V4L/DVB (3929): Compilation for DVB_AV7110_FIRMWARE seems to be weird
[linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/config.h>
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/string.h>
31 #include <linux/kernel.h>
32 #include <linux/timer.h>
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/major.h>
36 #include <linux/errno.h>
37 #include <linux/genhd.h>
38 #include <linux/blkpg.h>
39 #include <linux/slab.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/delay.h>
43 #include <linux/ide.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56 #include <asm/bitops.h>
57
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59                              int uptodate, int nr_sectors)
60 {
61         int ret = 1;
62
63         BUG_ON(!(rq->flags & REQ_STARTED));
64
65         /*
66          * if failfast is set on a request, override number of sectors and
67          * complete the whole request right now
68          */
69         if (blk_noretry_request(rq) && end_io_error(uptodate))
70                 nr_sectors = rq->hard_nr_sectors;
71
72         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
73                 rq->errors = -EIO;
74
75         /*
76          * decide whether to reenable DMA -- 3 is a random magic for now,
77          * if we DMA timeout more than 3 times, just stay in PIO
78          */
79         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
80                 drive->state = 0;
81                 HWGROUP(drive)->hwif->ide_dma_on(drive);
82         }
83
84         if (!end_that_request_first(rq, uptodate, nr_sectors)) {
85                 add_disk_randomness(rq->rq_disk);
86                 blkdev_dequeue_request(rq);
87                 HWGROUP(drive)->rq = NULL;
88                 end_that_request_last(rq, uptodate);
89                 ret = 0;
90         }
91
92         return ret;
93 }
94
95 /**
96  *      ide_end_request         -       complete an IDE I/O
97  *      @drive: IDE device for the I/O
98  *      @uptodate:
99  *      @nr_sectors: number of sectors completed
100  *
101  *      This is our end_request wrapper function. We complete the I/O
102  *      update random number input and dequeue the request, which if
103  *      it was tagged may be out of order.
104  */
105
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 {
108         struct request *rq;
109         unsigned long flags;
110         int ret = 1;
111
112         /*
113          * room for locking improvements here, the calls below don't
114          * need the queue lock held at all
115          */
116         spin_lock_irqsave(&ide_lock, flags);
117         rq = HWGROUP(drive)->rq;
118
119         if (!nr_sectors)
120                 nr_sectors = rq->hard_cur_sectors;
121
122         ret = __ide_end_request(drive, rq, uptodate, nr_sectors);
123
124         spin_unlock_irqrestore(&ide_lock, flags);
125         return ret;
126 }
127 EXPORT_SYMBOL(ide_end_request);
128
129 /*
130  * Power Management state machine. This one is rather trivial for now,
131  * we should probably add more, like switching back to PIO on suspend
132  * to help some BIOSes, re-do the door locking on resume, etc...
133  */
134
135 enum {
136         ide_pm_flush_cache      = ide_pm_state_start_suspend,
137         idedisk_pm_standby,
138
139         idedisk_pm_idle         = ide_pm_state_start_resume,
140         ide_pm_restore_dma,
141 };
142
143 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
144 {
145         struct request_pm_state *pm = rq->end_io_data;
146
147         if (drive->media != ide_disk)
148                 return;
149
150         switch (pm->pm_step) {
151         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
152                 if (pm->pm_state == PM_EVENT_FREEZE)
153                         pm->pm_step = ide_pm_state_completed;
154                 else
155                         pm->pm_step = idedisk_pm_standby;
156                 break;
157         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
158                 pm->pm_step = ide_pm_state_completed;
159                 break;
160         case idedisk_pm_idle:           /* Resume step 1 (idle) complete */
161                 pm->pm_step = ide_pm_restore_dma;
162                 break;
163         }
164 }
165
166 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
167 {
168         struct request_pm_state *pm = rq->end_io_data;
169         ide_task_t *args = rq->special;
170
171         memset(args, 0, sizeof(*args));
172
173         if (drive->media != ide_disk) {
174                 /* skip idedisk_pm_idle for ATAPI devices */
175                 if (pm->pm_step == idedisk_pm_idle)
176                         pm->pm_step = ide_pm_restore_dma;
177         }
178
179         switch (pm->pm_step) {
180         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
181                 if (drive->media != ide_disk)
182                         break;
183                 /* Not supported? Switch to next step now. */
184                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
185                         ide_complete_power_step(drive, rq, 0, 0);
186                         return ide_stopped;
187                 }
188                 if (ide_id_has_flush_cache_ext(drive->id))
189                         args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
190                 else
191                         args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
192                 args->command_type = IDE_DRIVE_TASK_NO_DATA;
193                 args->handler      = &task_no_data_intr;
194                 return do_rw_taskfile(drive, args);
195
196         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
197                 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
198                 args->command_type = IDE_DRIVE_TASK_NO_DATA;
199                 args->handler      = &task_no_data_intr;
200                 return do_rw_taskfile(drive, args);
201
202         case idedisk_pm_idle:           /* Resume step 1 (idle) */
203                 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
204                 args->command_type = IDE_DRIVE_TASK_NO_DATA;
205                 args->handler = task_no_data_intr;
206                 return do_rw_taskfile(drive, args);
207
208         case ide_pm_restore_dma:        /* Resume step 2 (restore DMA) */
209                 /*
210                  * Right now, all we do is call hwif->ide_dma_check(drive),
211                  * we could be smarter and check for current xfer_speed
212                  * in struct drive etc...
213                  */
214                 if ((drive->id->capability & 1) == 0)
215                         break;
216                 if (drive->hwif->ide_dma_check == NULL)
217                         break;
218                 drive->hwif->ide_dma_check(drive);
219                 break;
220         }
221         pm->pm_step = ide_pm_state_completed;
222         return ide_stopped;
223 }
224
225 /**
226  *      ide_complete_pm_request - end the current Power Management request
227  *      @drive: target drive
228  *      @rq: request
229  *
230  *      This function cleans up the current PM request and stops the queue
231  *      if necessary.
232  */
233 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
234 {
235         unsigned long flags;
236
237 #ifdef DEBUG_PM
238         printk("%s: completing PM request, %s\n", drive->name,
239                blk_pm_suspend_request(rq) ? "suspend" : "resume");
240 #endif
241         spin_lock_irqsave(&ide_lock, flags);
242         if (blk_pm_suspend_request(rq)) {
243                 blk_stop_queue(drive->queue);
244         } else {
245                 drive->blocked = 0;
246                 blk_start_queue(drive->queue);
247         }
248         blkdev_dequeue_request(rq);
249         HWGROUP(drive)->rq = NULL;
250         end_that_request_last(rq, 1);
251         spin_unlock_irqrestore(&ide_lock, flags);
252 }
253
254 /*
255  * FIXME: probably move this somewhere else, name is bad too :)
256  */
257 u64 ide_get_error_location(ide_drive_t *drive, char *args)
258 {
259         u32 high, low;
260         u8 hcyl, lcyl, sect;
261         u64 sector;
262
263         high = 0;
264         hcyl = args[5];
265         lcyl = args[4];
266         sect = args[3];
267
268         if (ide_id_has_flush_cache_ext(drive->id)) {
269                 low = (hcyl << 16) | (lcyl << 8) | sect;
270                 HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
271                 high = ide_read_24(drive);
272         } else {
273                 u8 cur = HWIF(drive)->INB(IDE_SELECT_REG);
274                 if (cur & 0x40) {
275                         high = cur & 0xf;
276                         low = (hcyl << 16) | (lcyl << 8) | sect;
277                 } else {
278                         low = hcyl * drive->head * drive->sect;
279                         low += lcyl * drive->sect;
280                         low += sect - 1;
281                 }
282         }
283
284         sector = ((u64) high << 24) | low;
285         return sector;
286 }
287 EXPORT_SYMBOL(ide_get_error_location);
288
289 /**
290  *      ide_end_drive_cmd       -       end an explicit drive command
291  *      @drive: command 
292  *      @stat: status bits
293  *      @err: error bits
294  *
295  *      Clean up after success/failure of an explicit drive command.
296  *      These get thrown onto the queue so they are synchronized with
297  *      real I/O operations on the drive.
298  *
299  *      In LBA48 mode we have to read the register set twice to get
300  *      all the extra information out.
301  */
302  
303 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
304 {
305         ide_hwif_t *hwif = HWIF(drive);
306         unsigned long flags;
307         struct request *rq;
308
309         spin_lock_irqsave(&ide_lock, flags);
310         rq = HWGROUP(drive)->rq;
311         spin_unlock_irqrestore(&ide_lock, flags);
312
313         if (rq->flags & REQ_DRIVE_CMD) {
314                 u8 *args = (u8 *) rq->buffer;
315                 if (rq->errors == 0)
316                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
317
318                 if (args) {
319                         args[0] = stat;
320                         args[1] = err;
321                         args[2] = hwif->INB(IDE_NSECTOR_REG);
322                 }
323         } else if (rq->flags & REQ_DRIVE_TASK) {
324                 u8 *args = (u8 *) rq->buffer;
325                 if (rq->errors == 0)
326                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
327
328                 if (args) {
329                         args[0] = stat;
330                         args[1] = err;
331                         args[2] = hwif->INB(IDE_NSECTOR_REG);
332                         args[3] = hwif->INB(IDE_SECTOR_REG);
333                         args[4] = hwif->INB(IDE_LCYL_REG);
334                         args[5] = hwif->INB(IDE_HCYL_REG);
335                         args[6] = hwif->INB(IDE_SELECT_REG);
336                 }
337         } else if (rq->flags & REQ_DRIVE_TASKFILE) {
338                 ide_task_t *args = (ide_task_t *) rq->special;
339                 if (rq->errors == 0)
340                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
341                         
342                 if (args) {
343                         if (args->tf_in_flags.b.data) {
344                                 u16 data                                = hwif->INW(IDE_DATA_REG);
345                                 args->tfRegister[IDE_DATA_OFFSET]       = (data) & 0xFF;
346                                 args->hobRegister[IDE_DATA_OFFSET]      = (data >> 8) & 0xFF;
347                         }
348                         args->tfRegister[IDE_ERROR_OFFSET]   = err;
349                         /* be sure we're looking at the low order bits */
350                         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
351                         args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
352                         args->tfRegister[IDE_SECTOR_OFFSET]  = hwif->INB(IDE_SECTOR_REG);
353                         args->tfRegister[IDE_LCYL_OFFSET]    = hwif->INB(IDE_LCYL_REG);
354                         args->tfRegister[IDE_HCYL_OFFSET]    = hwif->INB(IDE_HCYL_REG);
355                         args->tfRegister[IDE_SELECT_OFFSET]  = hwif->INB(IDE_SELECT_REG);
356                         args->tfRegister[IDE_STATUS_OFFSET]  = stat;
357
358                         if (drive->addressing == 1) {
359                                 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
360                                 args->hobRegister[IDE_FEATURE_OFFSET]   = hwif->INB(IDE_FEATURE_REG);
361                                 args->hobRegister[IDE_NSECTOR_OFFSET]   = hwif->INB(IDE_NSECTOR_REG);
362                                 args->hobRegister[IDE_SECTOR_OFFSET]    = hwif->INB(IDE_SECTOR_REG);
363                                 args->hobRegister[IDE_LCYL_OFFSET]      = hwif->INB(IDE_LCYL_REG);
364                                 args->hobRegister[IDE_HCYL_OFFSET]      = hwif->INB(IDE_HCYL_REG);
365                         }
366                 }
367         } else if (blk_pm_request(rq)) {
368                 struct request_pm_state *pm = rq->end_io_data;
369 #ifdef DEBUG_PM
370                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
371                         drive->name, rq->pm->pm_step, stat, err);
372 #endif
373                 ide_complete_power_step(drive, rq, stat, err);
374                 if (pm->pm_step == ide_pm_state_completed)
375                         ide_complete_pm_request(drive, rq);
376                 return;
377         }
378
379         spin_lock_irqsave(&ide_lock, flags);
380         blkdev_dequeue_request(rq);
381         HWGROUP(drive)->rq = NULL;
382         rq->errors = err;
383         end_that_request_last(rq, !rq->errors);
384         spin_unlock_irqrestore(&ide_lock, flags);
385 }
386
387 EXPORT_SYMBOL(ide_end_drive_cmd);
388
389 /**
390  *      try_to_flush_leftover_data      -       flush junk
391  *      @drive: drive to flush
392  *
393  *      try_to_flush_leftover_data() is invoked in response to a drive
394  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
395  *      resetting the drive, this routine tries to clear the condition
396  *      by read a sector's worth of data from the drive.  Of course,
397  *      this may not help if the drive is *waiting* for data from *us*.
398  */
399 static void try_to_flush_leftover_data (ide_drive_t *drive)
400 {
401         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
402
403         if (drive->media != ide_disk)
404                 return;
405         while (i > 0) {
406                 u32 buffer[16];
407                 u32 wcount = (i > 16) ? 16 : i;
408
409                 i -= wcount;
410                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
411         }
412 }
413
414 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
415 {
416         if (rq->rq_disk) {
417                 ide_driver_t *drv;
418
419                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
420                 drv->end_request(drive, 0, 0);
421         } else
422                 ide_end_request(drive, 0, 0);
423 }
424
425 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
426 {
427         ide_hwif_t *hwif = drive->hwif;
428
429         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
430                 /* other bits are useless when BUSY */
431                 rq->errors |= ERROR_RESET;
432         } else if (stat & ERR_STAT) {
433                 /* err has different meaning on cdrom and tape */
434                 if (err == ABRT_ERR) {
435                         if (drive->select.b.lba &&
436                             /* some newer drives don't support WIN_SPECIFY */
437                             hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
438                                 return ide_stopped;
439                 } else if ((err & BAD_CRC) == BAD_CRC) {
440                         /* UDMA crc error, just retry the operation */
441                         drive->crc_count++;
442                 } else if (err & (BBD_ERR | ECC_ERR)) {
443                         /* retries won't help these */
444                         rq->errors = ERROR_MAX;
445                 } else if (err & TRK0_ERR) {
446                         /* help it find track zero */
447                         rq->errors |= ERROR_RECAL;
448                 }
449         }
450
451         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ)
452                 try_to_flush_leftover_data(drive);
453
454         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
455                 /* force an abort */
456                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
457
458         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq))
459                 ide_kill_rq(drive, rq);
460         else {
461                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
462                         ++rq->errors;
463                         return ide_do_reset(drive);
464                 }
465                 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
466                         drive->special.b.recalibrate = 1;
467                 ++rq->errors;
468         }
469         return ide_stopped;
470 }
471
472 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
473 {
474         ide_hwif_t *hwif = drive->hwif;
475
476         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
477                 /* other bits are useless when BUSY */
478                 rq->errors |= ERROR_RESET;
479         } else {
480                 /* add decoding error stuff */
481         }
482
483         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
484                 /* force an abort */
485                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
486
487         if (rq->errors >= ERROR_MAX) {
488                 ide_kill_rq(drive, rq);
489         } else {
490                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
491                         ++rq->errors;
492                         return ide_do_reset(drive);
493                 }
494                 ++rq->errors;
495         }
496
497         return ide_stopped;
498 }
499
500 ide_startstop_t
501 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
502 {
503         if (drive->media == ide_disk)
504                 return ide_ata_error(drive, rq, stat, err);
505         return ide_atapi_error(drive, rq, stat, err);
506 }
507
508 EXPORT_SYMBOL_GPL(__ide_error);
509
510 /**
511  *      ide_error       -       handle an error on the IDE
512  *      @drive: drive the error occurred on
513  *      @msg: message to report
514  *      @stat: status bits
515  *
516  *      ide_error() takes action based on the error returned by the drive.
517  *      For normal I/O that may well include retries. We deal with
518  *      both new-style (taskfile) and old style command handling here.
519  *      In the case of taskfile command handling there is work left to
520  *      do
521  */
522  
523 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
524 {
525         struct request *rq;
526         u8 err;
527
528         err = ide_dump_status(drive, msg, stat);
529
530         if ((rq = HWGROUP(drive)->rq) == NULL)
531                 return ide_stopped;
532
533         /* retry only "normal" I/O: */
534         if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) {
535                 rq->errors = 1;
536                 ide_end_drive_cmd(drive, stat, err);
537                 return ide_stopped;
538         }
539
540         if (rq->rq_disk) {
541                 ide_driver_t *drv;
542
543                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
544                 return drv->error(drive, rq, stat, err);
545         } else
546                 return __ide_error(drive, rq, stat, err);
547 }
548
549 EXPORT_SYMBOL_GPL(ide_error);
550
551 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
552 {
553         if (drive->media != ide_disk)
554                 rq->errors |= ERROR_RESET;
555
556         ide_kill_rq(drive, rq);
557
558         return ide_stopped;
559 }
560
561 EXPORT_SYMBOL_GPL(__ide_abort);
562
563 /**
564  *      ide_abort       -       abort pending IDE operations
565  *      @drive: drive the error occurred on
566  *      @msg: message to report
567  *
568  *      ide_abort kills and cleans up when we are about to do a 
569  *      host initiated reset on active commands. Longer term we
570  *      want handlers to have sensible abort handling themselves
571  *
572  *      This differs fundamentally from ide_error because in 
573  *      this case the command is doing just fine when we
574  *      blow it away.
575  */
576  
577 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
578 {
579         struct request *rq;
580
581         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
582                 return ide_stopped;
583
584         /* retry only "normal" I/O: */
585         if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) {
586                 rq->errors = 1;
587                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
588                 return ide_stopped;
589         }
590
591         if (rq->rq_disk) {
592                 ide_driver_t *drv;
593
594                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
595                 return drv->abort(drive, rq);
596         } else
597                 return __ide_abort(drive, rq);
598 }
599
600 /**
601  *      ide_cmd         -       issue a simple drive command
602  *      @drive: drive the command is for
603  *      @cmd: command byte
604  *      @nsect: sector byte
605  *      @handler: handler for the command completion
606  *
607  *      Issue a simple drive command with interrupts.
608  *      The drive must be selected beforehand.
609  */
610
611 static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
612                 ide_handler_t *handler)
613 {
614         ide_hwif_t *hwif = HWIF(drive);
615         if (IDE_CONTROL_REG)
616                 hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
617         SELECT_MASK(drive,0);
618         hwif->OUTB(nsect,IDE_NSECTOR_REG);
619         ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
620 }
621
622 /**
623  *      drive_cmd_intr          -       drive command completion interrupt
624  *      @drive: drive the completion interrupt occurred on
625  *
626  *      drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
627  *      We do any necessary data reading and then wait for the drive to
628  *      go non busy. At that point we may read the error data and complete
629  *      the request
630  */
631  
632 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
633 {
634         struct request *rq = HWGROUP(drive)->rq;
635         ide_hwif_t *hwif = HWIF(drive);
636         u8 *args = (u8 *) rq->buffer;
637         u8 stat = hwif->INB(IDE_STATUS_REG);
638         int retries = 10;
639
640         local_irq_enable();
641         if ((stat & DRQ_STAT) && args && args[3]) {
642                 u8 io_32bit = drive->io_32bit;
643                 drive->io_32bit = 0;
644                 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
645                 drive->io_32bit = io_32bit;
646                 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
647                         udelay(100);
648         }
649
650         if (!OK_STAT(stat, READY_STAT, BAD_STAT))
651                 return ide_error(drive, "drive_cmd", stat);
652                 /* calls ide_end_drive_cmd */
653         ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
654         return ide_stopped;
655 }
656
657 static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
658 {
659         task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
660         task->tfRegister[IDE_SECTOR_OFFSET]  = drive->sect;
661         task->tfRegister[IDE_LCYL_OFFSET]    = drive->cyl;
662         task->tfRegister[IDE_HCYL_OFFSET]    = drive->cyl>>8;
663         task->tfRegister[IDE_SELECT_OFFSET]  = ((drive->head-1)|drive->select.all)&0xBF;
664         task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
665
666         task->handler = &set_geometry_intr;
667 }
668
669 static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
670 {
671         task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
672         task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
673
674         task->handler = &recal_intr;
675 }
676
677 static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
678 {
679         task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
680         task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
681
682         task->handler = &set_multmode_intr;
683 }
684
685 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
686 {
687         special_t *s = &drive->special;
688         ide_task_t args;
689
690         memset(&args, 0, sizeof(ide_task_t));
691         args.command_type = IDE_DRIVE_TASK_NO_DATA;
692
693         if (s->b.set_geometry) {
694                 s->b.set_geometry = 0;
695                 ide_init_specify_cmd(drive, &args);
696         } else if (s->b.recalibrate) {
697                 s->b.recalibrate = 0;
698                 ide_init_restore_cmd(drive, &args);
699         } else if (s->b.set_multmode) {
700                 s->b.set_multmode = 0;
701                 if (drive->mult_req > drive->id->max_multsect)
702                         drive->mult_req = drive->id->max_multsect;
703                 ide_init_setmult_cmd(drive, &args);
704         } else if (s->all) {
705                 int special = s->all;
706                 s->all = 0;
707                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
708                 return ide_stopped;
709         }
710
711         do_rw_taskfile(drive, &args);
712
713         return ide_started;
714 }
715
716 /**
717  *      do_special              -       issue some special commands
718  *      @drive: drive the command is for
719  *
720  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
721  *      commands to a drive.  It used to do much more, but has been scaled
722  *      back.
723  */
724
725 static ide_startstop_t do_special (ide_drive_t *drive)
726 {
727         special_t *s = &drive->special;
728
729 #ifdef DEBUG
730         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
731 #endif
732         if (s->b.set_tune) {
733                 s->b.set_tune = 0;
734                 if (HWIF(drive)->tuneproc != NULL)
735                         HWIF(drive)->tuneproc(drive, drive->tune_req);
736                 return ide_stopped;
737         } else {
738                 if (drive->media == ide_disk)
739                         return ide_disk_special(drive);
740
741                 s->all = 0;
742                 drive->mult_req = 0;
743                 return ide_stopped;
744         }
745 }
746
747 void ide_map_sg(ide_drive_t *drive, struct request *rq)
748 {
749         ide_hwif_t *hwif = drive->hwif;
750         struct scatterlist *sg = hwif->sg_table;
751
752         if (hwif->sg_mapped)    /* needed by ide-scsi */
753                 return;
754
755         if ((rq->flags & REQ_DRIVE_TASKFILE) == 0) {
756                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
757         } else {
758                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
759                 hwif->sg_nents = 1;
760         }
761 }
762
763 EXPORT_SYMBOL_GPL(ide_map_sg);
764
765 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
766 {
767         ide_hwif_t *hwif = drive->hwif;
768
769         hwif->nsect = hwif->nleft = rq->nr_sectors;
770         hwif->cursg = hwif->cursg_ofs = 0;
771 }
772
773 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
774
775 /**
776  *      execute_drive_command   -       issue special drive command
777  *      @drive: the drive to issue the command on
778  *      @rq: the request structure holding the command
779  *
780  *      execute_drive_cmd() issues a special drive command,  usually 
781  *      initiated by ioctl() from the external hdparm program. The
782  *      command can be a drive command, drive task or taskfile 
783  *      operation. Weirdly you can call it with NULL to wait for
784  *      all commands to finish. Don't do this as that is due to change
785  */
786
787 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
788                 struct request *rq)
789 {
790         ide_hwif_t *hwif = HWIF(drive);
791         if (rq->flags & REQ_DRIVE_TASKFILE) {
792                 ide_task_t *args = rq->special;
793  
794                 if (!args)
795                         goto done;
796
797                 hwif->data_phase = args->data_phase;
798
799                 switch (hwif->data_phase) {
800                 case TASKFILE_MULTI_OUT:
801                 case TASKFILE_OUT:
802                 case TASKFILE_MULTI_IN:
803                 case TASKFILE_IN:
804                         ide_init_sg_cmd(drive, rq);
805                         ide_map_sg(drive, rq);
806                 default:
807                         break;
808                 }
809
810                 if (args->tf_out_flags.all != 0) 
811                         return flagged_taskfile(drive, args);
812                 return do_rw_taskfile(drive, args);
813         } else if (rq->flags & REQ_DRIVE_TASK) {
814                 u8 *args = rq->buffer;
815                 u8 sel;
816  
817                 if (!args)
818                         goto done;
819 #ifdef DEBUG
820                 printk("%s: DRIVE_TASK_CMD ", drive->name);
821                 printk("cmd=0x%02x ", args[0]);
822                 printk("fr=0x%02x ", args[1]);
823                 printk("ns=0x%02x ", args[2]);
824                 printk("sc=0x%02x ", args[3]);
825                 printk("lcyl=0x%02x ", args[4]);
826                 printk("hcyl=0x%02x ", args[5]);
827                 printk("sel=0x%02x\n", args[6]);
828 #endif
829                 hwif->OUTB(args[1], IDE_FEATURE_REG);
830                 hwif->OUTB(args[3], IDE_SECTOR_REG);
831                 hwif->OUTB(args[4], IDE_LCYL_REG);
832                 hwif->OUTB(args[5], IDE_HCYL_REG);
833                 sel = (args[6] & ~0x10);
834                 if (drive->select.b.unit)
835                         sel |= 0x10;
836                 hwif->OUTB(sel, IDE_SELECT_REG);
837                 ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
838                 return ide_started;
839         } else if (rq->flags & REQ_DRIVE_CMD) {
840                 u8 *args = rq->buffer;
841
842                 if (!args)
843                         goto done;
844 #ifdef DEBUG
845                 printk("%s: DRIVE_CMD ", drive->name);
846                 printk("cmd=0x%02x ", args[0]);
847                 printk("sc=0x%02x ", args[1]);
848                 printk("fr=0x%02x ", args[2]);
849                 printk("xx=0x%02x\n", args[3]);
850 #endif
851                 if (args[0] == WIN_SMART) {
852                         hwif->OUTB(0x4f, IDE_LCYL_REG);
853                         hwif->OUTB(0xc2, IDE_HCYL_REG);
854                         hwif->OUTB(args[2],IDE_FEATURE_REG);
855                         hwif->OUTB(args[1],IDE_SECTOR_REG);
856                         ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
857                         return ide_started;
858                 }
859                 hwif->OUTB(args[2],IDE_FEATURE_REG);
860                 ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
861                 return ide_started;
862         }
863
864 done:
865         /*
866          * NULL is actually a valid way of waiting for
867          * all current requests to be flushed from the queue.
868          */
869 #ifdef DEBUG
870         printk("%s: DRIVE_CMD (null)\n", drive->name);
871 #endif
872         ide_end_drive_cmd(drive,
873                         hwif->INB(IDE_STATUS_REG),
874                         hwif->INB(IDE_ERROR_REG));
875         return ide_stopped;
876 }
877
878 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
879 {
880         struct request_pm_state *pm = rq->end_io_data;
881
882         if (blk_pm_suspend_request(rq) &&
883             pm->pm_step == ide_pm_state_start_suspend)
884                 /* Mark drive blocked when starting the suspend sequence. */
885                 drive->blocked = 1;
886         else if (blk_pm_resume_request(rq) &&
887                  pm->pm_step == ide_pm_state_start_resume) {
888                 /* 
889                  * The first thing we do on wakeup is to wait for BSY bit to
890                  * go away (with a looong timeout) as a drive on this hwif may
891                  * just be POSTing itself.
892                  * We do that before even selecting as the "other" device on
893                  * the bus may be broken enough to walk on our toes at this
894                  * point.
895                  */
896                 int rc;
897 #ifdef DEBUG_PM
898                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
899 #endif
900                 rc = ide_wait_not_busy(HWIF(drive), 35000);
901                 if (rc)
902                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
903                 SELECT_DRIVE(drive);
904                 HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
905                 rc = ide_wait_not_busy(HWIF(drive), 10000);
906                 if (rc)
907                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
908         }
909 }
910
911 /**
912  *      start_request   -       start of I/O and command issuing for IDE
913  *
914  *      start_request() initiates handling of a new I/O request. It
915  *      accepts commands and I/O (read/write) requests. It also does
916  *      the final remapping for weird stuff like EZDrive. Once 
917  *      device mapper can work sector level the EZDrive stuff can go away
918  *
919  *      FIXME: this function needs a rename
920  */
921  
922 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
923 {
924         ide_startstop_t startstop;
925         sector_t block;
926
927         BUG_ON(!(rq->flags & REQ_STARTED));
928
929 #ifdef DEBUG
930         printk("%s: start_request: current=0x%08lx\n",
931                 HWIF(drive)->name, (unsigned long) rq);
932 #endif
933
934         /* bail early if we've exceeded max_failures */
935         if (drive->max_failures && (drive->failures > drive->max_failures)) {
936                 goto kill_rq;
937         }
938
939         block    = rq->sector;
940         if (blk_fs_request(rq) &&
941             (drive->media == ide_disk || drive->media == ide_floppy)) {
942                 block += drive->sect0;
943         }
944         /* Yecch - this will shift the entire interval,
945            possibly killing some innocent following sector */
946         if (block == 0 && drive->remap_0_to_1 == 1)
947                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
948
949         if (blk_pm_request(rq))
950                 ide_check_pm_state(drive, rq);
951
952         SELECT_DRIVE(drive);
953         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
954                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
955                 return startstop;
956         }
957         if (!drive->special.all) {
958                 ide_driver_t *drv;
959
960                 if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK))
961                         return execute_drive_cmd(drive, rq);
962                 else if (rq->flags & REQ_DRIVE_TASKFILE)
963                         return execute_drive_cmd(drive, rq);
964                 else if (blk_pm_request(rq)) {
965                         struct request_pm_state *pm = rq->end_io_data;
966 #ifdef DEBUG_PM
967                         printk("%s: start_power_step(step: %d)\n",
968                                 drive->name, rq->pm->pm_step);
969 #endif
970                         startstop = ide_start_power_step(drive, rq);
971                         if (startstop == ide_stopped &&
972                             pm->pm_step == ide_pm_state_completed)
973                                 ide_complete_pm_request(drive, rq);
974                         return startstop;
975                 }
976
977                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
978                 return drv->do_request(drive, rq, block);
979         }
980         return do_special(drive);
981 kill_rq:
982         ide_kill_rq(drive, rq);
983         return ide_stopped;
984 }
985
986 /**
987  *      ide_stall_queue         -       pause an IDE device
988  *      @drive: drive to stall
989  *      @timeout: time to stall for (jiffies)
990  *
991  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
992  *      to the hwgroup by sleeping for timeout jiffies.
993  */
994  
995 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
996 {
997         if (timeout > WAIT_WORSTCASE)
998                 timeout = WAIT_WORSTCASE;
999         drive->sleep = timeout + jiffies;
1000         drive->sleeping = 1;
1001 }
1002
1003 EXPORT_SYMBOL(ide_stall_queue);
1004
1005 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
1006
1007 /**
1008  *      choose_drive            -       select a drive to service
1009  *      @hwgroup: hardware group to select on
1010  *
1011  *      choose_drive() selects the next drive which will be serviced.
1012  *      This is necessary because the IDE layer can't issue commands
1013  *      to both drives on the same cable, unlike SCSI.
1014  */
1015  
1016 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1017 {
1018         ide_drive_t *drive, *best;
1019
1020 repeat: 
1021         best = NULL;
1022         drive = hwgroup->drive;
1023
1024         /*
1025          * drive is doing pre-flush, ordered write, post-flush sequence. even
1026          * though that is 3 requests, it must be seen as a single transaction.
1027          * we must not preempt this drive until that is complete
1028          */
1029         if (blk_queue_flushing(drive->queue)) {
1030                 /*
1031                  * small race where queue could get replugged during
1032                  * the 3-request flush cycle, just yank the plug since
1033                  * we want it to finish asap
1034                  */
1035                 blk_remove_plug(drive->queue);
1036                 return drive;
1037         }
1038
1039         do {
1040                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1041                     && !elv_queue_empty(drive->queue)) {
1042                         if (!best
1043                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1044                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1045                         {
1046                                 if (!blk_queue_plugged(drive->queue))
1047                                         best = drive;
1048                         }
1049                 }
1050         } while ((drive = drive->next) != hwgroup->drive);
1051         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1052                 long t = (signed long)(WAKEUP(best) - jiffies);
1053                 if (t >= WAIT_MIN_SLEEP) {
1054                 /*
1055                  * We *may* have some time to spare, but first let's see if
1056                  * someone can potentially benefit from our nice mood today..
1057                  */
1058                         drive = best->next;
1059                         do {
1060                                 if (!drive->sleeping
1061                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
1062                                  && time_before(WAKEUP(drive), jiffies + t))
1063                                 {
1064                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1065                                         goto repeat;
1066                                 }
1067                         } while ((drive = drive->next) != best);
1068                 }
1069         }
1070         return best;
1071 }
1072
1073 /*
1074  * Issue a new request to a drive from hwgroup
1075  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1076  *
1077  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1078  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1079  * may have both interfaces in a single hwgroup to "serialize" access.
1080  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1081  * together into one hwgroup for serialized access.
1082  *
1083  * Note also that several hwgroups can end up sharing a single IRQ,
1084  * possibly along with many other devices.  This is especially common in
1085  * PCI-based systems with off-board IDE controller cards.
1086  *
1087  * The IDE driver uses the single global ide_lock spinlock to protect
1088  * access to the request queues, and to protect the hwgroup->busy flag.
1089  *
1090  * The first thread into the driver for a particular hwgroup sets the
1091  * hwgroup->busy flag to indicate that this hwgroup is now active,
1092  * and then initiates processing of the top request from the request queue.
1093  *
1094  * Other threads attempting entry notice the busy setting, and will simply
1095  * queue their new requests and exit immediately.  Note that hwgroup->busy
1096  * remains set even when the driver is merely awaiting the next interrupt.
1097  * Thus, the meaning is "this hwgroup is busy processing a request".
1098  *
1099  * When processing of a request completes, the completing thread or IRQ-handler
1100  * will start the next request from the queue.  If no more work remains,
1101  * the driver will clear the hwgroup->busy flag and exit.
1102  *
1103  * The ide_lock (spinlock) is used to protect all access to the
1104  * hwgroup->busy flag, but is otherwise not needed for most processing in
1105  * the driver.  This makes the driver much more friendlier to shared IRQs
1106  * than previous designs, while remaining 100% (?) SMP safe and capable.
1107  */
1108 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1109 {
1110         ide_drive_t     *drive;
1111         ide_hwif_t      *hwif;
1112         struct request  *rq;
1113         ide_startstop_t startstop;
1114         int             loops = 0;
1115
1116         /* for atari only: POSSIBLY BROKEN HERE(?) */
1117         ide_get_lock(ide_intr, hwgroup);
1118
1119         /* caller must own ide_lock */
1120         BUG_ON(!irqs_disabled());
1121
1122         while (!hwgroup->busy) {
1123                 hwgroup->busy = 1;
1124                 drive = choose_drive(hwgroup);
1125                 if (drive == NULL) {
1126                         int sleeping = 0;
1127                         unsigned long sleep = 0; /* shut up, gcc */
1128                         hwgroup->rq = NULL;
1129                         drive = hwgroup->drive;
1130                         do {
1131                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1132                                         sleeping = 1;
1133                                         sleep = drive->sleep;
1134                                 }
1135                         } while ((drive = drive->next) != hwgroup->drive);
1136                         if (sleeping) {
1137                 /*
1138                  * Take a short snooze, and then wake up this hwgroup again.
1139                  * This gives other hwgroups on the same a chance to
1140                  * play fairly with us, just in case there are big differences
1141                  * in relative throughputs.. don't want to hog the cpu too much.
1142                  */
1143                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1144                                         sleep = jiffies + WAIT_MIN_SLEEP;
1145 #if 1
1146                                 if (timer_pending(&hwgroup->timer))
1147                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1148 #endif
1149                                 /* so that ide_timer_expiry knows what to do */
1150                                 hwgroup->sleeping = 1;
1151                                 mod_timer(&hwgroup->timer, sleep);
1152                                 /* we purposely leave hwgroup->busy==1
1153                                  * while sleeping */
1154                         } else {
1155                                 /* Ugly, but how can we sleep for the lock
1156                                  * otherwise? perhaps from tq_disk?
1157                                  */
1158
1159                                 /* for atari only */
1160                                 ide_release_lock();
1161                                 hwgroup->busy = 0;
1162                         }
1163
1164                         /* no more work for this hwgroup (for now) */
1165                         return;
1166                 }
1167         again:
1168                 hwif = HWIF(drive);
1169                 if (hwgroup->hwif->sharing_irq &&
1170                     hwif != hwgroup->hwif &&
1171                     hwif->io_ports[IDE_CONTROL_OFFSET]) {
1172                         /* set nIEN for previous hwif */
1173                         SELECT_INTERRUPT(drive);
1174                 }
1175                 hwgroup->hwif = hwif;
1176                 hwgroup->drive = drive;
1177                 drive->sleeping = 0;
1178                 drive->service_start = jiffies;
1179
1180                 if (blk_queue_plugged(drive->queue)) {
1181                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1182                         break;
1183                 }
1184
1185                 /*
1186                  * we know that the queue isn't empty, but this can happen
1187                  * if the q->prep_rq_fn() decides to kill a request
1188                  */
1189                 rq = elv_next_request(drive->queue);
1190                 if (!rq) {
1191                         hwgroup->busy = 0;
1192                         break;
1193                 }
1194
1195                 /*
1196                  * Sanity: don't accept a request that isn't a PM request
1197                  * if we are currently power managed. This is very important as
1198                  * blk_stop_queue() doesn't prevent the elv_next_request()
1199                  * above to return us whatever is in the queue. Since we call
1200                  * ide_do_request() ourselves, we end up taking requests while
1201                  * the queue is blocked...
1202                  * 
1203                  * We let requests forced at head of queue with ide-preempt
1204                  * though. I hope that doesn't happen too much, hopefully not
1205                  * unless the subdriver triggers such a thing in its own PM
1206                  * state machine.
1207                  *
1208                  * We count how many times we loop here to make sure we service
1209                  * all drives in the hwgroup without looping for ever
1210                  */
1211                 if (drive->blocked && !blk_pm_request(rq) && !(rq->flags & REQ_PREEMPT)) {
1212                         drive = drive->next ? drive->next : hwgroup->drive;
1213                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1214                                 goto again;
1215                         /* We clear busy, there should be no pending ATA command at this point. */
1216                         hwgroup->busy = 0;
1217                         break;
1218                 }
1219
1220                 hwgroup->rq = rq;
1221
1222                 /*
1223                  * Some systems have trouble with IDE IRQs arriving while
1224                  * the driver is still setting things up.  So, here we disable
1225                  * the IRQ used by this interface while the request is being started.
1226                  * This may look bad at first, but pretty much the same thing
1227                  * happens anyway when any interrupt comes in, IDE or otherwise
1228                  *  -- the kernel masks the IRQ while it is being handled.
1229                  */
1230                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1231                         disable_irq_nosync(hwif->irq);
1232                 spin_unlock(&ide_lock);
1233                 local_irq_enable();
1234                         /* allow other IRQs while we start this request */
1235                 startstop = start_request(drive, rq);
1236                 spin_lock_irq(&ide_lock);
1237                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1238                         enable_irq(hwif->irq);
1239                 if (startstop == ide_stopped)
1240                         hwgroup->busy = 0;
1241         }
1242 }
1243
1244 /*
1245  * Passes the stuff to ide_do_request
1246  */
1247 void do_ide_request(request_queue_t *q)
1248 {
1249         ide_drive_t *drive = q->queuedata;
1250
1251         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1252 }
1253
1254 /*
1255  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1256  * retry the current request in pio mode instead of risking tossing it
1257  * all away
1258  */
1259 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1260 {
1261         ide_hwif_t *hwif = HWIF(drive);
1262         struct request *rq;
1263         ide_startstop_t ret = ide_stopped;
1264
1265         /*
1266          * end current dma transaction
1267          */
1268
1269         if (error < 0) {
1270                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1271                 (void)HWIF(drive)->ide_dma_end(drive);
1272                 ret = ide_error(drive, "dma timeout error",
1273                                                 hwif->INB(IDE_STATUS_REG));
1274         } else {
1275                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1276                 (void) hwif->ide_dma_timeout(drive);
1277         }
1278
1279         /*
1280          * disable dma for now, but remember that we did so because of
1281          * a timeout -- we'll reenable after we finish this next request
1282          * (or rather the first chunk of it) in pio.
1283          */
1284         drive->retry_pio++;
1285         drive->state = DMA_PIO_RETRY;
1286         (void) hwif->ide_dma_off_quietly(drive);
1287
1288         /*
1289          * un-busy drive etc (hwgroup->busy is cleared on return) and
1290          * make sure request is sane
1291          */
1292         rq = HWGROUP(drive)->rq;
1293         HWGROUP(drive)->rq = NULL;
1294
1295         rq->errors = 0;
1296
1297         if (!rq->bio)
1298                 goto out;
1299
1300         rq->sector = rq->bio->bi_sector;
1301         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1302         rq->hard_cur_sectors = rq->current_nr_sectors;
1303         rq->buffer = bio_data(rq->bio);
1304 out:
1305         return ret;
1306 }
1307
1308 /**
1309  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1310  *      @data: timer callback magic (hwgroup)
1311  *
1312  *      An IDE command has timed out before the expected drive return
1313  *      occurred. At this point we attempt to clean up the current
1314  *      mess. If the current handler includes an expiry handler then
1315  *      we invoke the expiry handler, and providing it is happy the
1316  *      work is done. If that fails we apply generic recovery rules
1317  *      invoking the handler and checking the drive DMA status. We
1318  *      have an excessively incestuous relationship with the DMA
1319  *      logic that wants cleaning up.
1320  */
1321  
1322 void ide_timer_expiry (unsigned long data)
1323 {
1324         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1325         ide_handler_t   *handler;
1326         ide_expiry_t    *expiry;
1327         unsigned long   flags;
1328         unsigned long   wait = -1;
1329
1330         spin_lock_irqsave(&ide_lock, flags);
1331
1332         if ((handler = hwgroup->handler) == NULL) {
1333                 /*
1334                  * Either a marginal timeout occurred
1335                  * (got the interrupt just as timer expired),
1336                  * or we were "sleeping" to give other devices a chance.
1337                  * Either way, we don't really want to complain about anything.
1338                  */
1339                 if (hwgroup->sleeping) {
1340                         hwgroup->sleeping = 0;
1341                         hwgroup->busy = 0;
1342                 }
1343         } else {
1344                 ide_drive_t *drive = hwgroup->drive;
1345                 if (!drive) {
1346                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1347                         hwgroup->handler = NULL;
1348                 } else {
1349                         ide_hwif_t *hwif;
1350                         ide_startstop_t startstop = ide_stopped;
1351                         if (!hwgroup->busy) {
1352                                 hwgroup->busy = 1;      /* paranoia */
1353                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1354                         }
1355                         if ((expiry = hwgroup->expiry) != NULL) {
1356                                 /* continue */
1357                                 if ((wait = expiry(drive)) > 0) {
1358                                         /* reset timer */
1359                                         hwgroup->timer.expires  = jiffies + wait;
1360                                         add_timer(&hwgroup->timer);
1361                                         spin_unlock_irqrestore(&ide_lock, flags);
1362                                         return;
1363                                 }
1364                         }
1365                         hwgroup->handler = NULL;
1366                         /*
1367                          * We need to simulate a real interrupt when invoking
1368                          * the handler() function, which means we need to
1369                          * globally mask the specific IRQ:
1370                          */
1371                         spin_unlock(&ide_lock);
1372                         hwif  = HWIF(drive);
1373 #if DISABLE_IRQ_NOSYNC
1374                         disable_irq_nosync(hwif->irq);
1375 #else
1376                         /* disable_irq_nosync ?? */
1377                         disable_irq(hwif->irq);
1378 #endif /* DISABLE_IRQ_NOSYNC */
1379                         /* local CPU only,
1380                          * as if we were handling an interrupt */
1381                         local_irq_disable();
1382                         if (hwgroup->polling) {
1383                                 startstop = handler(drive);
1384                         } else if (drive_is_ready(drive)) {
1385                                 if (drive->waiting_for_dma)
1386                                         (void) hwgroup->hwif->ide_dma_lostirq(drive);
1387                                 (void)ide_ack_intr(hwif);
1388                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1389                                 startstop = handler(drive);
1390                         } else {
1391                                 if (drive->waiting_for_dma) {
1392                                         startstop = ide_dma_timeout_retry(drive, wait);
1393                                 } else
1394                                         startstop =
1395                                         ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1396                         }
1397                         drive->service_time = jiffies - drive->service_start;
1398                         spin_lock_irq(&ide_lock);
1399                         enable_irq(hwif->irq);
1400                         if (startstop == ide_stopped)
1401                                 hwgroup->busy = 0;
1402                 }
1403         }
1404         ide_do_request(hwgroup, IDE_NO_IRQ);
1405         spin_unlock_irqrestore(&ide_lock, flags);
1406 }
1407
1408 /**
1409  *      unexpected_intr         -       handle an unexpected IDE interrupt
1410  *      @irq: interrupt line
1411  *      @hwgroup: hwgroup being processed
1412  *
1413  *      There's nothing really useful we can do with an unexpected interrupt,
1414  *      other than reading the status register (to clear it), and logging it.
1415  *      There should be no way that an irq can happen before we're ready for it,
1416  *      so we needn't worry much about losing an "important" interrupt here.
1417  *
1418  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1419  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1420  *      looks "good", we just ignore the interrupt completely.
1421  *
1422  *      This routine assumes __cli() is in effect when called.
1423  *
1424  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1425  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1426  *      we could screw up by interfering with a new request being set up for 
1427  *      irq15.
1428  *
1429  *      In reality, this is a non-issue.  The new command is not sent unless 
1430  *      the drive is ready to accept one, in which case we know the drive is
1431  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1432  *      before completing the issuance of any new drive command, so we will not
1433  *      be accidentally invoked as a result of any valid command completion
1434  *      interrupt.
1435  *
1436  *      Note that we must walk the entire hwgroup here. We know which hwif
1437  *      is doing the current command, but we don't know which hwif burped
1438  *      mysteriously.
1439  */
1440  
1441 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1442 {
1443         u8 stat;
1444         ide_hwif_t *hwif = hwgroup->hwif;
1445
1446         /*
1447          * handle the unexpected interrupt
1448          */
1449         do {
1450                 if (hwif->irq == irq) {
1451                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1452                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1453                                 /* Try to not flood the console with msgs */
1454                                 static unsigned long last_msgtime, count;
1455                                 ++count;
1456                                 if (time_after(jiffies, last_msgtime + HZ)) {
1457                                         last_msgtime = jiffies;
1458                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1459                                                 "status=0x%02x, count=%ld\n",
1460                                                 hwif->name,
1461                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1462                                 }
1463                         }
1464                 }
1465         } while ((hwif = hwif->next) != hwgroup->hwif);
1466 }
1467
1468 /**
1469  *      ide_intr        -       default IDE interrupt handler
1470  *      @irq: interrupt number
1471  *      @dev_id: hwif group
1472  *      @regs: unused weirdness from the kernel irq layer
1473  *
1474  *      This is the default IRQ handler for the IDE layer. You should
1475  *      not need to override it. If you do be aware it is subtle in
1476  *      places
1477  *
1478  *      hwgroup->hwif is the interface in the group currently performing
1479  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1480  *      the IRQ handler to call. As we issue a command the handlers
1481  *      step through multiple states, reassigning the handler to the
1482  *      next step in the process. Unlike a smart SCSI controller IDE
1483  *      expects the main processor to sequence the various transfer
1484  *      stages. We also manage a poll timer to catch up with most
1485  *      timeout situations. There are still a few where the handlers
1486  *      don't ever decide to give up.
1487  *
1488  *      The handler eventually returns ide_stopped to indicate the
1489  *      request completed. At this point we issue the next request
1490  *      on the hwgroup and the process begins again.
1491  */
1492  
1493 irqreturn_t ide_intr (int irq, void *dev_id, struct pt_regs *regs)
1494 {
1495         unsigned long flags;
1496         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1497         ide_hwif_t *hwif;
1498         ide_drive_t *drive;
1499         ide_handler_t *handler;
1500         ide_startstop_t startstop;
1501
1502         spin_lock_irqsave(&ide_lock, flags);
1503         hwif = hwgroup->hwif;
1504
1505         if (!ide_ack_intr(hwif)) {
1506                 spin_unlock_irqrestore(&ide_lock, flags);
1507                 return IRQ_NONE;
1508         }
1509
1510         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1511                 /*
1512                  * Not expecting an interrupt from this drive.
1513                  * That means this could be:
1514                  *      (1) an interrupt from another PCI device
1515                  *      sharing the same PCI INT# as us.
1516                  * or   (2) a drive just entered sleep or standby mode,
1517                  *      and is interrupting to let us know.
1518                  * or   (3) a spurious interrupt of unknown origin.
1519                  *
1520                  * For PCI, we cannot tell the difference,
1521                  * so in that case we just ignore it and hope it goes away.
1522                  *
1523                  * FIXME: unexpected_intr should be hwif-> then we can
1524                  * remove all the ifdef PCI crap
1525                  */
1526 #ifdef CONFIG_BLK_DEV_IDEPCI
1527                 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1528 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1529                 {
1530                         /*
1531                          * Probably not a shared PCI interrupt,
1532                          * so we can safely try to do something about it:
1533                          */
1534                         unexpected_intr(irq, hwgroup);
1535 #ifdef CONFIG_BLK_DEV_IDEPCI
1536                 } else {
1537                         /*
1538                          * Whack the status register, just in case
1539                          * we have a leftover pending IRQ.
1540                          */
1541                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1542 #endif /* CONFIG_BLK_DEV_IDEPCI */
1543                 }
1544                 spin_unlock_irqrestore(&ide_lock, flags);
1545                 return IRQ_NONE;
1546         }
1547         drive = hwgroup->drive;
1548         if (!drive) {
1549                 /*
1550                  * This should NEVER happen, and there isn't much
1551                  * we could do about it here.
1552                  *
1553                  * [Note - this can occur if the drive is hot unplugged]
1554                  */
1555                 spin_unlock_irqrestore(&ide_lock, flags);
1556                 return IRQ_HANDLED;
1557         }
1558         if (!drive_is_ready(drive)) {
1559                 /*
1560                  * This happens regularly when we share a PCI IRQ with
1561                  * another device.  Unfortunately, it can also happen
1562                  * with some buggy drives that trigger the IRQ before
1563                  * their status register is up to date.  Hopefully we have
1564                  * enough advance overhead that the latter isn't a problem.
1565                  */
1566                 spin_unlock_irqrestore(&ide_lock, flags);
1567                 return IRQ_NONE;
1568         }
1569         if (!hwgroup->busy) {
1570                 hwgroup->busy = 1;      /* paranoia */
1571                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1572         }
1573         hwgroup->handler = NULL;
1574         del_timer(&hwgroup->timer);
1575         spin_unlock(&ide_lock);
1576
1577         if (drive->unmask)
1578                 local_irq_enable();
1579         /* service this interrupt, may set handler for next interrupt */
1580         startstop = handler(drive);
1581         spin_lock_irq(&ide_lock);
1582
1583         /*
1584          * Note that handler() may have set things up for another
1585          * interrupt to occur soon, but it cannot happen until
1586          * we exit from this routine, because it will be the
1587          * same irq as is currently being serviced here, and Linux
1588          * won't allow another of the same (on any CPU) until we return.
1589          */
1590         drive->service_time = jiffies - drive->service_start;
1591         if (startstop == ide_stopped) {
1592                 if (hwgroup->handler == NULL) { /* paranoia */
1593                         hwgroup->busy = 0;
1594                         ide_do_request(hwgroup, hwif->irq);
1595                 } else {
1596                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1597                                 "on exit\n", drive->name);
1598                 }
1599         }
1600         spin_unlock_irqrestore(&ide_lock, flags);
1601         return IRQ_HANDLED;
1602 }
1603
1604 /**
1605  *      ide_init_drive_cmd      -       initialize a drive command request
1606  *      @rq: request object
1607  *
1608  *      Initialize a request before we fill it in and send it down to
1609  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1610  *      now it doesn't do a lot, but if that changes abusers will have a
1611  *      nasty suprise.
1612  */
1613
1614 void ide_init_drive_cmd (struct request *rq)
1615 {
1616         memset(rq, 0, sizeof(*rq));
1617         rq->flags = REQ_DRIVE_CMD;
1618         rq->ref_count = 1;
1619 }
1620
1621 EXPORT_SYMBOL(ide_init_drive_cmd);
1622
1623 /**
1624  *      ide_do_drive_cmd        -       issue IDE special command
1625  *      @drive: device to issue command
1626  *      @rq: request to issue
1627  *      @action: action for processing
1628  *
1629  *      This function issues a special IDE device request
1630  *      onto the request queue.
1631  *
1632  *      If action is ide_wait, then the rq is queued at the end of the
1633  *      request queue, and the function sleeps until it has been processed.
1634  *      This is for use when invoked from an ioctl handler.
1635  *
1636  *      If action is ide_preempt, then the rq is queued at the head of
1637  *      the request queue, displacing the currently-being-processed
1638  *      request and this function returns immediately without waiting
1639  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1640  *      intended for careful use by the ATAPI tape/cdrom driver code.
1641  *
1642  *      If action is ide_end, then the rq is queued at the end of the
1643  *      request queue, and the function returns immediately without waiting
1644  *      for the new rq to be completed. This is again intended for careful
1645  *      use by the ATAPI tape/cdrom driver code.
1646  */
1647  
1648 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1649 {
1650         unsigned long flags;
1651         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1652         DECLARE_COMPLETION(wait);
1653         int where = ELEVATOR_INSERT_BACK, err;
1654         int must_wait = (action == ide_wait || action == ide_head_wait);
1655
1656         rq->errors = 0;
1657         rq->rq_status = RQ_ACTIVE;
1658
1659         /*
1660          * we need to hold an extra reference to request for safe inspection
1661          * after completion
1662          */
1663         if (must_wait) {
1664                 rq->ref_count++;
1665                 rq->waiting = &wait;
1666                 rq->end_io = blk_end_sync_rq;
1667         }
1668
1669         spin_lock_irqsave(&ide_lock, flags);
1670         if (action == ide_preempt)
1671                 hwgroup->rq = NULL;
1672         if (action == ide_preempt || action == ide_head_wait) {
1673                 where = ELEVATOR_INSERT_FRONT;
1674                 rq->flags |= REQ_PREEMPT;
1675         }
1676         __elv_add_request(drive->queue, rq, where, 0);
1677         ide_do_request(hwgroup, IDE_NO_IRQ);
1678         spin_unlock_irqrestore(&ide_lock, flags);
1679
1680         err = 0;
1681         if (must_wait) {
1682                 wait_for_completion(&wait);
1683                 rq->waiting = NULL;
1684                 if (rq->errors)
1685                         err = -EIO;
1686
1687                 blk_put_request(rq);
1688         }
1689
1690         return err;
1691 }
1692
1693 EXPORT_SYMBOL(ide_do_drive_cmd);