2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
26 * These routines are used by both DMA-remapping and Interrupt-remapping
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
36 #define PREFIX "DMAR:"
38 /* No locks are needed as DMA remapping hardware unit
39 * list is constructed at boot time and hotplug of
40 * these units are not supported by the architecture.
42 LIST_HEAD(dmar_drhd_units);
44 static struct acpi_table_header * __initdata dmar_tbl;
45 static acpi_size dmar_tbl_size;
47 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
50 * add INCLUDE_ALL at the tail, so scan the list will find it at
53 if (drhd->include_all)
54 list_add_tail(&drhd->list, &dmar_drhd_units);
56 list_add(&drhd->list, &dmar_drhd_units);
59 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
60 struct pci_dev **dev, u16 segment)
63 struct pci_dev *pdev = NULL;
64 struct acpi_dmar_pci_path *path;
67 bus = pci_find_bus(segment, scope->bus);
68 path = (struct acpi_dmar_pci_path *)(scope + 1);
69 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
70 / sizeof(struct acpi_dmar_pci_path);
76 * Some BIOSes list non-exist devices in DMAR table, just
81 PREFIX "Device scope bus [%d] not found\n",
85 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
87 printk(KERN_WARNING PREFIX
88 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
89 segment, bus->number, path->dev, path->fn);
94 bus = pdev->subordinate;
97 printk(KERN_WARNING PREFIX
98 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
99 segment, scope->bus, path->dev, path->fn);
103 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
104 pdev->subordinate) || (scope->entry_type == \
105 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
107 printk(KERN_WARNING PREFIX
108 "Device scope type does not match for %s\n",
116 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
117 struct pci_dev ***devices, u16 segment)
119 struct acpi_dmar_device_scope *scope;
125 while (start < end) {
127 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
128 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
131 printk(KERN_WARNING PREFIX
132 "Unsupported device scope\n");
133 start += scope->length;
138 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
144 while (start < end) {
146 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
147 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
148 ret = dmar_parse_one_dev_scope(scope,
149 &(*devices)[index], segment);
156 start += scope->length;
163 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
164 * structure which uniquely represent one DMA remapping hardware unit
165 * present in the platform
168 dmar_parse_one_drhd(struct acpi_dmar_header *header)
170 struct acpi_dmar_hardware_unit *drhd;
171 struct dmar_drhd_unit *dmaru;
174 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
179 drhd = (struct acpi_dmar_hardware_unit *)header;
180 dmaru->reg_base_addr = drhd->address;
181 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
183 ret = alloc_iommu(dmaru);
188 dmar_register_drhd_unit(dmaru);
192 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
194 struct acpi_dmar_hardware_unit *drhd;
197 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
199 if (dmaru->include_all)
202 ret = dmar_parse_dev_scope((void *)(drhd + 1),
203 ((void *)drhd) + drhd->header.length,
204 &dmaru->devices_cnt, &dmaru->devices,
207 list_del(&dmaru->list);
214 LIST_HEAD(dmar_rmrr_units);
216 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
218 list_add(&rmrr->list, &dmar_rmrr_units);
223 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
225 struct acpi_dmar_reserved_memory *rmrr;
226 struct dmar_rmrr_unit *rmrru;
228 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
233 rmrr = (struct acpi_dmar_reserved_memory *)header;
234 rmrru->base_address = rmrr->base_address;
235 rmrru->end_address = rmrr->end_address;
237 dmar_register_rmrr_unit(rmrru);
242 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
244 struct acpi_dmar_reserved_memory *rmrr;
247 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
248 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
249 ((void *)rmrr) + rmrr->header.length,
250 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
252 if (ret || (rmrru->devices_cnt == 0)) {
253 list_del(&rmrru->list);
261 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
263 struct acpi_dmar_hardware_unit *drhd;
264 struct acpi_dmar_reserved_memory *rmrr;
266 switch (header->type) {
267 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
268 drhd = (struct acpi_dmar_hardware_unit *)header;
269 printk (KERN_INFO PREFIX
270 "DRHD (flags: 0x%08x)base: 0x%016Lx\n",
271 drhd->flags, (unsigned long long)drhd->address);
273 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
274 rmrr = (struct acpi_dmar_reserved_memory *)header;
276 printk (KERN_INFO PREFIX
277 "RMRR base: 0x%016Lx end: 0x%016Lx\n",
278 (unsigned long long)rmrr->base_address,
279 (unsigned long long)rmrr->end_address);
285 * dmar_table_detect - checks to see if the platform supports DMAR devices
287 static int __init dmar_table_detect(void)
289 acpi_status status = AE_OK;
291 /* if we could find DMAR table, then there are DMAR devices */
292 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
293 (struct acpi_table_header **)&dmar_tbl,
296 if (ACPI_SUCCESS(status) && !dmar_tbl) {
297 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
298 status = AE_NOT_FOUND;
301 return (ACPI_SUCCESS(status) ? 1 : 0);
305 * parse_dmar_table - parses the DMA reporting table
308 parse_dmar_table(void)
310 struct acpi_table_dmar *dmar;
311 struct acpi_dmar_header *entry_header;
315 * Do it again, earlier dmar_tbl mapping could be mapped with
320 dmar = (struct acpi_table_dmar *)dmar_tbl;
324 if (dmar->width < PAGE_SHIFT - 1) {
325 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
329 printk (KERN_INFO PREFIX "Host address width %d\n",
332 entry_header = (struct acpi_dmar_header *)(dmar + 1);
333 while (((unsigned long)entry_header) <
334 (((unsigned long)dmar) + dmar_tbl->length)) {
335 /* Avoid looping forever on bad ACPI tables */
336 if (entry_header->length == 0) {
337 printk(KERN_WARNING PREFIX
338 "Invalid 0-length structure\n");
343 dmar_table_print_dmar_entry(entry_header);
345 switch (entry_header->type) {
346 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
347 ret = dmar_parse_one_drhd(entry_header);
349 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
351 ret = dmar_parse_one_rmrr(entry_header);
355 printk(KERN_WARNING PREFIX
356 "Unknown DMAR structure type\n");
357 ret = 0; /* for forward compatibility */
363 entry_header = ((void *)entry_header + entry_header->length);
368 int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
374 for (index = 0; index < cnt; index++)
375 if (dev == devices[index])
378 /* Check our parent */
379 dev = dev->bus->self;
385 struct dmar_drhd_unit *
386 dmar_find_matched_drhd_unit(struct pci_dev *dev)
388 struct dmar_drhd_unit *dmaru = NULL;
389 struct acpi_dmar_hardware_unit *drhd;
391 list_for_each_entry(dmaru, &dmar_drhd_units, list) {
392 drhd = container_of(dmaru->hdr,
393 struct acpi_dmar_hardware_unit,
396 if (dmaru->include_all &&
397 drhd->segment == pci_domain_nr(dev->bus))
400 if (dmar_pci_device_match(dmaru->devices,
401 dmaru->devices_cnt, dev))
408 int __init dmar_dev_scope_init(void)
410 struct dmar_drhd_unit *drhd, *drhd_n;
413 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
414 ret = dmar_parse_dev(drhd);
421 struct dmar_rmrr_unit *rmrr, *rmrr_n;
422 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
423 ret = rmrr_parse_dev(rmrr);
434 int __init dmar_table_init(void)
436 static int dmar_table_initialized;
439 if (dmar_table_initialized)
442 dmar_table_initialized = 1;
444 ret = parse_dmar_table();
447 printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
451 if (list_empty(&dmar_drhd_units)) {
452 printk(KERN_INFO PREFIX "No DMAR devices found\n");
457 if (list_empty(&dmar_rmrr_units))
458 printk(KERN_INFO PREFIX "No RMRR found\n");
461 #ifdef CONFIG_INTR_REMAP
462 parse_ioapics_under_ir();
467 void __init detect_intel_iommu(void)
471 ret = dmar_table_detect();
474 #ifdef CONFIG_INTR_REMAP
475 struct acpi_table_dmar *dmar;
477 * for now we will disable dma-remapping when interrupt
478 * remapping is enabled.
479 * When support for queued invalidation for IOTLB invalidation
480 * is added, we will not need this any more.
482 dmar = (struct acpi_table_dmar *) dmar_tbl;
483 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
485 "Queued invalidation will be enabled to support "
486 "x2apic and Intr-remapping.\n");
489 if (ret && !no_iommu && !iommu_detected && !swiotlb &&
494 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
499 int alloc_iommu(struct dmar_drhd_unit *drhd)
501 struct intel_iommu *iommu;
504 static int iommu_allocated = 0;
507 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
511 iommu->seq_id = iommu_allocated++;
513 iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
515 printk(KERN_ERR "IOMMU: can't map the region\n");
518 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
519 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
522 agaw = iommu_calculate_agaw(iommu);
525 "Cannot get a valid agaw for iommu (seq_id = %d)\n",
532 /* the registers might be more than one page */
533 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
534 cap_max_fault_reg_offset(iommu->cap));
535 map_size = VTD_PAGE_ALIGN(map_size);
536 if (map_size > VTD_PAGE_SIZE) {
538 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
540 printk(KERN_ERR "IOMMU: can't map the region\n");
545 ver = readl(iommu->reg + DMAR_VER_REG);
546 pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
547 (unsigned long long)drhd->reg_base_addr,
548 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
549 (unsigned long long)iommu->cap,
550 (unsigned long long)iommu->ecap);
552 spin_lock_init(&iommu->register_lock);
561 void free_iommu(struct intel_iommu *iommu)
567 free_dmar_iommu(iommu);
576 * Reclaim all the submitted descriptors which have completed its work.
578 static inline void reclaim_free_desc(struct q_inval *qi)
580 while (qi->desc_status[qi->free_tail] == QI_DONE) {
581 qi->desc_status[qi->free_tail] = QI_FREE;
582 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
587 static int qi_check_fault(struct intel_iommu *iommu, int index)
591 struct q_inval *qi = iommu->qi;
592 int wait_index = (index + 1) % QI_LENGTH;
594 fault = readl(iommu->reg + DMAR_FSTS_REG);
597 * If IQE happens, the head points to the descriptor associated
598 * with the error. No new descriptors are fetched until the IQE
601 if (fault & DMA_FSTS_IQE) {
602 head = readl(iommu->reg + DMAR_IQH_REG);
603 if ((head >> 4) == index) {
604 memcpy(&qi->desc[index], &qi->desc[wait_index],
605 sizeof(struct qi_desc));
606 __iommu_flush_cache(iommu, &qi->desc[index],
607 sizeof(struct qi_desc));
608 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
617 * Submit the queued invalidation descriptor to the remapping
618 * hardware unit and wait for its completion.
620 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
623 struct q_inval *qi = iommu->qi;
624 struct qi_desc *hw, wait_desc;
625 int wait_index, index;
633 spin_lock_irqsave(&qi->q_lock, flags);
634 while (qi->free_cnt < 3) {
635 spin_unlock_irqrestore(&qi->q_lock, flags);
637 spin_lock_irqsave(&qi->q_lock, flags);
640 index = qi->free_head;
641 wait_index = (index + 1) % QI_LENGTH;
643 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
647 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
648 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
649 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
651 hw[wait_index] = wait_desc;
653 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
654 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
656 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
660 * update the HW tail register indicating the presence of
663 writel(qi->free_head << 4, iommu->reg + DMAR_IQT_REG);
665 while (qi->desc_status[wait_index] != QI_DONE) {
667 * We will leave the interrupts disabled, to prevent interrupt
668 * context to queue another cmd while a cmd is already submitted
669 * and waiting for completion on this cpu. This is to avoid
670 * a deadlock where the interrupt context can wait indefinitely
671 * for free slots in the queue.
673 rc = qi_check_fault(iommu, index);
677 spin_unlock(&qi->q_lock);
679 spin_lock(&qi->q_lock);
682 qi->desc_status[index] = qi->desc_status[wait_index] = QI_DONE;
684 reclaim_free_desc(qi);
685 spin_unlock_irqrestore(&qi->q_lock, flags);
691 * Flush the global interrupt entry cache.
693 void qi_global_iec(struct intel_iommu *iommu)
697 desc.low = QI_IEC_TYPE;
700 /* should never fail */
701 qi_submit_sync(&desc, iommu);
704 int qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
705 u64 type, int non_present_entry_flush)
709 if (non_present_entry_flush) {
710 if (!cap_caching_mode(iommu->cap))
716 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
717 | QI_CC_GRAN(type) | QI_CC_TYPE;
720 return qi_submit_sync(&desc, iommu);
723 int qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
724 unsigned int size_order, u64 type,
725 int non_present_entry_flush)
732 if (non_present_entry_flush) {
733 if (!cap_caching_mode(iommu->cap))
739 if (cap_write_drain(iommu->cap))
742 if (cap_read_drain(iommu->cap))
745 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
746 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
747 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
748 | QI_IOTLB_AM(size_order);
750 return qi_submit_sync(&desc, iommu);
754 * Enable Queued Invalidation interface. This is a must to support
755 * interrupt-remapping. Also used by DMA-remapping, which replaces
756 * register based IOTLB invalidation.
758 int dmar_enable_qi(struct intel_iommu *iommu)
764 if (!ecap_qis(iommu->ecap))
768 * queued invalidation is already setup and enabled.
773 iommu->qi = kmalloc(sizeof(*qi), GFP_KERNEL);
779 qi->desc = (void *)(get_zeroed_page(GFP_KERNEL));
786 qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_KERNEL);
787 if (!qi->desc_status) {
788 free_page((unsigned long) qi->desc);
794 qi->free_head = qi->free_tail = 0;
795 qi->free_cnt = QI_LENGTH;
797 spin_lock_init(&qi->q_lock);
799 spin_lock_irqsave(&iommu->register_lock, flags);
800 /* write zero to the tail reg */
801 writel(0, iommu->reg + DMAR_IQT_REG);
803 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
805 cmd = iommu->gcmd | DMA_GCMD_QIE;
806 iommu->gcmd |= DMA_GCMD_QIE;
807 writel(cmd, iommu->reg + DMAR_GCMD_REG);
809 /* Make sure hardware complete it */
810 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
811 spin_unlock_irqrestore(&iommu->register_lock, flags);