2 * Suspend support specific for i386.
4 * Distribute under GPLv2
6 * Copyright (c) 2002 Pavel Machek <pavel@suse.cz>
7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
10 #include <linux/smp.h>
11 #include <linux/suspend.h>
12 #include <asm/proto.h>
14 #include <asm/pgtable.h>
17 /* References to section boundaries */
18 extern const void __nosave_begin, __nosave_end;
20 static void fix_processor_context(void);
22 struct saved_context saved_context;
25 * __save_processor_state - save CPU registers before creating a
26 * hibernation image and before restoring the memory state from it
27 * @ctxt - structure to store the registers contents in
29 * NOTE: If there is a CPU register the modification of which by the
30 * boot kernel (ie. the kernel used for loading the hibernation image)
31 * might affect the operations of the restored target kernel (ie. the one
32 * saved in the hibernation image), then its contents must be saved by this
33 * function. In other words, if kernel A is hibernated and different
34 * kernel B is used for loading the hibernation image into memory, the
35 * kernel A's __save_processor_state() function must save all registers
36 * needed by kernel A, so that it can operate correctly after the resume
37 * regardless of what kernel B does in the meantime.
39 static void __save_processor_state(struct saved_context *ctxt)
46 store_gdt((struct desc_ptr *)&ctxt->gdt_limit);
47 store_idt((struct desc_ptr *)&ctxt->idt_limit);
50 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
54 asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds));
55 asm volatile ("movw %%es, %0" : "=m" (ctxt->es));
56 asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs));
57 asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs));
58 asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss));
60 rdmsrl(MSR_FS_BASE, ctxt->fs_base);
61 rdmsrl(MSR_GS_BASE, ctxt->gs_base);
62 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
63 mtrr_save_fixed_ranges(NULL);
68 rdmsrl(MSR_EFER, ctxt->efer);
69 ctxt->cr0 = read_cr0();
70 ctxt->cr2 = read_cr2();
71 ctxt->cr3 = read_cr3();
72 ctxt->cr4 = read_cr4();
73 ctxt->cr8 = read_cr8();
76 void save_processor_state(void)
78 __save_processor_state(&saved_context);
81 static void do_fpu_end(void)
84 * Restore FPU regs if necessary
90 * __restore_processor_state - restore the contents of CPU registers saved
91 * by __save_processor_state()
92 * @ctxt - structure to load the registers contents from
94 static void __restore_processor_state(struct saved_context *ctxt)
99 wrmsrl(MSR_EFER, ctxt->efer);
100 write_cr8(ctxt->cr8);
101 write_cr4(ctxt->cr4);
102 write_cr3(ctxt->cr3);
103 write_cr2(ctxt->cr2);
104 write_cr0(ctxt->cr0);
107 * now restore the descriptor tables to their proper values
108 * ltr is done i fix_processor_context().
110 load_gdt((const struct desc_ptr *)&ctxt->gdt_limit);
111 load_idt((const struct desc_ptr *)&ctxt->idt_limit);
117 asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds));
118 asm volatile ("movw %0, %%es" :: "r" (ctxt->es));
119 asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs));
120 load_gs_index(ctxt->gs);
121 asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss));
123 wrmsrl(MSR_FS_BASE, ctxt->fs_base);
124 wrmsrl(MSR_GS_BASE, ctxt->gs_base);
125 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
127 fix_processor_context();
133 void restore_processor_state(void)
135 __restore_processor_state(&saved_context);
138 static void fix_processor_context(void)
140 int cpu = smp_processor_id();
141 struct tss_struct *t = &per_cpu(init_tss, cpu);
143 set_tss_desc(cpu,t); /* This just modifies memory; should not be necessary. But... This is necessary, because 386 hardware has concept of busy TSS or some similar stupidity. */
145 get_cpu_gdt_table(cpu)[GDT_ENTRY_TSS].type = 9;
147 syscall_init(); /* This sets MSR_*STAR and related */
148 load_TR_desc(); /* This does ltr */
149 load_LDT(¤t->active_mm->context); /* This does lldt */
152 * Now maybe reload the debug registers
154 if (current->thread.debugreg7){
155 loaddebug(¤t->thread, 0);
156 loaddebug(¤t->thread, 1);
157 loaddebug(¤t->thread, 2);
158 loaddebug(¤t->thread, 3);
160 loaddebug(¤t->thread, 6);
161 loaddebug(¤t->thread, 7);
166 #ifdef CONFIG_HIBERNATION
167 /* Defined in arch/x86_64/kernel/suspend_asm.S */
168 extern int restore_image(void);
171 * Address to jump to in the last phase of restore in order to get to the image
172 * kernel's text (this value is passed in the image header).
174 unsigned long restore_jump_address;
177 * Value of the cr3 register from before the hibernation (this value is passed
178 * in the image header).
180 unsigned long restore_cr3;
182 pgd_t *temp_level4_pgt;
184 void *relocated_restore_code;
186 static int res_phys_pud_init(pud_t *pud, unsigned long address, unsigned long end)
190 i = pud_index(address);
192 for (; i < PTRS_PER_PUD; pud++, i++) {
196 paddr = address + i*PUD_SIZE;
200 pmd = (pmd_t *)get_safe_page(GFP_ATOMIC);
203 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
204 for (j = 0; j < PTRS_PER_PMD; pmd++, j++, paddr += PMD_SIZE) {
209 pe = __PAGE_KERNEL_LARGE_EXEC | paddr;
210 pe &= __supported_pte_mask;
211 set_pmd(pmd, __pmd(pe));
217 static int set_up_temporary_mappings(void)
219 unsigned long start, end, next;
222 temp_level4_pgt = (pgd_t *)get_safe_page(GFP_ATOMIC);
223 if (!temp_level4_pgt)
226 /* It is safe to reuse the original kernel mapping */
227 set_pgd(temp_level4_pgt + pgd_index(__START_KERNEL_map),
228 init_level4_pgt[pgd_index(__START_KERNEL_map)]);
230 /* Set up the direct mapping from scratch */
231 start = (unsigned long)pfn_to_kaddr(0);
232 end = (unsigned long)pfn_to_kaddr(end_pfn);
234 for (; start < end; start = next) {
235 pud_t *pud = (pud_t *)get_safe_page(GFP_ATOMIC);
238 next = start + PGDIR_SIZE;
241 if ((error = res_phys_pud_init(pud, __pa(start), __pa(next))))
243 set_pgd(temp_level4_pgt + pgd_index(start),
244 mk_kernel_pgd(__pa(pud)));
249 int swsusp_arch_resume(void)
253 /* We have got enough memory and from now on we cannot recover */
254 if ((error = set_up_temporary_mappings()))
257 relocated_restore_code = (void *)get_safe_page(GFP_ATOMIC);
258 if (!relocated_restore_code)
260 memcpy(relocated_restore_code, &core_restore_code,
261 &restore_registers - &core_restore_code);
268 * pfn_is_nosave - check if given pfn is in the 'nosave' section
271 int pfn_is_nosave(unsigned long pfn)
273 unsigned long nosave_begin_pfn = __pa_symbol(&__nosave_begin) >> PAGE_SHIFT;
274 unsigned long nosave_end_pfn = PAGE_ALIGN(__pa_symbol(&__nosave_end)) >> PAGE_SHIFT;
275 return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
278 struct restore_data_record {
279 unsigned long jump_address;
284 #define RESTORE_MAGIC 0x0123456789ABCDEFUL
287 * arch_hibernation_header_save - populate the architecture specific part
288 * of a hibernation image header
289 * @addr: address to save the data at
291 int arch_hibernation_header_save(void *addr, unsigned int max_size)
293 struct restore_data_record *rdr = addr;
295 if (max_size < sizeof(struct restore_data_record))
297 rdr->jump_address = restore_jump_address;
298 rdr->cr3 = restore_cr3;
299 rdr->magic = RESTORE_MAGIC;
304 * arch_hibernation_header_restore - read the architecture specific data
305 * from the hibernation image header
306 * @addr: address to read the data from
308 int arch_hibernation_header_restore(void *addr)
310 struct restore_data_record *rdr = addr;
312 restore_jump_address = rdr->jump_address;
313 restore_cr3 = rdr->cr3;
314 return (rdr->magic == RESTORE_MAGIC) ? 0 : -EINVAL;
316 #endif /* CONFIG_HIBERNATION */