[stl_brdstats.brd];
2478 memset(&stl_brdstats, 0, sizeof(combrd_t));
2479 stl_brdstats.brd = brdp->brdnr;
2480 stl_brdstats.type = brdp->brdtype;
2481 stl_brdstats.hwid = brdp->hwid;
2482 stl_brdstats.state = brdp->state;
2483 stl_brdstats.ioaddr = brdp->ioaddr1;
2484 stl_brdstats.ioaddr2 = brdp->ioaddr2;
2485 stl_brdstats.irq = brdp->irq;
2486 stl_brdstats.nrpanels = brdp->nrpanels;
2487 stl_brdstats.nrports = brdp->nrports;
2488 for (i = 0; i < brdp->nrpanels; i++) {
2489 panelp = brdp->panels[i];
2490 stl_brdstats.panels[i].panel = i;
2491 stl_brdstats.panels[i].hwid = panelp->hwid;
2492 stl_brdstats.panels[i].nrports = panelp->nrports;
2495 return copy_to_user(bp, &stl_brdstats, sizeof(combrd_t)) ? -EFAULT : 0;
2498 /*****************************************************************************/
2501 * Resolve the referenced port number into a port struct pointer.
2504 static struct stlport *stl_getport(int brdnr, int panelnr, int portnr)
2506 struct stlbrd *brdp;
2507 struct stlpanel *panelp;
2509 if (brdnr < 0 || brdnr >= STL_MAXBRDS)
2511 brdp = stl_brds[brdnr];
2514 if (panelnr < 0 || (unsigned int)panelnr >= brdp->nrpanels)
2516 panelp = brdp->panels[panelnr];
2519 if (portnr < 0 || (unsigned int)portnr >= panelp->nrports)
2521 return panelp->ports[portnr];
2524 /*****************************************************************************/
2527 * Return the port stats structure to user app. A NULL port struct
2528 * pointer passed in means that we need to find out from the app
2529 * what port to get stats for (used through board control device).
2532 static int stl_getportstats(struct stlport *portp, comstats_t __user *cp)
2534 comstats_t stl_comstats;
2535 unsigned char *head, *tail;
2536 unsigned long flags;
2539 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2541 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2547 portp->stats.state = portp->istate;
2548 portp->stats.flags = portp->flags;
2549 portp->stats.hwid = portp->hwid;
2551 portp->stats.ttystate = 0;
2552 portp->stats.cflags = 0;
2553 portp->stats.iflags = 0;
2554 portp->stats.oflags = 0;
2555 portp->stats.lflags = 0;
2556 portp->stats.rxbuffered = 0;
2558 spin_lock_irqsave(&stallion_lock, flags);
2559 if (portp->tty != NULL)
2560 if (portp->tty->driver_data == portp) {
2561 portp->stats.ttystate = portp->tty->flags;
2562 /* No longer available as a statistic */
2563 portp->stats.rxbuffered = 1; /*portp->tty->flip.count; */
2564 if (portp->tty->termios != NULL) {
2565 portp->stats.cflags = portp->tty->termios->c_cflag;
2566 portp->stats.iflags = portp->tty->termios->c_iflag;
2567 portp->stats.oflags = portp->tty->termios->c_oflag;
2568 portp->stats.lflags = portp->tty->termios->c_lflag;
2571 spin_unlock_irqrestore(&stallion_lock, flags);
2573 head = portp->tx.head;
2574 tail = portp->tx.tail;
2575 portp->stats.txbuffered = (head >= tail) ? (head - tail) :
2576 (STL_TXBUFSIZE - (tail - head));
2578 portp->stats.signals = (unsigned long) stl_getsignals(portp);
2580 return copy_to_user(cp, &portp->stats,
2581 sizeof(comstats_t)) ? -EFAULT : 0;
2584 /*****************************************************************************/
2587 * Clear the port stats structure. We also return it zeroed out...
2590 static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp)
2592 comstats_t stl_comstats;
2595 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2597 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2603 memset(&portp->stats, 0, sizeof(comstats_t));
2604 portp->stats.brd = portp->brdnr;
2605 portp->stats.panel = portp->panelnr;
2606 portp->stats.port = portp->portnr;
2607 return copy_to_user(cp, &portp->stats,
2608 sizeof(comstats_t)) ? -EFAULT : 0;
2611 /*****************************************************************************/
2614 * Return the entire driver ports structure to a user app.
2617 static int stl_getportstruct(struct stlport __user *arg)
2619 struct stlport stl_dummyport;
2620 struct stlport *portp;
2622 if (copy_from_user(&stl_dummyport, arg, sizeof(struct stlport)))
2624 portp = stl_getport(stl_dummyport.brdnr, stl_dummyport.panelnr,
2625 stl_dummyport.portnr);
2628 return copy_to_user(arg, portp, sizeof(struct stlport)) ? -EFAULT : 0;
2631 /*****************************************************************************/
2634 * Return the entire driver board structure to a user app.
2637 static int stl_getbrdstruct(struct stlbrd __user *arg)
2639 struct stlbrd stl_dummybrd;
2640 struct stlbrd *brdp;
2642 if (copy_from_user(&stl_dummybrd, arg, sizeof(struct stlbrd)))
2644 if (stl_dummybrd.brdnr >= STL_MAXBRDS)
2646 brdp = stl_brds[stl_dummybrd.brdnr];
2649 return copy_to_user(arg, brdp, sizeof(struct stlbrd)) ? -EFAULT : 0;
2652 /*****************************************************************************/
2655 * The "staliomem" device is also required to do some special operations
2656 * on the board and/or ports. In this driver it is mostly used for stats
2660 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
2663 void __user *argp = (void __user *)arg;
2665 pr_debug("stl_memioctl(ip=%p,fp=%p,cmd=%x,arg=%lx)\n", ip, fp, cmd,arg);
2668 if (brdnr >= STL_MAXBRDS)
2673 case COM_GETPORTSTATS:
2674 rc = stl_getportstats(NULL, argp);
2676 case COM_CLRPORTSTATS:
2677 rc = stl_clrportstats(NULL, argp);
2679 case COM_GETBRDSTATS:
2680 rc = stl_getbrdstats(argp);
2683 rc = stl_getportstruct(argp);
2686 rc = stl_getbrdstruct(argp);
2696 static const struct tty_operations stl_ops = {
2700 .put_char = stl_putchar,
2701 .flush_chars = stl_flushchars,
2702 .write_room = stl_writeroom,
2703 .chars_in_buffer = stl_charsinbuffer,
2705 .set_termios = stl_settermios,
2706 .throttle = stl_throttle,
2707 .unthrottle = stl_unthrottle,
2710 .hangup = stl_hangup,
2711 .flush_buffer = stl_flushbuffer,
2712 .break_ctl = stl_breakctl,
2713 .wait_until_sent = stl_waituntilsent,
2714 .send_xchar = stl_sendxchar,
2715 .read_proc = stl_readproc,
2716 .tiocmget = stl_tiocmget,
2717 .tiocmset = stl_tiocmset,
2720 /*****************************************************************************/
2721 /* CD1400 HARDWARE FUNCTIONS */
2722 /*****************************************************************************/
2725 * These functions get/set/update the registers of the cd1400 UARTs.
2726 * Access to the cd1400 registers is via an address/data io port pair.
2727 * (Maybe should make this inline...)
2730 static int stl_cd1400getreg(struct stlport *portp, int regnr)
2732 outb((regnr + portp->uartaddr), portp->ioaddr);
2733 return inb(portp->ioaddr + EREG_DATA);
2736 static void stl_cd1400setreg(struct stlport *portp, int regnr, int value)
2738 outb(regnr + portp->uartaddr, portp->ioaddr);
2739 outb(value, portp->ioaddr + EREG_DATA);
2742 static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value)
2744 outb(regnr + portp->uartaddr, portp->ioaddr);
2745 if (inb(portp->ioaddr + EREG_DATA) != value) {
2746 outb(value, portp->ioaddr + EREG_DATA);
2752 /*****************************************************************************/
2755 * Inbitialize the UARTs in a panel. We don't care what sort of board
2756 * these ports are on - since the port io registers are almost
2757 * identical when dealing with ports.
2760 static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
2764 int nrchips, uartaddr, ioaddr;
2765 unsigned long flags;
2767 pr_debug("stl_panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
2769 spin_lock_irqsave(&brd_lock, flags);
2770 BRDENABLE(panelp->brdnr, panelp->pagenr);
2773 * Check that each chip is present and started up OK.
2776 nrchips = panelp->nrports / CD1400_PORTS;
2777 for (i = 0; i < nrchips; i++) {
2778 if (brdp->brdtype == BRD_ECHPCI) {
2779 outb((panelp->pagenr + (i >> 1)), brdp->ioctrl);
2780 ioaddr = panelp->iobase;
2782 ioaddr = panelp->iobase + (EREG_BANKSIZE * (i >> 1));
2783 uartaddr = (i & 0x01) ? 0x080 : 0;
2784 outb((GFRCR + uartaddr), ioaddr);
2785 outb(0, (ioaddr + EREG_DATA));
2786 outb((CCR + uartaddr), ioaddr);
2787 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2788 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2789 outb((GFRCR + uartaddr), ioaddr);
2790 for (j = 0; j < CCR_MAXWAIT; j++)
2791 if ((gfrcr = inb(ioaddr + EREG_DATA)) != 0)
2794 if ((j >= CCR_MAXWAIT) || (gfrcr < 0x40) || (gfrcr > 0x60)) {
2795 printk("STALLION: cd1400 not responding, "
2796 "brd=%d panel=%d chip=%d\n",
2797 panelp->brdnr, panelp->panelnr, i);
2800 chipmask |= (0x1 << i);
2801 outb((PPR + uartaddr), ioaddr);
2802 outb(PPR_SCALAR, (ioaddr + EREG_DATA));
2805 BRDDISABLE(panelp->brdnr);
2806 spin_unlock_irqrestore(&brd_lock, flags);
2810 /*****************************************************************************/
2813 * Initialize hardware specific port registers.
2816 static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
2818 unsigned long flags;
2819 pr_debug("stl_cd1400portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
2822 if ((brdp == NULL) || (panelp == NULL) ||
2826 spin_lock_irqsave(&brd_lock, flags);
2827 portp->ioaddr = panelp->iobase + (((brdp->brdtype == BRD_ECHPCI) ||
2828 (portp->portnr < 8)) ? 0 : EREG_BANKSIZE);
2829 portp->uartaddr = (portp->portnr & 0x04) << 5;
2830 portp->pagenr = panelp->pagenr + (portp->portnr >> 3);
2832 BRDENABLE(portp->brdnr, portp->pagenr);
2833 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
2834 stl_cd1400setreg(portp, LIVR, (portp->portnr << 3));
2835 portp->hwid = stl_cd1400getreg(portp, GFRCR);
2836 BRDDISABLE(portp->brdnr);
2837 spin_unlock_irqrestore(&brd_lock, flags);
2840 /*****************************************************************************/
2843 * Wait for the command register to be ready. We will poll this,
2844 * since it won't usually take too long to be ready.
2847 static void stl_cd1400ccrwait(struct stlport *portp)
2851 for (i = 0; i < CCR_MAXWAIT; i++)
2852 if (stl_cd1400getreg(portp, CCR) == 0)
2855 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
2856 portp->portnr, portp->panelnr, portp->brdnr);
2859 /*****************************************************************************/
2862 * Set up the cd1400 registers for a port based on the termios port
2866 static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp)
2868 struct stlbrd *brdp;
2869 unsigned long flags;
2870 unsigned int clkdiv, baudrate;
2871 unsigned char cor1, cor2, cor3;
2872 unsigned char cor4, cor5, ccr;
2873 unsigned char srer, sreron, sreroff;
2874 unsigned char mcor1, mcor2, rtpr;
2875 unsigned char clk, div;
2891 brdp = stl_brds[portp->brdnr];
2896 * Set up the RX char ignore mask with those RX error types we
2897 * can ignore. We can get the cd1400 to help us out a little here,
2898 * it will ignore parity errors and breaks for us.
2900 portp->rxignoremsk = 0;
2901 if (tiosp->c_iflag & IGNPAR) {
2902 portp->rxignoremsk |= (ST_PARITY | ST_FRAMING | ST_OVERRUN);
2903 cor1 |= COR1_PARIGNORE;
2905 if (tiosp->c_iflag & IGNBRK) {
2906 portp->rxignoremsk |= ST_BREAK;
2907 cor4 |= COR4_IGNBRK;
2910 portp->rxmarkmsk = ST_OVERRUN;
2911 if (tiosp->c_iflag & (INPCK | PARMRK))
2912 portp->rxmarkmsk |= (ST_PARITY | ST_FRAMING);
2913 if (tiosp->c_iflag & BRKINT)
2914 portp->rxmarkmsk |= ST_BREAK;
2917 * Go through the char size, parity and stop bits and set all the
2918 * option register appropriately.
2920 switch (tiosp->c_cflag & CSIZE) {
2935 if (tiosp->c_cflag & CSTOPB)
2940 if (tiosp->c_cflag & PARENB) {
2941 if (tiosp->c_cflag & PARODD)
2942 cor1 |= (COR1_PARENB | COR1_PARODD);
2944 cor1 |= (COR1_PARENB | COR1_PAREVEN);
2946 cor1 |= COR1_PARNONE;
2950 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
2951 * space for hardware flow control and the like. This should be set to
2952 * VMIN. Also here we will set the RX data timeout to 10ms - this should
2953 * really be based on VTIME.
2955 cor3 |= FIFO_RXTHRESHOLD;
2959 * Calculate the baud rate timers. For now we will just assume that
2960 * the input and output baud are the same. Could have used a baud
2961 * table here, but this way we can generate virtually any baud rate
2964 baudrate = tiosp->c_cflag & CBAUD;
2965 if (baudrate & CBAUDEX) {
2966 baudrate &= ~CBAUDEX;
2967 if ((baudrate < 1) || (baudrate > 4))
2968 tiosp->c_cflag &= ~CBAUDEX;
2972 baudrate = stl_baudrates[baudrate];
2973 if ((tiosp->c_cflag & CBAUD) == B38400) {
2974 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2976 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2978 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2980 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2982 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2983 baudrate = (portp->baud_base / portp->custom_divisor);
2985 if (baudrate > STL_CD1400MAXBAUD)
2986 baudrate = STL_CD1400MAXBAUD;
2989 for (clk = 0; clk < CD1400_NUMCLKS; clk++) {
2990 clkdiv = (portp->clk / stl_cd1400clkdivs[clk]) / baudrate;
2994 div = (unsigned char) clkdiv;
2998 * Check what form of modem signaling is required and set it up.
3000 if ((tiosp->c_cflag & CLOCAL) == 0) {
3003 sreron |= SRER_MODEM;
3004 portp->flags |= ASYNC_CHECK_CD;
3006 portp->flags &= ~ASYNC_CHECK_CD;
3009 * Setup cd1400 enhanced modes if we can. In particular we want to
3010 * handle as much of the flow control as possible automatically. As
3011 * well as saving a few CPU cycles it will also greatly improve flow
3012 * control reliability.
3014 if (tiosp->c_iflag & IXON) {
3017 if (tiosp->c_iflag & IXANY)
3021 if (tiosp->c_cflag & CRTSCTS) {
3023 mcor1 |= FIFO_RTSTHRESHOLD;
3027 * All cd1400 register values calculated so go through and set
3031 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3032 portp->portnr, portp->panelnr, portp->brdnr);
3033 pr_debug(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
3034 cor1, cor2, cor3, cor4, cor5);
3035 pr_debug(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
3036 mcor1, mcor2, rtpr, sreron, sreroff);
3037 pr_debug(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk, div, clk, div);
3038 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3039 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3040 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3042 spin_lock_irqsave(&brd_lock, flags);
3043 BRDENABLE(portp->brdnr, portp->pagenr);
3044 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x3));
3045 srer = stl_cd1400getreg(portp, SRER);
3046 stl_cd1400setreg(portp, SRER, 0);
3047 if (stl_cd1400updatereg(portp, COR1, cor1))
3049 if (stl_cd1400updatereg(portp, COR2, cor2))
3051 if (stl_cd1400updatereg(portp, COR3, cor3))
3054 stl_cd1400ccrwait(portp);
3055 stl_cd1400setreg(portp, CCR, CCR_CORCHANGE);
3057 stl_cd1400setreg(portp, COR4, cor4);
3058 stl_cd1400setreg(portp, COR5, cor5);
3059 stl_cd1400setreg(portp, MCOR1, mcor1);
3060 stl_cd1400setreg(portp, MCOR2, mcor2);
3062 stl_cd1400setreg(portp, TCOR, clk);
3063 stl_cd1400setreg(portp, TBPR, div);
3064 stl_cd1400setreg(portp, RCOR, clk);
3065 stl_cd1400setreg(portp, RBPR, div);
3067 stl_cd1400setreg(portp, SCHR1, tiosp->c_cc[VSTART]);
3068 stl_cd1400setreg(portp, SCHR2, tiosp->c_cc[VSTOP]);
3069 stl_cd1400setreg(portp, SCHR3, tiosp->c_cc[VSTART]);
3070 stl_cd1400setreg(portp, SCHR4, tiosp->c_cc[VSTOP]);
3071 stl_cd1400setreg(portp, RTPR, rtpr);
3072 mcor1 = stl_cd1400getreg(portp, MSVR1);
3073 if (mcor1 & MSVR1_DCD)
3074 portp->sigs |= TIOCM_CD;
3076 portp->sigs &= ~TIOCM_CD;
3077 stl_cd1400setreg(portp, SRER, ((srer & ~sreroff) | sreron));
3078 BRDDISABLE(portp->brdnr);
3079 spin_unlock_irqrestore(&brd_lock, flags);
3082 /*****************************************************************************/
3085 * Set the state of the DTR and RTS signals.
3088 static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts)
3090 unsigned char msvr1, msvr2;
3091 unsigned long flags;
3093 pr_debug("stl_cd1400setsignals(portp=%p,dtr=%d,rts=%d)\n",
3103 spin_lock_irqsave(&brd_lock, flags);
3104 BRDENABLE(portp->brdnr, portp->pagenr);
3105 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3107 stl_cd1400setreg(portp, MSVR2, msvr2);
3109 stl_cd1400setreg(portp, MSVR1, msvr1);
3110 BRDDISABLE(portp->brdnr);
3111 spin_unlock_irqrestore(&brd_lock, flags);
3114 /*****************************************************************************/
3117 * Return the state of the signals.
3120 static int stl_cd1400getsignals(struct stlport *portp)
3122 unsigned char msvr1, msvr2;
3123 unsigned long flags;
3126 pr_debug("stl_cd1400getsignals(portp=%p)\n", portp);
3128 spin_lock_irqsave(&brd_lock, flags);
3129 BRDENABLE(portp->brdnr, portp->pagenr);
3130 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3131 msvr1 = stl_cd1400getreg(portp, MSVR1);
3132 msvr2 = stl_cd1400getreg(portp, MSVR2);
3133 BRDDISABLE(portp->brdnr);
3134 spin_unlock_irqrestore(&brd_lock, flags);
3137 sigs |= (msvr1 & MSVR1_DCD) ? TIOCM_CD : 0;
3138 sigs |= (msvr1 & MSVR1_CTS) ? TIOCM_CTS : 0;
3139 sigs |= (msvr1 & MSVR1_DTR) ? TIOCM_DTR : 0;
3140 sigs |= (msvr2 & MSVR2_RTS) ? TIOCM_RTS : 0;
3142 sigs |= (msvr1 & MSVR1_RI) ? TIOCM_RI : 0;
3143 sigs |= (msvr1 & MSVR1_DSR) ? TIOCM_DSR : 0;
3150 /*****************************************************************************/
3153 * Enable/Disable the Transmitter and/or Receiver.
3156 static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx)
3159 unsigned long flags;
3161 pr_debug("stl_cd1400enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3166 ccr |= CCR_TXDISABLE;
3168 ccr |= CCR_TXENABLE;
3170 ccr |= CCR_RXDISABLE;
3172 ccr |= CCR_RXENABLE;
3174 spin_lock_irqsave(&brd_lock, flags);
3175 BRDENABLE(portp->brdnr, portp->pagenr);
3176 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3177 stl_cd1400ccrwait(portp);
3178 stl_cd1400setreg(portp, CCR, ccr);
3179 stl_cd1400ccrwait(portp);
3180 BRDDISABLE(portp->brdnr);
3181 spin_unlock_irqrestore(&brd_lock, flags);
3184 /*****************************************************************************/
3187 * Start/stop the Transmitter and/or Receiver.
3190 static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx)
3192 unsigned char sreron, sreroff;
3193 unsigned long flags;
3195 pr_debug("stl_cd1400startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3200 sreroff |= (SRER_TXDATA | SRER_TXEMPTY);
3202 sreron |= SRER_TXDATA;
3204 sreron |= SRER_TXEMPTY;
3206 sreroff |= SRER_RXDATA;
3208 sreron |= SRER_RXDATA;
3210 spin_lock_irqsave(&brd_lock, flags);
3211 BRDENABLE(portp->brdnr, portp->pagenr);
3212 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3213 stl_cd1400setreg(portp, SRER,
3214 ((stl_cd1400getreg(portp, SRER) & ~sreroff) | sreron));
3215 BRDDISABLE(portp->brdnr);
3217 set_bit(ASYI_TXBUSY, &portp->istate);
3218 spin_unlock_irqrestore(&brd_lock, flags);
3221 /*****************************************************************************/
3224 * Disable all interrupts from this port.
3227 static void stl_cd1400disableintrs(struct stlport *portp)
3229 unsigned long flags;
3231 pr_debug("stl_cd1400disableintrs(portp=%p)\n", portp);
3233 spin_lock_irqsave(&brd_lock, flags);
3234 BRDENABLE(portp->brdnr, portp->pagenr);
3235 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3236 stl_cd1400setreg(portp, SRER, 0);
3237 BRDDISABLE(portp->brdnr);
3238 spin_unlock_irqrestore(&brd_lock, flags);
3241 /*****************************************************************************/
3243 static void stl_cd1400sendbreak(struct stlport *portp, int len)
3245 unsigned long flags;
3247 pr_debug("stl_cd1400sendbreak(portp=%p,len=%d)\n", portp, len);
3249 spin_lock_irqsave(&brd_lock, flags);
3250 BRDENABLE(portp->brdnr, portp->pagenr);
3251 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3252 stl_cd1400setreg(portp, SRER,
3253 ((stl_cd1400getreg(portp, SRER) & ~SRER_TXDATA) |
3255 BRDDISABLE(portp->brdnr);
3256 portp->brklen = len;
3258 portp->stats.txbreaks++;
3259 spin_unlock_irqrestore(&brd_lock, flags);
3262 /*****************************************************************************/
3265 * Take flow control actions...
3268 static void stl_cd1400flowctrl(struct stlport *portp, int state)
3270 struct tty_struct *tty;
3271 unsigned long flags;
3273 pr_debug("stl_cd1400flowctrl(portp=%p,state=%x)\n", portp, state);
3281 spin_lock_irqsave(&brd_lock, flags);
3282 BRDENABLE(portp->brdnr, portp->pagenr);
3283 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3286 if (tty->termios->c_iflag & IXOFF) {
3287 stl_cd1400ccrwait(portp);
3288 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3289 portp->stats.rxxon++;
3290 stl_cd1400ccrwait(portp);
3293 * Question: should we return RTS to what it was before? It may
3294 * have been set by an ioctl... Suppose not, since if you have
3295 * hardware flow control set then it is pretty silly to go and
3296 * set the RTS line by hand.
3298 if (tty->termios->c_cflag & CRTSCTS) {
3299 stl_cd1400setreg(portp, MCOR1,
3300 (stl_cd1400getreg(portp, MCOR1) |
3301 FIFO_RTSTHRESHOLD));
3302 stl_cd1400setreg(portp, MSVR2, MSVR2_RTS);
3303 portp->stats.rxrtson++;
3306 if (tty->termios->c_iflag & IXOFF) {
3307 stl_cd1400ccrwait(portp);
3308 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3309 portp->stats.rxxoff++;
3310 stl_cd1400ccrwait(portp);
3312 if (tty->termios->c_cflag & CRTSCTS) {
3313 stl_cd1400setreg(portp, MCOR1,
3314 (stl_cd1400getreg(portp, MCOR1) & 0xf0));
3315 stl_cd1400setreg(portp, MSVR2, 0);
3316 portp->stats.rxrtsoff++;
3320 BRDDISABLE(portp->brdnr);
3321 spin_unlock_irqrestore(&brd_lock, flags);
3324 /*****************************************************************************/
3327 * Send a flow control character...
3330 static void stl_cd1400sendflow(struct stlport *portp, int state)
3332 struct tty_struct *tty;
3333 unsigned long flags;
3335 pr_debug("stl_cd1400sendflow(portp=%p,state=%x)\n", portp, state);
3343 spin_lock_irqsave(&brd_lock, flags);
3344 BRDENABLE(portp->brdnr, portp->pagenr);
3345 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3347 stl_cd1400ccrwait(portp);
3348 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3349 portp->stats.rxxon++;
3350 stl_cd1400ccrwait(portp);
3352 stl_cd1400ccrwait(portp);
3353 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3354 portp->stats.rxxoff++;
3355 stl_cd1400ccrwait(portp);
3357 BRDDISABLE(portp->brdnr);
3358 spin_unlock_irqrestore(&brd_lock, flags);
3361 /*****************************************************************************/
3363 static void stl_cd1400flush(struct stlport *portp)
3365 unsigned long flags;
3367 pr_debug("stl_cd1400flush(portp=%p)\n", portp);
3372 spin_lock_irqsave(&brd_lock, flags);
3373 BRDENABLE(portp->brdnr, portp->pagenr);
3374 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3375 stl_cd1400ccrwait(portp);
3376 stl_cd1400setreg(portp, CCR, CCR_TXFLUSHFIFO);
3377 stl_cd1400ccrwait(portp);
3378 portp->tx.tail = portp->tx.head;
3379 BRDDISABLE(portp->brdnr);
3380 spin_unlock_irqrestore(&brd_lock, flags);
3383 /*****************************************************************************/
3386 * Return the current state of data flow on this port. This is only
3387 * really interresting when determining if data has fully completed
3388 * transmission or not... This is easy for the cd1400, it accurately
3389 * maintains the busy port flag.
3392 static int stl_cd1400datastate(struct stlport *portp)
3394 pr_debug("stl_cd1400datastate(portp=%p)\n", portp);
3399 return test_bit(ASYI_TXBUSY, &portp->istate) ? 1 : 0;
3402 /*****************************************************************************/
3405 * Interrupt service routine for cd1400 EasyIO boards.
3408 static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase)
3410 unsigned char svrtype;
3412 pr_debug("stl_cd1400eiointr(panelp=%p,iobase=%x)\n", panelp, iobase);
3414 spin_lock(&brd_lock);
3416 svrtype = inb(iobase + EREG_DATA);
3417 if (panelp->nrports > 4) {
3418 outb((SVRR + 0x80), iobase);
3419 svrtype |= inb(iobase + EREG_DATA);
3422 if (svrtype & SVRR_RX)
3423 stl_cd1400rxisr(panelp, iobase);
3424 else if (svrtype & SVRR_TX)
3425 stl_cd1400txisr(panelp, iobase);
3426 else if (svrtype & SVRR_MDM)
3427 stl_cd1400mdmisr(panelp, iobase);
3429 spin_unlock(&brd_lock);
3432 /*****************************************************************************/
3435 * Interrupt service routine for cd1400 panels.
3438 static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase)
3440 unsigned char svrtype;
3442 pr_debug("stl_cd1400echintr(panelp=%p,iobase=%x)\n", panelp, iobase);
3445 svrtype = inb(iobase + EREG_DATA);
3446 outb((SVRR + 0x80), iobase);
3447 svrtype |= inb(iobase + EREG_DATA);
3448 if (svrtype & SVRR_RX)
3449 stl_cd1400rxisr(panelp, iobase);
3450 else if (svrtype & SVRR_TX)
3451 stl_cd1400txisr(panelp, iobase);
3452 else if (svrtype & SVRR_MDM)
3453 stl_cd1400mdmisr(panelp, iobase);
3457 /*****************************************************************************/
3460 * Unfortunately we need to handle breaks in the TX data stream, since
3461 * this is the only way to generate them on the cd1400.
3464 static int stl_cd1400breakisr(struct stlport *portp, int ioaddr)
3466 if (portp->brklen == 1) {
3467 outb((COR2 + portp->uartaddr), ioaddr);
3468 outb((inb(ioaddr + EREG_DATA) | COR2_ETC),
3469 (ioaddr + EREG_DATA));
3470 outb((TDR + portp->uartaddr), ioaddr);
3471 outb(ETC_CMD, (ioaddr + EREG_DATA));
3472 outb(ETC_STARTBREAK, (ioaddr + EREG_DATA));
3473 outb((SRER + portp->uartaddr), ioaddr);
3474 outb((inb(ioaddr + EREG_DATA) & ~(SRER_TXDATA | SRER_TXEMPTY)),
3475 (ioaddr + EREG_DATA));
3477 } else if (portp->brklen > 1) {
3478 outb((TDR + portp->uartaddr), ioaddr);
3479 outb(ETC_CMD, (ioaddr + EREG_DATA));
3480 outb(ETC_STOPBREAK, (ioaddr + EREG_DATA));
3484 outb((COR2 + portp->uartaddr), ioaddr);
3485 outb((inb(ioaddr + EREG_DATA) & ~COR2_ETC),
3486 (ioaddr + EREG_DATA));
3492 /*****************************************************************************/
3495 * Transmit interrupt handler. This has gotta be fast! Handling TX
3496 * chars is pretty simple, stuff as many as possible from the TX buffer
3497 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3498 * are embedded as commands in the data stream. Oh no, had to use a goto!
3499 * This could be optimized more, will do when I get time...
3500 * In practice it is possible that interrupts are enabled but that the
3501 * port has been hung up. Need to handle not having any TX buffer here,
3502 * this is done by using the side effect that head and tail will also
3503 * be NULL if the buffer has been freed.
3506 static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr)
3508 struct stlport *portp;
3511 unsigned char ioack, srer;
3513 pr_debug("stl_cd1400txisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3515 ioack = inb(ioaddr + EREG_TXACK);
3516 if (((ioack & panelp->ackmask) != 0) ||
3517 ((ioack & ACK_TYPMASK) != ACK_TYPTX)) {
3518 printk("STALLION: bad TX interrupt ack value=%x\n", ioack);
3521 portp = panelp->ports[(ioack >> 3)];
3524 * Unfortunately we need to handle breaks in the data stream, since
3525 * this is the only way to generate them on the cd1400. Do it now if
3526 * a break is to be sent.
3528 if (portp->brklen != 0)
3529 if (stl_cd1400breakisr(portp, ioaddr))
3532 head = portp->tx.head;
3533 tail = portp->tx.tail;
3534 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
3535 if ((len == 0) || ((len < STL_TXBUFLOW) &&
3536 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
3537 set_bit(ASYI_TXLOW, &portp->istate);
3538 schedule_work(&portp->tqueue);
3542 outb((SRER + portp->uartaddr), ioaddr);
3543 srer = inb(ioaddr + EREG_DATA);
3544 if (srer & SRER_TXDATA) {
3545 srer = (srer & ~SRER_TXDATA) | SRER_TXEMPTY;
3547 srer &= ~(SRER_TXDATA | SRER_TXEMPTY);
3548 clear_bit(ASYI_TXBUSY, &portp->istate);
3550 outb(srer, (ioaddr + EREG_DATA));
3552 len = min(len, CD1400_TXFIFOSIZE);
3553 portp->stats.txtotal += len;
3554 stlen = min(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail));
3555 outb((TDR + portp->uartaddr), ioaddr);
3556 outsb((ioaddr + EREG_DATA), tail, stlen);
3559 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
3560 tail = portp->tx.buf;
3562 outsb((ioaddr + EREG_DATA), tail, len);
3565 portp->tx.tail = tail;
3569 outb((EOSRR + portp->uartaddr), ioaddr);
3570 outb(0, (ioaddr + EREG_DATA));
3573 /*****************************************************************************/
3576 * Receive character interrupt handler. Determine if we have good chars
3577 * or bad chars and then process appropriately. Good chars are easy
3578 * just shove the lot into the RX buffer and set all status byte to 0.
3579 * If a bad RX char then process as required. This routine needs to be
3580 * fast! In practice it is possible that we get an interrupt on a port
3581 * that is closed. This can happen on hangups - since they completely
3582 * shutdown a port not in user context. Need to handle this case.
3585 static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr)
3587 struct stlport *portp;
3588 struct tty_struct *tty;
3589 unsigned int ioack, len, buflen;
3590 unsigned char status;
3593 pr_debug("stl_cd1400rxisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3595 ioack = inb(ioaddr + EREG_RXACK);
3596 if ((ioack & panelp->ackmask) != 0) {
3597 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3600 portp = panelp->ports[(ioack >> 3)];
3603 if ((ioack & ACK_TYPMASK) == ACK_TYPRXGOOD) {
3604 outb((RDCR + portp->uartaddr), ioaddr);
3605 len = inb(ioaddr + EREG_DATA);
3606 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
3607 len = min(len, sizeof(stl_unwanted));
3608 outb((RDSR + portp->uartaddr), ioaddr);
3609 insb((ioaddr + EREG_DATA), &stl_unwanted[0], len);
3610 portp->stats.rxlost += len;
3611 portp->stats.rxtotal += len;
3613 len = min(len, buflen);
3616 outb((RDSR + portp->uartaddr), ioaddr);
3617 tty_prepare_flip_string(tty, &ptr, len);
3618 insb((ioaddr + EREG_DATA), ptr, len);
3619 tty_schedule_flip(tty);
3620 portp->stats.rxtotal += len;
3623 } else if ((ioack & ACK_TYPMASK) == ACK_TYPRXBAD) {
3624 outb((RDSR + portp->uartaddr), ioaddr);
3625 status = inb(ioaddr + EREG_DATA);
3626 ch = inb(ioaddr + EREG_DATA);
3627 if (status & ST_PARITY)
3628 portp->stats.rxparity++;
3629 if (status & ST_FRAMING)
3630 portp->stats.rxframing++;
3631 if (status & ST_OVERRUN)
3632 portp->stats.rxoverrun++;
3633 if (status & ST_BREAK)
3634 portp->stats.rxbreaks++;
3635 if (status & ST_SCHARMASK) {
3636 if ((status & ST_SCHARMASK) == ST_SCHAR1)
3637 portp->stats.txxon++;
3638 if ((status & ST_SCHARMASK) == ST_SCHAR2)
3639 portp->stats.txxoff++;
3642 if (tty != NULL && (portp->rxignoremsk & status) == 0) {
3643 if (portp->rxmarkmsk & status) {
3644 if (status & ST_BREAK) {
3646 if (portp->flags & ASYNC_SAK) {
3648 BRDENABLE(portp->brdnr, portp->pagenr);
3650 } else if (status & ST_PARITY)
3651 status = TTY_PARITY;
3652 else if (status & ST_FRAMING)
3654 else if(status & ST_OVERRUN)
3655 status = TTY_OVERRUN;
3660 tty_insert_flip_char(tty, ch, status);
3661 tty_schedule_flip(tty);
3664 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3669 outb((EOSRR + portp->uartaddr), ioaddr);
3670 outb(0, (ioaddr + EREG_DATA));
3673 /*****************************************************************************/
3676 * Modem interrupt handler. The is called when the modem signal line
3677 * (DCD) has changed state. Leave most of the work to the off-level
3678 * processing routine.
3681 static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr)
3683 struct stlport *portp;
3687 pr_debug("stl_cd1400mdmisr(panelp=%p)\n", panelp);
3689 ioack = inb(ioaddr + EREG_MDACK);
3690 if (((ioack & panelp->ackmask) != 0) ||
3691 ((ioack & ACK_TYPMASK) != ACK_TYPMDM)) {
3692 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack);
3695 portp = panelp->ports[(ioack >> 3)];
3697 outb((MISR + portp->uartaddr), ioaddr);
3698 misr = inb(ioaddr + EREG_DATA);
3699 if (misr & MISR_DCD) {
3700 set_bit(ASYI_DCDCHANGE, &portp->istate);
3701 schedule_work(&portp->tqueue);
3702 portp->stats.modem++;
3705 outb((EOSRR + portp->uartaddr), ioaddr);
3706 outb(0, (ioaddr + EREG_DATA));
3709 /*****************************************************************************/
3710 /* SC26198 HARDWARE FUNCTIONS */
3711 /*****************************************************************************/
3714 * These functions get/set/update the registers of the sc26198 UARTs.
3715 * Access to the sc26198 registers is via an address/data io port pair.
3716 * (Maybe should make this inline...)
3719 static int stl_sc26198getreg(struct stlport *portp, int regnr)
3721 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3722 return inb(portp->ioaddr + XP_DATA);
3725 static void stl_sc26198setreg(struct stlport *portp, int regnr, int value)
3727 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3728 outb(value, (portp->ioaddr + XP_DATA));
3731 static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value)
3733 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3734 if (inb(portp->ioaddr + XP_DATA) != value) {
3735 outb(value, (portp->ioaddr + XP_DATA));
3741 /*****************************************************************************/
3744 * Functions to get and set the sc26198 global registers.
3747 static int stl_sc26198getglobreg(struct stlport *portp, int regnr)
3749 outb(regnr, (portp->ioaddr + XP_ADDR));
3750 return inb(portp->ioaddr + XP_DATA);
3754 static void stl_sc26198setglobreg(struct stlport *portp, int regnr, int value)
3756 outb(regnr, (portp->ioaddr + XP_ADDR));
3757 outb(value, (portp->ioaddr + XP_DATA));
3761 /*****************************************************************************/
3764 * Inbitialize the UARTs in a panel. We don't care what sort of board
3765 * these ports are on - since the port io registers are almost
3766 * identical when dealing with ports.
3769 static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
3772 int nrchips, ioaddr;
3774 pr_debug("stl_sc26198panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
3776 BRDENABLE(panelp->brdnr, panelp->pagenr);
3779 * Check that each chip is present and started up OK.
3782 nrchips = (panelp->nrports + 4) / SC26198_PORTS;
3783 if (brdp->brdtype == BRD_ECHPCI)
3784 outb(panelp->pagenr, brdp->ioctrl);
3786 for (i = 0; i < nrchips; i++) {
3787 ioaddr = panelp->iobase + (i * 4);
3788 outb(SCCR, (ioaddr + XP_ADDR));
3789 outb(CR_RESETALL, (ioaddr + XP_DATA));
3790 outb(TSTR, (ioaddr + XP_ADDR));
3791 if (inb(ioaddr + XP_DATA) != 0) {
3792 printk("STALLION: sc26198 not responding, "
3793 "brd=%d panel=%d chip=%d\n",
3794 panelp->brdnr, panelp->panelnr, i);
3797 chipmask |= (0x1 << i);
3798 outb(GCCR, (ioaddr + XP_ADDR));
3799 outb(GCCR_IVRTYPCHANACK, (ioaddr + XP_DATA));
3800 outb(WDTRCR, (ioaddr + XP_ADDR));
3801 outb(0xff, (ioaddr + XP_DATA));
3804 BRDDISABLE(panelp->brdnr);
3808 /*****************************************************************************/
3811 * Initialize hardware specific port registers.
3814 static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
3816 pr_debug("stl_sc26198portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
3819 if ((brdp == NULL) || (panelp == NULL) ||
3823 portp->ioaddr = panelp->iobase + ((portp->portnr < 8) ? 0 : 4);
3824 portp->uartaddr = (portp->portnr & 0x07) << 4;
3825 portp->pagenr = panelp->pagenr;
3828 BRDENABLE(portp->brdnr, portp->pagenr);
3829 stl_sc26198setreg(portp, IOPCR, IOPCR_SETSIGS);
3830 BRDDISABLE(portp->brdnr);
3833 /*****************************************************************************/
3836 * Set up the sc26198 registers for a port based on the termios port
3840 static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp)
3842 struct stlbrd *brdp;
3843 unsigned long flags;
3844 unsigned int baudrate;
3845 unsigned char mr0, mr1, mr2, clk;
3846 unsigned char imron, imroff, iopr, ipr;
3856 brdp = stl_brds[portp->brdnr];
3861 * Set up the RX char ignore mask with those RX error types we
3864 portp->rxignoremsk = 0;
3865 if (tiosp->c_iflag & IGNPAR)
3866 portp->rxignoremsk |= (SR_RXPARITY | SR_RXFRAMING |
3868 if (tiosp->c_iflag & IGNBRK)
3869 portp->rxignoremsk |= SR_RXBREAK;
3871 portp->rxmarkmsk = SR_RXOVERRUN;
3872 if (tiosp->c_iflag & (INPCK | PARMRK))
3873 portp->rxmarkmsk |= (SR_RXPARITY | SR_RXFRAMING);
3874 if (tiosp->c_iflag & BRKINT)
3875 portp->rxmarkmsk |= SR_RXBREAK;
3878 * Go through the char size, parity and stop bits and set all the
3879 * option register appropriately.
3881 switch (tiosp->c_cflag & CSIZE) {
3896 if (tiosp->c_cflag & CSTOPB)
3901 if (tiosp->c_cflag & PARENB) {
3902 if (tiosp->c_cflag & PARODD)
3903 mr1 |= (MR1_PARENB | MR1_PARODD);
3905 mr1 |= (MR1_PARENB | MR1_PAREVEN);
3909 mr1 |= MR1_ERRBLOCK;
3912 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
3913 * space for hardware flow control and the like. This should be set to
3916 mr2 |= MR2_RXFIFOHALF;
3919 * Calculate the baud rate timers. For now we will just assume that
3920 * the input and output baud are the same. The sc26198 has a fixed
3921 * baud rate table, so only discrete baud rates possible.
3923 baudrate = tiosp->c_cflag & CBAUD;
3924 if (baudrate & CBAUDEX) {
3925 baudrate &= ~CBAUDEX;
3926 if ((baudrate < 1) || (baudrate > 4))
3927 tiosp->c_cflag &= ~CBAUDEX;
3931 baudrate = stl_baudrates[baudrate];
3932 if ((tiosp->c_cflag & CBAUD) == B38400) {
3933 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3935 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3937 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3939 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3941 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3942 baudrate = (portp->baud_base / portp->custom_divisor);
3944 if (baudrate > STL_SC26198MAXBAUD)
3945 baudrate = STL_SC26198MAXBAUD;
3948 for (clk = 0; clk < SC26198_NRBAUDS; clk++)
3949 if (baudrate <= sc26198_baudtable[clk])
3953 * Check what form of modem signaling is required and set it up.
3955 if (tiosp->c_cflag & CLOCAL) {
3956 portp->flags &= ~ASYNC_CHECK_CD;
3958 iopr |= IOPR_DCDCOS;
3960 portp->flags |= ASYNC_CHECK_CD;
3964 * Setup sc26198 enhanced modes if we can. In particular we want to
3965 * handle as much of the flow control as possible automatically. As
3966 * well as saving a few CPU cycles it will also greatly improve flow
3967 * control reliability.
3969 if (tiosp->c_iflag & IXON) {
3970 mr0 |= MR0_SWFTX | MR0_SWFT;
3971 imron |= IR_XONXOFF;
3973 imroff |= IR_XONXOFF;
3975 if (tiosp->c_iflag & IXOFF)
3978 if (tiosp->c_cflag & CRTSCTS) {
3984 * All sc26198 register values calculated so go through and set
3988 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3989 portp->portnr, portp->panelnr, portp->brdnr);
3990 pr_debug(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0, mr1, mr2, clk);
3991 pr_debug(" iopr=%x imron=%x imroff=%x\n", iopr, imron, imroff);
3992 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3993 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3994 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3996 spin_lock_irqsave(&brd_lock, flags);
3997 BRDENABLE(portp->brdnr, portp->pagenr);
3998 stl_sc26198setreg(portp, IMR, 0);
3999 stl_sc26198updatereg(portp, MR0, mr0);
4000 stl_sc26198updatereg(portp, MR1, mr1);
4001 stl_sc26198setreg(portp, SCCR, CR_RXERRBLOCK);
4002 stl_sc26198updatereg(portp, MR2, mr2);
4003 stl_sc26198updatereg(portp, IOPIOR,
4004 ((stl_sc26198getreg(portp, IOPIOR) & ~IPR_CHANGEMASK) | iopr));
4007 stl_sc26198setreg(portp, TXCSR, clk);
4008 stl_sc26198setreg(portp, RXCSR, clk);
4011 stl_sc26198setreg(portp, XONCR, tiosp->c_cc[VSTART]);
4012 stl_sc26198setreg(portp, XOFFCR, tiosp->c_cc[VSTOP]);
4014 ipr = stl_sc26198getreg(portp, IPR);
4016 portp->sigs &= ~TIOCM_CD;
4018 portp->sigs |= TIOCM_CD;
4020 portp->imr = (portp->imr & ~imroff) | imron;
4021 stl_sc26198setreg(portp, IMR, portp->imr);
4022 BRDDISABLE(portp->brdnr);
4023 spin_unlock_irqrestore(&brd_lock, flags);
4026 /*****************************************************************************/
4029 * Set the state of the DTR and RTS signals.
4032 static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts)
4034 unsigned char iopioron, iopioroff;
4035 unsigned long flags;
4037 pr_debug("stl_sc26198setsignals(portp=%p,dtr=%d,rts=%d)\n", portp,
4043 iopioroff |= IPR_DTR;
4045 iopioron |= IPR_DTR;
4047 iopioroff |= IPR_RTS;
4049 iopioron |= IPR_RTS;
4051 spin_lock_irqsave(&brd_lock, flags);
4052 BRDENABLE(portp->brdnr, portp->pagenr);
4053 stl_sc26198setreg(portp, IOPIOR,
4054 ((stl_sc26198getreg(portp, IOPIOR) & ~iopioroff) | iopioron));
4055 BRDDISABLE(portp->brdnr);
4056 spin_unlock_irqrestore(&brd_lock, flags);
4059 /*****************************************************************************/
4062 * Return the state of the signals.
4065 static int stl_sc26198getsignals(struct stlport *portp)
4068 unsigned long flags;
4071 pr_debug("stl_sc26198getsignals(portp=%p)\n", portp);
4073 spin_lock_irqsave(&brd_lock, flags);
4074 BRDENABLE(portp->brdnr, portp->pagenr);
4075 ipr = stl_sc26198getreg(portp, IPR);
4076 BRDDISABLE(portp->brdnr);
4077 spin_unlock_irqrestore(&brd_lock, flags);
4080 sigs |= (ipr & IPR_DCD) ? 0 : TIOCM_CD;
4081 sigs |= (ipr & IPR_CTS) ? 0 : TIOCM_CTS;
4082 sigs |= (ipr & IPR_DTR) ? 0: TIOCM_DTR;
4083 sigs |= (ipr & IPR_RTS) ? 0: TIOCM_RTS;
4088 /*****************************************************************************/
4091 * Enable/Disable the Transmitter and/or Receiver.
4094 static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx)
4097 unsigned long flags;
4099 pr_debug("stl_sc26198enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx,tx);
4101 ccr = portp->crenable;
4103 ccr &= ~CR_TXENABLE;
4107 ccr &= ~CR_RXENABLE;
4111 spin_lock_irqsave(&brd_lock, flags);
4112 BRDENABLE(portp->brdnr, portp->pagenr);
4113 stl_sc26198setreg(portp, SCCR, ccr);
4114 BRDDISABLE(portp->brdnr);
4115 portp->crenable = ccr;
4116 spin_unlock_irqrestore(&brd_lock, flags);
4119 /*****************************************************************************/
4122 * Start/stop the Transmitter and/or Receiver.
4125 static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx)
4128 unsigned long flags;
4130 pr_debug("stl_sc26198startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
4138 imr &= ~(IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG);
4140 imr |= IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG;
4142 spin_lock_irqsave(&brd_lock, flags);
4143 BRDENABLE(portp->brdnr, portp->pagenr);
4144 stl_sc26198setreg(portp, IMR, imr);
4145 BRDDISABLE(portp->brdnr);
4148 set_bit(ASYI_TXBUSY, &portp->istate);
4149 spin_unlock_irqrestore(&brd_lock, flags);
4152 /*****************************************************************************/
4155 * Disable all interrupts from this port.
4158 static void stl_sc26198disableintrs(struct stlport *portp)
4160 unsigned long flags;
4162 pr_debug("stl_sc26198disableintrs(portp=%p)\n", portp);
4164 spin_lock_irqsave(&brd_lock, flags);
4165 BRDENABLE(portp->brdnr, portp->pagenr);
4167 stl_sc26198setreg(portp, IMR, 0);
4168 BRDDISABLE(portp->brdnr);
4169 spin_unlock_irqrestore(&brd_lock, flags);
4172 /*****************************************************************************/
4174 static void stl_sc26198sendbreak(struct stlport *portp, int len)
4176 unsigned long flags;
4178 pr_debug("stl_sc26198sendbreak(portp=%p,len=%d)\n", portp, len);
4180 spin_lock_irqsave(&brd_lock, flags);
4181 BRDENABLE(portp->brdnr, portp->pagenr);
4183 stl_sc26198setreg(portp, SCCR, CR_TXSTARTBREAK);
4184 portp->stats.txbreaks++;
4186 stl_sc26198setreg(portp, SCCR, CR_TXSTOPBREAK);
4188 BRDDISABLE(portp->brdnr);
4189 spin_unlock_irqrestore(&brd_lock, flags);
4192 /*****************************************************************************/
4195 * Take flow control actions...
4198 static void stl_sc26198flowctrl(struct stlport *portp, int state)
4200 struct tty_struct *tty;
4201 unsigned long flags;
4204 pr_debug("stl_sc26198flowctrl(portp=%p,state=%x)\n", portp, state);
4212 spin_lock_irqsave(&brd_lock, flags);
4213 BRDENABLE(portp->brdnr, portp->pagenr);
4216 if (tty->termios->c_iflag & IXOFF) {
4217 mr0 = stl_sc26198getreg(portp, MR0);
4218 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4219 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4221 portp->stats.rxxon++;
4222 stl_sc26198wait(portp);
4223 stl_sc26198setreg(portp, MR0, mr0);
4226 * Question: should we return RTS to what it was before? It may
4227 * have been set by an ioctl... Suppose not, since if you have
4228 * hardware flow control set then it is pretty silly to go and
4229 * set the RTS line by hand.
4231 if (tty->termios->c_cflag & CRTSCTS) {
4232 stl_sc26198setreg(portp, MR1,
4233 (stl_sc26198getreg(portp, MR1) | MR1_AUTORTS));
4234 stl_sc26198setreg(portp, IOPIOR,
4235 (stl_sc26198getreg(portp, IOPIOR) | IOPR_RTS));
4236 portp->stats.rxrtson++;
4239 if (tty->termios->c_iflag & IXOFF) {
4240 mr0 = stl_sc26198getreg(portp, MR0);
4241 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4242 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4244 portp->stats.rxxoff++;
4245 stl_sc26198wait(portp);
4246 stl_sc26198setreg(portp, MR0, mr0);
4248 if (tty->termios->c_cflag & CRTSCTS) {
4249 stl_sc26198setreg(portp, MR1,
4250 (stl_sc26198getreg(portp, MR1) & ~MR1_AUTORTS));
4251 stl_sc26198setreg(portp, IOPIOR,
4252 (stl_sc26198getreg(portp, IOPIOR) & ~IOPR_RTS));
4253 portp->stats.rxrtsoff++;
4257 BRDDISABLE(portp->brdnr);
4258 spin_unlock_irqrestore(&brd_lock, flags);
4261 /*****************************************************************************/
4264 * Send a flow control character.
4267 static void stl_sc26198sendflow(struct stlport *portp, int state)
4269 struct tty_struct *tty;
4270 unsigned long flags;
4273 pr_debug("stl_sc26198sendflow(portp=%p,state=%x)\n", portp, state);
4281 spin_lock_irqsave(&brd_lock, flags);
4282 BRDENABLE(portp->brdnr, portp->pagenr);
4284 mr0 = stl_sc26198getreg(portp, MR0);
4285 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4286 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4288 portp->stats.rxxon++;
4289 stl_sc26198wait(portp);
4290 stl_sc26198setreg(portp, MR0, mr0);
4292 mr0 = stl_sc26198getreg(portp, MR0);
4293 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4294 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4296 portp->stats.rxxoff++;
4297 stl_sc26198wait(portp);
4298 stl_sc26198setreg(portp, MR0, mr0);
4300 BRDDISABLE(portp->brdnr);
4301 spin_unlock_irqrestore(&brd_lock, flags);
4304 /*****************************************************************************/
4306 static void stl_sc26198flush(struct stlport *portp)
4308 unsigned long flags;
4310 pr_debug("stl_sc26198flush(portp=%p)\n", portp);
4315 spin_lock_irqsave(&brd_lock, flags);
4316 BRDENABLE(portp->brdnr, portp->pagenr);
4317 stl_sc26198setreg(portp, SCCR, CR_TXRESET);
4318 stl_sc26198setreg(portp, SCCR, portp->crenable);
4319 BRDDISABLE(portp->brdnr);
4320 portp->tx.tail = portp->tx.head;
4321 spin_unlock_irqrestore(&brd_lock, flags);
4324 /*****************************************************************************/
4327 * Return the current state of data flow on this port. This is only
4328 * really interresting when determining if data has fully completed
4329 * transmission or not... The sc26198 interrupt scheme cannot
4330 * determine when all data has actually drained, so we need to
4331 * check the port statusy register to be sure.
4334 static int stl_sc26198datastate(struct stlport *portp)
4336 unsigned long flags;
4339 pr_debug("stl_sc26198datastate(portp=%p)\n", portp);
4343 if (test_bit(ASYI_TXBUSY, &portp->istate))
4346 spin_lock_irqsave(&brd_lock, flags);
4347 BRDENABLE(portp->brdnr, portp->pagenr);
4348 sr = stl_sc26198getreg(portp, SR);
4349 BRDDISABLE(portp->brdnr);
4350 spin_unlock_irqrestore(&brd_lock, flags);
4352 return (sr & SR_TXEMPTY) ? 0 : 1;
4355 /*****************************************************************************/
4358 * Delay for a small amount of time, to give the sc26198 a chance
4359 * to process a command...
4362 static void stl_sc26198wait(struct stlport *portp)
4366 pr_debug("stl_sc26198wait(portp=%p)\n", portp);
4371 for (i = 0; i < 20; i++)
4372 stl_sc26198getglobreg(portp, TSTR);
4375 /*****************************************************************************/
4378 * If we are TX flow controlled and in IXANY mode then we may
4379 * need to unflow control here. We gotta do this because of the
4380 * automatic flow control modes of the sc26198.
4383 static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty)
4387 mr0 = stl_sc26198getreg(portp, MR0);
4388 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4389 stl_sc26198setreg(portp, SCCR, CR_HOSTXON);
4390 stl_sc26198wait(portp);
4391 stl_sc26198setreg(portp, MR0, mr0);
4392 clear_bit(ASYI_TXFLOWED, &portp->istate);
4395 /*****************************************************************************/
4398 * Interrupt service routine for sc26198 panels.
4401 static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase)
4403 struct stlport *portp;
4406 spin_lock(&brd_lock);
4409 * Work around bug in sc26198 chip... Cannot have A6 address
4410 * line of UART high, else iack will be returned as 0.
4412 outb(0, (iobase + 1));
4414 iack = inb(iobase + XP_IACK);
4415 portp = panelp->ports[(iack & IVR_CHANMASK) + ((iobase & 0x4) << 1)];
4417 if (iack & IVR_RXDATA)
4418 stl_sc26198rxisr(portp, iack);
4419 else if (iack & IVR_TXDATA)
4420 stl_sc26198txisr(portp);
4422 stl_sc26198otherisr(portp, iack);
4424 spin_unlock(&brd_lock);
4427 /*****************************************************************************/
4430 * Transmit interrupt handler. This has gotta be fast! Handling TX
4431 * chars is pretty simple, stuff as many as possible from the TX buffer
4432 * into the sc26198 FIFO.
4433 * In practice it is possible that interrupts are enabled but that the
4434 * port has been hung up. Need to handle not having any TX buffer here,
4435 * this is done by using the side effect that head and tail will also
4436 * be NULL if the buffer has been freed.
4439 static void stl_sc26198txisr(struct stlport *portp)
4441 unsigned int ioaddr;
4446 pr_debug("stl_sc26198txisr(portp=%p)\n", portp);
4448 ioaddr = portp->ioaddr;
4449 head = portp->tx.head;
4450 tail = portp->tx.tail;
4451 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
4452 if ((len == 0) || ((len < STL_TXBUFLOW) &&
4453 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
4454 set_bit(ASYI_TXLOW, &portp->istate);
4455 schedule_work(&portp->tqueue);
4459 outb((MR0 | portp->uartaddr), (ioaddr + XP_ADDR));
4460 mr0 = inb(ioaddr + XP_DATA);
4461 if ((mr0 & MR0_TXMASK) == MR0_TXEMPTY) {
4462 portp->imr &= ~IR_TXRDY;
4463 outb((IMR | portp->uartaddr), (ioaddr + XP_ADDR));
4464 outb(portp->imr, (ioaddr + XP_DATA));
4465 clear_bit(ASYI_TXBUSY, &portp->istate);
4467 mr0 |= ((mr0 & ~MR0_TXMASK) | MR0_TXEMPTY);
4468 outb(mr0, (ioaddr + XP_DATA));
4471 len = min(len, SC26198_TXFIFOSIZE);
4472 portp->stats.txtotal += len;
4473 stlen = min(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail));
4474 outb(GTXFIFO, (ioaddr + XP_ADDR));
4475 outsb((ioaddr + XP_DATA), tail, stlen);
4478 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
4479 tail = portp->tx.buf;
4481 outsb((ioaddr + XP_DATA), tail, len);
4484 portp->tx.tail = tail;
4488 /*****************************************************************************/
4491 * Receive character interrupt handler. Determine if we have good chars
4492 * or bad chars and then process appropriately. Good chars are easy
4493 * just shove the lot into the RX buffer and set all status byte to 0.
4494 * If a bad RX char then process as required. This routine needs to be
4495 * fast! In practice it is possible that we get an interrupt on a port
4496 * that is closed. This can happen on hangups - since they completely
4497 * shutdown a port not in user context. Need to handle this case.
4500 static void stl_sc26198rxisr(struct stlport *portp, unsigned int iack)
4502 struct tty_struct *tty;
4503 unsigned int len, buflen, ioaddr;
4505 pr_debug("stl_sc26198rxisr(portp=%p,iack=%x)\n", portp, iack);
4508 ioaddr = portp->ioaddr;
4509 outb(GIBCR, (ioaddr + XP_ADDR));
4510 len = inb(ioaddr + XP_DATA) + 1;
4512 if ((iack & IVR_TYPEMASK) == IVR_RXDATA) {
4513 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
4514 len = min(len, sizeof(stl_unwanted));
4515 outb(GRXFIFO, (ioaddr + XP_ADDR));
4516 insb((ioaddr + XP_DATA), &stl_unwanted[0], len);
4517 portp->stats.rxlost += len;
4518 portp->stats.rxtotal += len;
4520 len = min(len, buflen);
4523 outb(GRXFIFO, (ioaddr + XP_ADDR));
4524 tty_prepare_flip_string(tty, &ptr, len);
4525 insb((ioaddr + XP_DATA), ptr, len);
4526 tty_schedule_flip(tty);
4527 portp->stats.rxtotal += len;
4531 stl_sc26198rxbadchars(portp);
4535 * If we are TX flow controlled and in IXANY mode then we may need
4536 * to unflow control here. We gotta do this because of the automatic
4537 * flow control modes of the sc26198.
4539 if (test_bit(ASYI_TXFLOWED, &portp->istate)) {
4540 if ((tty != NULL) &&
4541 (tty->termios != NULL) &&
4542 (tty->termios->c_iflag & IXANY)) {
4543 stl_sc26198txunflow(portp, tty);
4548 /*****************************************************************************/
4551 * Process an RX bad character.
4554 static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch)
4556 struct tty_struct *tty;
4557 unsigned int ioaddr;
4560 ioaddr = portp->ioaddr;
4562 if (status & SR_RXPARITY)
4563 portp->stats.rxparity++;
4564 if (status & SR_RXFRAMING)
4565 portp->stats.rxframing++;
4566 if (status & SR_RXOVERRUN)
4567 portp->stats.rxoverrun++;
4568 if (status & SR_RXBREAK)
4569 portp->stats.rxbreaks++;
4571 if ((tty != NULL) &&
4572 ((portp->rxignoremsk & status) == 0)) {
4573 if (portp->rxmarkmsk & status) {
4574 if (status & SR_RXBREAK) {
4576 if (portp->flags & ASYNC_SAK) {
4578 BRDENABLE(portp->brdnr, portp->pagenr);
4580 } else if (status & SR_RXPARITY)
4581 status = TTY_PARITY;
4582 else if (status & SR_RXFRAMING)
4584 else if(status & SR_RXOVERRUN)
4585 status = TTY_OVERRUN;
4591 tty_insert_flip_char(tty, ch, status);
4592 tty_schedule_flip(tty);
4595 portp->stats.rxtotal++;
4599 /*****************************************************************************/
4602 * Process all characters in the RX FIFO of the UART. Check all char
4603 * status bytes as well, and process as required. We need to check
4604 * all bytes in the FIFO, in case some more enter the FIFO while we
4605 * are here. To get the exact character error type we need to switch
4606 * into CHAR error mode (that is why we need to make sure we empty
4610 static void stl_sc26198rxbadchars(struct stlport *portp)
4612 unsigned char status, mr1;
4616 * To get the precise error type for each character we must switch
4617 * back into CHAR error mode.
4619 mr1 = stl_sc26198getreg(portp, MR1);
4620 stl_sc26198setreg(portp, MR1, (mr1 & ~MR1_ERRBLOCK));
4622 while ((status = stl_sc26198getreg(portp, SR)) & SR_RXRDY) {
4623 stl_sc26198setreg(portp, SCCR, CR_CLEARRXERR);
4624 ch = stl_sc26198getreg(portp, RXFIFO);
4625 stl_sc26198rxbadch(portp, status, ch);
4629 * To get correct interrupt class we must switch back into BLOCK
4632 stl_sc26198setreg(portp, MR1, mr1);
4635 /*****************************************************************************/
4638 * Other interrupt handler. This includes modem signals, flow
4639 * control actions, etc. Most stuff is left to off-level interrupt
4643 static void stl_sc26198otherisr(struct stlport *portp, unsigned int iack)
4645 unsigned char cir, ipr, xisr;
4647 pr_debug("stl_sc26198otherisr(portp=%p,iack=%x)\n", portp, iack);
4649 cir = stl_sc26198getglobreg(portp, CIR);
4651 switch (cir & CIR_SUBTYPEMASK) {
4653 ipr = stl_sc26198getreg(portp, IPR);
4654 if (ipr & IPR_DCDCHANGE) {
4655 set_bit(ASYI_DCDCHANGE, &portp->istate);
4656 schedule_work(&portp->tqueue);
4657 portp->stats.modem++;
4660 case CIR_SUBXONXOFF:
4661 xisr = stl_sc26198getreg(portp, XISR);
4662 if (xisr & XISR_RXXONGOT) {
4663 set_bit(ASYI_TXFLOWED, &portp->istate);
4664 portp->stats.txxoff++;
4666 if (xisr & XISR_RXXOFFGOT) {
4667 clear_bit(ASYI_TXFLOWED, &portp->istate);
4668 portp->stats.txxon++;
4672 stl_sc26198setreg(portp, SCCR, CR_BREAKRESET);
4673 stl_sc26198rxbadchars(portp);
4680 static void stl_free_isabrds(void)
4682 struct stlbrd *brdp;
4685 for (i = 0; i < stl_nrbrds; i++) {
4686 if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED))
4689 free_irq(brdp->irq, brdp);
4691 stl_cleanup_panels(brdp);
4693 release_region(brdp->ioaddr1, brdp->iosize1);
4694 if (brdp->iosize2 > 0)
4695 release_region(brdp->ioaddr2, brdp->iosize2);
4703 * Loadable module initialization stuff.
4705 static int __init stallion_module_init(void)
4707 struct stlbrd *brdp;
4708 struct stlconf conf;
4712 printk(KERN_INFO "%s: version %s\n", stl_drvtitle, stl_drvversion);
4714 spin_lock_init(&stallion_lock);
4715 spin_lock_init(&brd_lock);
4717 stl_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4723 stl_serial->owner = THIS_MODULE;
4724 stl_serial->driver_name = stl_drvname;
4725 stl_serial->name = "ttyE";
4726 stl_serial->major = STL_SERIALMAJOR;
4727 stl_serial->minor_start = 0;
4728 stl_serial->type = TTY_DRIVER_TYPE_SERIAL;
4729 stl_serial->subtype = SERIAL_TYPE_NORMAL;
4730 stl_serial->init_termios = stl_deftermios;
4731 stl_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4732 tty_set_operations(stl_serial, &stl_ops);
4734 retval = tty_register_driver(stl_serial);
4736 printk("STALLION: failed to register serial driver\n");
4741 * Find any dynamically supported boards. That is via module load
4744 for (i = stl_nrbrds; i < stl_nargs; i++) {
4745 memset(&conf, 0, sizeof(conf));
4746 if (stl_parsebrd(&conf, stl_brdsp[i]) == 0)
4748 if ((brdp = stl_allocbrd()) == NULL)
4751 brdp->brdtype = conf.brdtype;
4752 brdp->ioaddr1 = conf.ioaddr1;
4753 brdp->ioaddr2 = conf.ioaddr2;
4754 brdp->irq = conf.irq;
4755 brdp->irqtype = conf.irqtype;
4756 if (stl_brdinit(brdp))
4759 for (j = 0; j < brdp->nrports; j++)
4760 tty_register_device(stl_serial,
4761 brdp->brdnr * STL_MAXPORTS + j, NULL);
4762 stl_brds[brdp->brdnr] = brdp;
4767 /* this has to be _after_ isa finding because of locking */
4768 retval = pci_register_driver(&stl_pcidriver);
4769 if (retval && stl_nrbrds == 0) {
4770 printk(KERN_ERR "STALLION: can't register pci driver\n");
4775 * Set up a character driver for per board stuff. This is mainly used
4776 * to do stats ioctls on the ports.
4778 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stl_fsiomem))
4779 printk("STALLION: failed to register serial board device\n");
4781 stallion_class = class_create(THIS_MODULE, "staliomem");
4782 if (IS_ERR(stallion_class))
4783 printk("STALLION: failed to create class\n");
4784 for (i = 0; i < 4; i++)
4785 class_device_create(stallion_class, NULL,
4786 MKDEV(STL_SIOMEMMAJOR, i), NULL,
4791 tty_unregister_driver(stl_serial);
4793 put_tty_driver(stl_serial);
4798 static void __exit stallion_module_exit(void)
4800 struct stlbrd *brdp;
4804 pr_debug("cleanup_module()\n");
4806 printk(KERN_INFO "Unloading %s: version %s\n", stl_drvtitle,
4810 * Free up all allocated resources used by the ports. This includes
4811 * memory and interrupts. As part of this process we will also do
4812 * a hangup on every open port - to try to flush out any processes
4813 * hanging onto ports.
4815 for (i = 0; i < stl_nrbrds; i++) {
4816 if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED))
4818 for (j = 0; j < brdp->nrports; j++)
4819 tty_unregister_device(stl_serial,
4820 brdp->brdnr * STL_MAXPORTS + j);
4823 for (i = 0; i < 4; i++)
4824 class_device_destroy(stallion_class, MKDEV(STL_SIOMEMMAJOR, i));
4825 if ((retval = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
4826 printk("STALLION: failed to un-register serial memory device, "
4827 "errno=%d\n", -retval);
4828 class_destroy(stallion_class);
4830 pci_unregister_driver(&stl_pcidriver);
4834 tty_unregister_driver(stl_serial);
4835 put_tty_driver(stl_serial);
4838 module_init(stallion_module_init);
4839 module_exit(stallion_module_exit);
4841 MODULE_AUTHOR("Greg Ungerer");
4842 MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
4843 MODULE_LICENSE("GPL");