Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[linux-2.6] / drivers / net / defxx.c
1 /*
2  * File Name:
3  *   defxx.c
4  *
5  * Copyright Information:
6  *   Copyright Digital Equipment Corporation 1996.
7  *
8  *   This software may be used and distributed according to the terms of
9  *   the GNU General Public License, incorporated herein by reference.
10  *
11  * Abstract:
12  *   A Linux device driver supporting the Digital Equipment Corporation
13  *   FDDI TURBOchannel, EISA and PCI controller families.  Supported
14  *   adapters include:
15  *
16  *              DEC FDDIcontroller/TURBOchannel (DEFTA)
17  *              DEC FDDIcontroller/EISA         (DEFEA)
18  *              DEC FDDIcontroller/PCI          (DEFPA)
19  *
20  * The original author:
21  *   LVS        Lawrence V. Stefani <lstefani@yahoo.com>
22  *
23  * Maintainers:
24  *   macro      Maciej W. Rozycki <macro@linux-mips.org>
25  *
26  * Credits:
27  *   I'd like to thank Patricia Cross for helping me get started with
28  *   Linux, David Davies for a lot of help upgrading and configuring
29  *   my development system and for answering many OS and driver
30  *   development questions, and Alan Cox for recommendations and
31  *   integration help on getting FDDI support into Linux.  LVS
32  *
33  * Driver Architecture:
34  *   The driver architecture is largely based on previous driver work
35  *   for other operating systems.  The upper edge interface and
36  *   functions were largely taken from existing Linux device drivers
37  *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38  *   driver.
39  *
40  *   Adapter Probe -
41  *              The driver scans for supported EISA adapters by reading the
42  *              SLOT ID register for each EISA slot and making a match
43  *              against the expected value.
44  *
45  *   Bus-Specific Initialization -
46  *              This driver currently supports both EISA and PCI controller
47  *              families.  While the custom DMA chip and FDDI logic is similar
48  *              or identical, the bus logic is very different.  After
49  *              initialization, the     only bus-specific differences is in how the
50  *              driver enables and disables interrupts.  Other than that, the
51  *              run-time critical code behaves the same on both families.
52  *              It's important to note that both adapter families are configured
53  *              to I/O map, rather than memory map, the adapter registers.
54  *
55  *   Driver Open/Close -
56  *              In the driver open routine, the driver ISR (interrupt service
57  *              routine) is registered and the adapter is brought to an
58  *              operational state.  In the driver close routine, the opposite
59  *              occurs; the driver ISR is deregistered and the adapter is
60  *              brought to a safe, but closed state.  Users may use consecutive
61  *              commands to bring the adapter up and down as in the following
62  *              example:
63  *                                      ifconfig fddi0 up
64  *                                      ifconfig fddi0 down
65  *                                      ifconfig fddi0 up
66  *
67  *   Driver Shutdown -
68  *              Apparently, there is no shutdown or halt routine support under
69  *              Linux.  This routine would be called during "reboot" or
70  *              "shutdown" to allow the driver to place the adapter in a safe
71  *              state before a warm reboot occurs.  To be really safe, the user
72  *              should close the adapter before shutdown (eg. ifconfig fddi0 down)
73  *              to ensure that the adapter DMA engine is taken off-line.  However,
74  *              the current driver code anticipates this problem and always issues
75  *              a soft reset of the adapter     at the beginning of driver initialization.
76  *              A future driver enhancement in this area may occur in 2.1.X where
77  *              Alan indicated that a shutdown handler may be implemented.
78  *
79  *   Interrupt Service Routine -
80  *              The driver supports shared interrupts, so the ISR is registered for
81  *              each board with the appropriate flag and the pointer to that board's
82  *              device structure.  This provides the context during interrupt
83  *              processing to support shared interrupts and multiple boards.
84  *
85  *              Interrupt enabling/disabling can occur at many levels.  At the host
86  *              end, you can disable system interrupts, or disable interrupts at the
87  *              PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
88  *              have a bus-logic chip interrupt enable/disable as well as a DMA
89  *              controller interrupt enable/disable.
90  *
91  *              The driver currently enables and disables adapter interrupts at the
92  *              bus-logic chip and assumes that Linux will take care of clearing or
93  *              acknowledging any host-based interrupt chips.
94  *
95  *   Control Functions -
96  *              Control functions are those used to support functions such as adding
97  *              or deleting multicast addresses, enabling or disabling packet
98  *              reception filters, or other custom/proprietary commands.  Presently,
99  *              the driver supports the "get statistics", "set multicast list", and
100  *              "set mac address" functions defined by Linux.  A list of possible
101  *              enhancements include:
102  *
103  *                              - Custom ioctl interface for executing port interface commands
104  *                              - Custom ioctl interface for adding unicast addresses to
105  *                                adapter CAM (to support bridge functions).
106  *                              - Custom ioctl interface for supporting firmware upgrades.
107  *
108  *   Hardware (port interface) Support Routines -
109  *              The driver function names that start with "dfx_hw_" represent
110  *              low-level port interface routines that are called frequently.  They
111  *              include issuing a DMA or port control command to the adapter,
112  *              resetting the adapter, or reading the adapter state.  Since the
113  *              driver initialization and run-time code must make calls into the
114  *              port interface, these routines were written to be as generic and
115  *              usable as possible.
116  *
117  *   Receive Path -
118  *              The adapter DMA engine supports a 256 entry receive descriptor block
119  *              of which up to 255 entries can be used at any given time.  The
120  *              architecture is a standard producer, consumer, completion model in
121  *              which the driver "produces" receive buffers to the adapter, the
122  *              adapter "consumes" the receive buffers by DMAing incoming packet data,
123  *              and the driver "completes" the receive buffers by servicing the
124  *              incoming packet, then "produces" a new buffer and starts the cycle
125  *              again.  Receive buffers can be fragmented in up to 16 fragments
126  *              (descriptor     entries).  For simplicity, this driver posts
127  *              single-fragment receive buffers of 4608 bytes, then allocates a
128  *              sk_buff, copies the data, then reposts the buffer.  To reduce CPU
129  *              utilization, a better approach would be to pass up the receive
130  *              buffer (no extra copy) then allocate and post a replacement buffer.
131  *              This is a performance enhancement that should be looked into at
132  *              some point.
133  *
134  *   Transmit Path -
135  *              Like the receive path, the adapter DMA engine supports a 256 entry
136  *              transmit descriptor block of which up to 255 entries can be used at
137  *              any     given time.  Transmit buffers can be fragmented in up to 255
138  *              fragments (descriptor entries).  This driver always posts one
139  *              fragment per transmit packet request.
140  *
141  *              The fragment contains the entire packet from FC to end of data.
142  *              Before posting the buffer to the adapter, the driver sets a three-byte
143  *              packet request header (PRH) which is required by the Motorola MAC chip
144  *              used on the adapters.  The PRH tells the MAC the type of token to
145  *              receive/send, whether or not to generate and append the CRC, whether
146  *              synchronous or asynchronous framing is used, etc.  Since the PRH
147  *              definition is not necessarily consistent across all FDDI chipsets,
148  *              the driver, rather than the common FDDI packet handler routines,
149  *              sets these bytes.
150  *
151  *              To reduce the amount of descriptor fetches needed per transmit request,
152  *              the driver takes advantage of the fact that there are at least three
153  *              bytes available before the skb->data field on the outgoing transmit
154  *              request.  This is guaranteed by having fddi_setup() in net_init.c set
155  *              dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
156  *              header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
157  *              bytes which we'll use to store the PRH.
158  *
159  *              There's a subtle advantage to adding these pad bytes to the
160  *              hard_header_len, it ensures that the data portion of the packet for
161  *              an 802.2 SNAP frame is longword aligned.  Other FDDI driver
162  *              implementations may not need the extra padding and can start copying
163  *              or DMAing directly from the FC byte which starts at skb->data.  Should
164  *              another driver implementation need ADDITIONAL padding, the net_init.c
165  *              module should be updated and dev->hard_header_len should be increased.
166  *              NOTE: To maintain the alignment on the data portion of the packet,
167  *              dev->hard_header_len should always be evenly divisible by 4 and at
168  *              least 24 bytes in size.
169  *
170  * Modification History:
171  *              Date            Name    Description
172  *              16-Aug-96       LVS             Created.
173  *              20-Aug-96       LVS             Updated dfx_probe so that version information
174  *                                                      string is only displayed if 1 or more cards are
175  *                                                      found.  Changed dfx_rcv_queue_process to copy
176  *                                                      3 NULL bytes before FC to ensure that data is
177  *                                                      longword aligned in receive buffer.
178  *              09-Sep-96       LVS             Updated dfx_ctl_set_multicast_list to enable
179  *                                                      LLC group promiscuous mode if multicast list
180  *                                                      is too large.  LLC individual/group promiscuous
181  *                                                      mode is now disabled if IFF_PROMISC flag not set.
182  *                                                      dfx_xmt_queue_pkt no longer checks for NULL skb
183  *                                                      on Alan Cox recommendation.  Added node address
184  *                                                      override support.
185  *              12-Sep-96       LVS             Reset current address to factory address during
186  *                                                      device open.  Updated transmit path to post a
187  *                                                      single fragment which includes PRH->end of data.
188  *              Mar 2000        AC              Did various cleanups for 2.3.x
189  *              Jun 2000        jgarzik         PCI and resource alloc cleanups
190  *              Jul 2000        tjeerd          Much cleanup and some bug fixes
191  *              Sep 2000        tjeerd          Fix leak on unload, cosmetic code cleanup
192  *              Feb 2001                        Skb allocation fixes
193  *              Feb 2001        davej           PCI enable cleanups.
194  *              04 Aug 2003     macro           Converted to the DMA API.
195  *              14 Aug 2004     macro           Fix device names reported.
196  *              14 Jun 2005     macro           Use irqreturn_t.
197  *              23 Oct 2006     macro           Big-endian host support.
198  *              14 Dec 2006     macro           TURBOchannel support.
199  */
200
201 /* Include files */
202 #include <linux/bitops.h>
203 #include <linux/delay.h>
204 #include <linux/dma-mapping.h>
205 #include <linux/eisa.h>
206 #include <linux/errno.h>
207 #include <linux/fddidevice.h>
208 #include <linux/init.h>
209 #include <linux/interrupt.h>
210 #include <linux/ioport.h>
211 #include <linux/kernel.h>
212 #include <linux/module.h>
213 #include <linux/netdevice.h>
214 #include <linux/pci.h>
215 #include <linux/skbuff.h>
216 #include <linux/slab.h>
217 #include <linux/string.h>
218 #include <linux/tc.h>
219
220 #include <asm/byteorder.h>
221 #include <asm/io.h>
222
223 #include "defxx.h"
224
225 /* Version information string should be updated prior to each new release!  */
226 #define DRV_NAME "defxx"
227 #define DRV_VERSION "v1.10"
228 #define DRV_RELDATE "2006/12/14"
229
230 static char version[] __devinitdata =
231         DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
232         "  Lawrence V. Stefani and others\n";
233
234 #define DYNAMIC_BUFFERS 1
235
236 #define SKBUFF_RX_COPYBREAK 200
237 /*
238  * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
239  * alignment for compatibility with old EISA boards.
240  */
241 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
242
243 #define __unused __attribute__ ((unused))
244
245 #ifdef CONFIG_PCI
246 #define DFX_BUS_PCI(dev) (dev->bus == &pci_bus_type)
247 #else
248 #define DFX_BUS_PCI(dev) 0
249 #endif
250
251 #ifdef CONFIG_EISA
252 #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
253 #else
254 #define DFX_BUS_EISA(dev) 0
255 #endif
256
257 #ifdef CONFIG_TC
258 #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
259 #else
260 #define DFX_BUS_TC(dev) 0
261 #endif
262
263 #ifdef CONFIG_DEFXX_MMIO
264 #define DFX_MMIO 1
265 #else
266 #define DFX_MMIO 0
267 #endif
268
269 /* Define module-wide (static) routines */
270
271 static void             dfx_bus_init(struct net_device *dev);
272 static void             dfx_bus_uninit(struct net_device *dev);
273 static void             dfx_bus_config_check(DFX_board_t *bp);
274
275 static int              dfx_driver_init(struct net_device *dev,
276                                         const char *print_name,
277                                         resource_size_t bar_start);
278 static int              dfx_adap_init(DFX_board_t *bp, int get_buffers);
279
280 static int              dfx_open(struct net_device *dev);
281 static int              dfx_close(struct net_device *dev);
282
283 static void             dfx_int_pr_halt_id(DFX_board_t *bp);
284 static void             dfx_int_type_0_process(DFX_board_t *bp);
285 static void             dfx_int_common(struct net_device *dev);
286 static irqreturn_t      dfx_interrupt(int irq, void *dev_id);
287
288 static struct           net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
289 static void             dfx_ctl_set_multicast_list(struct net_device *dev);
290 static int              dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
291 static int              dfx_ctl_update_cam(DFX_board_t *bp);
292 static int              dfx_ctl_update_filters(DFX_board_t *bp);
293
294 static int              dfx_hw_dma_cmd_req(DFX_board_t *bp);
295 static int              dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
296 static void             dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
297 static int              dfx_hw_adap_state_rd(DFX_board_t *bp);
298 static int              dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
299
300 static int              dfx_rcv_init(DFX_board_t *bp, int get_buffers);
301 static void             dfx_rcv_queue_process(DFX_board_t *bp);
302 static void             dfx_rcv_flush(DFX_board_t *bp);
303
304 static int              dfx_xmt_queue_pkt(struct sk_buff *skb, struct net_device *dev);
305 static int              dfx_xmt_done(DFX_board_t *bp);
306 static void             dfx_xmt_flush(DFX_board_t *bp);
307
308 /* Define module-wide (static) variables */
309
310 static struct pci_driver dfx_pci_driver;
311 static struct eisa_driver dfx_eisa_driver;
312 static struct tc_driver dfx_tc_driver;
313
314
315 /*
316  * =======================
317  * = dfx_port_write_long =
318  * = dfx_port_read_long  =
319  * =======================
320  *
321  * Overview:
322  *   Routines for reading and writing values from/to adapter
323  *
324  * Returns:
325  *   None
326  *
327  * Arguments:
328  *   bp         - pointer to board information
329  *   offset     - register offset from base I/O address
330  *   data       - for dfx_port_write_long, this is a value to write;
331  *                for dfx_port_read_long, this is a pointer to store
332  *                the read value
333  *
334  * Functional Description:
335  *   These routines perform the correct operation to read or write
336  *   the adapter register.
337  *
338  *   EISA port block base addresses are based on the slot number in which the
339  *   controller is installed.  For example, if the EISA controller is installed
340  *   in slot 4, the port block base address is 0x4000.  If the controller is
341  *   installed in slot 2, the port block base address is 0x2000, and so on.
342  *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
343  *   registers using the register offsets defined in DEFXX.H.
344  *
345  *   PCI port block base addresses are assigned by the PCI BIOS or system
346  *   firmware.  There is one 128 byte port block which can be accessed.  It
347  *   allows for I/O mapping of both PDQ and PFI registers using the register
348  *   offsets defined in DEFXX.H.
349  *
350  * Return Codes:
351  *   None
352  *
353  * Assumptions:
354  *   bp->base is a valid base I/O address for this adapter.
355  *   offset is a valid register offset for this adapter.
356  *
357  * Side Effects:
358  *   Rather than produce macros for these functions, these routines
359  *   are defined using "inline" to ensure that the compiler will
360  *   generate inline code and not waste a procedure call and return.
361  *   This provides all the benefits of macros, but with the
362  *   advantage of strict data type checking.
363  */
364
365 static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
366 {
367         writel(data, bp->base.mem + offset);
368         mb();
369 }
370
371 static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
372 {
373         outl(data, bp->base.port + offset);
374 }
375
376 static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
377 {
378         struct device __unused *bdev = bp->bus_dev;
379         int dfx_bus_tc = DFX_BUS_TC(bdev);
380         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
381
382         if (dfx_use_mmio)
383                 dfx_writel(bp, offset, data);
384         else
385                 dfx_outl(bp, offset, data);
386 }
387
388
389 static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
390 {
391         mb();
392         *data = readl(bp->base.mem + offset);
393 }
394
395 static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
396 {
397         *data = inl(bp->base.port + offset);
398 }
399
400 static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
401 {
402         struct device __unused *bdev = bp->bus_dev;
403         int dfx_bus_tc = DFX_BUS_TC(bdev);
404         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
405
406         if (dfx_use_mmio)
407                 dfx_readl(bp, offset, data);
408         else
409                 dfx_inl(bp, offset, data);
410 }
411
412
413 /*
414  * ================
415  * = dfx_get_bars =
416  * ================
417  *
418  * Overview:
419  *   Retrieves the address range used to access control and status
420  *   registers.
421  *
422  * Returns:
423  *   None
424  *
425  * Arguments:
426  *   bdev       - pointer to device information
427  *   bar_start  - pointer to store the start address
428  *   bar_len    - pointer to store the length of the area
429  *
430  * Assumptions:
431  *   I am sure there are some.
432  *
433  * Side Effects:
434  *   None
435  */
436 static void dfx_get_bars(struct device *bdev,
437                          resource_size_t *bar_start, resource_size_t *bar_len)
438 {
439         int dfx_bus_pci = DFX_BUS_PCI(bdev);
440         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
441         int dfx_bus_tc = DFX_BUS_TC(bdev);
442         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
443
444         if (dfx_bus_pci) {
445                 int num = dfx_use_mmio ? 0 : 1;
446
447                 *bar_start = pci_resource_start(to_pci_dev(bdev), num);
448                 *bar_len = pci_resource_len(to_pci_dev(bdev), num);
449         }
450         if (dfx_bus_eisa) {
451                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
452                 resource_size_t bar;
453
454                 if (dfx_use_mmio) {
455                         bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2);
456                         bar <<= 8;
457                         bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1);
458                         bar <<= 8;
459                         bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0);
460                         bar <<= 16;
461                         *bar_start = bar;
462                         bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2);
463                         bar <<= 8;
464                         bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1);
465                         bar <<= 8;
466                         bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0);
467                         bar <<= 16;
468                         *bar_len = (bar | PI_MEM_ADD_MASK_M) + 1;
469                 } else {
470                         *bar_start = base_addr;
471                         *bar_len = PI_ESIC_K_CSR_IO_LEN;
472                 }
473         }
474         if (dfx_bus_tc) {
475                 *bar_start = to_tc_dev(bdev)->resource.start +
476                              PI_TC_K_CSR_OFFSET;
477                 *bar_len = PI_TC_K_CSR_LEN;
478         }
479 }
480
481 /*
482  * ================
483  * = dfx_register =
484  * ================
485  *
486  * Overview:
487  *   Initializes a supported FDDI controller
488  *
489  * Returns:
490  *   Condition code
491  *
492  * Arguments:
493  *   bdev - pointer to device information
494  *
495  * Functional Description:
496  *
497  * Return Codes:
498  *   0           - This device (fddi0, fddi1, etc) configured successfully
499  *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
500  *
501  * Assumptions:
502  *   It compiles so it should work :-( (PCI cards do :-)
503  *
504  * Side Effects:
505  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
506  *   initialized and the board resources are read and stored in
507  *   the device structure.
508  */
509 static int __devinit dfx_register(struct device *bdev)
510 {
511         static int version_disp;
512         int dfx_bus_pci = DFX_BUS_PCI(bdev);
513         int dfx_bus_tc = DFX_BUS_TC(bdev);
514         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
515         char *print_name = bdev->bus_id;
516         struct net_device *dev;
517         DFX_board_t       *bp;                  /* board pointer */
518         resource_size_t bar_start = 0;          /* pointer to port */
519         resource_size_t bar_len = 0;            /* resource length */
520         int alloc_size;                         /* total buffer size used */
521         struct resource *region;
522         int err = 0;
523
524         if (!version_disp) {    /* display version info if adapter is found */
525                 version_disp = 1;       /* set display flag to TRUE so that */
526                 printk(version);        /* we only display this string ONCE */
527         }
528
529         dev = alloc_fddidev(sizeof(*bp));
530         if (!dev) {
531                 printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
532                        print_name);
533                 return -ENOMEM;
534         }
535
536         /* Enable PCI device. */
537         if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) {
538                 printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n",
539                        print_name);
540                 goto err_out;
541         }
542
543         SET_MODULE_OWNER(dev);
544         SET_NETDEV_DEV(dev, bdev);
545
546         bp = netdev_priv(dev);
547         bp->bus_dev = bdev;
548         dev_set_drvdata(bdev, dev);
549
550         dfx_get_bars(bdev, &bar_start, &bar_len);
551
552         if (dfx_use_mmio)
553                 region = request_mem_region(bar_start, bar_len, print_name);
554         else
555                 region = request_region(bar_start, bar_len, print_name);
556         if (!region) {
557                 printk(KERN_ERR "%s: Cannot reserve I/O resource "
558                        "0x%lx @ 0x%lx, aborting\n",
559                        print_name, (long)bar_len, (long)bar_start);
560                 err = -EBUSY;
561                 goto err_out_disable;
562         }
563
564         /* Set up I/O base address. */
565         if (dfx_use_mmio) {
566                 bp->base.mem = ioremap_nocache(bar_start, bar_len);
567                 if (!bp->base.mem) {
568                         printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
569                         err = -ENOMEM;
570                         goto err_out_region;
571                 }
572         } else {
573                 bp->base.port = bar_start;
574                 dev->base_addr = bar_start;
575         }
576
577         /* Initialize new device structure */
578
579         dev->get_stats                  = dfx_ctl_get_stats;
580         dev->open                       = dfx_open;
581         dev->stop                       = dfx_close;
582         dev->hard_start_xmit            = dfx_xmt_queue_pkt;
583         dev->set_multicast_list         = dfx_ctl_set_multicast_list;
584         dev->set_mac_address            = dfx_ctl_set_mac_address;
585
586         if (dfx_bus_pci)
587                 pci_set_master(to_pci_dev(bdev));
588
589         if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) {
590                 err = -ENODEV;
591                 goto err_out_unmap;
592         }
593
594         err = register_netdev(dev);
595         if (err)
596                 goto err_out_kfree;
597
598         printk("%s: registered as %s\n", print_name, dev->name);
599         return 0;
600
601 err_out_kfree:
602         alloc_size = sizeof(PI_DESCR_BLOCK) +
603                      PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
604 #ifndef DYNAMIC_BUFFERS
605                      (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
606 #endif
607                      sizeof(PI_CONSUMER_BLOCK) +
608                      (PI_ALIGN_K_DESC_BLK - 1);
609         if (bp->kmalloced)
610                 dma_free_coherent(bdev, alloc_size,
611                                   bp->kmalloced, bp->kmalloced_dma);
612
613 err_out_unmap:
614         if (dfx_use_mmio)
615                 iounmap(bp->base.mem);
616
617 err_out_region:
618         if (dfx_use_mmio)
619                 release_mem_region(bar_start, bar_len);
620         else
621                 release_region(bar_start, bar_len);
622
623 err_out_disable:
624         if (dfx_bus_pci)
625                 pci_disable_device(to_pci_dev(bdev));
626
627 err_out:
628         free_netdev(dev);
629         return err;
630 }
631
632
633 /*
634  * ================
635  * = dfx_bus_init =
636  * ================
637  *
638  * Overview:
639  *   Initializes the bus-specific controller logic.
640  *
641  * Returns:
642  *   None
643  *
644  * Arguments:
645  *   dev - pointer to device information
646  *
647  * Functional Description:
648  *   Determine and save adapter IRQ in device table,
649  *   then perform bus-specific logic initialization.
650  *
651  * Return Codes:
652  *   None
653  *
654  * Assumptions:
655  *   bp->base has already been set with the proper
656  *       base I/O address for this device.
657  *
658  * Side Effects:
659  *   Interrupts are enabled at the adapter bus-specific logic.
660  *   Note:  Interrupts at the DMA engine (PDQ chip) are not
661  *   enabled yet.
662  */
663
664 static void __devinit dfx_bus_init(struct net_device *dev)
665 {
666         DFX_board_t *bp = netdev_priv(dev);
667         struct device *bdev = bp->bus_dev;
668         int dfx_bus_pci = DFX_BUS_PCI(bdev);
669         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
670         int dfx_bus_tc = DFX_BUS_TC(bdev);
671         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
672         u8 val;
673
674         DBG_printk("In dfx_bus_init...\n");
675
676         /* Initialize a pointer back to the net_device struct */
677         bp->dev = dev;
678
679         /* Initialize adapter based on bus type */
680
681         if (dfx_bus_tc)
682                 dev->irq = to_tc_dev(bdev)->interrupt;
683         if (dfx_bus_eisa) {
684                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
685
686                 /* Get the interrupt level from the ESIC chip.  */
687                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
688                 val &= PI_CONFIG_STAT_0_M_IRQ;
689                 val >>= PI_CONFIG_STAT_0_V_IRQ;
690
691                 switch (val) {
692                 case PI_CONFIG_STAT_0_IRQ_K_9:
693                         dev->irq = 9;
694                         break;
695
696                 case PI_CONFIG_STAT_0_IRQ_K_10:
697                         dev->irq = 10;
698                         break;
699
700                 case PI_CONFIG_STAT_0_IRQ_K_11:
701                         dev->irq = 11;
702                         break;
703
704                 case PI_CONFIG_STAT_0_IRQ_K_15:
705                         dev->irq = 15;
706                         break;
707                 }
708
709                 /*
710                  * Enable memory decoding (MEMCS0) and/or port decoding
711                  * (IOCS1/IOCS0) as appropriate in Function Control
712                  * Register.  One of the port chip selects seems to be
713                  * used for the Burst Holdoff register, but this bit of
714                  * documentation is missing and as yet it has not been
715                  * determined which of the two.  This is also the reason
716                  * the size of the decoded port range is twice as large
717                  * as one required by the PDQ.
718                  */
719
720                 /* Set the decode range of the board.  */
721                 val = ((bp->base.port >> 12) << PI_IO_CMP_V_SLOT);
722                 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_1, val);
723                 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_0, 0);
724                 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_1, val);
725                 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_0, 0);
726                 val = PI_ESIC_K_CSR_IO_LEN - 1;
727                 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_1, (val >> 8) & 0xff);
728                 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_0, val & 0xff);
729                 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_1, (val >> 8) & 0xff);
730                 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_0, val & 0xff);
731
732                 /* Enable the decoders.  */
733                 val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0;
734                 if (dfx_use_mmio)
735                         val |= PI_FUNCTION_CNTRL_M_MEMCS0;
736                 outb(base_addr + PI_ESIC_K_FUNCTION_CNTRL, val);
737
738                 /*
739                  * Enable access to the rest of the module
740                  * (including PDQ and packet memory).
741                  */
742                 val = PI_SLOT_CNTRL_M_ENB;
743                 outb(base_addr + PI_ESIC_K_SLOT_CNTRL, val);
744
745                 /*
746                  * Map PDQ registers into memory or port space.  This is
747                  * done with a bit in the Burst Holdoff register.
748                  */
749                 val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
750                 if (dfx_use_mmio)
751                         val |= PI_BURST_HOLDOFF_V_MEM_MAP;
752                 else
753                         val &= ~PI_BURST_HOLDOFF_V_MEM_MAP;
754                 outb(base_addr + PI_DEFEA_K_BURST_HOLDOFF, val);
755
756                 /* Enable interrupts at EISA bus interface chip (ESIC) */
757                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
758                 val |= PI_CONFIG_STAT_0_M_INT_ENB;
759                 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
760         }
761         if (dfx_bus_pci) {
762                 struct pci_dev *pdev = to_pci_dev(bdev);
763
764                 /* Get the interrupt level from the PCI Configuration Table */
765
766                 dev->irq = pdev->irq;
767
768                 /* Check Latency Timer and set if less than minimal */
769
770                 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
771                 if (val < PFI_K_LAT_TIMER_MIN) {
772                         val = PFI_K_LAT_TIMER_DEF;
773                         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
774                 }
775
776                 /* Enable interrupts at PCI bus interface chip (PFI) */
777                 val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
778                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
779         }
780 }
781
782 /*
783  * ==================
784  * = dfx_bus_uninit =
785  * ==================
786  *
787  * Overview:
788  *   Uninitializes the bus-specific controller logic.
789  *
790  * Returns:
791  *   None
792  *
793  * Arguments:
794  *   dev - pointer to device information
795  *
796  * Functional Description:
797  *   Perform bus-specific logic uninitialization.
798  *
799  * Return Codes:
800  *   None
801  *
802  * Assumptions:
803  *   bp->base has already been set with the proper
804  *       base I/O address for this device.
805  *
806  * Side Effects:
807  *   Interrupts are disabled at the adapter bus-specific logic.
808  */
809
810 static void __devinit dfx_bus_uninit(struct net_device *dev)
811 {
812         DFX_board_t *bp = netdev_priv(dev);
813         struct device *bdev = bp->bus_dev;
814         int dfx_bus_pci = DFX_BUS_PCI(bdev);
815         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
816         u8 val;
817
818         DBG_printk("In dfx_bus_uninit...\n");
819
820         /* Uninitialize adapter based on bus type */
821
822         if (dfx_bus_eisa) {
823                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
824
825                 /* Disable interrupts at EISA bus interface chip (ESIC) */
826                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
827                 val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
828                 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
829         }
830         if (dfx_bus_pci) {
831                 /* Disable interrupts at PCI bus interface chip (PFI) */
832                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
833         }
834 }
835
836
837 /*
838  * ========================
839  * = dfx_bus_config_check =
840  * ========================
841  *
842  * Overview:
843  *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
844  *   are illegal, then this routine will set new defaults.
845  *
846  * Returns:
847  *   None
848  *
849  * Arguments:
850  *   bp - pointer to board information
851  *
852  * Functional Description:
853  *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
854  *   PDQ, and all FDDI PCI controllers, all values are legal.
855  *
856  * Return Codes:
857  *   None
858  *
859  * Assumptions:
860  *   dfx_adap_init has NOT been called yet so burst size and other items have
861  *   not been set.
862  *
863  * Side Effects:
864  *   None
865  */
866
867 static void __devinit dfx_bus_config_check(DFX_board_t *bp)
868 {
869         struct device __unused *bdev = bp->bus_dev;
870         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
871         int     status;                         /* return code from adapter port control call */
872         u32     host_data;                      /* LW data returned from port control call */
873
874         DBG_printk("In dfx_bus_config_check...\n");
875
876         /* Configuration check only valid for EISA adapter */
877
878         if (dfx_bus_eisa) {
879                 /*
880                  * First check if revision 2 EISA controller.  Rev. 1 cards used
881                  * PDQ revision B, so no workaround needed in this case.  Rev. 3
882                  * cards used PDQ revision E, so no workaround needed in this
883                  * case, either.  Only Rev. 2 cards used either Rev. D or E
884                  * chips, so we must verify the chip revision on Rev. 2 cards.
885                  */
886                 if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
887                         /*
888                          * Revision 2 FDDI EISA controller found,
889                          * so let's check PDQ revision of adapter.
890                          */
891                         status = dfx_hw_port_ctrl_req(bp,
892                                                                                         PI_PCTRL_M_SUB_CMD,
893                                                                                         PI_SUB_CMD_K_PDQ_REV_GET,
894                                                                                         0,
895                                                                                         &host_data);
896                         if ((status != DFX_K_SUCCESS) || (host_data == 2))
897                                 {
898                                 /*
899                                  * Either we couldn't determine the PDQ revision, or
900                                  * we determined that it is at revision D.  In either case,
901                                  * we need to implement the workaround.
902                                  */
903
904                                 /* Ensure that the burst size is set to 8 longwords or less */
905
906                                 switch (bp->burst_size)
907                                         {
908                                         case PI_PDATA_B_DMA_BURST_SIZE_32:
909                                         case PI_PDATA_B_DMA_BURST_SIZE_16:
910                                                 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
911                                                 break;
912
913                                         default:
914                                                 break;
915                                         }
916
917                                 /* Ensure that full-duplex mode is not enabled */
918
919                                 bp->full_duplex_enb = PI_SNMP_K_FALSE;
920                                 }
921                         }
922                 }
923         }
924
925
926 /*
927  * ===================
928  * = dfx_driver_init =
929  * ===================
930  *
931  * Overview:
932  *   Initializes remaining adapter board structure information
933  *   and makes sure adapter is in a safe state prior to dfx_open().
934  *
935  * Returns:
936  *   Condition code
937  *
938  * Arguments:
939  *   dev - pointer to device information
940  *   print_name - printable device name
941  *
942  * Functional Description:
943  *   This function allocates additional resources such as the host memory
944  *   blocks needed by the adapter (eg. descriptor and consumer blocks).
945  *       Remaining bus initialization steps are also completed.  The adapter
946  *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
947  *   must call dfx_open() to open the adapter and bring it on-line.
948  *
949  * Return Codes:
950  *   DFX_K_SUCCESS      - initialization succeeded
951  *   DFX_K_FAILURE      - initialization failed - could not allocate memory
952  *                                              or read adapter MAC address
953  *
954  * Assumptions:
955  *   Memory allocated from pci_alloc_consistent() call is physically
956  *   contiguous, locked memory.
957  *
958  * Side Effects:
959  *   Adapter is reset and should be in DMA_UNAVAILABLE state before
960  *   returning from this routine.
961  */
962
963 static int __devinit dfx_driver_init(struct net_device *dev,
964                                      const char *print_name,
965                                      resource_size_t bar_start)
966 {
967         DFX_board_t *bp = netdev_priv(dev);
968         struct device *bdev = bp->bus_dev;
969         int dfx_bus_pci = DFX_BUS_PCI(bdev);
970         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
971         int dfx_bus_tc = DFX_BUS_TC(bdev);
972         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
973         int alloc_size;                 /* total buffer size needed */
974         char *top_v, *curr_v;           /* virtual addrs into memory block */
975         dma_addr_t top_p, curr_p;       /* physical addrs into memory block */
976         u32 data, le32;                 /* host data register value */
977         char *board_name = NULL;
978
979         DBG_printk("In dfx_driver_init...\n");
980
981         /* Initialize bus-specific hardware registers */
982
983         dfx_bus_init(dev);
984
985         /*
986          * Initialize default values for configurable parameters
987          *
988          * Note: All of these parameters are ones that a user may
989          *       want to customize.  It'd be nice to break these
990          *               out into Space.c or someplace else that's more
991          *               accessible/understandable than this file.
992          */
993
994         bp->full_duplex_enb             = PI_SNMP_K_FALSE;
995         bp->req_ttrt                    = 8 * 12500;            /* 8ms in 80 nanosec units */
996         bp->burst_size                  = PI_PDATA_B_DMA_BURST_SIZE_DEF;
997         bp->rcv_bufs_to_post    = RCV_BUFS_DEF;
998
999         /*
1000          * Ensure that HW configuration is OK
1001          *
1002          * Note: Depending on the hardware revision, we may need to modify
1003          *       some of the configurable parameters to workaround hardware
1004          *       limitations.  We'll perform this configuration check AFTER
1005          *       setting the parameters to their default values.
1006          */
1007
1008         dfx_bus_config_check(bp);
1009
1010         /* Disable PDQ interrupts first */
1011
1012         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1013
1014         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1015
1016         (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1017
1018         /*  Read the factory MAC address from the adapter then save it */
1019
1020         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1021                                  &data) != DFX_K_SUCCESS) {
1022                 printk("%s: Could not read adapter factory MAC address!\n",
1023                        print_name);
1024                 return(DFX_K_FAILURE);
1025         }
1026         le32 = cpu_to_le32(data);
1027         memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1028
1029         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1030                                  &data) != DFX_K_SUCCESS) {
1031                 printk("%s: Could not read adapter factory MAC address!\n",
1032                        print_name);
1033                 return(DFX_K_FAILURE);
1034         }
1035         le32 = cpu_to_le32(data);
1036         memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1037
1038         /*
1039          * Set current address to factory address
1040          *
1041          * Note: Node address override support is handled through
1042          *       dfx_ctl_set_mac_address.
1043          */
1044
1045         memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1046         if (dfx_bus_tc)
1047                 board_name = "DEFTA";
1048         if (dfx_bus_eisa)
1049                 board_name = "DEFEA";
1050         if (dfx_bus_pci)
1051                 board_name = "DEFPA";
1052         pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, "
1053                 "Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n",
1054                 print_name, board_name, dfx_use_mmio ? "" : "I/O ",
1055                 (long long)bar_start, dev->irq,
1056                 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
1057                 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
1058
1059         /*
1060          * Get memory for descriptor block, consumer block, and other buffers
1061          * that need to be DMA read or written to by the adapter.
1062          */
1063
1064         alloc_size = sizeof(PI_DESCR_BLOCK) +
1065                                         PI_CMD_REQ_K_SIZE_MAX +
1066                                         PI_CMD_RSP_K_SIZE_MAX +
1067 #ifndef DYNAMIC_BUFFERS
1068                                         (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1069 #endif
1070                                         sizeof(PI_CONSUMER_BLOCK) +
1071                                         (PI_ALIGN_K_DESC_BLK - 1);
1072         bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size,
1073                                                    &bp->kmalloced_dma,
1074                                                    GFP_ATOMIC);
1075         if (top_v == NULL) {
1076                 printk("%s: Could not allocate memory for host buffers "
1077                        "and structures!\n", print_name);
1078                 return(DFX_K_FAILURE);
1079         }
1080         memset(top_v, 0, alloc_size);   /* zero out memory before continuing */
1081         top_p = bp->kmalloced_dma;      /* get physical address of buffer */
1082
1083         /*
1084          *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
1085          *  plus the amount of memory needed was allocated.  The physical address
1086          *      is now 8K aligned.  By carving up the memory in a specific order,
1087          *  we'll guarantee the alignment requirements for all other structures.
1088          *
1089          *  Note: If the assumptions change regarding the non-paged, non-cached,
1090          *                physically contiguous nature of the memory block or the address
1091          *                alignments, then we'll need to implement a different algorithm
1092          *                for allocating the needed memory.
1093          */
1094
1095         curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1096         curr_v = top_v + (curr_p - top_p);
1097
1098         /* Reserve space for descriptor block */
1099
1100         bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1101         bp->descr_block_phys = curr_p;
1102         curr_v += sizeof(PI_DESCR_BLOCK);
1103         curr_p += sizeof(PI_DESCR_BLOCK);
1104
1105         /* Reserve space for command request buffer */
1106
1107         bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1108         bp->cmd_req_phys = curr_p;
1109         curr_v += PI_CMD_REQ_K_SIZE_MAX;
1110         curr_p += PI_CMD_REQ_K_SIZE_MAX;
1111
1112         /* Reserve space for command response buffer */
1113
1114         bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1115         bp->cmd_rsp_phys = curr_p;
1116         curr_v += PI_CMD_RSP_K_SIZE_MAX;
1117         curr_p += PI_CMD_RSP_K_SIZE_MAX;
1118
1119         /* Reserve space for the LLC host receive queue buffers */
1120
1121         bp->rcv_block_virt = curr_v;
1122         bp->rcv_block_phys = curr_p;
1123
1124 #ifndef DYNAMIC_BUFFERS
1125         curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1126         curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1127 #endif
1128
1129         /* Reserve space for the consumer block */
1130
1131         bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1132         bp->cons_block_phys = curr_p;
1133
1134         /* Display virtual and physical addresses if debug driver */
1135
1136         DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",
1137                    print_name,
1138                    (long)bp->descr_block_virt, bp->descr_block_phys);
1139         DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",
1140                    print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
1141         DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",
1142                    print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
1143         DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",
1144                    print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
1145         DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",
1146                    print_name, (long)bp->cons_block_virt, bp->cons_block_phys);
1147
1148         return(DFX_K_SUCCESS);
1149 }
1150
1151
1152 /*
1153  * =================
1154  * = dfx_adap_init =
1155  * =================
1156  *
1157  * Overview:
1158  *   Brings the adapter to the link avail/link unavailable state.
1159  *
1160  * Returns:
1161  *   Condition code
1162  *
1163  * Arguments:
1164  *   bp - pointer to board information
1165  *   get_buffers - non-zero if buffers to be allocated
1166  *
1167  * Functional Description:
1168  *   Issues the low-level firmware/hardware calls necessary to bring
1169  *   the adapter up, or to properly reset and restore adapter during
1170  *   run-time.
1171  *
1172  * Return Codes:
1173  *   DFX_K_SUCCESS - Adapter brought up successfully
1174  *   DFX_K_FAILURE - Adapter initialization failed
1175  *
1176  * Assumptions:
1177  *   bp->reset_type should be set to a valid reset type value before
1178  *   calling this routine.
1179  *
1180  * Side Effects:
1181  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1182  *   upon a successful return of this routine.
1183  */
1184
1185 static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1186         {
1187         DBG_printk("In dfx_adap_init...\n");
1188
1189         /* Disable PDQ interrupts first */
1190
1191         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1192
1193         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1194
1195         if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1196                 {
1197                 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1198                 return(DFX_K_FAILURE);
1199                 }
1200
1201         /*
1202          * When the PDQ is reset, some false Type 0 interrupts may be pending,
1203          * so we'll acknowledge all Type 0 interrupts now before continuing.
1204          */
1205
1206         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1207
1208         /*
1209          * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1210          *
1211          * Note: We only need to clear host copies of these registers.  The PDQ reset
1212          *       takes care of the on-board register values.
1213          */
1214
1215         bp->cmd_req_reg.lword   = 0;
1216         bp->cmd_rsp_reg.lword   = 0;
1217         bp->rcv_xmt_reg.lword   = 0;
1218
1219         /* Clear consumer block before going to DMA_AVAILABLE state */
1220
1221         memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1222
1223         /* Initialize the DMA Burst Size */
1224
1225         if (dfx_hw_port_ctrl_req(bp,
1226                                                         PI_PCTRL_M_SUB_CMD,
1227                                                         PI_SUB_CMD_K_BURST_SIZE_SET,
1228                                                         bp->burst_size,
1229                                                         NULL) != DFX_K_SUCCESS)
1230                 {
1231                 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1232                 return(DFX_K_FAILURE);
1233                 }
1234
1235         /*
1236          * Set base address of Consumer Block
1237          *
1238          * Assumption: 32-bit physical address of consumer block is 64 byte
1239          *                         aligned.  That is, bits 0-5 of the address must be zero.
1240          */
1241
1242         if (dfx_hw_port_ctrl_req(bp,
1243                                                         PI_PCTRL_M_CONS_BLOCK,
1244                                                         bp->cons_block_phys,
1245                                                         0,
1246                                                         NULL) != DFX_K_SUCCESS)
1247                 {
1248                 printk("%s: Could not set consumer block address!\n", bp->dev->name);
1249                 return(DFX_K_FAILURE);
1250                 }
1251
1252         /*
1253          * Set the base address of Descriptor Block and bring adapter
1254          * to DMA_AVAILABLE state.
1255          *
1256          * Note: We also set the literal and data swapping requirements
1257          *       in this command.
1258          *
1259          * Assumption: 32-bit physical address of descriptor block
1260          *       is 8Kbyte aligned.
1261          */
1262         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1263                                  (u32)(bp->descr_block_phys |
1264                                        PI_PDATA_A_INIT_M_BSWAP_INIT),
1265                                  0, NULL) != DFX_K_SUCCESS) {
1266                 printk("%s: Could not set descriptor block address!\n",
1267                        bp->dev->name);
1268                 return DFX_K_FAILURE;
1269         }
1270
1271         /* Set transmit flush timeout value */
1272
1273         bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1274         bp->cmd_req_virt->char_set.item[0].item_code    = PI_ITEM_K_FLUSH_TIME;
1275         bp->cmd_req_virt->char_set.item[0].value                = 3;    /* 3 seconds */
1276         bp->cmd_req_virt->char_set.item[0].item_index   = 0;
1277         bp->cmd_req_virt->char_set.item[1].item_code    = PI_ITEM_K_EOL;
1278         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1279                 {
1280                 printk("%s: DMA command request failed!\n", bp->dev->name);
1281                 return(DFX_K_FAILURE);
1282                 }
1283
1284         /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1285
1286         bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1287         bp->cmd_req_virt->snmp_set.item[0].item_code    = PI_ITEM_K_FDX_ENB_DIS;
1288         bp->cmd_req_virt->snmp_set.item[0].value                = bp->full_duplex_enb;
1289         bp->cmd_req_virt->snmp_set.item[0].item_index   = 0;
1290         bp->cmd_req_virt->snmp_set.item[1].item_code    = PI_ITEM_K_MAC_T_REQ;
1291         bp->cmd_req_virt->snmp_set.item[1].value                = bp->req_ttrt;
1292         bp->cmd_req_virt->snmp_set.item[1].item_index   = 0;
1293         bp->cmd_req_virt->snmp_set.item[2].item_code    = PI_ITEM_K_EOL;
1294         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1295                 {
1296                 printk("%s: DMA command request failed!\n", bp->dev->name);
1297                 return(DFX_K_FAILURE);
1298                 }
1299
1300         /* Initialize adapter CAM */
1301
1302         if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1303                 {
1304                 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1305                 return(DFX_K_FAILURE);
1306                 }
1307
1308         /* Initialize adapter filters */
1309
1310         if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1311                 {
1312                 printk("%s: Adapter filters update failed!\n", bp->dev->name);
1313                 return(DFX_K_FAILURE);
1314                 }
1315
1316         /*
1317          * Remove any existing dynamic buffers (i.e. if the adapter is being
1318          * reinitialized)
1319          */
1320
1321         if (get_buffers)
1322                 dfx_rcv_flush(bp);
1323
1324         /* Initialize receive descriptor block and produce buffers */
1325
1326         if (dfx_rcv_init(bp, get_buffers))
1327                 {
1328                 printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1329                 if (get_buffers)
1330                         dfx_rcv_flush(bp);
1331                 return(DFX_K_FAILURE);
1332                 }
1333
1334         /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1335
1336         bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1337         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1338                 {
1339                 printk("%s: Start command failed\n", bp->dev->name);
1340                 if (get_buffers)
1341                         dfx_rcv_flush(bp);
1342                 return(DFX_K_FAILURE);
1343                 }
1344
1345         /* Initialization succeeded, reenable PDQ interrupts */
1346
1347         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1348         return(DFX_K_SUCCESS);
1349         }
1350
1351
1352 /*
1353  * ============
1354  * = dfx_open =
1355  * ============
1356  *
1357  * Overview:
1358  *   Opens the adapter
1359  *
1360  * Returns:
1361  *   Condition code
1362  *
1363  * Arguments:
1364  *   dev - pointer to device information
1365  *
1366  * Functional Description:
1367  *   This function brings the adapter to an operational state.
1368  *
1369  * Return Codes:
1370  *   0           - Adapter was successfully opened
1371  *   -EAGAIN - Could not register IRQ or adapter initialization failed
1372  *
1373  * Assumptions:
1374  *   This routine should only be called for a device that was
1375  *   initialized successfully.
1376  *
1377  * Side Effects:
1378  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1379  *   if the open is successful.
1380  */
1381
1382 static int dfx_open(struct net_device *dev)
1383 {
1384         DFX_board_t *bp = netdev_priv(dev);
1385         int ret;
1386
1387         DBG_printk("In dfx_open...\n");
1388
1389         /* Register IRQ - support shared interrupts by passing device ptr */
1390
1391         ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1392                           dev);
1393         if (ret) {
1394                 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1395                 return ret;
1396         }
1397
1398         /*
1399          * Set current address to factory MAC address
1400          *
1401          * Note: We've already done this step in dfx_driver_init.
1402          *       However, it's possible that a user has set a node
1403          *               address override, then closed and reopened the
1404          *               adapter.  Unless we reset the device address field
1405          *               now, we'll continue to use the existing modified
1406          *               address.
1407          */
1408
1409         memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1410
1411         /* Clear local unicast/multicast address tables and counts */
1412
1413         memset(bp->uc_table, 0, sizeof(bp->uc_table));
1414         memset(bp->mc_table, 0, sizeof(bp->mc_table));
1415         bp->uc_count = 0;
1416         bp->mc_count = 0;
1417
1418         /* Disable promiscuous filter settings */
1419
1420         bp->ind_group_prom      = PI_FSTATE_K_BLOCK;
1421         bp->group_prom          = PI_FSTATE_K_BLOCK;
1422
1423         spin_lock_init(&bp->lock);
1424
1425         /* Reset and initialize adapter */
1426
1427         bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;    /* skip self-test */
1428         if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1429         {
1430                 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1431                 free_irq(dev->irq, dev);
1432                 return -EAGAIN;
1433         }
1434
1435         /* Set device structure info */
1436         netif_start_queue(dev);
1437         return(0);
1438 }
1439
1440
1441 /*
1442  * =============
1443  * = dfx_close =
1444  * =============
1445  *
1446  * Overview:
1447  *   Closes the device/module.
1448  *
1449  * Returns:
1450  *   Condition code
1451  *
1452  * Arguments:
1453  *   dev - pointer to device information
1454  *
1455  * Functional Description:
1456  *   This routine closes the adapter and brings it to a safe state.
1457  *   The interrupt service routine is deregistered with the OS.
1458  *   The adapter can be opened again with another call to dfx_open().
1459  *
1460  * Return Codes:
1461  *   Always return 0.
1462  *
1463  * Assumptions:
1464  *   No further requests for this adapter are made after this routine is
1465  *   called.  dfx_open() can be called to reset and reinitialize the
1466  *   adapter.
1467  *
1468  * Side Effects:
1469  *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
1470  *   routine.
1471  */
1472
1473 static int dfx_close(struct net_device *dev)
1474 {
1475         DFX_board_t *bp = netdev_priv(dev);
1476
1477         DBG_printk("In dfx_close...\n");
1478
1479         /* Disable PDQ interrupts first */
1480
1481         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1482
1483         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1484
1485         (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1486
1487         /*
1488          * Flush any pending transmit buffers
1489          *
1490          * Note: It's important that we flush the transmit buffers
1491          *               BEFORE we clear our copy of the Type 2 register.
1492          *               Otherwise, we'll have no idea how many buffers
1493          *               we need to free.
1494          */
1495
1496         dfx_xmt_flush(bp);
1497
1498         /*
1499          * Clear Type 1 and Type 2 registers after adapter reset
1500          *
1501          * Note: Even though we're closing the adapter, it's
1502          *       possible that an interrupt will occur after
1503          *               dfx_close is called.  Without some assurance to
1504          *               the contrary we want to make sure that we don't
1505          *               process receive and transmit LLC frames and update
1506          *               the Type 2 register with bad information.
1507          */
1508
1509         bp->cmd_req_reg.lword   = 0;
1510         bp->cmd_rsp_reg.lword   = 0;
1511         bp->rcv_xmt_reg.lword   = 0;
1512
1513         /* Clear consumer block for the same reason given above */
1514
1515         memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1516
1517         /* Release all dynamically allocate skb in the receive ring. */
1518
1519         dfx_rcv_flush(bp);
1520
1521         /* Clear device structure flags */
1522
1523         netif_stop_queue(dev);
1524
1525         /* Deregister (free) IRQ */
1526
1527         free_irq(dev->irq, dev);
1528
1529         return(0);
1530 }
1531
1532
1533 /*
1534  * ======================
1535  * = dfx_int_pr_halt_id =
1536  * ======================
1537  *
1538  * Overview:
1539  *   Displays halt id's in string form.
1540  *
1541  * Returns:
1542  *   None
1543  *
1544  * Arguments:
1545  *   bp - pointer to board information
1546  *
1547  * Functional Description:
1548  *   Determine current halt id and display appropriate string.
1549  *
1550  * Return Codes:
1551  *   None
1552  *
1553  * Assumptions:
1554  *   None
1555  *
1556  * Side Effects:
1557  *   None
1558  */
1559
1560 static void dfx_int_pr_halt_id(DFX_board_t      *bp)
1561         {
1562         PI_UINT32       port_status;                    /* PDQ port status register value */
1563         PI_UINT32       halt_id;                                /* PDQ port status halt ID */
1564
1565         /* Read the latest port status */
1566
1567         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1568
1569         /* Display halt state transition information */
1570
1571         halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1572         switch (halt_id)
1573                 {
1574                 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1575                         printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1576                         break;
1577
1578                 case PI_HALT_ID_K_PARITY_ERROR:
1579                         printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1580                         break;
1581
1582                 case PI_HALT_ID_K_HOST_DIR_HALT:
1583                         printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1584                         break;
1585
1586                 case PI_HALT_ID_K_SW_FAULT:
1587                         printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1588                         break;
1589
1590                 case PI_HALT_ID_K_HW_FAULT:
1591                         printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1592                         break;
1593
1594                 case PI_HALT_ID_K_PC_TRACE:
1595                         printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1596                         break;
1597
1598                 case PI_HALT_ID_K_DMA_ERROR:
1599                         printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1600                         break;
1601
1602                 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1603                         printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1604                         break;
1605
1606                 case PI_HALT_ID_K_BUS_EXCEPTION:
1607                         printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1608                         break;
1609
1610                 default:
1611                         printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1612                         break;
1613                 }
1614         }
1615
1616
1617 /*
1618  * ==========================
1619  * = dfx_int_type_0_process =
1620  * ==========================
1621  *
1622  * Overview:
1623  *   Processes Type 0 interrupts.
1624  *
1625  * Returns:
1626  *   None
1627  *
1628  * Arguments:
1629  *   bp - pointer to board information
1630  *
1631  * Functional Description:
1632  *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
1633  *   is a serious fault on the adapter, then an error message is displayed
1634  *   and the adapter is reset.
1635  *
1636  *   One tricky potential timing window is the rapid succession of "link avail"
1637  *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
1638  *   interrupt must be done before reading the state from the Port Status
1639  *   register.  This is true because a state change could occur after reading
1640  *   the data, but before acknowledging the interrupt.  If this state change
1641  *   does happen, it would be lost because the driver is using the old state,
1642  *   and it will never know about the new state because it subsequently
1643  *   acknowledges the state change interrupt.
1644  *
1645  *          INCORRECT                                      CORRECT
1646  *      read type 0 int reasons                   read type 0 int reasons
1647  *      read adapter state                        ack type 0 interrupts
1648  *      ack type 0 interrupts                     read adapter state
1649  *      ... process interrupt ...                 ... process interrupt ...
1650  *
1651  * Return Codes:
1652  *   None
1653  *
1654  * Assumptions:
1655  *   None
1656  *
1657  * Side Effects:
1658  *   An adapter reset may occur if the adapter has any Type 0 error interrupts
1659  *   or if the port status indicates that the adapter is halted.  The driver
1660  *   is responsible for reinitializing the adapter with the current CAM
1661  *   contents and adapter filter settings.
1662  */
1663
1664 static void dfx_int_type_0_process(DFX_board_t  *bp)
1665
1666         {
1667         PI_UINT32       type_0_status;          /* Host Interrupt Type 0 register */
1668         PI_UINT32       state;                          /* current adap state (from port status) */
1669
1670         /*
1671          * Read host interrupt Type 0 register to determine which Type 0
1672          * interrupts are pending.  Immediately write it back out to clear
1673          * those interrupts.
1674          */
1675
1676         dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1677         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1678
1679         /* Check for Type 0 error interrupts */
1680
1681         if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1682                                                         PI_TYPE_0_STAT_M_PM_PAR_ERR |
1683                                                         PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1684                 {
1685                 /* Check for Non-Existent Memory error */
1686
1687                 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1688                         printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1689
1690                 /* Check for Packet Memory Parity error */
1691
1692                 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1693                         printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1694
1695                 /* Check for Host Bus Parity error */
1696
1697                 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1698                         printk("%s: Host Bus Parity Error\n", bp->dev->name);
1699
1700                 /* Reset adapter and bring it back on-line */
1701
1702                 bp->link_available = PI_K_FALSE;        /* link is no longer available */
1703                 bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1704                 printk("%s: Resetting adapter...\n", bp->dev->name);
1705                 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1706                         {
1707                         printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1708                         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1709                         return;
1710                         }
1711                 printk("%s: Adapter reset successful!\n", bp->dev->name);
1712                 return;
1713                 }
1714
1715         /* Check for transmit flush interrupt */
1716
1717         if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1718                 {
1719                 /* Flush any pending xmt's and acknowledge the flush interrupt */
1720
1721                 bp->link_available = PI_K_FALSE;                /* link is no longer available */
1722                 dfx_xmt_flush(bp);                                              /* flush any outstanding packets */
1723                 (void) dfx_hw_port_ctrl_req(bp,
1724                                                                         PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1725                                                                         0,
1726                                                                         0,
1727                                                                         NULL);
1728                 }
1729
1730         /* Check for adapter state change */
1731
1732         if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1733                 {
1734                 /* Get latest adapter state */
1735
1736                 state = dfx_hw_adap_state_rd(bp);       /* get adapter state */
1737                 if (state == PI_STATE_K_HALTED)
1738                         {
1739                         /*
1740                          * Adapter has transitioned to HALTED state, try to reset
1741                          * adapter to bring it back on-line.  If reset fails,
1742                          * leave the adapter in the broken state.
1743                          */
1744
1745                         printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1746                         dfx_int_pr_halt_id(bp);                 /* display halt id as string */
1747
1748                         /* Reset adapter and bring it back on-line */
1749
1750                         bp->link_available = PI_K_FALSE;        /* link is no longer available */
1751                         bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1752                         printk("%s: Resetting adapter...\n", bp->dev->name);
1753                         if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1754                                 {
1755                                 printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1756                                 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1757                                 return;
1758                                 }
1759                         printk("%s: Adapter reset successful!\n", bp->dev->name);
1760                         }
1761                 else if (state == PI_STATE_K_LINK_AVAIL)
1762                         {
1763                         bp->link_available = PI_K_TRUE;         /* set link available flag */
1764                         }
1765                 }
1766         }
1767
1768
1769 /*
1770  * ==================
1771  * = dfx_int_common =
1772  * ==================
1773  *
1774  * Overview:
1775  *   Interrupt service routine (ISR)
1776  *
1777  * Returns:
1778  *   None
1779  *
1780  * Arguments:
1781  *   bp - pointer to board information
1782  *
1783  * Functional Description:
1784  *   This is the ISR which processes incoming adapter interrupts.
1785  *
1786  * Return Codes:
1787  *   None
1788  *
1789  * Assumptions:
1790  *   This routine assumes PDQ interrupts have not been disabled.
1791  *   When interrupts are disabled at the PDQ, the Port Status register
1792  *   is automatically cleared.  This routine uses the Port Status
1793  *   register value to determine whether a Type 0 interrupt occurred,
1794  *   so it's important that adapter interrupts are not normally
1795  *   enabled/disabled at the PDQ.
1796  *
1797  *   It's vital that this routine is NOT reentered for the
1798  *   same board and that the OS is not in another section of
1799  *   code (eg. dfx_xmt_queue_pkt) for the same board on a
1800  *   different thread.
1801  *
1802  * Side Effects:
1803  *   Pending interrupts are serviced.  Depending on the type of
1804  *   interrupt, acknowledging and clearing the interrupt at the
1805  *   PDQ involves writing a register to clear the interrupt bit
1806  *   or updating completion indices.
1807  */
1808
1809 static void dfx_int_common(struct net_device *dev)
1810 {
1811         DFX_board_t *bp = netdev_priv(dev);
1812         PI_UINT32       port_status;            /* Port Status register */
1813
1814         /* Process xmt interrupts - frequent case, so always call this routine */
1815
1816         if(dfx_xmt_done(bp))                            /* free consumed xmt packets */
1817                 netif_wake_queue(dev);
1818
1819         /* Process rcv interrupts - frequent case, so always call this routine */
1820
1821         dfx_rcv_queue_process(bp);              /* service received LLC frames */
1822
1823         /*
1824          * Transmit and receive producer and completion indices are updated on the
1825          * adapter by writing to the Type 2 Producer register.  Since the frequent
1826          * case is that we'll be processing either LLC transmit or receive buffers,
1827          * we'll optimize I/O writes by doing a single register write here.
1828          */
1829
1830         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1831
1832         /* Read PDQ Port Status register to find out which interrupts need processing */
1833
1834         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1835
1836         /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1837
1838         if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1839                 dfx_int_type_0_process(bp);     /* process Type 0 interrupts */
1840         }
1841
1842
1843 /*
1844  * =================
1845  * = dfx_interrupt =
1846  * =================
1847  *
1848  * Overview:
1849  *   Interrupt processing routine
1850  *
1851  * Returns:
1852  *   Whether a valid interrupt was seen.
1853  *
1854  * Arguments:
1855  *   irq        - interrupt vector
1856  *   dev_id     - pointer to device information
1857  *
1858  * Functional Description:
1859  *   This routine calls the interrupt processing routine for this adapter.  It
1860  *   disables and reenables adapter interrupts, as appropriate.  We can support
1861  *   shared interrupts since the incoming dev_id pointer provides our device
1862  *   structure context.
1863  *
1864  * Return Codes:
1865  *   IRQ_HANDLED - an IRQ was handled.
1866  *   IRQ_NONE    - no IRQ was handled.
1867  *
1868  * Assumptions:
1869  *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1870  *   on Intel-based systems) is done by the operating system outside this
1871  *   routine.
1872  *
1873  *       System interrupts are enabled through this call.
1874  *
1875  * Side Effects:
1876  *   Interrupts are disabled, then reenabled at the adapter.
1877  */
1878
1879 static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1880 {
1881         struct net_device *dev = dev_id;
1882         DFX_board_t *bp = netdev_priv(dev);
1883         struct device *bdev = bp->bus_dev;
1884         int dfx_bus_pci = DFX_BUS_PCI(bdev);
1885         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1886         int dfx_bus_tc = DFX_BUS_TC(bdev);
1887
1888         /* Service adapter interrupts */
1889
1890         if (dfx_bus_pci) {
1891                 u32 status;
1892
1893                 dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1894                 if (!(status & PFI_STATUS_M_PDQ_INT))
1895                         return IRQ_NONE;
1896
1897                 spin_lock(&bp->lock);
1898
1899                 /* Disable PDQ-PFI interrupts at PFI */
1900                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1901                                     PFI_MODE_M_DMA_ENB);
1902
1903                 /* Call interrupt service routine for this adapter */
1904                 dfx_int_common(dev);
1905
1906                 /* Clear PDQ interrupt status bit and reenable interrupts */
1907                 dfx_port_write_long(bp, PFI_K_REG_STATUS,
1908                                     PFI_STATUS_M_PDQ_INT);
1909                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1910                                     (PFI_MODE_M_PDQ_INT_ENB |
1911                                      PFI_MODE_M_DMA_ENB));
1912
1913                 spin_unlock(&bp->lock);
1914         }
1915         if (dfx_bus_eisa) {
1916                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1917                 u8 status;
1918
1919                 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1920                 if (!(status & PI_CONFIG_STAT_0_M_PEND))
1921                         return IRQ_NONE;
1922
1923                 spin_lock(&bp->lock);
1924
1925                 /* Disable interrupts at the ESIC */
1926                 status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1927                 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1928
1929                 /* Call interrupt service routine for this adapter */
1930                 dfx_int_common(dev);
1931
1932                 /* Reenable interrupts at the ESIC */
1933                 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1934                 status |= PI_CONFIG_STAT_0_M_INT_ENB;
1935                 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1936
1937                 spin_unlock(&bp->lock);
1938         }
1939         if (dfx_bus_tc) {
1940                 u32 status;
1941
1942                 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
1943                 if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
1944                                 PI_PSTATUS_M_XMT_DATA_PENDING |
1945                                 PI_PSTATUS_M_SMT_HOST_PENDING |
1946                                 PI_PSTATUS_M_UNSOL_PENDING |
1947                                 PI_PSTATUS_M_CMD_RSP_PENDING |
1948                                 PI_PSTATUS_M_CMD_REQ_PENDING |
1949                                 PI_PSTATUS_M_TYPE_0_PENDING)))
1950                         return IRQ_NONE;
1951
1952                 spin_lock(&bp->lock);
1953
1954                 /* Call interrupt service routine for this adapter */
1955                 dfx_int_common(dev);
1956
1957                 spin_unlock(&bp->lock);
1958         }
1959
1960         return IRQ_HANDLED;
1961 }
1962
1963
1964 /*
1965  * =====================
1966  * = dfx_ctl_get_stats =
1967  * =====================
1968  *
1969  * Overview:
1970  *   Get statistics for FDDI adapter
1971  *
1972  * Returns:
1973  *   Pointer to FDDI statistics structure
1974  *
1975  * Arguments:
1976  *   dev - pointer to device information
1977  *
1978  * Functional Description:
1979  *   Gets current MIB objects from adapter, then
1980  *   returns FDDI statistics structure as defined
1981  *   in if_fddi.h.
1982  *
1983  *   Note: Since the FDDI statistics structure is
1984  *   still new and the device structure doesn't
1985  *   have an FDDI-specific get statistics handler,
1986  *   we'll return the FDDI statistics structure as
1987  *   a pointer to an Ethernet statistics structure.
1988  *   That way, at least the first part of the statistics
1989  *   structure can be decoded properly, and it allows
1990  *   "smart" applications to perform a second cast to
1991  *   decode the FDDI-specific statistics.
1992  *
1993  *   We'll have to pay attention to this routine as the
1994  *   device structure becomes more mature and LAN media
1995  *   independent.
1996  *
1997  * Return Codes:
1998  *   None
1999  *
2000  * Assumptions:
2001  *   None
2002  *
2003  * Side Effects:
2004  *   None
2005  */
2006
2007 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2008         {
2009         DFX_board_t *bp = netdev_priv(dev);
2010
2011         /* Fill the bp->stats structure with driver-maintained counters */
2012
2013         bp->stats.gen.rx_packets = bp->rcv_total_frames;
2014         bp->stats.gen.tx_packets = bp->xmt_total_frames;
2015         bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
2016         bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
2017         bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
2018                                    bp->rcv_frame_status_errors +
2019                                    bp->rcv_length_errors;
2020         bp->stats.gen.tx_errors  = bp->xmt_length_errors;
2021         bp->stats.gen.rx_dropped = bp->rcv_discards;
2022         bp->stats.gen.tx_dropped = bp->xmt_discards;
2023         bp->stats.gen.multicast  = bp->rcv_multicast_frames;
2024         bp->stats.gen.collisions = 0;           /* always zero (0) for FDDI */
2025
2026         /* Get FDDI SMT MIB objects */
2027
2028         bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2029         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2030                 return((struct net_device_stats *) &bp->stats);
2031
2032         /* Fill the bp->stats structure with the SMT MIB object values */
2033
2034         memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2035         bp->stats.smt_op_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2036         bp->stats.smt_hi_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2037         bp->stats.smt_lo_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2038         memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2039         bp->stats.smt_mib_version_id                            = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2040         bp->stats.smt_mac_cts                                           = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2041         bp->stats.smt_non_master_cts                            = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2042         bp->stats.smt_master_cts                                        = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2043         bp->stats.smt_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2044         bp->stats.smt_config_capabilities                       = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2045         bp->stats.smt_config_policy                                     = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2046         bp->stats.smt_connection_policy                         = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2047         bp->stats.smt_t_notify                                          = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2048         bp->stats.smt_stat_rpt_policy                           = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2049         bp->stats.smt_trace_max_expiration                      = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2050         bp->stats.smt_bypass_present                            = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2051         bp->stats.smt_ecm_state                                         = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2052         bp->stats.smt_cf_state                                          = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2053         bp->stats.smt_remote_disconnect_flag            = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2054         bp->stats.smt_station_status                            = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2055         bp->stats.smt_peer_wrap_flag                            = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2056         bp->stats.smt_time_stamp                                        = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2057         bp->stats.smt_transition_time_stamp                     = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2058         bp->stats.mac_frame_status_functions            = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2059         bp->stats.mac_t_max_capability                          = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2060         bp->stats.mac_tvx_capability                            = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2061         bp->stats.mac_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2062         bp->stats.mac_current_path                                      = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2063         memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2064         memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2065         memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2066         memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2067         bp->stats.mac_dup_address_test                          = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2068         bp->stats.mac_requested_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2069         bp->stats.mac_downstream_port_type                      = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2070         memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2071         bp->stats.mac_t_req                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2072         bp->stats.mac_t_neg                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2073         bp->stats.mac_t_max                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2074         bp->stats.mac_tvx_value                                         = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2075         bp->stats.mac_frame_error_threshold                     = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2076         bp->stats.mac_frame_error_ratio                         = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2077         bp->stats.mac_rmt_state                                         = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2078         bp->stats.mac_da_flag                                           = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2079         bp->stats.mac_una_da_flag                                       = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2080         bp->stats.mac_frame_error_flag                          = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2081         bp->stats.mac_ma_unitdata_available                     = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2082         bp->stats.mac_hardware_present                          = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2083         bp->stats.mac_ma_unitdata_enable                        = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2084         bp->stats.path_tvx_lower_bound                          = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2085         bp->stats.path_t_max_lower_bound                        = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2086         bp->stats.path_max_t_req                                        = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2087         memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2088         bp->stats.port_my_type[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2089         bp->stats.port_my_type[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2090         bp->stats.port_neighbor_type[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2091         bp->stats.port_neighbor_type[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2092         bp->stats.port_connection_policies[0]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2093         bp->stats.port_connection_policies[1]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2094         bp->stats.port_mac_indicated[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2095         bp->stats.port_mac_indicated[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2096         bp->stats.port_current_path[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2097         bp->stats.port_current_path[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2098         memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2099         memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2100         bp->stats.port_mac_placement[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2101         bp->stats.port_mac_placement[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2102         bp->stats.port_available_paths[0]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2103         bp->stats.port_available_paths[1]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2104         bp->stats.port_pmd_class[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2105         bp->stats.port_pmd_class[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2106         bp->stats.port_connection_capabilities[0]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2107         bp->stats.port_connection_capabilities[1]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2108         bp->stats.port_bs_flag[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2109         bp->stats.port_bs_flag[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2110         bp->stats.port_ler_estimate[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2111         bp->stats.port_ler_estimate[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2112         bp->stats.port_ler_cutoff[0]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2113         bp->stats.port_ler_cutoff[1]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2114         bp->stats.port_ler_alarm[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2115         bp->stats.port_ler_alarm[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2116         bp->stats.port_connect_state[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2117         bp->stats.port_connect_state[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2118         bp->stats.port_pcm_state[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2119         bp->stats.port_pcm_state[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2120         bp->stats.port_pc_withhold[0]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2121         bp->stats.port_pc_withhold[1]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2122         bp->stats.port_ler_flag[0]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2123         bp->stats.port_ler_flag[1]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2124         bp->stats.port_hardware_present[0]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2125         bp->stats.port_hardware_present[1]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2126
2127         /* Get FDDI counters */
2128
2129         bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2130         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2131                 return((struct net_device_stats *) &bp->stats);
2132
2133         /* Fill the bp->stats structure with the FDDI counter values */
2134
2135         bp->stats.mac_frame_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2136         bp->stats.mac_copied_cts                        = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2137         bp->stats.mac_transmit_cts                      = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2138         bp->stats.mac_error_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2139         bp->stats.mac_lost_cts                          = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2140         bp->stats.port_lct_fail_cts[0]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2141         bp->stats.port_lct_fail_cts[1]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2142         bp->stats.port_lem_reject_cts[0]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2143         bp->stats.port_lem_reject_cts[1]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2144         bp->stats.port_lem_cts[0]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2145         bp->stats.port_lem_cts[1]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2146
2147         return((struct net_device_stats *) &bp->stats);
2148         }
2149
2150
2151 /*
2152  * ==============================
2153  * = dfx_ctl_set_multicast_list =
2154  * ==============================
2155  *
2156  * Overview:
2157  *   Enable/Disable LLC frame promiscuous mode reception
2158  *   on the adapter and/or update multicast address table.
2159  *
2160  * Returns:
2161  *   None
2162  *
2163  * Arguments:
2164  *   dev - pointer to device information
2165  *
2166  * Functional Description:
2167  *   This routine follows a fairly simple algorithm for setting the
2168  *   adapter filters and CAM:
2169  *
2170  *              if IFF_PROMISC flag is set
2171  *                      enable LLC individual/group promiscuous mode
2172  *              else
2173  *                      disable LLC individual/group promiscuous mode
2174  *                      if number of incoming multicast addresses >
2175  *                                      (CAM max size - number of unicast addresses in CAM)
2176  *                              enable LLC group promiscuous mode
2177  *                              set driver-maintained multicast address count to zero
2178  *                      else
2179  *                              disable LLC group promiscuous mode
2180  *                              set driver-maintained multicast address count to incoming count
2181  *                      update adapter CAM
2182  *              update adapter filters
2183  *
2184  * Return Codes:
2185  *   None
2186  *
2187  * Assumptions:
2188  *   Multicast addresses are presented in canonical (LSB) format.
2189  *
2190  * Side Effects:
2191  *   On-board adapter CAM and filters are updated.
2192  */
2193
2194 static void dfx_ctl_set_multicast_list(struct net_device *dev)
2195 {
2196         DFX_board_t *bp = netdev_priv(dev);
2197         int                                     i;                      /* used as index in for loop */
2198         struct dev_mc_list      *dmi;           /* ptr to multicast addr entry */
2199
2200         /* Enable LLC frame promiscuous mode, if necessary */
2201
2202         if (dev->flags & IFF_PROMISC)
2203                 bp->ind_group_prom = PI_FSTATE_K_PASS;          /* Enable LLC ind/group prom mode */
2204
2205         /* Else, update multicast address table */
2206
2207         else
2208                 {
2209                 bp->ind_group_prom = PI_FSTATE_K_BLOCK;         /* Disable LLC ind/group prom mode */
2210                 /*
2211                  * Check whether incoming multicast address count exceeds table size
2212                  *
2213                  * Note: The adapters utilize an on-board 64 entry CAM for
2214                  *       supporting perfect filtering of multicast packets
2215                  *               and bridge functions when adding unicast addresses.
2216                  *               There is no hash function available.  To support
2217                  *               additional multicast addresses, the all multicast
2218                  *               filter (LLC group promiscuous mode) must be enabled.
2219                  *
2220                  *               The firmware reserves two CAM entries for SMT-related
2221                  *               multicast addresses, which leaves 62 entries available.
2222                  *               The following code ensures that we're not being asked
2223                  *               to add more than 62 addresses to the CAM.  If we are,
2224                  *               the driver will enable the all multicast filter.
2225                  *               Should the number of multicast addresses drop below
2226                  *               the high water mark, the filter will be disabled and
2227                  *               perfect filtering will be used.
2228                  */
2229
2230                 if (dev->mc_count > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2231                         {
2232                         bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2233                         bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2234                         }
2235                 else
2236                         {
2237                         bp->group_prom  = PI_FSTATE_K_BLOCK;    /* Disable LLC group prom mode */
2238                         bp->mc_count    = dev->mc_count;                /* Add mc addrs to CAM */
2239                         }
2240
2241                 /* Copy addresses to multicast address table, then update adapter CAM */
2242
2243                 dmi = dev->mc_list;                             /* point to first multicast addr */
2244                 for (i=0; i < bp->mc_count; i++)
2245                         {
2246                         memcpy(&bp->mc_table[i*FDDI_K_ALEN], dmi->dmi_addr, FDDI_K_ALEN);
2247                         dmi = dmi->next;                        /* point to next multicast addr */
2248                         }
2249                 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2250                         {
2251                         DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2252                         }
2253                 else
2254                         {
2255                         DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
2256                         }
2257                 }
2258
2259         /* Update adapter filters */
2260
2261         if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2262                 {
2263                 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2264                 }
2265         else
2266                 {
2267                 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2268                 }
2269         }
2270
2271
2272 /*
2273  * ===========================
2274  * = dfx_ctl_set_mac_address =
2275  * ===========================
2276  *
2277  * Overview:
2278  *   Add node address override (unicast address) to adapter
2279  *   CAM and update dev_addr field in device table.
2280  *
2281  * Returns:
2282  *   None
2283  *
2284  * Arguments:
2285  *   dev  - pointer to device information
2286  *   addr - pointer to sockaddr structure containing unicast address to add
2287  *
2288  * Functional Description:
2289  *   The adapter supports node address overrides by adding one or more
2290  *   unicast addresses to the adapter CAM.  This is similar to adding
2291  *   multicast addresses.  In this routine we'll update the driver and
2292  *   device structures with the new address, then update the adapter CAM
2293  *   to ensure that the adapter will copy and strip frames destined and
2294  *   sourced by that address.
2295  *
2296  * Return Codes:
2297  *   Always returns zero.
2298  *
2299  * Assumptions:
2300  *   The address pointed to by addr->sa_data is a valid unicast
2301  *   address and is presented in canonical (LSB) format.
2302  *
2303  * Side Effects:
2304  *   On-board adapter CAM is updated.  On-board adapter filters
2305  *   may be updated.
2306  */
2307
2308 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2309         {
2310         struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
2311         DFX_board_t *bp = netdev_priv(dev);
2312
2313         /* Copy unicast address to driver-maintained structs and update count */
2314
2315         memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);        /* update device struct */
2316         memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);     /* update driver struct */
2317         bp->uc_count = 1;
2318
2319         /*
2320          * Verify we're not exceeding the CAM size by adding unicast address
2321          *
2322          * Note: It's possible that before entering this routine we've
2323          *       already filled the CAM with 62 multicast addresses.
2324          *               Since we need to place the node address override into
2325          *               the CAM, we have to check to see that we're not
2326          *               exceeding the CAM size.  If we are, we have to enable
2327          *               the LLC group (multicast) promiscuous mode filter as
2328          *               in dfx_ctl_set_multicast_list.
2329          */
2330
2331         if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2332                 {
2333                 bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2334                 bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2335
2336                 /* Update adapter filters */
2337
2338                 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2339                         {
2340                         DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2341                         }
2342                 else
2343                         {
2344                         DBG_printk("%s: Adapter filters updated!\n", dev->name);
2345                         }
2346                 }
2347
2348         /* Update adapter CAM with new unicast address */
2349
2350         if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2351                 {
2352                 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2353                 }
2354         else
2355                 {
2356                 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2357                 }
2358         return(0);                      /* always return zero */
2359         }
2360
2361
2362 /*
2363  * ======================
2364  * = dfx_ctl_update_cam =
2365  * ======================
2366  *
2367  * Overview:
2368  *   Procedure to update adapter CAM (Content Addressable Memory)
2369  *   with desired unicast and multicast address entries.
2370  *
2371  * Returns:
2372  *   Condition code
2373  *
2374  * Arguments:
2375  *   bp - pointer to board information
2376  *
2377  * Functional Description:
2378  *   Updates adapter CAM with current contents of board structure
2379  *   unicast and multicast address tables.  Since there are only 62
2380  *   free entries in CAM, this routine ensures that the command
2381  *   request buffer is not overrun.
2382  *
2383  * Return Codes:
2384  *   DFX_K_SUCCESS - Request succeeded
2385  *   DFX_K_FAILURE - Request failed
2386  *
2387  * Assumptions:
2388  *   All addresses being added (unicast and multicast) are in canonical
2389  *   order.
2390  *
2391  * Side Effects:
2392  *   On-board adapter CAM is updated.
2393  */
2394
2395 static int dfx_ctl_update_cam(DFX_board_t *bp)
2396         {
2397         int                     i;                              /* used as index */
2398         PI_LAN_ADDR     *p_addr;                /* pointer to CAM entry */
2399
2400         /*
2401          * Fill in command request information
2402          *
2403          * Note: Even though both the unicast and multicast address
2404          *       table entries are stored as contiguous 6 byte entries,
2405          *               the firmware address filter set command expects each
2406          *               entry to be two longwords (8 bytes total).  We must be
2407          *               careful to only copy the six bytes of each unicast and
2408          *               multicast table entry into each command entry.  This
2409          *               is also why we must first clear the entire command
2410          *               request buffer.
2411          */
2412
2413         memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);     /* first clear buffer */
2414         bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2415         p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2416
2417         /* Now add unicast addresses to command request buffer, if any */
2418
2419         for (i=0; i < (int)bp->uc_count; i++)
2420                 {
2421                 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2422                         {
2423                         memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2424                         p_addr++;                       /* point to next command entry */
2425                         }
2426                 }
2427
2428         /* Now add multicast addresses to command request buffer, if any */
2429
2430         for (i=0; i < (int)bp->mc_count; i++)
2431                 {
2432                 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2433                         {
2434                         memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2435                         p_addr++;                       /* point to next command entry */
2436                         }
2437                 }
2438
2439         /* Issue command to update adapter CAM, then return */
2440
2441         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2442                 return(DFX_K_FAILURE);
2443         return(DFX_K_SUCCESS);
2444         }
2445
2446
2447 /*
2448  * ==========================
2449  * = dfx_ctl_update_filters =
2450  * ==========================
2451  *
2452  * Overview:
2453  *   Procedure to update adapter filters with desired
2454  *   filter settings.
2455  *
2456  * Returns:
2457  *   Condition code
2458  *
2459  * Arguments:
2460  *   bp - pointer to board information
2461  *
2462  * Functional Description:
2463  *   Enables or disables filter using current filter settings.
2464  *
2465  * Return Codes:
2466  *   DFX_K_SUCCESS - Request succeeded.
2467  *   DFX_K_FAILURE - Request failed.
2468  *
2469  * Assumptions:
2470  *   We must always pass up packets destined to the broadcast
2471  *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2472  *   broadcast filter enabled.
2473  *
2474  * Side Effects:
2475  *   On-board adapter filters are updated.
2476  */
2477
2478 static int dfx_ctl_update_filters(DFX_board_t *bp)
2479         {
2480         int     i = 0;                                  /* used as index */
2481
2482         /* Fill in command request information */
2483
2484         bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2485
2486         /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2487
2488         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_BROADCAST;
2489         bp->cmd_req_virt->filter_set.item[i++].value    = PI_FSTATE_K_PASS;
2490
2491         /* Initialize LLC Individual/Group Promiscuous filter */
2492
2493         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_IND_GROUP_PROM;
2494         bp->cmd_req_virt->filter_set.item[i++].value    = bp->ind_group_prom;
2495
2496         /* Initialize LLC Group Promiscuous filter */
2497
2498         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_GROUP_PROM;
2499         bp->cmd_req_virt->filter_set.item[i++].value    = bp->group_prom;
2500
2501         /* Terminate the item code list */
2502
2503         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_EOL;
2504
2505         /* Issue command to update adapter filters, then return */
2506
2507         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2508                 return(DFX_K_FAILURE);
2509         return(DFX_K_SUCCESS);
2510         }
2511
2512
2513 /*
2514  * ======================
2515  * = dfx_hw_dma_cmd_req =
2516  * ======================
2517  *
2518  * Overview:
2519  *   Sends PDQ DMA command to adapter firmware
2520  *
2521  * Returns:
2522  *   Condition code
2523  *
2524  * Arguments:
2525  *   bp - pointer to board information
2526  *
2527  * Functional Description:
2528  *   The command request and response buffers are posted to the adapter in the manner
2529  *   described in the PDQ Port Specification:
2530  *
2531  *              1. Command Response Buffer is posted to adapter.
2532  *              2. Command Request Buffer is posted to adapter.
2533  *              3. Command Request consumer index is polled until it indicates that request
2534  *         buffer has been DMA'd to adapter.
2535  *              4. Command Response consumer index is polled until it indicates that response
2536  *         buffer has been DMA'd from adapter.
2537  *
2538  *   This ordering ensures that a response buffer is already available for the firmware
2539  *   to use once it's done processing the request buffer.
2540  *
2541  * Return Codes:
2542  *   DFX_K_SUCCESS        - DMA command succeeded
2543  *       DFX_K_OUTSTATE   - Adapter is NOT in proper state
2544  *   DFX_K_HW_TIMEOUT - DMA command timed out
2545  *
2546  * Assumptions:
2547  *   Command request buffer has already been filled with desired DMA command.
2548  *
2549  * Side Effects:
2550  *   None
2551  */
2552
2553 static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2554         {
2555         int status;                     /* adapter status */
2556         int timeout_cnt;        /* used in for loops */
2557
2558         /* Make sure the adapter is in a state that we can issue the DMA command in */
2559
2560         status = dfx_hw_adap_state_rd(bp);
2561         if ((status == PI_STATE_K_RESET)                ||
2562                 (status == PI_STATE_K_HALTED)           ||
2563                 (status == PI_STATE_K_DMA_UNAVAIL)      ||
2564                 (status == PI_STATE_K_UPGRADE))
2565                 return(DFX_K_OUTSTATE);
2566
2567         /* Put response buffer on the command response queue */
2568
2569         bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2570                         ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2571         bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2572
2573         /* Bump (and wrap) the producer index and write out to register */
2574
2575         bp->cmd_rsp_reg.index.prod += 1;
2576         bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2577         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2578
2579         /* Put request buffer on the command request queue */
2580
2581         bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2582                         PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2583         bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2584
2585         /* Bump (and wrap) the producer index and write out to register */
2586
2587         bp->cmd_req_reg.index.prod += 1;
2588         bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2589         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2590
2591         /*
2592          * Here we wait for the command request consumer index to be equal
2593          * to the producer, indicating that the adapter has DMAed the request.
2594          */
2595
2596         for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2597                 {
2598                 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2599                         break;
2600                 udelay(100);                    /* wait for 100 microseconds */
2601                 }
2602         if (timeout_cnt == 0)
2603                 return(DFX_K_HW_TIMEOUT);
2604
2605         /* Bump (and wrap) the completion index and write out to register */
2606
2607         bp->cmd_req_reg.index.comp += 1;
2608         bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2609         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2610
2611         /*
2612          * Here we wait for the command response consumer index to be equal
2613          * to the producer, indicating that the adapter has DMAed the response.
2614          */
2615
2616         for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2617                 {
2618                 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2619                         break;
2620                 udelay(100);                    /* wait for 100 microseconds */
2621                 }
2622         if (timeout_cnt == 0)
2623                 return(DFX_K_HW_TIMEOUT);
2624
2625         /* Bump (and wrap) the completion index and write out to register */
2626
2627         bp->cmd_rsp_reg.index.comp += 1;
2628         bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2629         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2630         return(DFX_K_SUCCESS);
2631         }
2632
2633
2634 /*
2635  * ========================
2636  * = dfx_hw_port_ctrl_req =
2637  * ========================
2638  *
2639  * Overview:
2640  *   Sends PDQ port control command to adapter firmware
2641  *
2642  * Returns:
2643  *   Host data register value in host_data if ptr is not NULL
2644  *
2645  * Arguments:
2646  *   bp                 - pointer to board information
2647  *       command        - port control command
2648  *       data_a         - port data A register value
2649  *       data_b         - port data B register value
2650  *       host_data      - ptr to host data register value
2651  *
2652  * Functional Description:
2653  *   Send generic port control command to adapter by writing
2654  *   to various PDQ port registers, then polling for completion.
2655  *
2656  * Return Codes:
2657  *   DFX_K_SUCCESS        - port control command succeeded
2658  *   DFX_K_HW_TIMEOUT - port control command timed out
2659  *
2660  * Assumptions:
2661  *   None
2662  *
2663  * Side Effects:
2664  *   None
2665  */
2666
2667 static int dfx_hw_port_ctrl_req(
2668         DFX_board_t     *bp,
2669         PI_UINT32       command,
2670         PI_UINT32       data_a,
2671         PI_UINT32       data_b,
2672         PI_UINT32       *host_data
2673         )
2674
2675         {
2676         PI_UINT32       port_cmd;               /* Port Control command register value */
2677         int                     timeout_cnt;    /* used in for loops */
2678
2679         /* Set Command Error bit in command longword */
2680
2681         port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2682
2683         /* Issue port command to the adapter */
2684
2685         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2686         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2687         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2688
2689         /* Now wait for command to complete */
2690
2691         if (command == PI_PCTRL_M_BLAST_FLASH)
2692                 timeout_cnt = 600000;   /* set command timeout count to 60 seconds */
2693         else
2694                 timeout_cnt = 20000;    /* set command timeout count to 2 seconds */
2695
2696         for (; timeout_cnt > 0; timeout_cnt--)
2697                 {
2698                 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2699                 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2700                         break;
2701                 udelay(100);                    /* wait for 100 microseconds */
2702                 }
2703         if (timeout_cnt == 0)
2704                 return(DFX_K_HW_TIMEOUT);
2705
2706         /*
2707          * If the address of host_data is non-zero, assume caller has supplied a
2708          * non NULL pointer, and return the contents of the HOST_DATA register in
2709          * it.
2710          */
2711
2712         if (host_data != NULL)
2713                 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2714         return(DFX_K_SUCCESS);
2715         }
2716
2717
2718 /*
2719  * =====================
2720  * = dfx_hw_adap_reset =
2721  * =====================
2722  *
2723  * Overview:
2724  *   Resets adapter
2725  *
2726  * Returns:
2727  *   None
2728  *
2729  * Arguments:
2730  *   bp   - pointer to board information
2731  *   type - type of reset to perform
2732  *
2733  * Functional Description:
2734  *   Issue soft reset to adapter by writing to PDQ Port Reset
2735  *   register.  Use incoming reset type to tell adapter what
2736  *   kind of reset operation to perform.
2737  *
2738  * Return Codes:
2739  *   None
2740  *
2741  * Assumptions:
2742  *   This routine merely issues a soft reset to the adapter.
2743  *   It is expected that after this routine returns, the caller
2744  *   will appropriately poll the Port Status register for the
2745  *   adapter to enter the proper state.
2746  *
2747  * Side Effects:
2748  *   Internal adapter registers are cleared.
2749  */
2750
2751 static void dfx_hw_adap_reset(
2752         DFX_board_t     *bp,
2753         PI_UINT32       type
2754         )
2755
2756         {
2757         /* Set Reset type and assert reset */
2758
2759         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);        /* tell adapter type of reset */
2760         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2761
2762         /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2763
2764         udelay(20);
2765
2766         /* Deassert reset */
2767
2768         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2769         }
2770
2771
2772 /*
2773  * ========================
2774  * = dfx_hw_adap_state_rd =
2775  * ========================
2776  *
2777  * Overview:
2778  *   Returns current adapter state
2779  *
2780  * Returns:
2781  *   Adapter state per PDQ Port Specification
2782  *
2783  * Arguments:
2784  *   bp - pointer to board information
2785  *
2786  * Functional Description:
2787  *   Reads PDQ Port Status register and returns adapter state.
2788  *
2789  * Return Codes:
2790  *   None
2791  *
2792  * Assumptions:
2793  *   None
2794  *
2795  * Side Effects:
2796  *   None
2797  */
2798
2799 static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2800         {
2801         PI_UINT32 port_status;          /* Port Status register value */
2802
2803         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2804         return((port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE);
2805         }
2806
2807
2808 /*
2809  * =====================
2810  * = dfx_hw_dma_uninit =
2811  * =====================
2812  *
2813  * Overview:
2814  *   Brings adapter to DMA_UNAVAILABLE state
2815  *
2816  * Returns:
2817  *   Condition code
2818  *
2819  * Arguments:
2820  *   bp   - pointer to board information
2821  *   type - type of reset to perform
2822  *
2823  * Functional Description:
2824  *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
2825  *              1. Set reset type bit in Port Data A Register then reset adapter.
2826  *              2. Check that adapter is in DMA_UNAVAILABLE state.
2827  *
2828  * Return Codes:
2829  *   DFX_K_SUCCESS        - adapter is in DMA_UNAVAILABLE state
2830  *   DFX_K_HW_TIMEOUT - adapter did not reset properly
2831  *
2832  * Assumptions:
2833  *   None
2834  *
2835  * Side Effects:
2836  *   Internal adapter registers are cleared.
2837  */
2838
2839 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2840         {
2841         int timeout_cnt;        /* used in for loops */
2842
2843         /* Set reset type bit and reset adapter */
2844
2845         dfx_hw_adap_reset(bp, type);
2846
2847         /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2848
2849         for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2850                 {
2851                 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2852                         break;
2853                 udelay(100);                                    /* wait for 100 microseconds */
2854                 }
2855         if (timeout_cnt == 0)
2856                 return(DFX_K_HW_TIMEOUT);
2857         return(DFX_K_SUCCESS);
2858         }
2859
2860 /*
2861  *      Align an sk_buff to a boundary power of 2
2862  *
2863  */
2864
2865 static void my_skb_align(struct sk_buff *skb, int n)
2866 {
2867         unsigned long x = (unsigned long)skb->data;
2868         unsigned long v;
2869
2870         v = ALIGN(x, n);        /* Where we want to be */
2871
2872         skb_reserve(skb, v - x);
2873 }
2874
2875
2876 /*
2877  * ================
2878  * = dfx_rcv_init =
2879  * ================
2880  *
2881  * Overview:
2882  *   Produces buffers to adapter LLC Host receive descriptor block
2883  *
2884  * Returns:
2885  *   None
2886  *
2887  * Arguments:
2888  *   bp - pointer to board information
2889  *   get_buffers - non-zero if buffers to be allocated
2890  *
2891  * Functional Description:
2892  *   This routine can be called during dfx_adap_init() or during an adapter
2893  *       reset.  It initializes the descriptor block and produces all allocated
2894  *   LLC Host queue receive buffers.
2895  *
2896  * Return Codes:
2897  *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
2898  *   dynamic buffer allocation). If the buffer allocation failed, the
2899  *   already allocated buffers will not be released and the caller should do
2900  *   this.
2901  *
2902  * Assumptions:
2903  *   The PDQ has been reset and the adapter and driver maintained Type 2
2904  *   register indices are cleared.
2905  *
2906  * Side Effects:
2907  *   Receive buffers are posted to the adapter LLC queue and the adapter
2908  *   is notified.
2909  */
2910
2911 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2912         {
2913         int     i, j;                                   /* used in for loop */
2914
2915         /*
2916          *  Since each receive buffer is a single fragment of same length, initialize
2917          *  first longword in each receive descriptor for entire LLC Host descriptor
2918          *  block.  Also initialize second longword in each receive descriptor with
2919          *  physical address of receive buffer.  We'll always allocate receive
2920          *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2921          *  block and produce new receive buffers by simply updating the receive
2922          *  producer index.
2923          *
2924          *      Assumptions:
2925          *              To support all shipping versions of PDQ, the receive buffer size
2926          *              must be mod 128 in length and the physical address must be 128 byte
2927          *              aligned.  In other words, bits 0-6 of the length and address must
2928          *              be zero for the following descriptor field entries to be correct on
2929          *              all PDQ-based boards.  We guaranteed both requirements during
2930          *              driver initialization when we allocated memory for the receive buffers.
2931          */
2932
2933         if (get_buffers) {
2934 #ifdef DYNAMIC_BUFFERS
2935         for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2936                 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2937                 {
2938                         struct sk_buff *newskb = __dev_alloc_skb(NEW_SKB_SIZE, GFP_NOIO);
2939                         if (!newskb)
2940                                 return -ENOMEM;
2941                         bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2942                                 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2943                         /*
2944                          * align to 128 bytes for compatibility with
2945                          * the old EISA boards.
2946                          */
2947
2948                         my_skb_align(newskb, 128);
2949                         bp->descr_block_virt->rcv_data[i + j].long_1 =
2950                                 (u32)dma_map_single(bp->bus_dev, newskb->data,
2951                                                     NEW_SKB_SIZE,
2952                                                     DMA_FROM_DEVICE);
2953                         /*
2954                          * p_rcv_buff_va is only used inside the
2955                          * kernel so we put the skb pointer here.
2956                          */
2957                         bp->p_rcv_buff_va[i+j] = (char *) newskb;
2958                 }
2959 #else
2960         for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2961                 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2962                         {
2963                         bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2964                                 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2965                         bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
2966                         bp->p_rcv_buff_va[i+j] = (char *) (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
2967                         }
2968 #endif
2969         }
2970
2971         /* Update receive producer and Type 2 register */
2972
2973         bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2974         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2975         return 0;
2976         }
2977
2978
2979 /*
2980  * =========================
2981  * = dfx_rcv_queue_process =
2982  * =========================
2983  *
2984  * Overview:
2985  *   Process received LLC frames.
2986  *
2987  * Returns:
2988  *   None
2989  *
2990  * Arguments:
2991  *   bp - pointer to board information
2992  *
2993  * Functional Description:
2994  *   Received LLC frames are processed until there are no more consumed frames.
2995  *   Once all frames are processed, the receive buffers are returned to the
2996  *   adapter.  Note that this algorithm fixes the length of time that can be spent
2997  *   in this routine, because there are a fixed number of receive buffers to
2998  *   process and buffers are not produced until this routine exits and returns
2999  *   to the ISR.
3000  *
3001  * Return Codes:
3002  *   None
3003  *
3004  * Assumptions:
3005  *   None
3006  *
3007  * Side Effects:
3008  *   None
3009  */
3010
3011 static void dfx_rcv_queue_process(
3012         DFX_board_t *bp
3013         )
3014
3015         {
3016         PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3017         char                            *p_buff;                        /* ptr to start of packet receive buffer (FMC descriptor) */
3018         u32                                     descr, pkt_len;         /* FMC descriptor field and packet length */
3019         struct sk_buff          *skb;                           /* pointer to a sk_buff to hold incoming packet data */
3020
3021         /* Service all consumed LLC receive frames */
3022
3023         p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3024         while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3025                 {
3026                 /* Process any errors */
3027
3028                 int entry;
3029
3030                 entry = bp->rcv_xmt_reg.index.rcv_comp;
3031 #ifdef DYNAMIC_BUFFERS
3032                 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3033 #else
3034                 p_buff = (char *) bp->p_rcv_buff_va[entry];
3035 #endif
3036                 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3037
3038                 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3039                         {
3040                         if (descr & PI_FMC_DESCR_M_RCC_CRC)
3041                                 bp->rcv_crc_errors++;
3042                         else
3043                                 bp->rcv_frame_status_errors++;
3044                         }
3045                 else
3046                 {
3047                         int rx_in_place = 0;
3048
3049                         /* The frame was received without errors - verify packet length */
3050
3051                         pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3052                         pkt_len -= 4;                           /* subtract 4 byte CRC */
3053                         if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3054                                 bp->rcv_length_errors++;
3055                         else{
3056 #ifdef DYNAMIC_BUFFERS
3057                                 if (pkt_len > SKBUFF_RX_COPYBREAK) {
3058                                         struct sk_buff *newskb;
3059
3060                                         newskb = dev_alloc_skb(NEW_SKB_SIZE);
3061                                         if (newskb){
3062                                                 rx_in_place = 1;
3063
3064                                                 my_skb_align(newskb, 128);
3065                                                 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3066                                                 dma_unmap_single(bp->bus_dev,
3067                                                         bp->descr_block_virt->rcv_data[entry].long_1,
3068                                                         NEW_SKB_SIZE,
3069                                                         DMA_FROM_DEVICE);
3070                                                 skb_reserve(skb, RCV_BUFF_K_PADDING);
3071                                                 bp->p_rcv_buff_va[entry] = (char *)newskb;
3072                                                 bp->descr_block_virt->rcv_data[entry].long_1 =
3073                                                         (u32)dma_map_single(bp->bus_dev,
3074                                                                 newskb->data,
3075                                                                 NEW_SKB_SIZE,
3076                                                                 DMA_FROM_DEVICE);
3077                                         } else
3078                                                 skb = NULL;
3079                                 } else
3080 #endif
3081                                         skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */
3082                                 if (skb == NULL)
3083                                         {
3084                                         printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
3085                                         bp->rcv_discards++;
3086                                         break;
3087                                         }
3088                                 else {
3089 #ifndef DYNAMIC_BUFFERS
3090                                         if (! rx_in_place)
3091 #endif
3092                                         {
3093                                                 /* Receive buffer allocated, pass receive packet up */
3094
3095                                                 skb_copy_to_linear_data(skb,
3096                                                                p_buff + RCV_BUFF_K_PADDING,
3097                                                                pkt_len + 3);
3098                                         }
3099
3100                                         skb_reserve(skb,3);             /* adjust data field so that it points to FC byte */
3101                                         skb_put(skb, pkt_len);          /* pass up packet length, NOT including CRC */
3102                                         skb->protocol = fddi_type_trans(skb, bp->dev);
3103                                         bp->rcv_total_bytes += skb->len;
3104                                         netif_rx(skb);
3105
3106                                         /* Update the rcv counters */
3107                                         bp->dev->last_rx = jiffies;
3108                                         bp->rcv_total_frames++;
3109                                         if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3110                                                 bp->rcv_multicast_frames++;
3111                                 }
3112                         }
3113                         }
3114
3115                 /*
3116                  * Advance the producer (for recycling) and advance the completion
3117                  * (for servicing received frames).  Note that it is okay to
3118                  * advance the producer without checking that it passes the
3119                  * completion index because they are both advanced at the same
3120                  * rate.
3121                  */
3122
3123                 bp->rcv_xmt_reg.index.rcv_prod += 1;
3124                 bp->rcv_xmt_reg.index.rcv_comp += 1;
3125                 }
3126         }
3127
3128
3129 /*
3130  * =====================
3131  * = dfx_xmt_queue_pkt =
3132  * =====================
3133  *
3134  * Overview:
3135  *   Queues packets for transmission
3136  *
3137  * Returns:
3138  *   Condition code
3139  *
3140  * Arguments:
3141  *   skb - pointer to sk_buff to queue for transmission
3142  *   dev - pointer to device information
3143  *
3144  * Functional Description:
3145  *   Here we assume that an incoming skb transmit request
3146  *   is contained in a single physically contiguous buffer
3147  *   in which the virtual address of the start of packet
3148  *   (skb->data) can be converted to a physical address
3149  *   by using pci_map_single().
3150  *
3151  *   Since the adapter architecture requires a three byte
3152  *   packet request header to prepend the start of packet,
3153  *   we'll write the three byte field immediately prior to
3154  *   the FC byte.  This assumption is valid because we've
3155  *   ensured that dev->hard_header_len includes three pad
3156  *   bytes.  By posting a single fragment to the adapter,
3157  *   we'll reduce the number of descriptor fetches and
3158  *   bus traffic needed to send the request.
3159  *
3160  *   Also, we can't free the skb until after it's been DMA'd
3161  *   out by the adapter, so we'll queue it in the driver and
3162  *   return it in dfx_xmt_done.
3163  *
3164  * Return Codes:
3165  *   0 - driver queued packet, link is unavailable, or skbuff was bad
3166  *       1 - caller should requeue the sk_buff for later transmission
3167  *
3168  * Assumptions:
3169  *       First and foremost, we assume the incoming skb pointer
3170  *   is NOT NULL and is pointing to a valid sk_buff structure.
3171  *
3172  *   The outgoing packet is complete, starting with the
3173  *   frame control byte including the last byte of data,
3174  *   but NOT including the 4 byte CRC.  We'll let the
3175  *   adapter hardware generate and append the CRC.
3176  *
3177  *   The entire packet is stored in one physically
3178  *   contiguous buffer which is not cached and whose
3179  *   32-bit physical address can be determined.
3180  *
3181  *   It's vital that this routine is NOT reentered for the
3182  *   same board and that the OS is not in another section of
3183  *   code (eg. dfx_int_common) for the same board on a
3184  *   different thread.
3185  *
3186  * Side Effects:
3187  *   None
3188  */
3189
3190 static int dfx_xmt_queue_pkt(
3191         struct sk_buff  *skb,
3192         struct net_device       *dev
3193         )
3194
3195         {
3196         DFX_board_t             *bp = netdev_priv(dev);
3197         u8                      prod;                           /* local transmit producer index */
3198         PI_XMT_DESCR            *p_xmt_descr;           /* ptr to transmit descriptor block entry */
3199         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3200         unsigned long           flags;
3201
3202         netif_stop_queue(dev);
3203
3204         /*
3205          * Verify that incoming transmit request is OK
3206          *
3207          * Note: The packet size check is consistent with other
3208          *               Linux device drivers, although the correct packet
3209          *               size should be verified before calling the
3210          *               transmit routine.
3211          */
3212
3213         if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3214         {
3215                 printk("%s: Invalid packet length - %u bytes\n",
3216                         dev->name, skb->len);
3217                 bp->xmt_length_errors++;                /* bump error counter */
3218                 netif_wake_queue(dev);
3219                 dev_kfree_skb(skb);
3220                 return(0);                              /* return "success" */
3221         }
3222         /*
3223          * See if adapter link is available, if not, free buffer
3224          *
3225          * Note: If the link isn't available, free buffer and return 0
3226          *               rather than tell the upper layer to requeue the packet.
3227          *               The methodology here is that by the time the link
3228          *               becomes available, the packet to be sent will be
3229          *               fairly stale.  By simply dropping the packet, the
3230          *               higher layer protocols will eventually time out
3231          *               waiting for response packets which it won't receive.
3232          */
3233
3234         if (bp->link_available == PI_K_FALSE)
3235                 {
3236                 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)  /* is link really available? */
3237                         bp->link_available = PI_K_TRUE;         /* if so, set flag and continue */
3238                 else
3239                         {
3240                         bp->xmt_discards++;                                     /* bump error counter */
3241                         dev_kfree_skb(skb);             /* free sk_buff now */
3242                         netif_wake_queue(dev);
3243                         return(0);                                                      /* return "success" */
3244                         }
3245                 }
3246
3247         spin_lock_irqsave(&bp->lock, flags);
3248
3249         /* Get the current producer and the next free xmt data descriptor */
3250
3251         prod            = bp->rcv_xmt_reg.index.xmt_prod;
3252         p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3253
3254         /*
3255          * Get pointer to auxiliary queue entry to contain information
3256          * for this packet.
3257          *
3258          * Note: The current xmt producer index will become the
3259          *       current xmt completion index when we complete this
3260          *       packet later on.  So, we'll get the pointer to the
3261          *       next auxiliary queue entry now before we bump the
3262          *       producer index.
3263          */
3264
3265         p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);     /* also bump producer index */
3266
3267         /* Write the three PRH bytes immediately before the FC byte */
3268
3269         skb_push(skb,3);
3270         skb->data[0] = DFX_PRH0_BYTE;   /* these byte values are defined */
3271         skb->data[1] = DFX_PRH1_BYTE;   /* in the Motorola FDDI MAC chip */
3272         skb->data[2] = DFX_PRH2_BYTE;   /* specification */
3273
3274         /*
3275          * Write the descriptor with buffer info and bump producer
3276          *
3277          * Note: Since we need to start DMA from the packet request
3278          *               header, we'll add 3 bytes to the DMA buffer length,
3279          *               and we'll determine the physical address of the
3280          *               buffer from the PRH, not skb->data.
3281          *
3282          * Assumptions:
3283          *               1. Packet starts with the frame control (FC) byte
3284          *                  at skb->data.
3285          *               2. The 4-byte CRC is not appended to the buffer or
3286          *                      included in the length.
3287          *               3. Packet length (skb->len) is from FC to end of
3288          *                      data, inclusive.
3289          *               4. The packet length does not exceed the maximum
3290          *                      FDDI LLC frame length of 4491 bytes.
3291          *               5. The entire packet is contained in a physically
3292          *                      contiguous, non-cached, locked memory space
3293          *                      comprised of a single buffer pointed to by
3294          *                      skb->data.
3295          *               6. The physical address of the start of packet
3296          *                      can be determined from the virtual address
3297          *                      by using pci_map_single() and is only 32-bits
3298          *                      wide.
3299          */
3300
3301         p_xmt_descr->long_0     = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3302         p_xmt_descr->long_1 = (u32)dma_map_single(bp->bus_dev, skb->data,
3303                                                   skb->len, DMA_TO_DEVICE);
3304
3305         /*
3306          * Verify that descriptor is actually available
3307          *
3308          * Note: If descriptor isn't available, return 1 which tells
3309          *       the upper layer to requeue the packet for later
3310          *       transmission.
3311          *
3312          *       We need to ensure that the producer never reaches the
3313          *       completion, except to indicate that the queue is empty.
3314          */
3315
3316         if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3317         {
3318                 skb_pull(skb,3);
3319                 spin_unlock_irqrestore(&bp->lock, flags);
3320                 return(1);                      /* requeue packet for later */
3321         }
3322
3323         /*
3324          * Save info for this packet for xmt done indication routine
3325          *
3326          * Normally, we'd save the producer index in the p_xmt_drv_descr
3327          * structure so that we'd have it handy when we complete this
3328          * packet later (in dfx_xmt_done).  However, since the current
3329          * transmit architecture guarantees a single fragment for the
3330          * entire packet, we can simply bump the completion index by
3331          * one (1) for each completed packet.
3332          *
3333          * Note: If this assumption changes and we're presented with
3334          *       an inconsistent number of transmit fragments for packet
3335          *       data, we'll need to modify this code to save the current
3336          *       transmit producer index.
3337          */
3338
3339         p_xmt_drv_descr->p_skb = skb;
3340
3341         /* Update Type 2 register */
3342
3343         bp->rcv_xmt_reg.index.xmt_prod = prod;
3344         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3345         spin_unlock_irqrestore(&bp->lock, flags);
3346         netif_wake_queue(dev);
3347         return(0);                                                      /* packet queued to adapter */
3348         }
3349
3350
3351 /*
3352  * ================
3353  * = dfx_xmt_done =
3354  * ================
3355  *
3356  * Overview:
3357  *   Processes all frames that have been transmitted.
3358  *
3359  * Returns:
3360  *   None
3361  *
3362  * Arguments:
3363  *   bp - pointer to board information
3364  *
3365  * Functional Description:
3366  *   For all consumed transmit descriptors that have not
3367  *   yet been completed, we'll free the skb we were holding
3368  *   onto using dev_kfree_skb and bump the appropriate
3369  *   counters.
3370  *
3371  * Return Codes:
3372  *   None
3373  *
3374  * Assumptions:
3375  *   The Type 2 register is not updated in this routine.  It is
3376  *   assumed that it will be updated in the ISR when dfx_xmt_done
3377  *   returns.
3378  *
3379  * Side Effects:
3380  *   None
3381  */
3382
3383 static int dfx_xmt_done(DFX_board_t *bp)
3384         {
3385         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3386         PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3387         u8                      comp;                   /* local transmit completion index */
3388         int                     freed = 0;              /* buffers freed */
3389
3390         /* Service all consumed transmit frames */
3391
3392         p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3393         while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3394                 {
3395                 /* Get pointer to the transmit driver descriptor block information */
3396
3397                 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3398
3399                 /* Increment transmit counters */
3400
3401                 bp->xmt_total_frames++;
3402                 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3403
3404                 /* Return skb to operating system */
3405                 comp = bp->rcv_xmt_reg.index.xmt_comp;
3406                 dma_unmap_single(bp->bus_dev,
3407                                  bp->descr_block_virt->xmt_data[comp].long_1,
3408                                  p_xmt_drv_descr->p_skb->len,
3409                                  DMA_TO_DEVICE);
3410                 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3411
3412                 /*
3413                  * Move to start of next packet by updating completion index
3414                  *
3415                  * Here we assume that a transmit packet request is always
3416                  * serviced by posting one fragment.  We can therefore
3417                  * simplify the completion code by incrementing the
3418                  * completion index by one.  This code will need to be
3419                  * modified if this assumption changes.  See comments
3420                  * in dfx_xmt_queue_pkt for more details.
3421                  */
3422
3423                 bp->rcv_xmt_reg.index.xmt_comp += 1;
3424                 freed++;
3425                 }
3426         return freed;
3427         }
3428
3429
3430 /*
3431  * =================
3432  * = dfx_rcv_flush =
3433  * =================
3434  *
3435  * Overview:
3436  *   Remove all skb's in the receive ring.
3437  *
3438  * Returns:
3439  *   None
3440  *
3441  * Arguments:
3442  *   bp - pointer to board information
3443  *
3444  * Functional Description:
3445  *   Free's all the dynamically allocated skb's that are
3446  *   currently attached to the device receive ring. This
3447  *   function is typically only used when the device is
3448  *   initialized or reinitialized.
3449  *
3450  * Return Codes:
3451  *   None
3452  *
3453  * Side Effects:
3454  *   None
3455  */
3456 #ifdef DYNAMIC_BUFFERS
3457 static void dfx_rcv_flush( DFX_board_t *bp )
3458         {
3459         int i, j;
3460
3461         for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3462                 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3463                 {
3464                         struct sk_buff *skb;
3465                         skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3466                         if (skb)
3467                                 dev_kfree_skb(skb);
3468                         bp->p_rcv_buff_va[i+j] = NULL;
3469                 }
3470
3471         }
3472 #else
3473 static inline void dfx_rcv_flush( DFX_board_t *bp )
3474 {
3475 }
3476 #endif /* DYNAMIC_BUFFERS */
3477
3478 /*
3479  * =================
3480  * = dfx_xmt_flush =
3481  * =================
3482  *
3483  * Overview:
3484  *   Processes all frames whether they've been transmitted
3485  *   or not.
3486  *
3487  * Returns:
3488  *   None
3489  *
3490  * Arguments:
3491  *   bp - pointer to board information
3492  *
3493  * Functional Description:
3494  *   For all produced transmit descriptors that have not
3495  *   yet been completed, we'll free the skb we were holding
3496  *   onto using dev_kfree_skb and bump the appropriate
3497  *   counters.  Of course, it's possible that some of
3498  *   these transmit requests actually did go out, but we
3499  *   won't make that distinction here.  Finally, we'll
3500  *   update the consumer index to match the producer.
3501  *
3502  * Return Codes:
3503  *   None
3504  *
3505  * Assumptions:
3506  *   This routine does NOT update the Type 2 register.  It
3507  *   is assumed that this routine is being called during a
3508  *   transmit flush interrupt, or a shutdown or close routine.
3509  *
3510  * Side Effects:
3511  *   None
3512  */
3513
3514 static void dfx_xmt_flush( DFX_board_t *bp )
3515         {
3516         u32                     prod_cons;              /* rcv/xmt consumer block longword */
3517         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3518         u8                      comp;                   /* local transmit completion index */
3519
3520         /* Flush all outstanding transmit frames */
3521
3522         while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3523                 {
3524                 /* Get pointer to the transmit driver descriptor block information */
3525
3526                 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3527
3528                 /* Return skb to operating system */
3529                 comp = bp->rcv_xmt_reg.index.xmt_comp;
3530                 dma_unmap_single(bp->bus_dev,
3531                                  bp->descr_block_virt->xmt_data[comp].long_1,
3532                                  p_xmt_drv_descr->p_skb->len,
3533                                  DMA_TO_DEVICE);
3534                 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3535
3536                 /* Increment transmit error counter */
3537
3538                 bp->xmt_discards++;
3539
3540                 /*
3541                  * Move to start of next packet by updating completion index
3542                  *
3543                  * Here we assume that a transmit packet request is always
3544                  * serviced by posting one fragment.  We can therefore
3545                  * simplify the completion code by incrementing the
3546                  * completion index by one.  This code will need to be
3547                  * modified if this assumption changes.  See comments
3548                  * in dfx_xmt_queue_pkt for more details.
3549                  */
3550
3551                 bp->rcv_xmt_reg.index.xmt_comp += 1;
3552                 }
3553
3554         /* Update the transmit consumer index in the consumer block */
3555
3556         prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3557         prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3558         bp->cons_block_virt->xmt_rcv_data = prod_cons;
3559         }
3560
3561 /*
3562  * ==================
3563  * = dfx_unregister =
3564  * ==================
3565  *
3566  * Overview:
3567  *   Shuts down an FDDI controller
3568  *
3569  * Returns:
3570  *   Condition code
3571  *
3572  * Arguments:
3573  *   bdev - pointer to device information
3574  *
3575  * Functional Description:
3576  *
3577  * Return Codes:
3578  *   None
3579  *
3580  * Assumptions:
3581  *   It compiles so it should work :-( (PCI cards do :-)
3582  *
3583  * Side Effects:
3584  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
3585  *   freed.
3586  */
3587 static void __devexit dfx_unregister(struct device *bdev)
3588 {
3589         struct net_device *dev = dev_get_drvdata(bdev);
3590         DFX_board_t *bp = netdev_priv(dev);
3591         int dfx_bus_pci = DFX_BUS_PCI(bdev);
3592         int dfx_bus_tc = DFX_BUS_TC(bdev);
3593         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3594         resource_size_t bar_start = 0;          /* pointer to port */
3595         resource_size_t bar_len = 0;            /* resource length */
3596         int             alloc_size;             /* total buffer size used */
3597
3598         unregister_netdev(dev);
3599
3600         alloc_size = sizeof(PI_DESCR_BLOCK) +
3601                      PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3602 #ifndef DYNAMIC_BUFFERS
3603                      (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3604 #endif
3605                      sizeof(PI_CONSUMER_BLOCK) +
3606                      (PI_ALIGN_K_DESC_BLK - 1);
3607         if (bp->kmalloced)
3608                 dma_free_coherent(bdev, alloc_size,
3609                                   bp->kmalloced, bp->kmalloced_dma);
3610
3611         dfx_bus_uninit(dev);
3612
3613         dfx_get_bars(bdev, &bar_start, &bar_len);
3614         if (dfx_use_mmio) {
3615                 iounmap(bp->base.mem);
3616                 release_mem_region(bar_start, bar_len);
3617         } else
3618                 release_region(bar_start, bar_len);
3619
3620         if (dfx_bus_pci)
3621                 pci_disable_device(to_pci_dev(bdev));
3622
3623         free_netdev(dev);
3624 }
3625
3626
3627 static int __devinit __unused dfx_dev_register(struct device *);
3628 static int __devexit __unused dfx_dev_unregister(struct device *);
3629
3630 #ifdef CONFIG_PCI
3631 static int __devinit dfx_pci_register(struct pci_dev *,
3632                                       const struct pci_device_id *);
3633 static void __devexit dfx_pci_unregister(struct pci_dev *);
3634
3635 static struct pci_device_id dfx_pci_table[] = {
3636         { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3637         { }
3638 };
3639 MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3640
3641 static struct pci_driver dfx_pci_driver = {
3642         .name           = "defxx",
3643         .id_table       = dfx_pci_table,
3644         .probe          = dfx_pci_register,
3645         .remove         = __devexit_p(dfx_pci_unregister),
3646 };
3647
3648 static __devinit int dfx_pci_register(struct pci_dev *pdev,
3649                                       const struct pci_device_id *ent)
3650 {
3651         return dfx_register(&pdev->dev);
3652 }
3653
3654 static void __devexit dfx_pci_unregister(struct pci_dev *pdev)
3655 {
3656         dfx_unregister(&pdev->dev);
3657 }
3658 #endif /* CONFIG_PCI */
3659
3660 #ifdef CONFIG_EISA
3661 static struct eisa_device_id dfx_eisa_table[] = {
3662         { "DEC3001", DEFEA_PROD_ID_1 },
3663         { "DEC3002", DEFEA_PROD_ID_2 },
3664         { "DEC3003", DEFEA_PROD_ID_3 },
3665         { "DEC3004", DEFEA_PROD_ID_4 },
3666         { }
3667 };
3668 MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3669
3670 static struct eisa_driver dfx_eisa_driver = {
3671         .id_table       = dfx_eisa_table,
3672         .driver         = {
3673                 .name   = "defxx",
3674                 .bus    = &eisa_bus_type,
3675                 .probe  = dfx_dev_register,
3676                 .remove = __devexit_p(dfx_dev_unregister),
3677         },
3678 };
3679 #endif /* CONFIG_EISA */
3680
3681 #ifdef CONFIG_TC
3682 static struct tc_device_id const dfx_tc_table[] = {
3683         { "DEC     ", "PMAF-FA " },
3684         { "DEC     ", "PMAF-FD " },
3685         { "DEC     ", "PMAF-FS " },
3686         { "DEC     ", "PMAF-FU " },
3687         { }
3688 };
3689 MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3690
3691 static struct tc_driver dfx_tc_driver = {
3692         .id_table       = dfx_tc_table,
3693         .driver         = {
3694                 .name   = "defxx",
3695                 .bus    = &tc_bus_type,
3696                 .probe  = dfx_dev_register,
3697                 .remove = __devexit_p(dfx_dev_unregister),
3698         },
3699 };
3700 #endif /* CONFIG_TC */
3701
3702 static int __devinit __unused dfx_dev_register(struct device *dev)
3703 {
3704         int status;
3705
3706         status = dfx_register(dev);
3707         if (!status)
3708                 get_device(dev);
3709         return status;
3710 }
3711
3712 static int __devexit __unused dfx_dev_unregister(struct device *dev)
3713 {
3714         put_device(dev);
3715         dfx_unregister(dev);
3716         return 0;
3717 }
3718
3719
3720 static int __devinit dfx_init(void)
3721 {
3722         int status;
3723
3724         status = pci_register_driver(&dfx_pci_driver);
3725         if (!status)
3726                 status = eisa_driver_register(&dfx_eisa_driver);
3727         if (!status)
3728                 status = tc_register_driver(&dfx_tc_driver);
3729         return status;
3730 }
3731
3732 static void __devexit dfx_cleanup(void)
3733 {
3734         tc_unregister_driver(&dfx_tc_driver);
3735         eisa_driver_unregister(&dfx_eisa_driver);
3736         pci_unregister_driver(&dfx_pci_driver);
3737 }
3738
3739 module_init(dfx_init);
3740 module_exit(dfx_cleanup);
3741 MODULE_AUTHOR("Lawrence V. Stefani");
3742 MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3743                    DRV_VERSION " " DRV_RELDATE);
3744 MODULE_LICENSE("GPL");
3745
3746
3747 /*
3748  * Local variables:
3749  * kernel-compile-command: "gcc -D__KERNEL__ -I/root/linux/include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -c defxx.c"
3750  * End:
3751  */