Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[linux-2.6] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
166
167 #include "ipw2100.h"
168
169 #define IPW2100_VERSION "git-1.2.2"
170
171 #define DRV_NAME        "ipw2100"
172 #define DRV_VERSION     IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
175
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define IPW2100_RX_DEBUG        /* Reception debugging */
179 #endif
180
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
194
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
201
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
207
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
209
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213         if (ipw2100_debug_level & (level)) { \
214                 printk(KERN_DEBUG "ipw2100: %c %s ", \
215                        in_interrupt() ? 'I' : 'U',  __FUNCTION__); \
216                 printk(message); \
217         } \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif                          /* CONFIG_IPW2100_DEBUG */
222
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225         "undefined",
226         "unused",               /* HOST_ATTENTION */
227         "HOST_COMPLETE",
228         "unused",               /* SLEEP */
229         "unused",               /* HOST_POWER_DOWN */
230         "unused",
231         "SYSTEM_CONFIG",
232         "unused",               /* SET_IMR */
233         "SSID",
234         "MANDATORY_BSSID",
235         "AUTHENTICATION_TYPE",
236         "ADAPTER_ADDRESS",
237         "PORT_TYPE",
238         "INTERNATIONAL_MODE",
239         "CHANNEL",
240         "RTS_THRESHOLD",
241         "FRAG_THRESHOLD",
242         "POWER_MODE",
243         "TX_RATES",
244         "BASIC_TX_RATES",
245         "WEP_KEY_INFO",
246         "unused",
247         "unused",
248         "unused",
249         "unused",
250         "WEP_KEY_INDEX",
251         "WEP_FLAGS",
252         "ADD_MULTICAST",
253         "CLEAR_ALL_MULTICAST",
254         "BEACON_INTERVAL",
255         "ATIM_WINDOW",
256         "CLEAR_STATISTICS",
257         "undefined",
258         "undefined",
259         "undefined",
260         "undefined",
261         "TX_POWER_INDEX",
262         "undefined",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "BROADCAST_SCAN",
269         "CARD_DISABLE",
270         "PREFERRED_BSSID",
271         "SET_SCAN_OPTIONS",
272         "SCAN_DWELL_TIME",
273         "SWEEP_TABLE",
274         "AP_OR_STATION_TABLE",
275         "GROUP_ORDINALS",
276         "SHORT_RETRY_LIMIT",
277         "LONG_RETRY_LIMIT",
278         "unused",               /* SAVE_CALIBRATION */
279         "unused",               /* RESTORE_CALIBRATION */
280         "undefined",
281         "undefined",
282         "undefined",
283         "HOST_PRE_POWER_DOWN",
284         "unused",               /* HOST_INTERRUPT_COALESCING */
285         "undefined",
286         "CARD_DISABLE_PHY_OFF",
287         "MSDU_TX_RATES" "undefined",
288         "undefined",
289         "SET_STATION_STAT_BITS",
290         "CLEAR_STATIONS_STAT_BITS",
291         "LEAP_ROGUE_MODE",
292         "SET_SECURITY_INFORMATION",
293         "DISASSOCIATION_BSSID",
294         "SET_WPA_ASS_IE"
295 };
296 #endif
297
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
302
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
306
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308                                struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310                                 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312                                  size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314                                     size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316                                      struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318                                   struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
322
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
324 {
325         *val = readl((void __iomem *)(dev->base_addr + reg));
326         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
327 }
328
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
330 {
331         writel(val, (void __iomem *)(dev->base_addr + reg));
332         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
333 }
334
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336                                       u16 * val)
337 {
338         *val = readw((void __iomem *)(dev->base_addr + reg));
339         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
340 }
341
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
343 {
344         *val = readb((void __iomem *)(dev->base_addr + reg));
345         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
346 }
347
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
349 {
350         writew(val, (void __iomem *)(dev->base_addr + reg));
351         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
352 }
353
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
355 {
356         writeb(val, (void __iomem *)(dev->base_addr + reg));
357         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
358 }
359
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
361 {
362         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363                        addr & IPW_REG_INDIRECT_ADDR_MASK);
364         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
365 }
366
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
368 {
369         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370                        addr & IPW_REG_INDIRECT_ADDR_MASK);
371         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
372 }
373
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
375 {
376         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377                        addr & IPW_REG_INDIRECT_ADDR_MASK);
378         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
379 }
380
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
382 {
383         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384                        addr & IPW_REG_INDIRECT_ADDR_MASK);
385         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
386 }
387
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
389 {
390         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391                        addr & IPW_REG_INDIRECT_ADDR_MASK);
392         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
393 }
394
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
396 {
397         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398                        addr & IPW_REG_INDIRECT_ADDR_MASK);
399         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
400 }
401
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
403 {
404         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405                        addr & IPW_REG_INDIRECT_ADDR_MASK);
406 }
407
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
409 {
410         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
411 }
412
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414                                     const u8 * buf)
415 {
416         u32 aligned_addr;
417         u32 aligned_len;
418         u32 dif_len;
419         u32 i;
420
421         /* read first nibble byte by byte */
422         aligned_addr = addr & (~0x3);
423         dif_len = addr - aligned_addr;
424         if (dif_len) {
425                 /* Start reading at aligned_addr + dif_len */
426                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427                                aligned_addr);
428                 for (i = dif_len; i < 4; i++, buf++)
429                         write_register_byte(dev,
430                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
431                                             *buf);
432
433                 len -= dif_len;
434                 aligned_addr += 4;
435         }
436
437         /* read DWs through autoincrement registers */
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439         aligned_len = len & (~0x3);
440         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
442
443         /* copy the last nibble */
444         dif_len = len - aligned_len;
445         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446         for (i = 0; i < dif_len; i++, buf++)
447                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448                                     *buf);
449 }
450
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452                                    u8 * buf)
453 {
454         u32 aligned_addr;
455         u32 aligned_len;
456         u32 dif_len;
457         u32 i;
458
459         /* read first nibble byte by byte */
460         aligned_addr = addr & (~0x3);
461         dif_len = addr - aligned_addr;
462         if (dif_len) {
463                 /* Start reading at aligned_addr + dif_len */
464                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465                                aligned_addr);
466                 for (i = dif_len; i < 4; i++, buf++)
467                         read_register_byte(dev,
468                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
469                                            buf);
470
471                 len -= dif_len;
472                 aligned_addr += 4;
473         }
474
475         /* read DWs through autoincrement registers */
476         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477         aligned_len = len & (~0x3);
478         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
480
481         /* copy the last nibble */
482         dif_len = len - aligned_len;
483         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484         for (i = 0; i < dif_len; i++, buf++)
485                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
486 }
487
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
489 {
490         return (dev->base_addr &&
491                 (readl
492                  ((void __iomem *)(dev->base_addr +
493                                    IPW_REG_DOA_DEBUG_AREA_START))
494                  == IPW_DATA_DOA_DEBUG_VALUE));
495 }
496
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498                                void *val, u32 * len)
499 {
500         struct ipw2100_ordinals *ordinals = &priv->ordinals;
501         u32 addr;
502         u32 field_info;
503         u16 field_len;
504         u16 field_count;
505         u32 total_length;
506
507         if (ordinals->table1_addr == 0) {
508                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509                        "before they have been loaded.\n");
510                 return -EINVAL;
511         }
512
513         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
516
517                         printk(KERN_WARNING DRV_NAME
518                                ": ordinal buffer length too small, need %zd\n",
519                                IPW_ORD_TAB_1_ENTRY_SIZE);
520
521                         return -EINVAL;
522                 }
523
524                 read_nic_dword(priv->net_dev,
525                                ordinals->table1_addr + (ord << 2), &addr);
526                 read_nic_dword(priv->net_dev, addr, val);
527
528                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
529
530                 return 0;
531         }
532
533         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
534
535                 ord -= IPW_START_ORD_TAB_2;
536
537                 /* get the address of statistic */
538                 read_nic_dword(priv->net_dev,
539                                ordinals->table2_addr + (ord << 3), &addr);
540
541                 /* get the second DW of statistics ;
542                  * two 16-bit words - first is length, second is count */
543                 read_nic_dword(priv->net_dev,
544                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
545                                &field_info);
546
547                 /* get each entry length */
548                 field_len = *((u16 *) & field_info);
549
550                 /* get number of entries */
551                 field_count = *(((u16 *) & field_info) + 1);
552
553                 /* abort if no enought memory */
554                 total_length = field_len * field_count;
555                 if (total_length > *len) {
556                         *len = total_length;
557                         return -EINVAL;
558                 }
559
560                 *len = total_length;
561                 if (!total_length)
562                         return 0;
563
564                 /* read the ordinal data from the SRAM */
565                 read_nic_memory(priv->net_dev, addr, total_length, val);
566
567                 return 0;
568         }
569
570         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571                "in table 2\n", ord);
572
573         return -EINVAL;
574 }
575
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577                                u32 * len)
578 {
579         struct ipw2100_ordinals *ordinals = &priv->ordinals;
580         u32 addr;
581
582         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585                         IPW_DEBUG_INFO("wrong size\n");
586                         return -EINVAL;
587                 }
588
589                 read_nic_dword(priv->net_dev,
590                                ordinals->table1_addr + (ord << 2), &addr);
591
592                 write_nic_dword(priv->net_dev, addr, *val);
593
594                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
595
596                 return 0;
597         }
598
599         IPW_DEBUG_INFO("wrong table\n");
600         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601                 return -EINVAL;
602
603         return -EINVAL;
604 }
605
606 static char *snprint_line(char *buf, size_t count,
607                           const u8 * data, u32 len, u32 ofs)
608 {
609         int out, i, j, l;
610         char c;
611
612         out = snprintf(buf, count, "%08X", ofs);
613
614         for (l = 0, i = 0; i < 2; i++) {
615                 out += snprintf(buf + out, count - out, " ");
616                 for (j = 0; j < 8 && l < len; j++, l++)
617                         out += snprintf(buf + out, count - out, "%02X ",
618                                         data[(i * 8 + j)]);
619                 for (; j < 8; j++)
620                         out += snprintf(buf + out, count - out, "   ");
621         }
622
623         out += snprintf(buf + out, count - out, " ");
624         for (l = 0, i = 0; i < 2; i++) {
625                 out += snprintf(buf + out, count - out, " ");
626                 for (j = 0; j < 8 && l < len; j++, l++) {
627                         c = data[(i * 8 + j)];
628                         if (!isascii(c) || !isprint(c))
629                                 c = '.';
630
631                         out += snprintf(buf + out, count - out, "%c", c);
632                 }
633
634                 for (; j < 8; j++)
635                         out += snprintf(buf + out, count - out, " ");
636         }
637
638         return buf;
639 }
640
641 static void printk_buf(int level, const u8 * data, u32 len)
642 {
643         char line[81];
644         u32 ofs = 0;
645         if (!(ipw2100_debug_level & level))
646                 return;
647
648         while (len) {
649                 printk(KERN_DEBUG "%s\n",
650                        snprint_line(line, sizeof(line), &data[ofs],
651                                     min(len, 16U), ofs));
652                 ofs += 16;
653                 len -= min(len, 16U);
654         }
655 }
656
657 #define MAX_RESET_BACKOFF 10
658
659 static void schedule_reset(struct ipw2100_priv *priv)
660 {
661         unsigned long now = get_seconds();
662
663         /* If we haven't received a reset request within the backoff period,
664          * then we can reset the backoff interval so this reset occurs
665          * immediately */
666         if (priv->reset_backoff &&
667             (now - priv->last_reset > priv->reset_backoff))
668                 priv->reset_backoff = 0;
669
670         priv->last_reset = get_seconds();
671
672         if (!(priv->status & STATUS_RESET_PENDING)) {
673                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674                                priv->net_dev->name, priv->reset_backoff);
675                 netif_carrier_off(priv->net_dev);
676                 netif_stop_queue(priv->net_dev);
677                 priv->status |= STATUS_RESET_PENDING;
678                 if (priv->reset_backoff)
679                         queue_delayed_work(priv->workqueue, &priv->reset_work,
680                                            priv->reset_backoff * HZ);
681                 else
682                         queue_delayed_work(priv->workqueue, &priv->reset_work,
683                                            0);
684
685                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686                         priv->reset_backoff++;
687
688                 wake_up_interruptible(&priv->wait_command_queue);
689         } else
690                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691                                priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697                                    struct host_command *cmd)
698 {
699         struct list_head *element;
700         struct ipw2100_tx_packet *packet;
701         unsigned long flags;
702         int err = 0;
703
704         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705                      command_types[cmd->host_command], cmd->host_command,
706                      cmd->host_command_length);
707         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708                    cmd->host_command_length);
709
710         spin_lock_irqsave(&priv->low_lock, flags);
711
712         if (priv->fatal_error) {
713                 IPW_DEBUG_INFO
714                     ("Attempt to send command while hardware in fatal error condition.\n");
715                 err = -EIO;
716                 goto fail_unlock;
717         }
718
719         if (!(priv->status & STATUS_RUNNING)) {
720                 IPW_DEBUG_INFO
721                     ("Attempt to send command while hardware is not running.\n");
722                 err = -EIO;
723                 goto fail_unlock;
724         }
725
726         if (priv->status & STATUS_CMD_ACTIVE) {
727                 IPW_DEBUG_INFO
728                     ("Attempt to send command while another command is pending.\n");
729                 err = -EBUSY;
730                 goto fail_unlock;
731         }
732
733         if (list_empty(&priv->msg_free_list)) {
734                 IPW_DEBUG_INFO("no available msg buffers\n");
735                 goto fail_unlock;
736         }
737
738         priv->status |= STATUS_CMD_ACTIVE;
739         priv->messages_sent++;
740
741         element = priv->msg_free_list.next;
742
743         packet = list_entry(element, struct ipw2100_tx_packet, list);
744         packet->jiffy_start = jiffies;
745
746         /* initialize the firmware command packet */
747         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749         packet->info.c_struct.cmd->host_command_len_reg =
750             cmd->host_command_length;
751         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754                cmd->host_command_parameters,
755                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757         list_del(element);
758         DEC_STAT(&priv->msg_free_stat);
759
760         list_add_tail(element, &priv->msg_pend_list);
761         INC_STAT(&priv->msg_pend_stat);
762
763         ipw2100_tx_send_commands(priv);
764         ipw2100_tx_send_data(priv);
765
766         spin_unlock_irqrestore(&priv->low_lock, flags);
767
768         /*
769          * We must wait for this command to complete before another
770          * command can be sent...  but if we wait more than 3 seconds
771          * then there is a problem.
772          */
773
774         err =
775             wait_event_interruptible_timeout(priv->wait_command_queue,
776                                              !(priv->
777                                                status & STATUS_CMD_ACTIVE),
778                                              HOST_COMPLETE_TIMEOUT);
779
780         if (err == 0) {
781                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784                 priv->status &= ~STATUS_CMD_ACTIVE;
785                 schedule_reset(priv);
786                 return -EIO;
787         }
788
789         if (priv->fatal_error) {
790                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791                        priv->net_dev->name);
792                 return -EIO;
793         }
794
795         /* !!!!! HACK TEST !!!!!
796          * When lots of debug trace statements are enabled, the driver
797          * doesn't seem to have as many firmware restart cycles...
798          *
799          * As a test, we're sticking in a 1/100s delay here */
800         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802         return 0;
803
804       fail_unlock:
805         spin_unlock_irqrestore(&priv->low_lock, flags);
806
807         return err;
808 }
809
810 /*
811  * Verify the values and data access of the hardware
812  * No locks needed or used.  No functions called.
813  */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816         u32 data1, data2;
817         u32 address;
818
819         u32 val1 = 0x76543210;
820         u32 val2 = 0xFEDCBA98;
821
822         /* Domain 0 check - all values should be DOA_DEBUG */
823         for (address = IPW_REG_DOA_DEBUG_AREA_START;
824              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825                 read_register(priv->net_dev, address, &data1);
826                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827                         return -EIO;
828         }
829
830         /* Domain 1 check - use arbitrary read/write compare  */
831         for (address = 0; address < 5; address++) {
832                 /* The memory area is not used now */
833                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834                                val1);
835                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836                                val2);
837                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838                               &data1);
839                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840                               &data2);
841                 if (val1 == data1 && val2 == data2)
842                         return 0;
843         }
844
845         return -EIO;
846 }
847
848 /*
849  *
850  * Loop until the CARD_DISABLED bit is the same value as the
851  * supplied parameter
852  *
853  * TODO: See if it would be more efficient to do a wait/wake
854  *       cycle and have the completion event trigger the wakeup
855  *
856  */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860         int i;
861         u32 card_state;
862         u32 len = sizeof(card_state);
863         int err;
864
865         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867                                           &card_state, &len);
868                 if (err) {
869                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870                                        "failed.\n");
871                         return 0;
872                 }
873
874                 /* We'll break out if either the HW state says it is
875                  * in the state we want, or if HOST_COMPLETE command
876                  * finishes */
877                 if ((card_state == state) ||
878                     ((priv->status & STATUS_ENABLED) ?
879                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880                         if (state == IPW_HW_STATE_ENABLED)
881                                 priv->status |= STATUS_ENABLED;
882                         else
883                                 priv->status &= ~STATUS_ENABLED;
884
885                         return 0;
886                 }
887
888                 udelay(50);
889         }
890
891         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892                        state ? "DISABLED" : "ENABLED");
893         return -EIO;
894 }
895
896 /*********************************************************************
897     Procedure   :   sw_reset_and_clock
898     Purpose     :   Asserts s/w reset, asserts clock initialization
899                     and waits for clock stabilization
900  ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903         int i;
904         u32 r;
905
906         // assert s/w reset
907         write_register(priv->net_dev, IPW_REG_RESET_REG,
908                        IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910         // wait for clock stabilization
911         for (i = 0; i < 1000; i++) {
912                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914                 // check clock ready bit
915                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917                         break;
918         }
919
920         if (i == 1000)
921                 return -EIO;    // TODO: better error value
922
923         /* set "initialization complete" bit to move adapter to
924          * D0 state */
925         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928         /* wait for clock stabilization */
929         for (i = 0; i < 10000; i++) {
930                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932                 /* check clock ready bit */
933                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935                         break;
936         }
937
938         if (i == 10000)
939                 return -EIO;    /* TODO: better error value */
940
941         /* set D0 standby bit */
942         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946         return 0;
947 }
948
949 /*********************************************************************
950     Procedure   :   ipw2100_download_firmware
951     Purpose     :   Initiaze adapter after power on.
952                     The sequence is:
953                     1. assert s/w reset first!
954                     2. awake clocks & wait for clock stabilization
955                     3. hold ARC (don't ask me why...)
956                     4. load Dino ucode and reset/clock init again
957                     5. zero-out shared mem
958                     6. download f/w
959  *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962         u32 address;
963         int err;
964
965 #ifndef CONFIG_PM
966         /* Fetch the firmware and microcode */
967         struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970         if (priv->fatal_error) {
971                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972                                 "fatal error %d.  Interface must be brought down.\n",
973                                 priv->net_dev->name, priv->fatal_error);
974                 return -EINVAL;
975         }
976 #ifdef CONFIG_PM
977         if (!ipw2100_firmware.version) {
978                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979                 if (err) {
980                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981                                         priv->net_dev->name, err);
982                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
983                         goto fail;
984                 }
985         }
986 #else
987         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988         if (err) {
989                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990                                 priv->net_dev->name, err);
991                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992                 goto fail;
993         }
994 #endif
995         priv->firmware_version = ipw2100_firmware.version;
996
997         /* s/w reset and clock stabilization */
998         err = sw_reset_and_clock(priv);
999         if (err) {
1000                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001                                 priv->net_dev->name, err);
1002                 goto fail;
1003         }
1004
1005         err = ipw2100_verify(priv);
1006         if (err) {
1007                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008                                 priv->net_dev->name, err);
1009                 goto fail;
1010         }
1011
1012         /* Hold ARC */
1013         write_nic_dword(priv->net_dev,
1014                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016         /* allow ARC to run */
1017         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019         /* load microcode */
1020         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021         if (err) {
1022                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023                        priv->net_dev->name, err);
1024                 goto fail;
1025         }
1026
1027         /* release ARC */
1028         write_nic_dword(priv->net_dev,
1029                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031         /* s/w reset and clock stabilization (again!!!) */
1032         err = sw_reset_and_clock(priv);
1033         if (err) {
1034                 printk(KERN_ERR DRV_NAME
1035                        ": %s: sw_reset_and_clock failed: %d\n",
1036                        priv->net_dev->name, err);
1037                 goto fail;
1038         }
1039
1040         /* load f/w */
1041         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042         if (err) {
1043                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044                                 priv->net_dev->name, err);
1045                 goto fail;
1046         }
1047 #ifndef CONFIG_PM
1048         /*
1049          * When the .resume method of the driver is called, the other
1050          * part of the system, i.e. the ide driver could still stay in
1051          * the suspend stage. This prevents us from loading the firmware
1052          * from the disk.  --YZ
1053          */
1054
1055         /* free any storage allocated for firmware image */
1056         ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059         /* zero out Domain 1 area indirectly (Si requirement) */
1060         for (address = IPW_HOST_FW_SHARED_AREA0;
1061              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062                 write_nic_dword(priv->net_dev, address, 0);
1063         for (address = IPW_HOST_FW_SHARED_AREA1;
1064              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065                 write_nic_dword(priv->net_dev, address, 0);
1066         for (address = IPW_HOST_FW_SHARED_AREA2;
1067              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068                 write_nic_dword(priv->net_dev, address, 0);
1069         for (address = IPW_HOST_FW_SHARED_AREA3;
1070              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071                 write_nic_dword(priv->net_dev, address, 0);
1072         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074                 write_nic_dword(priv->net_dev, address, 0);
1075
1076         return 0;
1077
1078       fail:
1079         ipw2100_release_firmware(priv, &ipw2100_firmware);
1080         return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085         if (priv->status & STATUS_INT_ENABLED)
1086                 return;
1087         priv->status |= STATUS_INT_ENABLED;
1088         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093         if (!(priv->status & STATUS_INT_ENABLED))
1094                 return;
1095         priv->status &= ~STATUS_INT_ENABLED;
1096         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101         struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103         IPW_DEBUG_INFO("enter\n");
1104
1105         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106                       &ord->table1_addr);
1107
1108         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109                       &ord->table2_addr);
1110
1111         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114         ord->table2_size &= 0x0000FFFF;
1115
1116         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118         IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123         u32 reg = 0;
1124         /*
1125          * Set GPIO 3 writable by FW; GPIO 1 writable
1126          * by driver and enable clock
1127          */
1128         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129                IPW_BIT_GPIO_LED_OFF);
1130         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138         unsigned short value = 0;
1139         u32 reg = 0;
1140         int i;
1141
1142         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143                 priv->status &= ~STATUS_RF_KILL_HW;
1144                 return 0;
1145         }
1146
1147         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148                 udelay(RF_KILL_CHECK_DELAY);
1149                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151         }
1152
1153         if (value == 0)
1154                 priv->status |= STATUS_RF_KILL_HW;
1155         else
1156                 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158         return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163         u32 addr, len;
1164         u32 val;
1165
1166         /*
1167          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168          */
1169         len = sizeof(addr);
1170         if (ipw2100_get_ordinal
1171             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173                                __LINE__);
1174                 return -EIO;
1175         }
1176
1177         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179         /*
1180          * EEPROM version is the byte at offset 0xfd in firmware
1181          * We read 4 bytes, then shift out the byte we actually want */
1182         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183         priv->eeprom_version = (val >> 24) & 0xFF;
1184         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186         /*
1187          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188          *
1189          *  notice that the EEPROM bit is reverse polarity, i.e.
1190          *     bit = 0  signifies HW RF kill switch is supported
1191          *     bit = 1  signifies HW RF kill switch is NOT supported
1192          */
1193         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194         if (!((val >> 24) & 0x01))
1195                 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200         return 0;
1201 }
1202
1203 /*
1204  * Start firmware execution after power on and intialization
1205  * The sequence is:
1206  *  1. Release ARC
1207  *  2. Wait for f/w initialization completes;
1208  */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211         int i;
1212         u32 inta, inta_mask, gpio;
1213
1214         IPW_DEBUG_INFO("enter\n");
1215
1216         if (priv->status & STATUS_RUNNING)
1217                 return 0;
1218
1219         /*
1220          * Initialize the hw - drive adapter to DO state by setting
1221          * init_done bit. Wait for clk_ready bit and Download
1222          * fw & dino ucode
1223          */
1224         if (ipw2100_download_firmware(priv)) {
1225                 printk(KERN_ERR DRV_NAME
1226                        ": %s: Failed to power on the adapter.\n",
1227                        priv->net_dev->name);
1228                 return -EIO;
1229         }
1230
1231         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232          * in the firmware RBD and TBD ring queue */
1233         ipw2100_queues_initialize(priv);
1234
1235         ipw2100_hw_set_gpio(priv);
1236
1237         /* TODO -- Look at disabling interrupts here to make sure none
1238          * get fired during FW initialization */
1239
1240         /* Release ARC - clear reset bit */
1241         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243         /* wait for f/w intialization complete */
1244         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245         i = 5000;
1246         do {
1247                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248                 /* Todo... wait for sync command ... */
1249
1250                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252                 /* check "init done" bit */
1253                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254                         /* reset "init done" bit */
1255                         write_register(priv->net_dev, IPW_REG_INTA,
1256                                        IPW2100_INTA_FW_INIT_DONE);
1257                         break;
1258                 }
1259
1260                 /* check error conditions : we check these after the firmware
1261                  * check so that if there is an error, the interrupt handler
1262                  * will see it and the adapter will be reset */
1263                 if (inta &
1264                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265                         /* clear error conditions */
1266                         write_register(priv->net_dev, IPW_REG_INTA,
1267                                        IPW2100_INTA_FATAL_ERROR |
1268                                        IPW2100_INTA_PARITY_ERROR);
1269                 }
1270         } while (i--);
1271
1272         /* Clear out any pending INTAs since we aren't supposed to have
1273          * interrupts enabled at this point... */
1274         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276         inta &= IPW_INTERRUPT_MASK;
1277         /* Clear out any pending interrupts */
1278         if (inta & inta_mask)
1279                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282                      i ? "SUCCESS" : "FAILED");
1283
1284         if (!i) {
1285                 printk(KERN_WARNING DRV_NAME
1286                        ": %s: Firmware did not initialize.\n",
1287                        priv->net_dev->name);
1288                 return -EIO;
1289         }
1290
1291         /* allow firmware to write to GPIO1 & GPIO3 */
1292         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298         /* Ready to receive commands */
1299         priv->status |= STATUS_RUNNING;
1300
1301         /* The adapter has been reset; we are not associated */
1302         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304         IPW_DEBUG_INFO("exit\n");
1305
1306         return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311         if (!priv->fatal_error)
1312                 return;
1313
1314         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316         priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322         u32 reg;
1323         int i;
1324
1325         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327         ipw2100_hw_set_gpio(priv);
1328
1329         /* Step 1. Stop Master Assert */
1330         write_register(priv->net_dev, IPW_REG_RESET_REG,
1331                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333         /* Step 2. Wait for stop Master Assert
1334          *         (not more then 50us, otherwise ret error */
1335         i = 5;
1336         do {
1337                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341                         break;
1342         } while (i--);
1343
1344         priv->status &= ~STATUS_RESET_PENDING;
1345
1346         if (!i) {
1347                 IPW_DEBUG_INFO
1348                     ("exit - waited too long for master assert stop\n");
1349                 return -EIO;
1350         }
1351
1352         write_register(priv->net_dev, IPW_REG_RESET_REG,
1353                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355         /* Reset any fatal_error conditions */
1356         ipw2100_reset_fatalerror(priv);
1357
1358         /* At this point, the adapter is now stopped and disabled */
1359         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360                           STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362         return 0;
1363 }
1364
1365 /*
1366  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367  *
1368  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369  *
1370  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371  * if STATUS_ASSN_LOST is sent.
1372  */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378         struct host_command cmd = {
1379                 .host_command = CARD_DISABLE_PHY_OFF,
1380                 .host_command_sequence = 0,
1381                 .host_command_length = 0,
1382         };
1383         int err, i;
1384         u32 val1, val2;
1385
1386         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388         /* Turn off the radio */
1389         err = ipw2100_hw_send_command(priv, &cmd);
1390         if (err)
1391                 return err;
1392
1393         for (i = 0; i < 2500; i++) {
1394                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398                     (val2 & IPW2100_COMMAND_PHY_OFF))
1399                         return 0;
1400
1401                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402         }
1403
1404         return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409         struct host_command cmd = {
1410                 .host_command = HOST_COMPLETE,
1411                 .host_command_sequence = 0,
1412                 .host_command_length = 0
1413         };
1414         int err = 0;
1415
1416         IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418         if (priv->status & STATUS_ENABLED)
1419                 return 0;
1420
1421         mutex_lock(&priv->adapter_mutex);
1422
1423         if (rf_kill_active(priv)) {
1424                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425                 goto fail_up;
1426         }
1427
1428         err = ipw2100_hw_send_command(priv, &cmd);
1429         if (err) {
1430                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431                 goto fail_up;
1432         }
1433
1434         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435         if (err) {
1436                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437                                priv->net_dev->name);
1438                 goto fail_up;
1439         }
1440
1441         if (priv->stop_hang_check) {
1442                 priv->stop_hang_check = 0;
1443                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444         }
1445
1446       fail_up:
1447         mutex_unlock(&priv->adapter_mutex);
1448         return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455         struct host_command cmd = {
1456                 .host_command = HOST_PRE_POWER_DOWN,
1457                 .host_command_sequence = 0,
1458                 .host_command_length = 0,
1459         };
1460         int err, i;
1461         u32 reg;
1462
1463         if (!(priv->status & STATUS_RUNNING))
1464                 return 0;
1465
1466         priv->status |= STATUS_STOPPING;
1467
1468         /* We can only shut down the card if the firmware is operational.  So,
1469          * if we haven't reset since a fatal_error, then we can not send the
1470          * shutdown commands. */
1471         if (!priv->fatal_error) {
1472                 /* First, make sure the adapter is enabled so that the PHY_OFF
1473                  * command can shut it down */
1474                 ipw2100_enable_adapter(priv);
1475
1476                 err = ipw2100_hw_phy_off(priv);
1477                 if (err)
1478                         printk(KERN_WARNING DRV_NAME
1479                                ": Error disabling radio %d\n", err);
1480
1481                 /*
1482                  * If in D0-standby mode going directly to D3 may cause a
1483                  * PCI bus violation.  Therefore we must change out of the D0
1484                  * state.
1485                  *
1486                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487                  * hardware from going into standby mode and will transition
1488                  * out of D0-standby if it is already in that state.
1489                  *
1490                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491                  * driver upon completion.  Once received, the driver can
1492                  * proceed to the D3 state.
1493                  *
1494                  * Prepare for power down command to fw.  This command would
1495                  * take HW out of D0-standby and prepare it for D3 state.
1496                  *
1497                  * Currently FW does not support event notification for this
1498                  * event. Therefore, skip waiting for it.  Just wait a fixed
1499                  * 100ms
1500                  */
1501                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503                 err = ipw2100_hw_send_command(priv, &cmd);
1504                 if (err)
1505                         printk(KERN_WARNING DRV_NAME ": "
1506                                "%s: Power down command failed: Error %d\n",
1507                                priv->net_dev->name, err);
1508                 else
1509                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510         }
1511
1512         priv->status &= ~STATUS_ENABLED;
1513
1514         /*
1515          * Set GPIO 3 writable by FW; GPIO 1 writable
1516          * by driver and enable clock
1517          */
1518         ipw2100_hw_set_gpio(priv);
1519
1520         /*
1521          * Power down adapter.  Sequence:
1522          * 1. Stop master assert (RESET_REG[9]=1)
1523          * 2. Wait for stop master (RESET_REG[8]==1)
1524          * 3. S/w reset assert (RESET_REG[7] = 1)
1525          */
1526
1527         /* Stop master assert */
1528         write_register(priv->net_dev, IPW_REG_RESET_REG,
1529                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531         /* wait stop master not more than 50 usec.
1532          * Otherwise return error. */
1533         for (i = 5; i > 0; i--) {
1534                 udelay(10);
1535
1536                 /* Check master stop bit */
1537                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540                         break;
1541         }
1542
1543         if (i == 0)
1544                 printk(KERN_WARNING DRV_NAME
1545                        ": %s: Could now power down adapter.\n",
1546                        priv->net_dev->name);
1547
1548         /* assert s/w reset */
1549         write_register(priv->net_dev, IPW_REG_RESET_REG,
1550                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554         return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559         struct host_command cmd = {
1560                 .host_command = CARD_DISABLE,
1561                 .host_command_sequence = 0,
1562                 .host_command_length = 0
1563         };
1564         int err = 0;
1565
1566         IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568         if (!(priv->status & STATUS_ENABLED))
1569                 return 0;
1570
1571         /* Make sure we clear the associated state */
1572         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574         if (!priv->stop_hang_check) {
1575                 priv->stop_hang_check = 1;
1576                 cancel_delayed_work(&priv->hang_check);
1577         }
1578
1579         mutex_lock(&priv->adapter_mutex);
1580
1581         err = ipw2100_hw_send_command(priv, &cmd);
1582         if (err) {
1583                 printk(KERN_WARNING DRV_NAME
1584                        ": exit - failed to send CARD_DISABLE command\n");
1585                 goto fail_up;
1586         }
1587
1588         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589         if (err) {
1590                 printk(KERN_WARNING DRV_NAME
1591                        ": exit - card failed to change to DISABLED\n");
1592                 goto fail_up;
1593         }
1594
1595         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597       fail_up:
1598         mutex_unlock(&priv->adapter_mutex);
1599         return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604         struct host_command cmd = {
1605                 .host_command = SET_SCAN_OPTIONS,
1606                 .host_command_sequence = 0,
1607                 .host_command_length = 8
1608         };
1609         int err;
1610
1611         IPW_DEBUG_INFO("enter\n");
1612
1613         IPW_DEBUG_SCAN("setting scan options\n");
1614
1615         cmd.host_command_parameters[0] = 0;
1616
1617         if (!(priv->config & CFG_ASSOCIATE))
1618                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621         if (priv->config & CFG_PASSIVE_SCAN)
1622                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624         cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626         err = ipw2100_hw_send_command(priv, &cmd);
1627
1628         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629                      cmd.host_command_parameters[0]);
1630
1631         return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636         struct host_command cmd = {
1637                 .host_command = BROADCAST_SCAN,
1638                 .host_command_sequence = 0,
1639                 .host_command_length = 4
1640         };
1641         int err;
1642
1643         IPW_DEBUG_HC("START_SCAN\n");
1644
1645         cmd.host_command_parameters[0] = 0;
1646
1647         /* No scanning if in monitor mode */
1648         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649                 return 1;
1650
1651         if (priv->status & STATUS_SCANNING) {
1652                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653                 return 0;
1654         }
1655
1656         IPW_DEBUG_INFO("enter\n");
1657
1658         /* Not clearing here; doing so makes iwlist always return nothing...
1659          *
1660          * We should modify the table logic to use aging tables vs. clearing
1661          * the table on each scan start.
1662          */
1663         IPW_DEBUG_SCAN("starting scan\n");
1664
1665         priv->status |= STATUS_SCANNING;
1666         err = ipw2100_hw_send_command(priv, &cmd);
1667         if (err)
1668                 priv->status &= ~STATUS_SCANNING;
1669
1670         IPW_DEBUG_INFO("exit\n");
1671
1672         return err;
1673 }
1674
1675 static const struct ieee80211_geo ipw_geos[] = {
1676         {                       /* Restricted */
1677          "---",
1678          .bg_channels = 14,
1679          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680                 {2427, 4}, {2432, 5}, {2437, 6},
1681                 {2442, 7}, {2447, 8}, {2452, 9},
1682                 {2457, 10}, {2462, 11}, {2467, 12},
1683                 {2472, 13}, {2484, 14}},
1684          },
1685 };
1686
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 {
1689         unsigned long flags;
1690         int rc = 0;
1691         u32 lock;
1692         u32 ord_len = sizeof(lock);
1693
1694         /* Quite if manually disabled. */
1695         if (priv->status & STATUS_RF_KILL_SW) {
1696                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697                                "switch\n", priv->net_dev->name);
1698                 return 0;
1699         }
1700
1701         /* the ipw2100 hardware really doesn't want power management delays
1702          * longer than 175usec
1703          */
1704         modify_acceptable_latency("ipw2100", 175);
1705
1706         /* If the interrupt is enabled, turn it off... */
1707         spin_lock_irqsave(&priv->low_lock, flags);
1708         ipw2100_disable_interrupts(priv);
1709
1710         /* Reset any fatal_error conditions */
1711         ipw2100_reset_fatalerror(priv);
1712         spin_unlock_irqrestore(&priv->low_lock, flags);
1713
1714         if (priv->status & STATUS_POWERED ||
1715             (priv->status & STATUS_RESET_PENDING)) {
1716                 /* Power cycle the card ... */
1717                 if (ipw2100_power_cycle_adapter(priv)) {
1718                         printk(KERN_WARNING DRV_NAME
1719                                ": %s: Could not cycle adapter.\n",
1720                                priv->net_dev->name);
1721                         rc = 1;
1722                         goto exit;
1723                 }
1724         } else
1725                 priv->status |= STATUS_POWERED;
1726
1727         /* Load the firmware, start the clocks, etc. */
1728         if (ipw2100_start_adapter(priv)) {
1729                 printk(KERN_ERR DRV_NAME
1730                        ": %s: Failed to start the firmware.\n",
1731                        priv->net_dev->name);
1732                 rc = 1;
1733                 goto exit;
1734         }
1735
1736         ipw2100_initialize_ordinals(priv);
1737
1738         /* Determine capabilities of this particular HW configuration */
1739         if (ipw2100_get_hw_features(priv)) {
1740                 printk(KERN_ERR DRV_NAME
1741                        ": %s: Failed to determine HW features.\n",
1742                        priv->net_dev->name);
1743                 rc = 1;
1744                 goto exit;
1745         }
1746
1747         /* Initialize the geo */
1748         if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1750                 return 0;
1751         }
1752         priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1753
1754         lock = LOCK_NONE;
1755         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756                 printk(KERN_ERR DRV_NAME
1757                        ": %s: Failed to clear ordinal lock.\n",
1758                        priv->net_dev->name);
1759                 rc = 1;
1760                 goto exit;
1761         }
1762
1763         priv->status &= ~STATUS_SCANNING;
1764
1765         if (rf_kill_active(priv)) {
1766                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767                        priv->net_dev->name);
1768
1769                 if (priv->stop_rf_kill) {
1770                         priv->stop_rf_kill = 0;
1771                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1772                                            round_jiffies(HZ));
1773                 }
1774
1775                 deferred = 1;
1776         }
1777
1778         /* Turn on the interrupt so that commands can be processed */
1779         ipw2100_enable_interrupts(priv);
1780
1781         /* Send all of the commands that must be sent prior to
1782          * HOST_COMPLETE */
1783         if (ipw2100_adapter_setup(priv)) {
1784                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1785                        priv->net_dev->name);
1786                 rc = 1;
1787                 goto exit;
1788         }
1789
1790         if (!deferred) {
1791                 /* Enable the adapter - sends HOST_COMPLETE */
1792                 if (ipw2100_enable_adapter(priv)) {
1793                         printk(KERN_ERR DRV_NAME ": "
1794                                "%s: failed in call to enable adapter.\n",
1795                                priv->net_dev->name);
1796                         ipw2100_hw_stop_adapter(priv);
1797                         rc = 1;
1798                         goto exit;
1799                 }
1800
1801                 /* Start a scan . . . */
1802                 ipw2100_set_scan_options(priv);
1803                 ipw2100_start_scan(priv);
1804         }
1805
1806       exit:
1807         return rc;
1808 }
1809
1810 /* Called by register_netdev() */
1811 static int ipw2100_net_init(struct net_device *dev)
1812 {
1813         struct ipw2100_priv *priv = ieee80211_priv(dev);
1814         return ipw2100_up(priv, 1);
1815 }
1816
1817 static void ipw2100_down(struct ipw2100_priv *priv)
1818 {
1819         unsigned long flags;
1820         union iwreq_data wrqu = {
1821                 .ap_addr = {
1822                             .sa_family = ARPHRD_ETHER}
1823         };
1824         int associated = priv->status & STATUS_ASSOCIATED;
1825
1826         /* Kill the RF switch timer */
1827         if (!priv->stop_rf_kill) {
1828                 priv->stop_rf_kill = 1;
1829                 cancel_delayed_work(&priv->rf_kill);
1830         }
1831
1832         /* Kill the firmare hang check timer */
1833         if (!priv->stop_hang_check) {
1834                 priv->stop_hang_check = 1;
1835                 cancel_delayed_work(&priv->hang_check);
1836         }
1837
1838         /* Kill any pending resets */
1839         if (priv->status & STATUS_RESET_PENDING)
1840                 cancel_delayed_work(&priv->reset_work);
1841
1842         /* Make sure the interrupt is on so that FW commands will be
1843          * processed correctly */
1844         spin_lock_irqsave(&priv->low_lock, flags);
1845         ipw2100_enable_interrupts(priv);
1846         spin_unlock_irqrestore(&priv->low_lock, flags);
1847
1848         if (ipw2100_hw_stop_adapter(priv))
1849                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1850                        priv->net_dev->name);
1851
1852         /* Do not disable the interrupt until _after_ we disable
1853          * the adaptor.  Otherwise the CARD_DISABLE command will never
1854          * be ack'd by the firmware */
1855         spin_lock_irqsave(&priv->low_lock, flags);
1856         ipw2100_disable_interrupts(priv);
1857         spin_unlock_irqrestore(&priv->low_lock, flags);
1858
1859         modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1860
1861         /* We have to signal any supplicant if we are disassociating */
1862         if (associated)
1863                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1864
1865         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1866         netif_carrier_off(priv->net_dev);
1867         netif_stop_queue(priv->net_dev);
1868 }
1869
1870 static void ipw2100_reset_adapter(struct work_struct *work)
1871 {
1872         struct ipw2100_priv *priv =
1873                 container_of(work, struct ipw2100_priv, reset_work.work);
1874         unsigned long flags;
1875         union iwreq_data wrqu = {
1876                 .ap_addr = {
1877                             .sa_family = ARPHRD_ETHER}
1878         };
1879         int associated = priv->status & STATUS_ASSOCIATED;
1880
1881         spin_lock_irqsave(&priv->low_lock, flags);
1882         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1883         priv->resets++;
1884         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1885         priv->status |= STATUS_SECURITY_UPDATED;
1886
1887         /* Force a power cycle even if interface hasn't been opened
1888          * yet */
1889         cancel_delayed_work(&priv->reset_work);
1890         priv->status |= STATUS_RESET_PENDING;
1891         spin_unlock_irqrestore(&priv->low_lock, flags);
1892
1893         mutex_lock(&priv->action_mutex);
1894         /* stop timed checks so that they don't interfere with reset */
1895         priv->stop_hang_check = 1;
1896         cancel_delayed_work(&priv->hang_check);
1897
1898         /* We have to signal any supplicant if we are disassociating */
1899         if (associated)
1900                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1901
1902         ipw2100_up(priv, 0);
1903         mutex_unlock(&priv->action_mutex);
1904
1905 }
1906
1907 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1908 {
1909
1910 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1911         int ret, len, essid_len;
1912         char essid[IW_ESSID_MAX_SIZE];
1913         u32 txrate;
1914         u32 chan;
1915         char *txratename;
1916         u8 bssid[ETH_ALEN];
1917         DECLARE_MAC_BUF(mac);
1918
1919         /*
1920          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1921          *      an actual MAC of the AP. Seems like FW sets this
1922          *      address too late. Read it later and expose through
1923          *      /proc or schedule a later task to query and update
1924          */
1925
1926         essid_len = IW_ESSID_MAX_SIZE;
1927         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1928                                   essid, &essid_len);
1929         if (ret) {
1930                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1931                                __LINE__);
1932                 return;
1933         }
1934
1935         len = sizeof(u32);
1936         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1937         if (ret) {
1938                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1939                                __LINE__);
1940                 return;
1941         }
1942
1943         len = sizeof(u32);
1944         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1945         if (ret) {
1946                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1947                                __LINE__);
1948                 return;
1949         }
1950         len = ETH_ALEN;
1951         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1952         if (ret) {
1953                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1954                                __LINE__);
1955                 return;
1956         }
1957         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1958
1959         switch (txrate) {
1960         case TX_RATE_1_MBIT:
1961                 txratename = "1Mbps";
1962                 break;
1963         case TX_RATE_2_MBIT:
1964                 txratename = "2Mbsp";
1965                 break;
1966         case TX_RATE_5_5_MBIT:
1967                 txratename = "5.5Mbps";
1968                 break;
1969         case TX_RATE_11_MBIT:
1970                 txratename = "11Mbps";
1971                 break;
1972         default:
1973                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1974                 txratename = "unknown rate";
1975                 break;
1976         }
1977
1978         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1979                        "%s)\n",
1980                        priv->net_dev->name, escape_essid(essid, essid_len),
1981                        txratename, chan, print_mac(mac, bssid));
1982
1983         /* now we copy read ssid into dev */
1984         if (!(priv->config & CFG_STATIC_ESSID)) {
1985                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1986                 memcpy(priv->essid, essid, priv->essid_len);
1987         }
1988         priv->channel = chan;
1989         memcpy(priv->bssid, bssid, ETH_ALEN);
1990
1991         priv->status |= STATUS_ASSOCIATING;
1992         priv->connect_start = get_seconds();
1993
1994         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1995 }
1996
1997 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1998                              int length, int batch_mode)
1999 {
2000         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2001         struct host_command cmd = {
2002                 .host_command = SSID,
2003                 .host_command_sequence = 0,
2004                 .host_command_length = ssid_len
2005         };
2006         int err;
2007
2008         IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2009
2010         if (ssid_len)
2011                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2012
2013         if (!batch_mode) {
2014                 err = ipw2100_disable_adapter(priv);
2015                 if (err)
2016                         return err;
2017         }
2018
2019         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2020          * disable auto association -- so we cheat by setting a bogus SSID */
2021         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2022                 int i;
2023                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2024                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2025                         bogus[i] = 0x18 + i;
2026                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2027         }
2028
2029         /* NOTE:  We always send the SSID command even if the provided ESSID is
2030          * the same as what we currently think is set. */
2031
2032         err = ipw2100_hw_send_command(priv, &cmd);
2033         if (!err) {
2034                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2035                 memcpy(priv->essid, essid, ssid_len);
2036                 priv->essid_len = ssid_len;
2037         }
2038
2039         if (!batch_mode) {
2040                 if (ipw2100_enable_adapter(priv))
2041                         err = -EIO;
2042         }
2043
2044         return err;
2045 }
2046
2047 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2048 {
2049         DECLARE_MAC_BUF(mac);
2050
2051         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2052                   "disassociated: '%s' %s \n",
2053                   escape_essid(priv->essid, priv->essid_len),
2054                   print_mac(mac, priv->bssid));
2055
2056         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2057
2058         if (priv->status & STATUS_STOPPING) {
2059                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2060                 return;
2061         }
2062
2063         memset(priv->bssid, 0, ETH_ALEN);
2064         memset(priv->ieee->bssid, 0, ETH_ALEN);
2065
2066         netif_carrier_off(priv->net_dev);
2067         netif_stop_queue(priv->net_dev);
2068
2069         if (!(priv->status & STATUS_RUNNING))
2070                 return;
2071
2072         if (priv->status & STATUS_SECURITY_UPDATED)
2073                 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2074
2075         queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2076 }
2077
2078 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2079 {
2080         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2081                        priv->net_dev->name);
2082
2083         /* RF_KILL is now enabled (else we wouldn't be here) */
2084         priv->status |= STATUS_RF_KILL_HW;
2085
2086         /* Make sure the RF Kill check timer is running */
2087         priv->stop_rf_kill = 0;
2088         cancel_delayed_work(&priv->rf_kill);
2089         queue_delayed_work(priv->workqueue, &priv->rf_kill, round_jiffies(HZ));
2090 }
2091
2092 static void send_scan_event(void *data)
2093 {
2094         struct ipw2100_priv *priv = data;
2095         union iwreq_data wrqu;
2096
2097         wrqu.data.length = 0;
2098         wrqu.data.flags = 0;
2099         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2100 }
2101
2102 static void ipw2100_scan_event_later(struct work_struct *work)
2103 {
2104         send_scan_event(container_of(work, struct ipw2100_priv,
2105                                         scan_event_later.work));
2106 }
2107
2108 static void ipw2100_scan_event_now(struct work_struct *work)
2109 {
2110         send_scan_event(container_of(work, struct ipw2100_priv,
2111                                         scan_event_now));
2112 }
2113
2114 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2115 {
2116         IPW_DEBUG_SCAN("scan complete\n");
2117         /* Age the scan results... */
2118         priv->ieee->scans++;
2119         priv->status &= ~STATUS_SCANNING;
2120
2121         /* Only userspace-requested scan completion events go out immediately */
2122         if (!priv->user_requested_scan) {
2123                 if (!delayed_work_pending(&priv->scan_event_later))
2124                         queue_delayed_work(priv->workqueue,
2125                                         &priv->scan_event_later,
2126                                         round_jiffies(msecs_to_jiffies(4000)));
2127         } else {
2128                 priv->user_requested_scan = 0;
2129                 cancel_delayed_work(&priv->scan_event_later);
2130                 queue_work(priv->workqueue, &priv->scan_event_now);
2131         }
2132 }
2133
2134 #ifdef CONFIG_IPW2100_DEBUG
2135 #define IPW2100_HANDLER(v, f) { v, f, # v }
2136 struct ipw2100_status_indicator {
2137         int status;
2138         void (*cb) (struct ipw2100_priv * priv, u32 status);
2139         char *name;
2140 };
2141 #else
2142 #define IPW2100_HANDLER(v, f) { v, f }
2143 struct ipw2100_status_indicator {
2144         int status;
2145         void (*cb) (struct ipw2100_priv * priv, u32 status);
2146 };
2147 #endif                          /* CONFIG_IPW2100_DEBUG */
2148
2149 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2150 {
2151         IPW_DEBUG_SCAN("Scanning...\n");
2152         priv->status |= STATUS_SCANNING;
2153 }
2154
2155 static const struct ipw2100_status_indicator status_handlers[] = {
2156         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2157         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2158         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2159         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2160         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2161         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2162         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2163         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2164         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2165         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2166         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2167         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2168         IPW2100_HANDLER(-1, NULL)
2169 };
2170
2171 static void isr_status_change(struct ipw2100_priv *priv, int status)
2172 {
2173         int i;
2174
2175         if (status == IPW_STATE_SCANNING &&
2176             priv->status & STATUS_ASSOCIATED &&
2177             !(priv->status & STATUS_SCANNING)) {
2178                 IPW_DEBUG_INFO("Scan detected while associated, with "
2179                                "no scan request.  Restarting firmware.\n");
2180
2181                 /* Wake up any sleeping jobs */
2182                 schedule_reset(priv);
2183         }
2184
2185         for (i = 0; status_handlers[i].status != -1; i++) {
2186                 if (status == status_handlers[i].status) {
2187                         IPW_DEBUG_NOTIF("Status change: %s\n",
2188                                         status_handlers[i].name);
2189                         if (status_handlers[i].cb)
2190                                 status_handlers[i].cb(priv, status);
2191                         priv->wstats.status = status;
2192                         return;
2193                 }
2194         }
2195
2196         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2197 }
2198
2199 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2200                                     struct ipw2100_cmd_header *cmd)
2201 {
2202 #ifdef CONFIG_IPW2100_DEBUG
2203         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2204                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2205                              command_types[cmd->host_command_reg],
2206                              cmd->host_command_reg);
2207         }
2208 #endif
2209         if (cmd->host_command_reg == HOST_COMPLETE)
2210                 priv->status |= STATUS_ENABLED;
2211
2212         if (cmd->host_command_reg == CARD_DISABLE)
2213                 priv->status &= ~STATUS_ENABLED;
2214
2215         priv->status &= ~STATUS_CMD_ACTIVE;
2216
2217         wake_up_interruptible(&priv->wait_command_queue);
2218 }
2219
2220 #ifdef CONFIG_IPW2100_DEBUG
2221 static const char *frame_types[] = {
2222         "COMMAND_STATUS_VAL",
2223         "STATUS_CHANGE_VAL",
2224         "P80211_DATA_VAL",
2225         "P8023_DATA_VAL",
2226         "HOST_NOTIFICATION_VAL"
2227 };
2228 #endif
2229
2230 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2231                                     struct ipw2100_rx_packet *packet)
2232 {
2233         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2234         if (!packet->skb)
2235                 return -ENOMEM;
2236
2237         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2238         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2239                                           sizeof(struct ipw2100_rx),
2240                                           PCI_DMA_FROMDEVICE);
2241         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2242          *       dma_addr */
2243
2244         return 0;
2245 }
2246
2247 #define SEARCH_ERROR   0xffffffff
2248 #define SEARCH_FAIL    0xfffffffe
2249 #define SEARCH_SUCCESS 0xfffffff0
2250 #define SEARCH_DISCARD 0
2251 #define SEARCH_SNAPSHOT 1
2252
2253 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2254 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2255 {
2256         int i;
2257         if (!priv->snapshot[0])
2258                 return;
2259         for (i = 0; i < 0x30; i++)
2260                 kfree(priv->snapshot[i]);
2261         priv->snapshot[0] = NULL;
2262 }
2263
2264 #ifdef IPW2100_DEBUG_C3
2265 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2266 {
2267         int i;
2268         if (priv->snapshot[0])
2269                 return 1;
2270         for (i = 0; i < 0x30; i++) {
2271                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2272                 if (!priv->snapshot[i]) {
2273                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2274                                        "buffer %d\n", priv->net_dev->name, i);
2275                         while (i > 0)
2276                                 kfree(priv->snapshot[--i]);
2277                         priv->snapshot[0] = NULL;
2278                         return 0;
2279                 }
2280         }
2281
2282         return 1;
2283 }
2284
2285 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2286                                     size_t len, int mode)
2287 {
2288         u32 i, j;
2289         u32 tmp;
2290         u8 *s, *d;
2291         u32 ret;
2292
2293         s = in_buf;
2294         if (mode == SEARCH_SNAPSHOT) {
2295                 if (!ipw2100_snapshot_alloc(priv))
2296                         mode = SEARCH_DISCARD;
2297         }
2298
2299         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2300                 read_nic_dword(priv->net_dev, i, &tmp);
2301                 if (mode == SEARCH_SNAPSHOT)
2302                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2303                 if (ret == SEARCH_FAIL) {
2304                         d = (u8 *) & tmp;
2305                         for (j = 0; j < 4; j++) {
2306                                 if (*s != *d) {
2307                                         s = in_buf;
2308                                         continue;
2309                                 }
2310
2311                                 s++;
2312                                 d++;
2313
2314                                 if ((s - in_buf) == len)
2315                                         ret = (i + j) - len + 1;
2316                         }
2317                 } else if (mode == SEARCH_DISCARD)
2318                         return ret;
2319         }
2320
2321         return ret;
2322 }
2323 #endif
2324
2325 /*
2326  *
2327  * 0) Disconnect the SKB from the firmware (just unmap)
2328  * 1) Pack the ETH header into the SKB
2329  * 2) Pass the SKB to the network stack
2330  *
2331  * When packet is provided by the firmware, it contains the following:
2332  *
2333  * .  ieee80211_hdr
2334  * .  ieee80211_snap_hdr
2335  *
2336  * The size of the constructed ethernet
2337  *
2338  */
2339 #ifdef IPW2100_RX_DEBUG
2340 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2341 #endif
2342
2343 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2344 {
2345 #ifdef IPW2100_DEBUG_C3
2346         struct ipw2100_status *status = &priv->status_queue.drv[i];
2347         u32 match, reg;
2348         int j;
2349 #endif
2350
2351         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2352                        i * sizeof(struct ipw2100_status));
2353
2354 #ifdef IPW2100_DEBUG_C3
2355         /* Halt the fimrware so we can get a good image */
2356         write_register(priv->net_dev, IPW_REG_RESET_REG,
2357                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2358         j = 5;
2359         do {
2360                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2361                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2362
2363                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2364                         break;
2365         } while (j--);
2366
2367         match = ipw2100_match_buf(priv, (u8 *) status,
2368                                   sizeof(struct ipw2100_status),
2369                                   SEARCH_SNAPSHOT);
2370         if (match < SEARCH_SUCCESS)
2371                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2372                                "offset 0x%06X, length %d:\n",
2373                                priv->net_dev->name, match,
2374                                sizeof(struct ipw2100_status));
2375         else
2376                 IPW_DEBUG_INFO("%s: No DMA status match in "
2377                                "Firmware.\n", priv->net_dev->name);
2378
2379         printk_buf((u8 *) priv->status_queue.drv,
2380                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2381 #endif
2382
2383         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2384         priv->ieee->stats.rx_errors++;
2385         schedule_reset(priv);
2386 }
2387
2388 static void isr_rx(struct ipw2100_priv *priv, int i,
2389                           struct ieee80211_rx_stats *stats)
2390 {
2391         struct ipw2100_status *status = &priv->status_queue.drv[i];
2392         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2393
2394         IPW_DEBUG_RX("Handler...\n");
2395
2396         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2397                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2398                                "  Dropping.\n",
2399                                priv->net_dev->name,
2400                                status->frame_size, skb_tailroom(packet->skb));
2401                 priv->ieee->stats.rx_errors++;
2402                 return;
2403         }
2404
2405         if (unlikely(!netif_running(priv->net_dev))) {
2406                 priv->ieee->stats.rx_errors++;
2407                 priv->wstats.discard.misc++;
2408                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2409                 return;
2410         }
2411
2412         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2413                      !(priv->status & STATUS_ASSOCIATED))) {
2414                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2415                 priv->wstats.discard.misc++;
2416                 return;
2417         }
2418
2419         pci_unmap_single(priv->pci_dev,
2420                          packet->dma_addr,
2421                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2422
2423         skb_put(packet->skb, status->frame_size);
2424
2425 #ifdef IPW2100_RX_DEBUG
2426         /* Make a copy of the frame so we can dump it to the logs if
2427          * ieee80211_rx fails */
2428         skb_copy_from_linear_data(packet->skb, packet_data,
2429                                   min_t(u32, status->frame_size,
2430                                              IPW_RX_NIC_BUFFER_LENGTH));
2431 #endif
2432
2433         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2434 #ifdef IPW2100_RX_DEBUG
2435                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2436                                priv->net_dev->name);
2437                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2438 #endif
2439                 priv->ieee->stats.rx_errors++;
2440
2441                 /* ieee80211_rx failed, so it didn't free the SKB */
2442                 dev_kfree_skb_any(packet->skb);
2443                 packet->skb = NULL;
2444         }
2445
2446         /* We need to allocate a new SKB and attach it to the RDB. */
2447         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2448                 printk(KERN_WARNING DRV_NAME ": "
2449                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2450                        "adapter.\n", priv->net_dev->name);
2451                 /* TODO: schedule adapter shutdown */
2452                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2453         }
2454
2455         /* Update the RDB entry */
2456         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2457 }
2458
2459 #ifdef CONFIG_IPW2100_MONITOR
2460
2461 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2462                    struct ieee80211_rx_stats *stats)
2463 {
2464         struct ipw2100_status *status = &priv->status_queue.drv[i];
2465         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2466
2467         /* Magic struct that slots into the radiotap header -- no reason
2468          * to build this manually element by element, we can write it much
2469          * more efficiently than we can parse it. ORDER MATTERS HERE */
2470         struct ipw_rt_hdr {
2471                 struct ieee80211_radiotap_header rt_hdr;
2472                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2473         } *ipw_rt;
2474
2475         IPW_DEBUG_RX("Handler...\n");
2476
2477         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2478                                 sizeof(struct ipw_rt_hdr))) {
2479                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2480                                "  Dropping.\n",
2481                                priv->net_dev->name,
2482                                status->frame_size,
2483                                skb_tailroom(packet->skb));
2484                 priv->ieee->stats.rx_errors++;
2485                 return;
2486         }
2487
2488         if (unlikely(!netif_running(priv->net_dev))) {
2489                 priv->ieee->stats.rx_errors++;
2490                 priv->wstats.discard.misc++;
2491                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2492                 return;
2493         }
2494
2495         if (unlikely(priv->config & CFG_CRC_CHECK &&
2496                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2497                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2498                 priv->ieee->stats.rx_errors++;
2499                 return;
2500         }
2501
2502         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2503                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2504         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2505                 packet->skb->data, status->frame_size);
2506
2507         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2508
2509         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2510         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2511         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2512
2513         ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2514
2515         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2516
2517         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2518
2519         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2520                 priv->ieee->stats.rx_errors++;
2521
2522                 /* ieee80211_rx failed, so it didn't free the SKB */
2523                 dev_kfree_skb_any(packet->skb);
2524                 packet->skb = NULL;
2525         }
2526
2527         /* We need to allocate a new SKB and attach it to the RDB. */
2528         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2529                 IPW_DEBUG_WARNING(
2530                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2531                         "adapter.\n", priv->net_dev->name);
2532                 /* TODO: schedule adapter shutdown */
2533                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2534         }
2535
2536         /* Update the RDB entry */
2537         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2538 }
2539
2540 #endif
2541
2542 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2543 {
2544         struct ipw2100_status *status = &priv->status_queue.drv[i];
2545         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2546         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2547
2548         switch (frame_type) {
2549         case COMMAND_STATUS_VAL:
2550                 return (status->frame_size != sizeof(u->rx_data.command));
2551         case STATUS_CHANGE_VAL:
2552                 return (status->frame_size != sizeof(u->rx_data.status));
2553         case HOST_NOTIFICATION_VAL:
2554                 return (status->frame_size < sizeof(u->rx_data.notification));
2555         case P80211_DATA_VAL:
2556         case P8023_DATA_VAL:
2557 #ifdef CONFIG_IPW2100_MONITOR
2558                 return 0;
2559 #else
2560                 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2561                 case IEEE80211_FTYPE_MGMT:
2562                 case IEEE80211_FTYPE_CTL:
2563                         return 0;
2564                 case IEEE80211_FTYPE_DATA:
2565                         return (status->frame_size >
2566                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2567                 }
2568 #endif
2569         }
2570
2571         return 1;
2572 }
2573
2574 /*
2575  * ipw2100 interrupts are disabled at this point, and the ISR
2576  * is the only code that calls this method.  So, we do not need
2577  * to play with any locks.
2578  *
2579  * RX Queue works as follows:
2580  *
2581  * Read index - firmware places packet in entry identified by the
2582  *              Read index and advances Read index.  In this manner,
2583  *              Read index will always point to the next packet to
2584  *              be filled--but not yet valid.
2585  *
2586  * Write index - driver fills this entry with an unused RBD entry.
2587  *               This entry has not filled by the firmware yet.
2588  *
2589  * In between the W and R indexes are the RBDs that have been received
2590  * but not yet processed.
2591  *
2592  * The process of handling packets will start at WRITE + 1 and advance
2593  * until it reaches the READ index.
2594  *
2595  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2596  *
2597  */
2598 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2599 {
2600         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2601         struct ipw2100_status_queue *sq = &priv->status_queue;
2602         struct ipw2100_rx_packet *packet;
2603         u16 frame_type;
2604         u32 r, w, i, s;
2605         struct ipw2100_rx *u;
2606         struct ieee80211_rx_stats stats = {
2607                 .mac_time = jiffies,
2608         };
2609
2610         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2611         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2612
2613         if (r >= rxq->entries) {
2614                 IPW_DEBUG_RX("exit - bad read index\n");
2615                 return;
2616         }
2617
2618         i = (rxq->next + 1) % rxq->entries;
2619         s = i;
2620         while (i != r) {
2621                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2622                    r, rxq->next, i); */
2623
2624                 packet = &priv->rx_buffers[i];
2625
2626                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2627                  * the correct values */
2628                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2629                                             sq->nic +
2630                                             sizeof(struct ipw2100_status) * i,
2631                                             sizeof(struct ipw2100_status),
2632                                             PCI_DMA_FROMDEVICE);
2633
2634                 /* Sync the DMA for the RX buffer so CPU is sure to get
2635                  * the correct values */
2636                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2637                                             sizeof(struct ipw2100_rx),
2638                                             PCI_DMA_FROMDEVICE);
2639
2640                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2641                         ipw2100_corruption_detected(priv, i);
2642                         goto increment;
2643                 }
2644
2645                 u = packet->rxp;
2646                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2647                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2648                 stats.len = sq->drv[i].frame_size;
2649
2650                 stats.mask = 0;
2651                 if (stats.rssi != 0)
2652                         stats.mask |= IEEE80211_STATMASK_RSSI;
2653                 stats.freq = IEEE80211_24GHZ_BAND;
2654
2655                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2656                              priv->net_dev->name, frame_types[frame_type],
2657                              stats.len);
2658
2659                 switch (frame_type) {
2660                 case COMMAND_STATUS_VAL:
2661                         /* Reset Rx watchdog */
2662                         isr_rx_complete_command(priv, &u->rx_data.command);
2663                         break;
2664
2665                 case STATUS_CHANGE_VAL:
2666                         isr_status_change(priv, u->rx_data.status);
2667                         break;
2668
2669                 case P80211_DATA_VAL:
2670                 case P8023_DATA_VAL:
2671 #ifdef CONFIG_IPW2100_MONITOR
2672                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2673                                 isr_rx_monitor(priv, i, &stats);
2674                                 break;
2675                         }
2676 #endif
2677                         if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2678                                 break;
2679                         switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2680                         case IEEE80211_FTYPE_MGMT:
2681                                 ieee80211_rx_mgt(priv->ieee,
2682                                                  &u->rx_data.header, &stats);
2683                                 break;
2684
2685                         case IEEE80211_FTYPE_CTL:
2686                                 break;
2687
2688                         case IEEE80211_FTYPE_DATA:
2689                                 isr_rx(priv, i, &stats);
2690                                 break;
2691
2692                         }
2693                         break;
2694                 }
2695
2696               increment:
2697                 /* clear status field associated with this RBD */
2698                 rxq->drv[i].status.info.field = 0;
2699
2700                 i = (i + 1) % rxq->entries;
2701         }
2702
2703         if (i != s) {
2704                 /* backtrack one entry, wrapping to end if at 0 */
2705                 rxq->next = (i ? i : rxq->entries) - 1;
2706
2707                 write_register(priv->net_dev,
2708                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2709         }
2710 }
2711
2712 /*
2713  * __ipw2100_tx_process
2714  *
2715  * This routine will determine whether the next packet on
2716  * the fw_pend_list has been processed by the firmware yet.
2717  *
2718  * If not, then it does nothing and returns.
2719  *
2720  * If so, then it removes the item from the fw_pend_list, frees
2721  * any associated storage, and places the item back on the
2722  * free list of its source (either msg_free_list or tx_free_list)
2723  *
2724  * TX Queue works as follows:
2725  *
2726  * Read index - points to the next TBD that the firmware will
2727  *              process.  The firmware will read the data, and once
2728  *              done processing, it will advance the Read index.
2729  *
2730  * Write index - driver fills this entry with an constructed TBD
2731  *               entry.  The Write index is not advanced until the
2732  *               packet has been configured.
2733  *
2734  * In between the W and R indexes are the TBDs that have NOT been
2735  * processed.  Lagging behind the R index are packets that have
2736  * been processed but have not been freed by the driver.
2737  *
2738  * In order to free old storage, an internal index will be maintained
2739  * that points to the next packet to be freed.  When all used
2740  * packets have been freed, the oldest index will be the same as the
2741  * firmware's read index.
2742  *
2743  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2744  *
2745  * Because the TBD structure can not contain arbitrary data, the
2746  * driver must keep an internal queue of cached allocations such that
2747  * it can put that data back into the tx_free_list and msg_free_list
2748  * for use by future command and data packets.
2749  *
2750  */
2751 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2752 {
2753         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2754         struct ipw2100_bd *tbd;
2755         struct list_head *element;
2756         struct ipw2100_tx_packet *packet;
2757         int descriptors_used;
2758         int e, i;
2759         u32 r, w, frag_num = 0;
2760
2761         if (list_empty(&priv->fw_pend_list))
2762                 return 0;
2763
2764         element = priv->fw_pend_list.next;
2765
2766         packet = list_entry(element, struct ipw2100_tx_packet, list);
2767         tbd = &txq->drv[packet->index];
2768
2769         /* Determine how many TBD entries must be finished... */
2770         switch (packet->type) {
2771         case COMMAND:
2772                 /* COMMAND uses only one slot; don't advance */
2773                 descriptors_used = 1;
2774                 e = txq->oldest;
2775                 break;
2776
2777         case DATA:
2778                 /* DATA uses two slots; advance and loop position. */
2779                 descriptors_used = tbd->num_fragments;
2780                 frag_num = tbd->num_fragments - 1;
2781                 e = txq->oldest + frag_num;
2782                 e %= txq->entries;
2783                 break;
2784
2785         default:
2786                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2787                        priv->net_dev->name);
2788                 return 0;
2789         }
2790
2791         /* if the last TBD is not done by NIC yet, then packet is
2792          * not ready to be released.
2793          *
2794          */
2795         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2796                       &r);
2797         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2798                       &w);
2799         if (w != txq->next)
2800                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2801                        priv->net_dev->name);
2802
2803         /*
2804          * txq->next is the index of the last packet written txq->oldest is
2805          * the index of the r is the index of the next packet to be read by
2806          * firmware
2807          */
2808
2809         /*
2810          * Quick graphic to help you visualize the following
2811          * if / else statement
2812          *
2813          * ===>|                     s---->|===============
2814          *                               e>|
2815          * | a | b | c | d | e | f | g | h | i | j | k | l
2816          *       r---->|
2817          *               w
2818          *
2819          * w - updated by driver
2820          * r - updated by firmware
2821          * s - start of oldest BD entry (txq->oldest)
2822          * e - end of oldest BD entry
2823          *
2824          */
2825         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2826                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2827                 return 0;
2828         }
2829
2830         list_del(element);
2831         DEC_STAT(&priv->fw_pend_stat);
2832
2833 #ifdef CONFIG_IPW2100_DEBUG
2834         {
2835                 int i = txq->oldest;
2836                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2837                              &txq->drv[i],
2838                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2839                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2840
2841                 if (packet->type == DATA) {
2842                         i = (i + 1) % txq->entries;
2843
2844                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2845                                      &txq->drv[i],
2846                                      (u32) (txq->nic + i *
2847                                             sizeof(struct ipw2100_bd)),
2848                                      (u32) txq->drv[i].host_addr,
2849                                      txq->drv[i].buf_length);
2850                 }
2851         }
2852 #endif
2853
2854         switch (packet->type) {
2855         case DATA:
2856                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2857                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2858                                "Expecting DATA TBD but pulled "
2859                                "something else: ids %d=%d.\n",
2860                                priv->net_dev->name, txq->oldest, packet->index);
2861
2862                 /* DATA packet; we have to unmap and free the SKB */
2863                 for (i = 0; i < frag_num; i++) {
2864                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2865
2866                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2867                                      (packet->index + 1 + i) % txq->entries,
2868                                      tbd->host_addr, tbd->buf_length);
2869
2870                         pci_unmap_single(priv->pci_dev,
2871                                          tbd->host_addr,
2872                                          tbd->buf_length, PCI_DMA_TODEVICE);
2873                 }
2874
2875                 ieee80211_txb_free(packet->info.d_struct.txb);
2876                 packet->info.d_struct.txb = NULL;
2877
2878                 list_add_tail(element, &priv->tx_free_list);
2879                 INC_STAT(&priv->tx_free_stat);
2880
2881                 /* We have a free slot in the Tx queue, so wake up the
2882                  * transmit layer if it is stopped. */
2883                 if (priv->status & STATUS_ASSOCIATED)
2884                         netif_wake_queue(priv->net_dev);
2885
2886                 /* A packet was processed by the hardware, so update the
2887                  * watchdog */
2888                 priv->net_dev->trans_start = jiffies;
2889
2890                 break;
2891
2892         case COMMAND:
2893                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2894                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2895                                "Expecting COMMAND TBD but pulled "
2896                                "something else: ids %d=%d.\n",
2897                                priv->net_dev->name, txq->oldest, packet->index);
2898
2899 #ifdef CONFIG_IPW2100_DEBUG
2900                 if (packet->info.c_struct.cmd->host_command_reg <
2901                     ARRAY_SIZE(command_types))
2902                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2903                                      command_types[packet->info.c_struct.cmd->
2904                                                    host_command_reg],
2905                                      packet->info.c_struct.cmd->
2906                                      host_command_reg,
2907                                      packet->info.c_struct.cmd->cmd_status_reg);
2908 #endif
2909
2910                 list_add_tail(element, &priv->msg_free_list);
2911                 INC_STAT(&priv->msg_free_stat);
2912                 break;
2913         }
2914
2915         /* advance oldest used TBD pointer to start of next entry */
2916         txq->oldest = (e + 1) % txq->entries;
2917         /* increase available TBDs number */
2918         txq->available += descriptors_used;
2919         SET_STAT(&priv->txq_stat, txq->available);
2920
2921         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2922                      jiffies - packet->jiffy_start);
2923
2924         return (!list_empty(&priv->fw_pend_list));
2925 }
2926
2927 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2928 {
2929         int i = 0;
2930
2931         while (__ipw2100_tx_process(priv) && i < 200)
2932                 i++;
2933
2934         if (i == 200) {
2935                 printk(KERN_WARNING DRV_NAME ": "
2936                        "%s: Driver is running slow (%d iters).\n",
2937                        priv->net_dev->name, i);
2938         }
2939 }
2940
2941 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2942 {
2943         struct list_head *element;
2944         struct ipw2100_tx_packet *packet;
2945         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2946         struct ipw2100_bd *tbd;
2947         int next = txq->next;
2948
2949         while (!list_empty(&priv->msg_pend_list)) {
2950                 /* if there isn't enough space in TBD queue, then
2951                  * don't stuff a new one in.
2952                  * NOTE: 3 are needed as a command will take one,
2953                  *       and there is a minimum of 2 that must be
2954                  *       maintained between the r and w indexes
2955                  */
2956                 if (txq->available <= 3) {
2957                         IPW_DEBUG_TX("no room in tx_queue\n");
2958                         break;
2959                 }
2960
2961                 element = priv->msg_pend_list.next;
2962                 list_del(element);
2963                 DEC_STAT(&priv->msg_pend_stat);
2964
2965                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2966
2967                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2968                              &txq->drv[txq->next],
2969                              (void *)(txq->nic + txq->next *
2970                                       sizeof(struct ipw2100_bd)));
2971
2972                 packet->index = txq->next;
2973
2974                 tbd = &txq->drv[txq->next];
2975
2976                 /* initialize TBD */
2977                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2978                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2979                 /* not marking number of fragments causes problems
2980                  * with f/w debug version */
2981                 tbd->num_fragments = 1;
2982                 tbd->status.info.field =
2983                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2984                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2985
2986                 /* update TBD queue counters */
2987                 txq->next++;
2988                 txq->next %= txq->entries;
2989                 txq->available--;
2990                 DEC_STAT(&priv->txq_stat);
2991
2992                 list_add_tail(element, &priv->fw_pend_list);
2993                 INC_STAT(&priv->fw_pend_stat);
2994         }
2995
2996         if (txq->next != next) {
2997                 /* kick off the DMA by notifying firmware the
2998                  * write index has moved; make sure TBD stores are sync'd */
2999                 wmb();
3000                 write_register(priv->net_dev,
3001                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3002                                txq->next);
3003         }
3004 }
3005
3006 /*
3007  * ipw2100_tx_send_data
3008  *
3009  */
3010 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3011 {
3012         struct list_head *element;
3013         struct ipw2100_tx_packet *packet;
3014         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3015         struct ipw2100_bd *tbd;
3016         int next = txq->next;
3017         int i = 0;
3018         struct ipw2100_data_header *ipw_hdr;
3019         struct ieee80211_hdr_3addr *hdr;
3020
3021         while (!list_empty(&priv->tx_pend_list)) {
3022                 /* if there isn't enough space in TBD queue, then
3023                  * don't stuff a new one in.
3024                  * NOTE: 4 are needed as a data will take two,
3025                  *       and there is a minimum of 2 that must be
3026                  *       maintained between the r and w indexes
3027                  */
3028                 element = priv->tx_pend_list.next;
3029                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3030
3031                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3032                              IPW_MAX_BDS)) {
3033                         /* TODO: Support merging buffers if more than
3034                          * IPW_MAX_BDS are used */
3035                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
3036                                        "Increase fragmentation level.\n",
3037                                        priv->net_dev->name);
3038                 }
3039
3040                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3041                         IPW_DEBUG_TX("no room in tx_queue\n");
3042                         break;
3043                 }
3044
3045                 list_del(element);
3046                 DEC_STAT(&priv->tx_pend_stat);
3047
3048                 tbd = &txq->drv[txq->next];
3049
3050                 packet->index = txq->next;
3051
3052                 ipw_hdr = packet->info.d_struct.data;
3053                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3054                     fragments[0]->data;
3055
3056                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3057                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3058                            Addr3 = DA */
3059                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3060                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3061                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3062                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3063                            Addr3 = BSSID */
3064                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3065                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3066                 }
3067
3068                 ipw_hdr->host_command_reg = SEND;
3069                 ipw_hdr->host_command_reg1 = 0;
3070
3071                 /* For now we only support host based encryption */
3072                 ipw_hdr->needs_encryption = 0;
3073                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3074                 if (packet->info.d_struct.txb->nr_frags > 1)
3075                         ipw_hdr->fragment_size =
3076                             packet->info.d_struct.txb->frag_size -
3077                             IEEE80211_3ADDR_LEN;
3078                 else
3079                         ipw_hdr->fragment_size = 0;
3080
3081                 tbd->host_addr = packet->info.d_struct.data_phys;
3082                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3083                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3084                 tbd->status.info.field =
3085                     IPW_BD_STATUS_TX_FRAME_802_3 |
3086                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3087                 txq->next++;
3088                 txq->next %= txq->entries;
3089
3090                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3091                              packet->index, tbd->host_addr, tbd->buf_length);
3092 #ifdef CONFIG_IPW2100_DEBUG
3093                 if (packet->info.d_struct.txb->nr_frags > 1)
3094                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3095                                        packet->info.d_struct.txb->nr_frags);
3096 #endif
3097
3098                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3099                         tbd = &txq->drv[txq->next];
3100                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3101                                 tbd->status.info.field =
3102                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3103                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3104                         else
3105                                 tbd->status.info.field =
3106                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3107                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3108
3109                         tbd->buf_length = packet->info.d_struct.txb->
3110                             fragments[i]->len - IEEE80211_3ADDR_LEN;
3111
3112                         tbd->host_addr = pci_map_single(priv->pci_dev,
3113                                                         packet->info.d_struct.
3114                                                         txb->fragments[i]->
3115                                                         data +
3116                                                         IEEE80211_3ADDR_LEN,
3117                                                         tbd->buf_length,
3118                                                         PCI_DMA_TODEVICE);
3119
3120                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3121                                      txq->next, tbd->host_addr,
3122                                      tbd->buf_length);
3123
3124                         pci_dma_sync_single_for_device(priv->pci_dev,
3125                                                        tbd->host_addr,
3126                                                        tbd->buf_length,
3127                                                        PCI_DMA_TODEVICE);
3128
3129                         txq->next++;
3130                         txq->next %= txq->entries;
3131                 }
3132
3133                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3134                 SET_STAT(&priv->txq_stat, txq->available);
3135
3136                 list_add_tail(element, &priv->fw_pend_list);
3137                 INC_STAT(&priv->fw_pend_stat);
3138         }
3139
3140         if (txq->next != next) {
3141                 /* kick off the DMA by notifying firmware the
3142                  * write index has moved; make sure TBD stores are sync'd */
3143                 write_register(priv->net_dev,
3144                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3145                                txq->next);
3146         }
3147         return;
3148 }
3149
3150 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3151 {
3152         struct net_device *dev = priv->net_dev;
3153         unsigned long flags;
3154         u32 inta, tmp;
3155
3156         spin_lock_irqsave(&priv->low_lock, flags);
3157         ipw2100_disable_interrupts(priv);
3158
3159         read_register(dev, IPW_REG_INTA, &inta);
3160
3161         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3162                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3163
3164         priv->in_isr++;
3165         priv->interrupts++;
3166
3167         /* We do not loop and keep polling for more interrupts as this
3168          * is frowned upon and doesn't play nicely with other potentially
3169          * chained IRQs */
3170         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3171                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3172
3173         if (inta & IPW2100_INTA_FATAL_ERROR) {
3174                 printk(KERN_WARNING DRV_NAME
3175                        ": Fatal interrupt. Scheduling firmware restart.\n");
3176                 priv->inta_other++;
3177                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3178
3179                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3180                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3181                                priv->net_dev->name, priv->fatal_error);
3182
3183                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3184                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3185                                priv->net_dev->name, tmp);
3186
3187                 /* Wake up any sleeping jobs */
3188                 schedule_reset(priv);
3189         }
3190
3191         if (inta & IPW2100_INTA_PARITY_ERROR) {
3192                 printk(KERN_ERR DRV_NAME
3193                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3194                 priv->inta_other++;
3195                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3196         }
3197
3198         if (inta & IPW2100_INTA_RX_TRANSFER) {
3199                 IPW_DEBUG_ISR("RX interrupt\n");
3200
3201                 priv->rx_interrupts++;
3202
3203                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3204
3205                 __ipw2100_rx_process(priv);
3206                 __ipw2100_tx_complete(priv);
3207         }
3208
3209         if (inta & IPW2100_INTA_TX_TRANSFER) {
3210                 IPW_DEBUG_ISR("TX interrupt\n");
3211
3212                 priv->tx_interrupts++;
3213
3214                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3215
3216                 __ipw2100_tx_complete(priv);
3217                 ipw2100_tx_send_commands(priv);
3218                 ipw2100_tx_send_data(priv);
3219         }
3220
3221         if (inta & IPW2100_INTA_TX_COMPLETE) {
3222                 IPW_DEBUG_ISR("TX complete\n");
3223                 priv->inta_other++;
3224                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3225
3226                 __ipw2100_tx_complete(priv);
3227         }
3228
3229         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3230                 /* ipw2100_handle_event(dev); */
3231                 priv->inta_other++;
3232                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3233         }
3234
3235         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3236                 IPW_DEBUG_ISR("FW init done interrupt\n");
3237                 priv->inta_other++;
3238
3239                 read_register(dev, IPW_REG_INTA, &tmp);
3240                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3241                            IPW2100_INTA_PARITY_ERROR)) {
3242                         write_register(dev, IPW_REG_INTA,
3243                                        IPW2100_INTA_FATAL_ERROR |
3244                                        IPW2100_INTA_PARITY_ERROR);
3245                 }
3246
3247                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3248         }
3249
3250         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3251                 IPW_DEBUG_ISR("Status change interrupt\n");
3252                 priv->inta_other++;
3253                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3254         }
3255
3256         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3257                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3258                 priv->inta_other++;
3259                 write_register(dev, IPW_REG_INTA,
3260                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3261         }
3262
3263         priv->in_isr--;
3264         ipw2100_enable_interrupts(priv);
3265
3266         spin_unlock_irqrestore(&priv->low_lock, flags);
3267
3268         IPW_DEBUG_ISR("exit\n");
3269 }
3270
3271 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3272 {
3273         struct ipw2100_priv *priv = data;
3274         u32 inta, inta_mask;
3275
3276         if (!data)
3277                 return IRQ_NONE;
3278
3279         spin_lock(&priv->low_lock);
3280
3281         /* We check to see if we should be ignoring interrupts before
3282          * we touch the hardware.  During ucode load if we try and handle
3283          * an interrupt we can cause keyboard problems as well as cause
3284          * the ucode to fail to initialize */
3285         if (!(priv->status & STATUS_INT_ENABLED)) {
3286                 /* Shared IRQ */
3287                 goto none;
3288         }
3289
3290         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3291         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3292
3293         if (inta == 0xFFFFFFFF) {
3294                 /* Hardware disappeared */
3295                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3296                 goto none;
3297         }
3298
3299         inta &= IPW_INTERRUPT_MASK;
3300
3301         if (!(inta & inta_mask)) {
3302                 /* Shared interrupt */
3303                 goto none;
3304         }
3305
3306         /* We disable the hardware interrupt here just to prevent unneeded
3307          * calls to be made.  We disable this again within the actual
3308          * work tasklet, so if another part of the code re-enables the
3309          * interrupt, that is fine */
3310         ipw2100_disable_interrupts(priv);
3311
3312         tasklet_schedule(&priv->irq_tasklet);
3313         spin_unlock(&priv->low_lock);
3314
3315         return IRQ_HANDLED;
3316       none:
3317         spin_unlock(&priv->low_lock);
3318         return IRQ_NONE;
3319 }
3320
3321 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3322                       int pri)
3323 {
3324         struct ipw2100_priv *priv = ieee80211_priv(dev);
3325         struct list_head *element;
3326         struct ipw2100_tx_packet *packet;
3327         unsigned long flags;
3328
3329         spin_lock_irqsave(&priv->low_lock, flags);
3330
3331         if (!(priv->status & STATUS_ASSOCIATED)) {
3332                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3333                 priv->ieee->stats.tx_carrier_errors++;
3334                 netif_stop_queue(dev);
3335                 goto fail_unlock;
3336         }
3337
3338         if (list_empty(&priv->tx_free_list))
3339                 goto fail_unlock;
3340
3341         element = priv->tx_free_list.next;
3342         packet = list_entry(element, struct ipw2100_tx_packet, list);
3343
3344         packet->info.d_struct.txb = txb;
3345
3346         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3347         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3348
3349         packet->jiffy_start = jiffies;
3350
3351         list_del(element);
3352         DEC_STAT(&priv->tx_free_stat);
3353
3354         list_add_tail(element, &priv->tx_pend_list);
3355         INC_STAT(&priv->tx_pend_stat);
3356
3357         ipw2100_tx_send_data(priv);
3358
3359         spin_unlock_irqrestore(&priv->low_lock, flags);
3360         return 0;
3361
3362       fail_unlock:
3363         netif_stop_queue(dev);
3364         spin_unlock_irqrestore(&priv->low_lock, flags);
3365         return 1;
3366 }
3367
3368 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3369 {
3370         int i, j, err = -EINVAL;
3371         void *v;
3372         dma_addr_t p;
3373
3374         priv->msg_buffers =
3375             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3376                                                 sizeof(struct
3377                                                        ipw2100_tx_packet),
3378                                                 GFP_KERNEL);
3379         if (!priv->msg_buffers) {
3380                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3381                        "buffers.\n", priv->net_dev->name);
3382                 return -ENOMEM;
3383         }
3384
3385         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3386                 v = pci_alloc_consistent(priv->pci_dev,
3387                                          sizeof(struct ipw2100_cmd_header), &p);
3388                 if (!v) {
3389                         printk(KERN_ERR DRV_NAME ": "
3390                                "%s: PCI alloc failed for msg "
3391                                "buffers.\n", priv->net_dev->name);
3392                         err = -ENOMEM;
3393                         break;
3394                 }
3395
3396                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3397
3398                 priv->msg_buffers[i].type = COMMAND;
3399                 priv->msg_buffers[i].info.c_struct.cmd =
3400                     (struct ipw2100_cmd_header *)v;
3401                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3402         }
3403
3404         if (i == IPW_COMMAND_POOL_SIZE)
3405                 return 0;
3406
3407         for (j = 0; j < i; j++) {
3408                 pci_free_consistent(priv->pci_dev,
3409                                     sizeof(struct ipw2100_cmd_header),
3410                                     priv->msg_buffers[j].info.c_struct.cmd,
3411                                     priv->msg_buffers[j].info.c_struct.
3412                                     cmd_phys);
3413         }
3414
3415         kfree(priv->msg_buffers);
3416         priv->msg_buffers = NULL;
3417
3418         return err;
3419 }
3420
3421 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3422 {
3423         int i;
3424
3425         INIT_LIST_HEAD(&priv->msg_free_list);
3426         INIT_LIST_HEAD(&priv->msg_pend_list);
3427
3428         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3429                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3430         SET_STAT(&priv->msg_free_stat, i);
3431
3432         return 0;
3433 }
3434
3435 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3436 {
3437         int i;
3438
3439         if (!priv->msg_buffers)
3440                 return;
3441
3442         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3443                 pci_free_consistent(priv->pci_dev,
3444                                     sizeof(struct ipw2100_cmd_header),
3445                                     priv->msg_buffers[i].info.c_struct.cmd,
3446                                     priv->msg_buffers[i].info.c_struct.
3447                                     cmd_phys);
3448         }
3449
3450         kfree(priv->msg_buffers);
3451         priv->msg_buffers = NULL;
3452 }
3453
3454 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3455                         char *buf)
3456 {
3457         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3458         char *out = buf;
3459         int i, j;
3460         u32 val;
3461
3462         for (i = 0; i < 16; i++) {
3463                 out += sprintf(out, "[%08X] ", i * 16);
3464                 for (j = 0; j < 16; j += 4) {
3465                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3466                         out += sprintf(out, "%08X ", val);
3467                 }
3468                 out += sprintf(out, "\n");
3469         }
3470
3471         return out - buf;
3472 }
3473
3474 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3475
3476 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3477                         char *buf)
3478 {
3479         struct ipw2100_priv *p = d->driver_data;
3480         return sprintf(buf, "0x%08x\n", (int)p->config);
3481 }
3482
3483 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3484
3485 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3486                            char *buf)
3487 {
3488         struct ipw2100_priv *p = d->driver_data;
3489         return sprintf(buf, "0x%08x\n", (int)p->status);
3490 }
3491
3492 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3493
3494 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3495                                char *buf)
3496 {
3497         struct ipw2100_priv *p = d->driver_data;
3498         return sprintf(buf, "0x%08x\n", (int)p->capability);
3499 }
3500
3501 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3502
3503 #define IPW2100_REG(x) { IPW_ ##x, #x }
3504 static const struct {
3505         u32 addr;
3506         const char *name;
3507 } hw_data[] = {
3508 IPW2100_REG(REG_GP_CNTRL),
3509             IPW2100_REG(REG_GPIO),
3510             IPW2100_REG(REG_INTA),
3511             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3512 #define IPW2100_NIC(x, s) { x, #x, s }
3513 static const struct {
3514         u32 addr;
3515         const char *name;
3516         size_t size;
3517 } nic_data[] = {
3518 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3519             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3520 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3521 static const struct {
3522         u8 index;
3523         const char *name;
3524         const char *desc;
3525 } ord_data[] = {
3526 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3527             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3528                                 "successful Host Tx's (MSDU)"),
3529             IPW2100_ORD(STAT_TX_DIR_DATA,
3530                                 "successful Directed Tx's (MSDU)"),
3531             IPW2100_ORD(STAT_TX_DIR_DATA1,
3532                                 "successful Directed Tx's (MSDU) @ 1MB"),
3533             IPW2100_ORD(STAT_TX_DIR_DATA2,
3534                                 "successful Directed Tx's (MSDU) @ 2MB"),
3535             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3536                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3537             IPW2100_ORD(STAT_TX_DIR_DATA11,
3538                                 "successful Directed Tx's (MSDU) @ 11MB"),
3539             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3540                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3541             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3542                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3543             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3544                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3545             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3546                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3547             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3548             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3549             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3550             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3551             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3552             IPW2100_ORD(STAT_TX_ASSN_RESP,
3553                                 "successful Association response Tx's"),
3554             IPW2100_ORD(STAT_TX_REASSN,
3555                                 "successful Reassociation Tx's"),
3556             IPW2100_ORD(STAT_TX_REASSN_RESP,
3557                                 "successful Reassociation response Tx's"),
3558             IPW2100_ORD(STAT_TX_PROBE,
3559                                 "probes successfully transmitted"),
3560             IPW2100_ORD(STAT_TX_PROBE_RESP,
3561                                 "probe responses successfully transmitted"),
3562             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3563             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3564             IPW2100_ORD(STAT_TX_DISASSN,
3565                                 "successful Disassociation TX"),
3566             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3567             IPW2100_ORD(STAT_TX_DEAUTH,
3568                                 "successful Deauthentication TX"),
3569             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3570                                 "Total successful Tx data bytes"),
3571             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3572             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3573             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3574             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3575             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3576             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3577             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3578                                 "times max tries in a hop failed"),
3579             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3580                                 "times disassociation failed"),
3581             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3582             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3583             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3584             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3585             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3586             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3587             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3588                                 "directed packets at 5.5MB"),
3589             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3590             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3591             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3592                                 "nondirected packets at 1MB"),
3593             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3594                                 "nondirected packets at 2MB"),
3595             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3596                                 "nondirected packets at 5.5MB"),
3597             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3598                                 "nondirected packets at 11MB"),
3599             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3600             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3601                                                                     "Rx CTS"),
3602             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3603             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3604             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3605             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3606             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3607             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3608             IPW2100_ORD(STAT_RX_REASSN_RESP,
3609                                 "Reassociation response Rx's"),
3610             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3611             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3612             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3613             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3614             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3615             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3616             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3617             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3618                                 "Total rx data bytes received"),
3619             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3620             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3621             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3622             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3623             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3624             IPW2100_ORD(STAT_RX_DUPLICATE1,
3625                                 "duplicate rx packets at 1MB"),
3626             IPW2100_ORD(STAT_RX_DUPLICATE2,
3627                                 "duplicate rx packets at 2MB"),
3628             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3629                                 "duplicate rx packets at 5.5MB"),
3630             IPW2100_ORD(STAT_RX_DUPLICATE11,
3631                                 "duplicate rx packets at 11MB"),
3632             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3633             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3634             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3635             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3636             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3637                                 "rx frames with invalid protocol"),
3638             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3639             IPW2100_ORD(STAT_RX_NO_BUFFER,
3640                                 "rx frames rejected due to no buffer"),
3641             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3642                                 "rx frames dropped due to missing fragment"),
3643             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3644                                 "rx frames dropped due to non-sequential fragment"),
3645             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3646                                 "rx frames dropped due to unmatched 1st frame"),
3647             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3648                                 "rx frames dropped due to uncompleted frame"),
3649             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3650                                 "ICV errors during decryption"),
3651             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3652             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3653             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3654                                 "poll response timeouts"),
3655             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3656                                 "timeouts waiting for last {broad,multi}cast pkt"),
3657             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3658             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3659             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3660             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3661             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3662                                 "current calculation of % missed beacons"),
3663             IPW2100_ORD(STAT_PERCENT_RETRIES,
3664                                 "current calculation of % missed tx retries"),
3665             IPW2100_ORD(ASSOCIATED_AP_PTR,
3666                                 "0 if not associated, else pointer to AP table entry"),
3667             IPW2100_ORD(AVAILABLE_AP_CNT,
3668                                 "AP's decsribed in the AP table"),
3669             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3670             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3671             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3672             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3673                                 "failures due to response fail"),
3674             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3675             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3676             IPW2100_ORD(STAT_ROAM_INHIBIT,
3677                                 "times roaming was inhibited due to activity"),
3678             IPW2100_ORD(RSSI_AT_ASSN,
3679                                 "RSSI of associated AP at time of association"),
3680             IPW2100_ORD(STAT_ASSN_CAUSE1,
3681                                 "reassociation: no probe response or TX on hop"),
3682             IPW2100_ORD(STAT_ASSN_CAUSE2,
3683                                 "reassociation: poor tx/rx quality"),
3684             IPW2100_ORD(STAT_ASSN_CAUSE3,
3685                                 "reassociation: tx/rx quality (excessive AP load"),
3686             IPW2100_ORD(STAT_ASSN_CAUSE4,
3687                                 "reassociation: AP RSSI level"),
3688             IPW2100_ORD(STAT_ASSN_CAUSE5,
3689                                 "reassociations due to load leveling"),
3690             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3691             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3692                                 "times authentication response failed"),
3693             IPW2100_ORD(STATION_TABLE_CNT,
3694                                 "entries in association table"),
3695             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3696             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3697             IPW2100_ORD(COUNTRY_CODE,
3698                                 "IEEE country code as recv'd from beacon"),
3699             IPW2100_ORD(COUNTRY_CHANNELS,
3700                                 "channels suported by country"),
3701             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3702             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3703             IPW2100_ORD(ANTENNA_DIVERSITY,
3704                                 "TRUE if antenna diversity is disabled"),
3705             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3706             IPW2100_ORD(OUR_FREQ,
3707                                 "current radio freq lower digits - channel ID"),
3708             IPW2100_ORD(RTC_TIME, "current RTC time"),
3709             IPW2100_ORD(PORT_TYPE, "operating mode"),
3710             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3711             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3712             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3713             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3714             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3715             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3716             IPW2100_ORD(CAPABILITIES,
3717                                 "Management frame capability field"),
3718             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3719             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3720             IPW2100_ORD(RTS_THRESHOLD,
3721                                 "Min packet length for RTS handshaking"),
3722             IPW2100_ORD(INT_MODE, "International mode"),
3723             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3724                                 "protocol frag threshold"),
3725             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3726                                 "EEPROM offset in SRAM"),
3727             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3728                                 "EEPROM size in SRAM"),
3729             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3730             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3731                                 "EEPROM IBSS 11b channel set"),
3732             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3733             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3734             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3735             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3736             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3737
3738 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3739                               char *buf)
3740 {
3741         int i;
3742         struct ipw2100_priv *priv = dev_get_drvdata(d);
3743         struct net_device *dev = priv->net_dev;
3744         char *out = buf;
3745         u32 val = 0;
3746
3747         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3748
3749         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3750                 read_register(dev, hw_data[i].addr, &val);
3751                 out += sprintf(out, "%30s [%08X] : %08X\n",
3752                                hw_data[i].name, hw_data[i].addr, val);
3753         }
3754
3755         return out - buf;
3756 }
3757
3758 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3759
3760 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3761                              char *buf)
3762 {
3763         struct ipw2100_priv *priv = dev_get_drvdata(d);
3764         struct net_device *dev = priv->net_dev;
3765         char *out = buf;
3766         int i;
3767
3768         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3769
3770         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3771                 u8 tmp8;
3772                 u16 tmp16;
3773                 u32 tmp32;
3774
3775                 switch (nic_data[i].size) {
3776                 case 1:
3777                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3778                         out += sprintf(out, "%30s [%08X] : %02X\n",
3779                                        nic_data[i].name, nic_data[i].addr,
3780                                        tmp8);
3781                         break;
3782                 case 2:
3783                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3784                         out += sprintf(out, "%30s [%08X] : %04X\n",
3785                                        nic_data[i].name, nic_data[i].addr,
3786                                        tmp16);
3787                         break;
3788                 case 4:
3789                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3790                         out += sprintf(out, "%30s [%08X] : %08X\n",
3791                                        nic_data[i].name, nic_data[i].addr,
3792                                        tmp32);
3793                         break;
3794                 }
3795         }
3796         return out - buf;
3797 }
3798
3799 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3800
3801 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3802                            char *buf)
3803 {
3804         struct ipw2100_priv *priv = dev_get_drvdata(d);
3805         struct net_device *dev = priv->net_dev;
3806         static unsigned long loop = 0;
3807         int len = 0;
3808         u32 buffer[4];
3809         int i;
3810         char line[81];
3811
3812         if (loop >= 0x30000)
3813                 loop = 0;
3814
3815         /* sysfs provides us PAGE_SIZE buffer */
3816         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3817
3818                 if (priv->snapshot[0])
3819                         for (i = 0; i < 4; i++)
3820                                 buffer[i] =
3821                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3822                 else
3823                         for (i = 0; i < 4; i++)
3824                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3825
3826                 if (priv->dump_raw)
3827                         len += sprintf(buf + len,
3828                                        "%c%c%c%c"
3829                                        "%c%c%c%c"
3830                                        "%c%c%c%c"
3831                                        "%c%c%c%c",
3832                                        ((u8 *) buffer)[0x0],
3833                                        ((u8 *) buffer)[0x1],
3834                                        ((u8 *) buffer)[0x2],
3835                                        ((u8 *) buffer)[0x3],
3836                                        ((u8 *) buffer)[0x4],
3837                                        ((u8 *) buffer)[0x5],
3838                                        ((u8 *) buffer)[0x6],
3839                                        ((u8 *) buffer)[0x7],
3840                                        ((u8 *) buffer)[0x8],
3841                                        ((u8 *) buffer)[0x9],
3842                                        ((u8 *) buffer)[0xa],
3843                                        ((u8 *) buffer)[0xb],
3844                                        ((u8 *) buffer)[0xc],
3845                                        ((u8 *) buffer)[0xd],
3846                                        ((u8 *) buffer)[0xe],
3847                                        ((u8 *) buffer)[0xf]);
3848                 else
3849                         len += sprintf(buf + len, "%s\n",
3850                                        snprint_line(line, sizeof(line),
3851                                                     (u8 *) buffer, 16, loop));
3852                 loop += 16;
3853         }
3854
3855         return len;
3856 }
3857
3858 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3859                             const char *buf, size_t count)
3860 {
3861         struct ipw2100_priv *priv = dev_get_drvdata(d);
3862         struct net_device *dev = priv->net_dev;
3863         const char *p = buf;
3864
3865         (void)dev;              /* kill unused-var warning for debug-only code */
3866
3867         if (count < 1)
3868                 return count;
3869
3870         if (p[0] == '1' ||
3871             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3872                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3873                                dev->name);
3874                 priv->dump_raw = 1;
3875
3876         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3877                                    tolower(p[1]) == 'f')) {
3878                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3879                                dev->name);
3880                 priv->dump_raw = 0;
3881
3882         } else if (tolower(p[0]) == 'r') {
3883                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3884                 ipw2100_snapshot_free(priv);
3885
3886         } else
3887                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3888                                "reset = clear memory snapshot\n", dev->name);
3889
3890         return count;
3891 }
3892
3893 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3894
3895 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3896                              char *buf)
3897 {
3898         struct ipw2100_priv *priv = dev_get_drvdata(d);
3899         u32 val = 0;
3900         int len = 0;
3901         u32 val_len;
3902         static int loop = 0;
3903
3904         if (priv->status & STATUS_RF_KILL_MASK)
3905                 return 0;
3906
3907         if (loop >= ARRAY_SIZE(ord_data))
3908                 loop = 0;
3909
3910         /* sysfs provides us PAGE_SIZE buffer */
3911         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3912                 val_len = sizeof(u32);
3913
3914                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3915                                         &val_len))
3916                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3917                                        ord_data[loop].index,
3918                                        ord_data[loop].desc);
3919                 else
3920                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3921                                        ord_data[loop].index, val,
3922                                        ord_data[loop].desc);
3923                 loop++;
3924         }
3925
3926         return len;
3927 }
3928
3929 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3930
3931 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3932                           char *buf)
3933 {
3934         struct ipw2100_priv *priv = dev_get_drvdata(d);
3935         char *out = buf;
3936
3937         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3938                        priv->interrupts, priv->tx_interrupts,
3939                        priv->rx_interrupts, priv->inta_other);
3940         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3941         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3942 #ifdef CONFIG_IPW2100_DEBUG
3943         out += sprintf(out, "packet mismatch image: %s\n",
3944                        priv->snapshot[0] ? "YES" : "NO");
3945 #endif
3946
3947         return out - buf;
3948 }
3949
3950 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3951
3952 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3953 {
3954         int err;
3955
3956         if (mode == priv->ieee->iw_mode)
3957                 return 0;
3958
3959         err = ipw2100_disable_adapter(priv);
3960         if (err) {
3961                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3962                        priv->net_dev->name, err);
3963                 return err;
3964         }
3965
3966         switch (mode) {
3967         case IW_MODE_INFRA:
3968                 priv->net_dev->type = ARPHRD_ETHER;
3969                 break;
3970         case IW_MODE_ADHOC:
3971                 priv->net_dev->type = ARPHRD_ETHER;
3972                 break;
3973 #ifdef CONFIG_IPW2100_MONITOR
3974         case IW_MODE_MONITOR:
3975                 priv->last_mode = priv->ieee->iw_mode;
3976                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3977                 break;
3978 #endif                          /* CONFIG_IPW2100_MONITOR */
3979         }
3980
3981         priv->ieee->iw_mode = mode;
3982
3983 #ifdef CONFIG_PM
3984         /* Indicate ipw2100_download_firmware download firmware
3985          * from disk instead of memory. */
3986         ipw2100_firmware.version = 0;
3987 #endif
3988
3989         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3990         priv->reset_backoff = 0;
3991         schedule_reset(priv);
3992
3993         return 0;
3994 }
3995
3996 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3997                               char *buf)
3998 {
3999         struct ipw2100_priv *priv = dev_get_drvdata(d);
4000         int len = 0;
4001
4002 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4003
4004         if (priv->status & STATUS_ASSOCIATED)
4005                 len += sprintf(buf + len, "connected: %lu\n",
4006                                get_seconds() - priv->connect_start);
4007         else
4008                 len += sprintf(buf + len, "not connected\n");
4009
4010         DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4011         DUMP_VAR(status, "08lx");
4012         DUMP_VAR(config, "08lx");
4013         DUMP_VAR(capability, "08lx");
4014
4015         len +=
4016             sprintf(buf + len, "last_rtc: %lu\n",
4017                     (unsigned long)priv->last_rtc);
4018
4019         DUMP_VAR(fatal_error, "d");
4020         DUMP_VAR(stop_hang_check, "d");
4021         DUMP_VAR(stop_rf_kill, "d");
4022         DUMP_VAR(messages_sent, "d");
4023
4024         DUMP_VAR(tx_pend_stat.value, "d");
4025         DUMP_VAR(tx_pend_stat.hi, "d");
4026
4027         DUMP_VAR(tx_free_stat.value, "d");
4028         DUMP_VAR(tx_free_stat.lo, "d");
4029
4030         DUMP_VAR(msg_free_stat.value, "d");
4031         DUMP_VAR(msg_free_stat.lo, "d");
4032
4033         DUMP_VAR(msg_pend_stat.value, "d");
4034         DUMP_VAR(msg_pend_stat.hi, "d");
4035
4036         DUMP_VAR(fw_pend_stat.value, "d");
4037         DUMP_VAR(fw_pend_stat.hi, "d");
4038
4039         DUMP_VAR(txq_stat.value, "d");
4040         DUMP_VAR(txq_stat.lo, "d");
4041
4042         DUMP_VAR(ieee->scans, "d");
4043         DUMP_VAR(reset_backoff, "d");
4044
4045         return len;
4046 }
4047
4048 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4049
4050 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4051                             char *buf)
4052 {
4053         struct ipw2100_priv *priv = dev_get_drvdata(d);
4054         char essid[IW_ESSID_MAX_SIZE + 1];
4055         u8 bssid[ETH_ALEN];
4056         u32 chan = 0;
4057         char *out = buf;
4058         int length;
4059         int ret;
4060         DECLARE_MAC_BUF(mac);
4061
4062         if (priv->status & STATUS_RF_KILL_MASK)
4063                 return 0;
4064
4065         memset(essid, 0, sizeof(essid));
4066         memset(bssid, 0, sizeof(bssid));
4067
4068         length = IW_ESSID_MAX_SIZE;
4069         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4070         if (ret)
4071                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4072                                __LINE__);
4073
4074         length = sizeof(bssid);
4075         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4076                                   bssid, &length);
4077         if (ret)
4078                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4079                                __LINE__);
4080
4081         length = sizeof(u32);
4082         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4083         if (ret)
4084                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4085                                __LINE__);
4086
4087         out += sprintf(out, "ESSID: %s\n", essid);
4088         out += sprintf(out, "BSSID:   %s\n", print_mac(mac, bssid));
4089         out += sprintf(out, "Channel: %d\n", chan);
4090
4091         return out - buf;
4092 }
4093
4094 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4095
4096 #ifdef CONFIG_IPW2100_DEBUG
4097 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4098 {
4099         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4100 }
4101
4102 static ssize_t store_debug_level(struct device_driver *d,
4103                                  const char *buf, size_t count)
4104 {
4105         char *p = (char *)buf;
4106         u32 val;
4107
4108         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4109                 p++;
4110                 if (p[0] == 'x' || p[0] == 'X')
4111                         p++;
4112                 val = simple_strtoul(p, &p, 16);
4113         } else
4114                 val = simple_strtoul(p, &p, 10);
4115         if (p == buf)
4116                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4117         else
4118                 ipw2100_debug_level = val;
4119
4120         return strnlen(buf, count);
4121 }
4122
4123 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4124                    store_debug_level);
4125 #endif                          /* CONFIG_IPW2100_DEBUG */
4126
4127 static ssize_t show_fatal_error(struct device *d,
4128                                 struct device_attribute *attr, char *buf)
4129 {
4130         struct ipw2100_priv *priv = dev_get_drvdata(d);
4131         char *out = buf;
4132         int i;
4133
4134         if (priv->fatal_error)
4135                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4136         else
4137                 out += sprintf(out, "0\n");
4138
4139         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4140                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4141                                         IPW2100_ERROR_QUEUE])
4142                         continue;
4143
4144                 out += sprintf(out, "%d. 0x%08X\n", i,
4145                                priv->fatal_errors[(priv->fatal_index - i) %
4146                                                   IPW2100_ERROR_QUEUE]);
4147         }
4148
4149         return out - buf;
4150 }
4151
4152 static ssize_t store_fatal_error(struct device *d,
4153                                  struct device_attribute *attr, const char *buf,
4154                                  size_t count)
4155 {
4156         struct ipw2100_priv *priv = dev_get_drvdata(d);
4157         schedule_reset(priv);
4158         return count;
4159 }
4160
4161 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4162                    store_fatal_error);
4163
4164 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4165                              char *buf)
4166 {
4167         struct ipw2100_priv *priv = dev_get_drvdata(d);
4168         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4169 }
4170
4171 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4172                               const char *buf, size_t count)
4173 {
4174         struct ipw2100_priv *priv = dev_get_drvdata(d);
4175         struct net_device *dev = priv->net_dev;
4176         char buffer[] = "00000000";
4177         unsigned long len =
4178             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4179         unsigned long val;
4180         char *p = buffer;
4181
4182         (void)dev;              /* kill unused-var warning for debug-only code */
4183
4184         IPW_DEBUG_INFO("enter\n");
4185
4186         strncpy(buffer, buf, len);
4187         buffer[len] = 0;
4188
4189         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4190                 p++;
4191                 if (p[0] == 'x' || p[0] == 'X')
4192                         p++;
4193                 val = simple_strtoul(p, &p, 16);
4194         } else
4195                 val = simple_strtoul(p, &p, 10);
4196         if (p == buffer) {
4197                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4198         } else {
4199                 priv->ieee->scan_age = val;
4200                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4201         }
4202
4203         IPW_DEBUG_INFO("exit\n");
4204         return len;
4205 }
4206
4207 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4208
4209 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4210                             char *buf)
4211 {
4212         /* 0 - RF kill not enabled
4213            1 - SW based RF kill active (sysfs)
4214            2 - HW based RF kill active
4215            3 - Both HW and SW baed RF kill active */
4216         struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4217         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4218             (rf_kill_active(priv) ? 0x2 : 0x0);
4219         return sprintf(buf, "%i\n", val);
4220 }
4221
4222 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4223 {
4224         if ((disable_radio ? 1 : 0) ==
4225             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4226                 return 0;
4227
4228         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4229                           disable_radio ? "OFF" : "ON");
4230
4231         mutex_lock(&priv->action_mutex);
4232
4233         if (disable_radio) {
4234                 priv->status |= STATUS_RF_KILL_SW;
4235                 ipw2100_down(priv);
4236         } else {
4237                 priv->status &= ~STATUS_RF_KILL_SW;
4238                 if (rf_kill_active(priv)) {
4239                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4240                                           "disabled by HW switch\n");
4241                         /* Make sure the RF_KILL check timer is running */
4242                         priv->stop_rf_kill = 0;
4243                         cancel_delayed_work(&priv->rf_kill);
4244                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
4245                                            round_jiffies(HZ));
4246                 } else
4247                         schedule_reset(priv);
4248         }
4249
4250         mutex_unlock(&priv->action_mutex);
4251         return 1;
4252 }
4253
4254 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4255                              const char *buf, size_t count)
4256 {
4257         struct ipw2100_priv *priv = dev_get_drvdata(d);
4258         ipw_radio_kill_sw(priv, buf[0] == '1');
4259         return count;
4260 }
4261
4262 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4263
4264 static struct attribute *ipw2100_sysfs_entries[] = {
4265         &dev_attr_hardware.attr,
4266         &dev_attr_registers.attr,
4267         &dev_attr_ordinals.attr,
4268         &dev_attr_pci.attr,
4269         &dev_attr_stats.attr,
4270         &dev_attr_internals.attr,
4271         &dev_attr_bssinfo.attr,
4272         &dev_attr_memory.attr,
4273         &dev_attr_scan_age.attr,
4274         &dev_attr_fatal_error.attr,
4275         &dev_attr_rf_kill.attr,
4276         &dev_attr_cfg.attr,
4277         &dev_attr_status.attr,
4278         &dev_attr_capability.attr,
4279         NULL,
4280 };
4281
4282 static struct attribute_group ipw2100_attribute_group = {
4283         .attrs = ipw2100_sysfs_entries,
4284 };
4285
4286 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4287 {
4288         struct ipw2100_status_queue *q = &priv->status_queue;
4289
4290         IPW_DEBUG_INFO("enter\n");
4291
4292         q->size = entries * sizeof(struct ipw2100_status);
4293         q->drv =
4294             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4295                                                           q->size, &q->nic);
4296         if (!q->drv) {
4297                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4298                 return -ENOMEM;
4299         }
4300
4301         memset(q->drv, 0, q->size);
4302
4303         IPW_DEBUG_INFO("exit\n");
4304
4305         return 0;
4306 }
4307
4308 static void status_queue_free(struct ipw2100_priv *priv)
4309 {
4310         IPW_DEBUG_INFO("enter\n");
4311
4312         if (priv->status_queue.drv) {
4313                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4314                                     priv->status_queue.drv,
4315                                     priv->status_queue.nic);
4316                 priv->status_queue.drv = NULL;
4317         }
4318
4319         IPW_DEBUG_INFO("exit\n");
4320 }
4321
4322 static int bd_queue_allocate(struct ipw2100_priv *priv,
4323                              struct ipw2100_bd_queue *q, int entries)
4324 {
4325         IPW_DEBUG_INFO("enter\n");
4326
4327         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4328
4329         q->entries = entries;
4330         q->size = entries * sizeof(struct ipw2100_bd);
4331         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4332         if (!q->drv) {
4333                 IPW_DEBUG_INFO
4334                     ("can't allocate shared memory for buffer descriptors\n");
4335                 return -ENOMEM;
4336         }
4337         memset(q->drv, 0, q->size);
4338
4339         IPW_DEBUG_INFO("exit\n");
4340
4341         return 0;
4342 }
4343
4344 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4345 {
4346         IPW_DEBUG_INFO("enter\n");
4347
4348         if (!q)
4349                 return;
4350
4351         if (q->drv) {
4352                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4353                 q->drv = NULL;
4354         }
4355
4356         IPW_DEBUG_INFO("exit\n");
4357 }
4358
4359 static void bd_queue_initialize(struct ipw2100_priv *priv,
4360                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4361                                 u32 r, u32 w)
4362 {
4363         IPW_DEBUG_INFO("enter\n");
4364
4365         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4366                        (u32) q->nic);
4367
4368         write_register(priv->net_dev, base, q->nic);
4369         write_register(priv->net_dev, size, q->entries);
4370         write_register(priv->net_dev, r, q->oldest);
4371         write_register(priv->net_dev, w, q->next);
4372
4373         IPW_DEBUG_INFO("exit\n");
4374 }
4375
4376 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4377 {
4378         if (priv->workqueue) {
4379                 priv->stop_rf_kill = 1;
4380                 priv->stop_hang_check = 1;
4381                 cancel_delayed_work(&priv->reset_work);
4382                 cancel_delayed_work(&priv->security_work);
4383                 cancel_delayed_work(&priv->wx_event_work);
4384                 cancel_delayed_work(&priv->hang_check);
4385                 cancel_delayed_work(&priv->rf_kill);
4386                 cancel_delayed_work(&priv->scan_event_later);
4387                 destroy_workqueue(priv->workqueue);
4388                 priv->workqueue = NULL;
4389         }
4390 }
4391
4392 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4393 {
4394         int i, j, err = -EINVAL;
4395         void *v;
4396         dma_addr_t p;
4397
4398         IPW_DEBUG_INFO("enter\n");
4399
4400         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4401         if (err) {
4402                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4403                                 priv->net_dev->name);
4404                 return err;
4405         }
4406
4407         priv->tx_buffers =
4408             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4409                                                 sizeof(struct
4410                                                        ipw2100_tx_packet),
4411                                                 GFP_ATOMIC);
4412         if (!priv->tx_buffers) {
4413                 printk(KERN_ERR DRV_NAME
4414                        ": %s: alloc failed form tx buffers.\n",
4415                        priv->net_dev->name);
4416                 bd_queue_free(priv, &priv->tx_queue);
4417                 return -ENOMEM;
4418         }
4419
4420         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4421                 v = pci_alloc_consistent(priv->pci_dev,
4422                                          sizeof(struct ipw2100_data_header),
4423                                          &p);
4424                 if (!v) {
4425                         printk(KERN_ERR DRV_NAME
4426                                ": %s: PCI alloc failed for tx " "buffers.\n",
4427                                priv->net_dev->name);
4428                         err = -ENOMEM;
4429                         break;
4430                 }
4431
4432                 priv->tx_buffers[i].type = DATA;
4433                 priv->tx_buffers[i].info.d_struct.data =
4434                     (struct ipw2100_data_header *)v;
4435                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4436                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4437         }
4438
4439         if (i == TX_PENDED_QUEUE_LENGTH)
4440                 return 0;
4441
4442         for (j = 0; j < i; j++) {
4443                 pci_free_consistent(priv->pci_dev,
4444                                     sizeof(struct ipw2100_data_header),
4445                                     priv->tx_buffers[j].info.d_struct.data,
4446                                     priv->tx_buffers[j].info.d_struct.
4447                                     data_phys);
4448         }
4449
4450         kfree(priv->tx_buffers);
4451         priv->tx_buffers = NULL;
4452
4453         return err;
4454 }
4455
4456 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4457 {
4458         int i;
4459
4460         IPW_DEBUG_INFO("enter\n");
4461
4462         /*
4463          * reinitialize packet info lists
4464          */
4465         INIT_LIST_HEAD(&priv->fw_pend_list);
4466         INIT_STAT(&priv->fw_pend_stat);
4467
4468         /*
4469          * reinitialize lists
4470          */
4471         INIT_LIST_HEAD(&priv->tx_pend_list);
4472         INIT_LIST_HEAD(&priv->tx_free_list);
4473         INIT_STAT(&priv->tx_pend_stat);
4474         INIT_STAT(&priv->tx_free_stat);
4475
4476         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4477                 /* We simply drop any SKBs that have been queued for
4478                  * transmit */
4479                 if (priv->tx_buffers[i].info.d_struct.txb) {
4480                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4481                                            txb);
4482                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4483                 }
4484
4485                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4486         }
4487
4488         SET_STAT(&priv->tx_free_stat, i);
4489
4490         priv->tx_queue.oldest = 0;
4491         priv->tx_queue.available = priv->tx_queue.entries;
4492         priv->tx_queue.next = 0;
4493         INIT_STAT(&priv->txq_stat);
4494         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4495
4496         bd_queue_initialize(priv, &priv->tx_queue,
4497                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4498                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4499                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4500                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4501
4502         IPW_DEBUG_INFO("exit\n");
4503
4504 }
4505
4506 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4507 {
4508         int i;
4509
4510         IPW_DEBUG_INFO("enter\n");
4511
4512         bd_queue_free(priv, &priv->tx_queue);
4513
4514         if (!priv->tx_buffers)
4515                 return;
4516
4517         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4518                 if (priv->tx_buffers[i].info.d_struct.txb) {
4519                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4520                                            txb);
4521                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4522                 }
4523                 if (priv->tx_buffers[i].info.d_struct.data)
4524                         pci_free_consistent(priv->pci_dev,
4525                                             sizeof(struct ipw2100_data_header),
4526                                             priv->tx_buffers[i].info.d_struct.
4527                                             data,
4528                                             priv->tx_buffers[i].info.d_struct.
4529                                             data_phys);
4530         }
4531
4532         kfree(priv->tx_buffers);
4533         priv->tx_buffers = NULL;
4534
4535         IPW_DEBUG_INFO("exit\n");
4536 }
4537
4538 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4539 {
4540         int i, j, err = -EINVAL;
4541
4542         IPW_DEBUG_INFO("enter\n");
4543
4544         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4545         if (err) {
4546                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4547                 return err;
4548         }
4549
4550         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4551         if (err) {
4552                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4553                 bd_queue_free(priv, &priv->rx_queue);
4554                 return err;
4555         }
4556
4557         /*
4558          * allocate packets
4559          */
4560         priv->rx_buffers = (struct ipw2100_rx_packet *)
4561             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4562                     GFP_KERNEL);
4563         if (!priv->rx_buffers) {
4564                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4565
4566                 bd_queue_free(priv, &priv->rx_queue);
4567
4568                 status_queue_free(priv);
4569
4570                 return -ENOMEM;
4571         }
4572
4573         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4574                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4575
4576                 err = ipw2100_alloc_skb(priv, packet);
4577                 if (unlikely(err)) {
4578                         err = -ENOMEM;
4579                         break;
4580                 }
4581
4582                 /* The BD holds the cache aligned address */
4583                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4584                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4585                 priv->status_queue.drv[i].status_fields = 0;
4586         }
4587
4588         if (i == RX_QUEUE_LENGTH)
4589                 return 0;
4590
4591         for (j = 0; j < i; j++) {
4592                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4593                                  sizeof(struct ipw2100_rx_packet),
4594                                  PCI_DMA_FROMDEVICE);
4595                 dev_kfree_skb(priv->rx_buffers[j].skb);
4596         }
4597
4598         kfree(priv->rx_buffers);
4599         priv->rx_buffers = NULL;
4600
4601         bd_queue_free(priv, &priv->rx_queue);
4602
4603         status_queue_free(priv);
4604
4605         return err;
4606 }
4607
4608 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4609 {
4610         IPW_DEBUG_INFO("enter\n");
4611
4612         priv->rx_queue.oldest = 0;
4613         priv->rx_queue.available = priv->rx_queue.entries - 1;
4614         priv->rx_queue.next = priv->rx_queue.entries - 1;
4615
4616         INIT_STAT(&priv->rxq_stat);
4617         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4618
4619         bd_queue_initialize(priv, &priv->rx_queue,
4620                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4621                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4622                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4623                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4624
4625         /* set up the status queue */
4626         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4627                        priv->status_queue.nic);
4628
4629         IPW_DEBUG_INFO("exit\n");
4630 }
4631
4632 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4633 {
4634         int i;
4635
4636         IPW_DEBUG_INFO("enter\n");
4637
4638         bd_queue_free(priv, &priv->rx_queue);
4639         status_queue_free(priv);
4640
4641         if (!priv->rx_buffers)
4642                 return;
4643
4644         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4645                 if (priv->rx_buffers[i].rxp) {
4646                         pci_unmap_single(priv->pci_dev,
4647                                          priv->rx_buffers[i].dma_addr,
4648                                          sizeof(struct ipw2100_rx),
4649                                          PCI_DMA_FROMDEVICE);
4650                         dev_kfree_skb(priv->rx_buffers[i].skb);
4651                 }
4652         }
4653
4654         kfree(priv->rx_buffers);
4655         priv->rx_buffers = NULL;
4656
4657         IPW_DEBUG_INFO("exit\n");
4658 }
4659
4660 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4661 {
4662         u32 length = ETH_ALEN;
4663         u8 addr[ETH_ALEN];
4664         DECLARE_MAC_BUF(mac);
4665
4666         int err;
4667
4668         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4669         if (err) {
4670                 IPW_DEBUG_INFO("MAC address read failed\n");
4671                 return -EIO;
4672         }
4673
4674         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4675         IPW_DEBUG_INFO("card MAC is %s\n",
4676                        print_mac(mac, priv->net_dev->dev_addr));
4677
4678         return 0;
4679 }
4680
4681 /********************************************************************
4682  *
4683  * Firmware Commands
4684  *
4685  ********************************************************************/
4686
4687 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4688 {
4689         struct host_command cmd = {
4690                 .host_command = ADAPTER_ADDRESS,
4691                 .host_command_sequence = 0,
4692                 .host_command_length = ETH_ALEN
4693         };
4694         int err;
4695
4696         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4697
4698         IPW_DEBUG_INFO("enter\n");
4699
4700         if (priv->config & CFG_CUSTOM_MAC) {
4701                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4702                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4703         } else
4704                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4705                        ETH_ALEN);
4706
4707         err = ipw2100_hw_send_command(priv, &cmd);
4708
4709         IPW_DEBUG_INFO("exit\n");
4710         return err;
4711 }
4712
4713 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4714                                  int batch_mode)
4715 {
4716         struct host_command cmd = {
4717                 .host_command = PORT_TYPE,
4718                 .host_command_sequence = 0,
4719                 .host_command_length = sizeof(u32)
4720         };
4721         int err;
4722
4723         switch (port_type) {
4724         case IW_MODE_INFRA:
4725                 cmd.host_command_parameters[0] = IPW_BSS;
4726                 break;
4727         case IW_MODE_ADHOC:
4728                 cmd.host_command_parameters[0] = IPW_IBSS;
4729                 break;
4730         }
4731
4732         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4733                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4734
4735         if (!batch_mode) {
4736                 err = ipw2100_disable_adapter(priv);
4737                 if (err) {
4738                         printk(KERN_ERR DRV_NAME
4739                                ": %s: Could not disable adapter %d\n",
4740                                priv->net_dev->name, err);
4741                         return err;
4742                 }
4743         }
4744
4745         /* send cmd to firmware */
4746         err = ipw2100_hw_send_command(priv, &cmd);
4747
4748         if (!batch_mode)
4749                 ipw2100_enable_adapter(priv);
4750
4751         return err;
4752 }
4753
4754 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4755                                int batch_mode)
4756 {
4757         struct host_command cmd = {
4758                 .host_command = CHANNEL,
4759                 .host_command_sequence = 0,
4760                 .host_command_length = sizeof(u32)
4761         };
4762         int err;
4763
4764         cmd.host_command_parameters[0] = channel;
4765
4766         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4767
4768         /* If BSS then we don't support channel selection */
4769         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4770                 return 0;
4771
4772         if ((channel != 0) &&
4773             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4774                 return -EINVAL;
4775
4776         if (!batch_mode) {
4777                 err = ipw2100_disable_adapter(priv);
4778                 if (err)
4779                         return err;
4780         }
4781
4782         err = ipw2100_hw_send_command(priv, &cmd);
4783         if (err) {
4784                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4785                 return err;
4786         }
4787
4788         if (channel)
4789                 priv->config |= CFG_STATIC_CHANNEL;
4790         else
4791                 priv->config &= ~CFG_STATIC_CHANNEL;
4792
4793         priv->channel = channel;
4794
4795         if (!batch_mode) {
4796                 err = ipw2100_enable_adapter(priv);
4797                 if (err)
4798                         return err;
4799         }
4800
4801         return 0;
4802 }
4803
4804 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4805 {
4806         struct host_command cmd = {
4807                 .host_command = SYSTEM_CONFIG,
4808                 .host_command_sequence = 0,
4809                 .host_command_length = 12,
4810         };
4811         u32 ibss_mask, len = sizeof(u32);
4812         int err;
4813
4814         /* Set system configuration */
4815
4816         if (!batch_mode) {
4817                 err = ipw2100_disable_adapter(priv);
4818                 if (err)
4819                         return err;
4820         }
4821
4822         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4823                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4824
4825         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4826             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4827
4828         if (!(priv->config & CFG_LONG_PREAMBLE))
4829                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4830
4831         err = ipw2100_get_ordinal(priv,
4832                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4833                                   &ibss_mask, &len);
4834         if (err)
4835                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4836
4837         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4838         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4839
4840         /* 11b only */
4841         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4842
4843         err = ipw2100_hw_send_command(priv, &cmd);
4844         if (err)
4845                 return err;
4846
4847 /* If IPv6 is configured in the kernel then we don't want to filter out all
4848  * of the multicast packets as IPv6 needs some. */
4849 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4850         cmd.host_command = ADD_MULTICAST;
4851         cmd.host_command_sequence = 0;
4852         cmd.host_command_length = 0;
4853
4854         ipw2100_hw_send_command(priv, &cmd);
4855 #endif
4856         if (!batch_mode) {
4857                 err = ipw2100_enable_adapter(priv);
4858                 if (err)
4859                         return err;
4860         }
4861
4862         return 0;
4863 }
4864
4865 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4866                                 int batch_mode)
4867 {
4868         struct host_command cmd = {
4869                 .host_command = BASIC_TX_RATES,
4870                 .host_command_sequence = 0,
4871                 .host_command_length = 4
4872         };
4873         int err;
4874
4875         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4876
4877         if (!batch_mode) {
4878                 err = ipw2100_disable_adapter(priv);
4879                 if (err)
4880                         return err;
4881         }
4882
4883         /* Set BASIC TX Rate first */
4884         ipw2100_hw_send_command(priv, &cmd);
4885
4886         /* Set TX Rate */
4887         cmd.host_command = TX_RATES;
4888         ipw2100_hw_send_command(priv, &cmd);
4889
4890         /* Set MSDU TX Rate */
4891         cmd.host_command = MSDU_TX_RATES;
4892         ipw2100_hw_send_command(priv, &cmd);
4893
4894         if (!batch_mode) {
4895                 err = ipw2100_enable_adapter(priv);
4896                 if (err)
4897                         return err;
4898         }
4899
4900         priv->tx_rates = rate;
4901
4902         return 0;
4903 }
4904
4905 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4906 {
4907         struct host_command cmd = {
4908                 .host_command = POWER_MODE,
4909                 .host_command_sequence = 0,
4910                 .host_command_length = 4
4911         };
4912         int err;
4913
4914         cmd.host_command_parameters[0] = power_level;
4915
4916         err = ipw2100_hw_send_command(priv, &cmd);
4917         if (err)
4918                 return err;
4919
4920         if (power_level == IPW_POWER_MODE_CAM)
4921                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4922         else
4923                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4924
4925 #ifdef IPW2100_TX_POWER
4926         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4927                 /* Set beacon interval */
4928                 cmd.host_command = TX_POWER_INDEX;
4929                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4930
4931                 err = ipw2100_hw_send_command(priv, &cmd);
4932                 if (err)
4933                         return err;
4934         }
4935 #endif
4936
4937         return 0;
4938 }
4939
4940 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4941 {
4942         struct host_command cmd = {
4943                 .host_command = RTS_THRESHOLD,
4944                 .host_command_sequence = 0,
4945                 .host_command_length = 4
4946         };
4947         int err;
4948
4949         if (threshold & RTS_DISABLED)
4950                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4951         else
4952                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4953
4954         err = ipw2100_hw_send_command(priv, &cmd);
4955         if (err)
4956                 return err;
4957
4958         priv->rts_threshold = threshold;
4959
4960         return 0;
4961 }
4962
4963 #if 0
4964 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4965                                         u32 threshold, int batch_mode)
4966 {
4967         struct host_command cmd = {
4968                 .host_command = FRAG_THRESHOLD,
4969                 .host_command_sequence = 0,
4970                 .host_command_length = 4,
4971                 .host_command_parameters[0] = 0,
4972         };
4973         int err;
4974
4975         if (!batch_mode) {
4976                 err = ipw2100_disable_adapter(priv);
4977                 if (err)
4978                         return err;
4979         }
4980
4981         if (threshold == 0)
4982                 threshold = DEFAULT_FRAG_THRESHOLD;
4983         else {
4984                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4985                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4986         }
4987
4988         cmd.host_command_parameters[0] = threshold;
4989
4990         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4991
4992         err = ipw2100_hw_send_command(priv, &cmd);
4993
4994         if (!batch_mode)
4995                 ipw2100_enable_adapter(priv);
4996
4997         if (!err)
4998                 priv->frag_threshold = threshold;
4999
5000         return err;
5001 }
5002 #endif
5003
5004 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5005 {
5006         struct host_command cmd = {
5007                 .host_command = SHORT_RETRY_LIMIT,
5008                 .host_command_sequence = 0,
5009                 .host_command_length = 4
5010         };
5011         int err;
5012
5013         cmd.host_command_parameters[0] = retry;
5014
5015         err = ipw2100_hw_send_command(priv, &cmd);
5016         if (err)
5017                 return err;
5018
5019         priv->short_retry_limit = retry;
5020
5021         return 0;
5022 }
5023
5024 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5025 {
5026         struct host_command cmd = {
5027                 .host_command = LONG_RETRY_LIMIT,
5028                 .host_command_sequence = 0,
5029                 .host_command_length = 4
5030         };
5031         int err;
5032
5033         cmd.host_command_parameters[0] = retry;
5034
5035         err = ipw2100_hw_send_command(priv, &cmd);
5036         if (err)
5037                 return err;
5038
5039         priv->long_retry_limit = retry;
5040
5041         return 0;
5042 }
5043
5044 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5045                                        int batch_mode)
5046 {
5047         struct host_command cmd = {
5048                 .host_command = MANDATORY_BSSID,
5049                 .host_command_sequence = 0,
5050                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5051         };
5052         int err;
5053
5054 #ifdef CONFIG_IPW2100_DEBUG
5055         DECLARE_MAC_BUF(mac);
5056         if (bssid != NULL)
5057                 IPW_DEBUG_HC("MANDATORY_BSSID: %s\n",
5058                              print_mac(mac, bssid));
5059         else
5060                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5061 #endif
5062         /* if BSSID is empty then we disable mandatory bssid mode */
5063         if (bssid != NULL)
5064                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5065
5066         if (!batch_mode) {
5067                 err = ipw2100_disable_adapter(priv);
5068                 if (err)
5069                         return err;
5070         }
5071
5072         err = ipw2100_hw_send_command(priv, &cmd);
5073
5074         if (!batch_mode)
5075                 ipw2100_enable_adapter(priv);
5076
5077         return err;
5078 }
5079
5080 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5081 {
5082         struct host_command cmd = {
5083                 .host_command = DISASSOCIATION_BSSID,
5084                 .host_command_sequence = 0,
5085                 .host_command_length = ETH_ALEN
5086         };
5087         int err;
5088         int len;
5089
5090         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5091
5092         len = ETH_ALEN;
5093         /* The Firmware currently ignores the BSSID and just disassociates from
5094          * the currently associated AP -- but in the off chance that a future
5095          * firmware does use the BSSID provided here, we go ahead and try and
5096          * set it to the currently associated AP's BSSID */
5097         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5098
5099         err = ipw2100_hw_send_command(priv, &cmd);
5100
5101         return err;
5102 }
5103
5104 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5105                               struct ipw2100_wpa_assoc_frame *, int)
5106     __attribute__ ((unused));
5107
5108 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5109                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5110                               int batch_mode)
5111 {
5112         struct host_command cmd = {
5113                 .host_command = SET_WPA_IE,
5114                 .host_command_sequence = 0,
5115                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5116         };
5117         int err;
5118
5119         IPW_DEBUG_HC("SET_WPA_IE\n");
5120
5121         if (!batch_mode) {
5122                 err = ipw2100_disable_adapter(priv);
5123                 if (err)
5124                         return err;
5125         }
5126
5127         memcpy(cmd.host_command_parameters, wpa_frame,
5128                sizeof(struct ipw2100_wpa_assoc_frame));
5129
5130         err = ipw2100_hw_send_command(priv, &cmd);
5131
5132         if (!batch_mode) {
5133                 if (ipw2100_enable_adapter(priv))
5134                         err = -EIO;
5135         }
5136
5137         return err;
5138 }
5139
5140 struct security_info_params {
5141         u32 allowed_ciphers;
5142         u16 version;
5143         u8 auth_mode;
5144         u8 replay_counters_number;
5145         u8 unicast_using_group;
5146 } __attribute__ ((packed));
5147
5148 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5149                                             int auth_mode,
5150                                             int security_level,
5151                                             int unicast_using_group,
5152                                             int batch_mode)
5153 {
5154         struct host_command cmd = {
5155                 .host_command = SET_SECURITY_INFORMATION,
5156                 .host_command_sequence = 0,
5157                 .host_command_length = sizeof(struct security_info_params)
5158         };
5159         struct security_info_params *security =
5160             (struct security_info_params *)&cmd.host_command_parameters;
5161         int err;
5162         memset(security, 0, sizeof(*security));
5163
5164         /* If shared key AP authentication is turned on, then we need to
5165          * configure the firmware to try and use it.
5166          *
5167          * Actual data encryption/decryption is handled by the host. */
5168         security->auth_mode = auth_mode;
5169         security->unicast_using_group = unicast_using_group;
5170
5171         switch (security_level) {
5172         default:
5173         case SEC_LEVEL_0:
5174                 security->allowed_ciphers = IPW_NONE_CIPHER;
5175                 break;
5176         case SEC_LEVEL_1:
5177                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5178                     IPW_WEP104_CIPHER;
5179                 break;
5180         case SEC_LEVEL_2:
5181                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5182                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5183                 break;
5184         case SEC_LEVEL_2_CKIP:
5185                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5186                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5187                 break;
5188         case SEC_LEVEL_3:
5189                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5190                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5191                 break;
5192         }
5193
5194         IPW_DEBUG_HC
5195             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5196              security->auth_mode, security->allowed_ciphers, security_level);
5197
5198         security->replay_counters_number = 0;
5199
5200         if (!batch_mode) {
5201                 err = ipw2100_disable_adapter(priv);
5202                 if (err)
5203                         return err;
5204         }
5205
5206         err = ipw2100_hw_send_command(priv, &cmd);
5207
5208         if (!batch_mode)
5209                 ipw2100_enable_adapter(priv);
5210
5211         return err;
5212 }
5213
5214 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5215 {
5216         struct host_command cmd = {
5217                 .host_command = TX_POWER_INDEX,
5218                 .host_command_sequence = 0,
5219                 .host_command_length = 4
5220         };
5221         int err = 0;
5222         u32 tmp = tx_power;
5223
5224         if (tx_power != IPW_TX_POWER_DEFAULT)
5225                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5226                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5227
5228         cmd.host_command_parameters[0] = tmp;
5229
5230         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5231                 err = ipw2100_hw_send_command(priv, &cmd);
5232         if (!err)
5233                 priv->tx_power = tx_power;
5234
5235         return 0;
5236 }
5237
5238 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5239                                             u32 interval, int batch_mode)
5240 {
5241         struct host_command cmd = {
5242                 .host_command = BEACON_INTERVAL,
5243                 .host_command_sequence = 0,
5244                 .host_command_length = 4
5245         };
5246         int err;
5247
5248         cmd.host_command_parameters[0] = interval;
5249
5250         IPW_DEBUG_INFO("enter\n");
5251
5252         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5253                 if (!batch_mode) {
5254                         err = ipw2100_disable_adapter(priv);
5255                         if (err)
5256                                 return err;
5257                 }
5258
5259                 ipw2100_hw_send_command(priv, &cmd);
5260
5261                 if (!batch_mode) {
5262                         err = ipw2100_enable_adapter(priv);
5263                         if (err)
5264                                 return err;
5265                 }
5266         }
5267
5268         IPW_DEBUG_INFO("exit\n");
5269
5270         return 0;
5271 }
5272
5273 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5274 {
5275         ipw2100_tx_initialize(priv);
5276         ipw2100_rx_initialize(priv);
5277         ipw2100_msg_initialize(priv);
5278 }
5279
5280 void ipw2100_queues_free(struct ipw2100_priv *priv)
5281 {
5282         ipw2100_tx_free(priv);
5283         ipw2100_rx_free(priv);
5284         ipw2100_msg_free(priv);
5285 }
5286
5287 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5288 {
5289         if (ipw2100_tx_allocate(priv) ||
5290             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5291                 goto fail;
5292
5293         return 0;
5294
5295       fail:
5296         ipw2100_tx_free(priv);
5297         ipw2100_rx_free(priv);
5298         ipw2100_msg_free(priv);
5299         return -ENOMEM;
5300 }
5301
5302 #define IPW_PRIVACY_CAPABLE 0x0008
5303
5304 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5305                                  int batch_mode)
5306 {
5307         struct host_command cmd = {
5308                 .host_command = WEP_FLAGS,
5309                 .host_command_sequence = 0,
5310                 .host_command_length = 4
5311         };
5312         int err;
5313
5314         cmd.host_command_parameters[0] = flags;
5315
5316         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5317
5318         if (!batch_mode) {
5319                 err = ipw2100_disable_adapter(priv);
5320                 if (err) {
5321                         printk(KERN_ERR DRV_NAME
5322                                ": %s: Could not disable adapter %d\n",
5323                                priv->net_dev->name, err);
5324                         return err;
5325                 }
5326         }
5327
5328         /* send cmd to firmware */
5329         err = ipw2100_hw_send_command(priv, &cmd);
5330
5331         if (!batch_mode)
5332                 ipw2100_enable_adapter(priv);
5333
5334         return err;
5335 }
5336
5337 struct ipw2100_wep_key {
5338         u8 idx;
5339         u8 len;
5340         u8 key[13];
5341 };
5342
5343 /* Macros to ease up priting WEP keys */
5344 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5345 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5346 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5347 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5348
5349 /**
5350  * Set a the wep key
5351  *
5352  * @priv: struct to work on
5353  * @idx: index of the key we want to set
5354  * @key: ptr to the key data to set
5355  * @len: length of the buffer at @key
5356  * @batch_mode: FIXME perform the operation in batch mode, not
5357  *              disabling the device.
5358  *
5359  * @returns 0 if OK, < 0 errno code on error.
5360  *
5361  * Fill out a command structure with the new wep key, length an
5362  * index and send it down the wire.
5363  */
5364 static int ipw2100_set_key(struct ipw2100_priv *priv,
5365                            int idx, char *key, int len, int batch_mode)
5366 {
5367         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5368         struct host_command cmd = {
5369                 .host_command = WEP_KEY_INFO,
5370                 .host_command_sequence = 0,
5371                 .host_command_length = sizeof(struct ipw2100_wep_key),
5372         };
5373         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5374         int err;
5375
5376         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5377                      idx, keylen, len);
5378
5379         /* NOTE: We don't check cached values in case the firmware was reset
5380          * or some other problem is occurring.  If the user is setting the key,
5381          * then we push the change */
5382
5383         wep_key->idx = idx;
5384         wep_key->len = keylen;
5385
5386         if (keylen) {
5387                 memcpy(wep_key->key, key, len);
5388                 memset(wep_key->key + len, 0, keylen - len);
5389         }
5390
5391         /* Will be optimized out on debug not being configured in */
5392         if (keylen == 0)
5393                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5394                               priv->net_dev->name, wep_key->idx);
5395         else if (keylen == 5)
5396                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5397                               priv->net_dev->name, wep_key->idx, wep_key->len,
5398                               WEP_STR_64(wep_key->key));
5399         else
5400                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5401                               "\n",
5402                               priv->net_dev->name, wep_key->idx, wep_key->len,
5403                               WEP_STR_128(wep_key->key));
5404
5405         if (!batch_mode) {
5406                 err = ipw2100_disable_adapter(priv);
5407                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5408                 if (err) {
5409                         printk(KERN_ERR DRV_NAME
5410                                ": %s: Could not disable adapter %d\n",
5411                                priv->net_dev->name, err);
5412                         return err;
5413                 }
5414         }
5415
5416         /* send cmd to firmware */
5417         err = ipw2100_hw_send_command(priv, &cmd);
5418
5419         if (!batch_mode) {
5420                 int err2 = ipw2100_enable_adapter(priv);
5421                 if (err == 0)
5422                         err = err2;
5423         }
5424         return err;
5425 }
5426
5427 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5428                                  int idx, int batch_mode)
5429 {
5430         struct host_command cmd = {
5431                 .host_command = WEP_KEY_INDEX,
5432                 .host_command_sequence = 0,
5433                 .host_command_length = 4,
5434                 .host_command_parameters = {idx},
5435         };
5436         int err;
5437
5438         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5439
5440         if (idx < 0 || idx > 3)
5441                 return -EINVAL;
5442
5443         if (!batch_mode) {
5444                 err = ipw2100_disable_adapter(priv);
5445                 if (err) {
5446                         printk(KERN_ERR DRV_NAME
5447                                ": %s: Could not disable adapter %d\n",
5448                                priv->net_dev->name, err);
5449                         return err;
5450                 }
5451         }
5452
5453         /* send cmd to firmware */
5454         err = ipw2100_hw_send_command(priv, &cmd);
5455
5456         if (!batch_mode)
5457                 ipw2100_enable_adapter(priv);
5458
5459         return err;
5460 }
5461
5462 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5463 {
5464         int i, err, auth_mode, sec_level, use_group;
5465
5466         if (!(priv->status & STATUS_RUNNING))
5467                 return 0;
5468
5469         if (!batch_mode) {
5470                 err = ipw2100_disable_adapter(priv);
5471                 if (err)
5472                         return err;
5473         }
5474
5475         if (!priv->ieee->sec.enabled) {
5476                 err =
5477                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5478                                                      SEC_LEVEL_0, 0, 1);
5479         } else {
5480                 auth_mode = IPW_AUTH_OPEN;
5481                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5482                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5483                                 auth_mode = IPW_AUTH_SHARED;
5484                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5485                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5486                 }
5487
5488                 sec_level = SEC_LEVEL_0;
5489                 if (priv->ieee->sec.flags & SEC_LEVEL)
5490                         sec_level = priv->ieee->sec.level;
5491
5492                 use_group = 0;
5493                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5494                         use_group = priv->ieee->sec.unicast_uses_group;
5495
5496                 err =
5497                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5498                                                      use_group, 1);
5499         }
5500
5501         if (err)
5502                 goto exit;
5503
5504         if (priv->ieee->sec.enabled) {
5505                 for (i = 0; i < 4; i++) {
5506                         if (!(priv->ieee->sec.flags & (1 << i))) {
5507                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5508                                 priv->ieee->sec.key_sizes[i] = 0;
5509                         } else {
5510                                 err = ipw2100_set_key(priv, i,
5511                                                       priv->ieee->sec.keys[i],
5512                                                       priv->ieee->sec.
5513                                                       key_sizes[i], 1);
5514                                 if (err)
5515                                         goto exit;
5516                         }
5517                 }
5518
5519                 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5520         }
5521
5522         /* Always enable privacy so the Host can filter WEP packets if
5523          * encrypted data is sent up */
5524         err =
5525             ipw2100_set_wep_flags(priv,
5526                                   priv->ieee->sec.
5527                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5528         if (err)
5529                 goto exit;
5530
5531         priv->status &= ~STATUS_SECURITY_UPDATED;
5532
5533       exit:
5534         if (!batch_mode)
5535                 ipw2100_enable_adapter(priv);
5536
5537         return err;
5538 }
5539
5540 static void ipw2100_security_work(struct work_struct *work)
5541 {
5542         struct ipw2100_priv *priv =
5543                 container_of(work, struct ipw2100_priv, security_work.work);
5544
5545         /* If we happen to have reconnected before we get a chance to
5546          * process this, then update the security settings--which causes
5547          * a disassociation to occur */
5548         if (!(priv->status & STATUS_ASSOCIATED) &&
5549             priv->status & STATUS_SECURITY_UPDATED)
5550                 ipw2100_configure_security(priv, 0);
5551 }
5552
5553 static void shim__set_security(struct net_device *dev,
5554                                struct ieee80211_security *sec)
5555 {
5556         struct ipw2100_priv *priv = ieee80211_priv(dev);
5557         int i, force_update = 0;
5558
5559         mutex_lock(&priv->action_mutex);
5560         if (!(priv->status & STATUS_INITIALIZED))
5561                 goto done;
5562
5563         for (i = 0; i < 4; i++) {
5564                 if (sec->flags & (1 << i)) {
5565                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5566                         if (sec->key_sizes[i] == 0)
5567                                 priv->ieee->sec.flags &= ~(1 << i);
5568                         else
5569                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5570                                        sec->key_sizes[i]);
5571                         if (sec->level == SEC_LEVEL_1) {
5572                                 priv->ieee->sec.flags |= (1 << i);
5573                                 priv->status |= STATUS_SECURITY_UPDATED;
5574                         } else
5575                                 priv->ieee->sec.flags &= ~(1 << i);
5576                 }
5577         }
5578
5579         if ((sec->flags & SEC_ACTIVE_KEY) &&
5580             priv->ieee->sec.active_key != sec->active_key) {
5581                 if (sec->active_key <= 3) {
5582                         priv->ieee->sec.active_key = sec->active_key;
5583                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5584                 } else
5585                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5586
5587                 priv->status |= STATUS_SECURITY_UPDATED;
5588         }
5589
5590         if ((sec->flags & SEC_AUTH_MODE) &&
5591             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5592                 priv->ieee->sec.auth_mode = sec->auth_mode;
5593                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5594                 priv->status |= STATUS_SECURITY_UPDATED;
5595         }
5596
5597         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5598                 priv->ieee->sec.flags |= SEC_ENABLED;
5599                 priv->ieee->sec.enabled = sec->enabled;
5600                 priv->status |= STATUS_SECURITY_UPDATED;
5601                 force_update = 1;
5602         }
5603
5604         if (sec->flags & SEC_ENCRYPT)
5605                 priv->ieee->sec.encrypt = sec->encrypt;
5606
5607         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5608                 priv->ieee->sec.level = sec->level;
5609                 priv->ieee->sec.flags |= SEC_LEVEL;
5610                 priv->status |= STATUS_SECURITY_UPDATED;
5611         }
5612
5613         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5614                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5615                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5616                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5617                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5618                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5619                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5620                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5621                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5622                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5623
5624 /* As a temporary work around to enable WPA until we figure out why
5625  * wpa_supplicant toggles the security capability of the driver, which
5626  * forces a disassocation with force_update...
5627  *
5628  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5629         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5630                 ipw2100_configure_security(priv, 0);
5631       done:
5632         mutex_unlock(&priv->action_mutex);
5633 }
5634
5635 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5636 {
5637         int err;
5638         int batch_mode = 1;
5639         u8 *bssid;
5640
5641         IPW_DEBUG_INFO("enter\n");
5642
5643         err = ipw2100_disable_adapter(priv);
5644         if (err)
5645                 return err;
5646 #ifdef CONFIG_IPW2100_MONITOR
5647         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5648                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5649                 if (err)
5650                         return err;
5651
5652                 IPW_DEBUG_INFO("exit\n");
5653
5654                 return 0;
5655         }
5656 #endif                          /* CONFIG_IPW2100_MONITOR */
5657
5658         err = ipw2100_read_mac_address(priv);
5659         if (err)
5660                 return -EIO;
5661
5662         err = ipw2100_set_mac_address(priv, batch_mode);
5663         if (err)
5664                 return err;
5665
5666         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5667         if (err)
5668                 return err;
5669
5670         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5671                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5672                 if (err)
5673                         return err;
5674         }
5675
5676         err = ipw2100_system_config(priv, batch_mode);
5677         if (err)
5678                 return err;
5679
5680         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5681         if (err)
5682                 return err;
5683
5684         /* Default to power mode OFF */
5685         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5686         if (err)
5687                 return err;
5688
5689         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5690         if (err)
5691                 return err;
5692
5693         if (priv->config & CFG_STATIC_BSSID)
5694                 bssid = priv->bssid;
5695         else
5696                 bssid = NULL;
5697         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5698         if (err)
5699                 return err;
5700
5701         if (priv->config & CFG_STATIC_ESSID)
5702                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5703                                         batch_mode);
5704         else
5705                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5706         if (err)
5707                 return err;
5708
5709         err = ipw2100_configure_security(priv, batch_mode);
5710         if (err)
5711                 return err;
5712
5713         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5714                 err =
5715                     ipw2100_set_ibss_beacon_interval(priv,
5716                                                      priv->beacon_interval,
5717                                                      batch_mode);
5718                 if (err)
5719                         return err;
5720
5721                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5722                 if (err)
5723                         return err;
5724         }
5725
5726         /*
5727            err = ipw2100_set_fragmentation_threshold(
5728            priv, priv->frag_threshold, batch_mode);
5729            if (err)
5730            return err;
5731          */
5732
5733         IPW_DEBUG_INFO("exit\n");
5734
5735         return 0;
5736 }
5737
5738 /*************************************************************************
5739  *
5740  * EXTERNALLY CALLED METHODS
5741  *
5742  *************************************************************************/
5743
5744 /* This method is called by the network layer -- not to be confused with
5745  * ipw2100_set_mac_address() declared above called by this driver (and this
5746  * method as well) to talk to the firmware */
5747 static int ipw2100_set_address(struct net_device *dev, void *p)
5748 {
5749         struct ipw2100_priv *priv = ieee80211_priv(dev);
5750         struct sockaddr *addr = p;
5751         int err = 0;
5752
5753         if (!is_valid_ether_addr(addr->sa_data))
5754                 return -EADDRNOTAVAIL;
5755
5756         mutex_lock(&priv->action_mutex);
5757
5758         priv->config |= CFG_CUSTOM_MAC;
5759         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5760
5761         err = ipw2100_set_mac_address(priv, 0);
5762         if (err)
5763                 goto done;
5764
5765         priv->reset_backoff = 0;
5766         mutex_unlock(&priv->action_mutex);
5767         ipw2100_reset_adapter(&priv->reset_work.work);
5768         return 0;
5769
5770       done:
5771         mutex_unlock(&priv->action_mutex);
5772         return err;
5773 }
5774
5775 static int ipw2100_open(struct net_device *dev)
5776 {
5777         struct ipw2100_priv *priv = ieee80211_priv(dev);
5778         unsigned long flags;
5779         IPW_DEBUG_INFO("dev->open\n");
5780
5781         spin_lock_irqsave(&priv->low_lock, flags);
5782         if (priv->status & STATUS_ASSOCIATED) {
5783                 netif_carrier_on(dev);
5784                 netif_start_queue(dev);
5785         }
5786         spin_unlock_irqrestore(&priv->low_lock, flags);
5787
5788         return 0;
5789 }
5790
5791 static int ipw2100_close(struct net_device *dev)
5792 {
5793         struct ipw2100_priv *priv = ieee80211_priv(dev);
5794         unsigned long flags;
5795         struct list_head *element;
5796         struct ipw2100_tx_packet *packet;
5797
5798         IPW_DEBUG_INFO("enter\n");
5799
5800         spin_lock_irqsave(&priv->low_lock, flags);
5801
5802         if (priv->status & STATUS_ASSOCIATED)
5803                 netif_carrier_off(dev);
5804         netif_stop_queue(dev);
5805
5806         /* Flush the TX queue ... */
5807         while (!list_empty(&priv->tx_pend_list)) {
5808                 element = priv->tx_pend_list.next;
5809                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5810
5811                 list_del(element);
5812                 DEC_STAT(&priv->tx_pend_stat);
5813
5814                 ieee80211_txb_free(packet->info.d_struct.txb);
5815                 packet->info.d_struct.txb = NULL;
5816
5817                 list_add_tail(element, &priv->tx_free_list);
5818                 INC_STAT(&priv->tx_free_stat);
5819         }
5820         spin_unlock_irqrestore(&priv->low_lock, flags);
5821
5822         IPW_DEBUG_INFO("exit\n");
5823
5824         return 0;
5825 }
5826
5827 /*
5828  * TODO:  Fix this function... its just wrong
5829  */
5830 static void ipw2100_tx_timeout(struct net_device *dev)
5831 {
5832         struct ipw2100_priv *priv = ieee80211_priv(dev);
5833
5834         priv->ieee->stats.tx_errors++;
5835
5836 #ifdef CONFIG_IPW2100_MONITOR
5837         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5838                 return;
5839 #endif
5840
5841         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5842                        dev->name);
5843         schedule_reset(priv);
5844 }
5845
5846 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5847 {
5848         /* This is called when wpa_supplicant loads and closes the driver
5849          * interface. */
5850         priv->ieee->wpa_enabled = value;
5851         return 0;
5852 }
5853
5854 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5855 {
5856
5857         struct ieee80211_device *ieee = priv->ieee;
5858         struct ieee80211_security sec = {
5859                 .flags = SEC_AUTH_MODE,
5860         };
5861         int ret = 0;
5862
5863         if (value & IW_AUTH_ALG_SHARED_KEY) {
5864                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5865                 ieee->open_wep = 0;
5866         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5867                 sec.auth_mode = WLAN_AUTH_OPEN;
5868                 ieee->open_wep = 1;
5869         } else if (value & IW_AUTH_ALG_LEAP) {
5870                 sec.auth_mode = WLAN_AUTH_LEAP;
5871                 ieee->open_wep = 1;
5872         } else
5873                 return -EINVAL;
5874
5875         if (ieee->set_security)
5876                 ieee->set_security(ieee->dev, &sec);
5877         else
5878                 ret = -EOPNOTSUPP;
5879
5880         return ret;
5881 }
5882
5883 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5884                                     char *wpa_ie, int wpa_ie_len)
5885 {
5886
5887         struct ipw2100_wpa_assoc_frame frame;
5888
5889         frame.fixed_ie_mask = 0;
5890
5891         /* copy WPA IE */
5892         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5893         frame.var_ie_len = wpa_ie_len;
5894
5895         /* make sure WPA is enabled */
5896         ipw2100_wpa_enable(priv, 1);
5897         ipw2100_set_wpa_ie(priv, &frame, 0);
5898 }
5899
5900 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5901                                     struct ethtool_drvinfo *info)
5902 {
5903         struct ipw2100_priv *priv = ieee80211_priv(dev);
5904         char fw_ver[64], ucode_ver[64];
5905
5906         strcpy(info->driver, DRV_NAME);
5907         strcpy(info->version, DRV_VERSION);
5908
5909         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5910         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5911
5912         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5913                  fw_ver, priv->eeprom_version, ucode_ver);
5914
5915         strcpy(info->bus_info, pci_name(priv->pci_dev));
5916 }
5917
5918 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5919 {
5920         struct ipw2100_priv *priv = ieee80211_priv(dev);
5921         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5922 }
5923
5924 static const struct ethtool_ops ipw2100_ethtool_ops = {
5925         .get_link = ipw2100_ethtool_get_link,
5926         .get_drvinfo = ipw_ethtool_get_drvinfo,
5927 };
5928
5929 static void ipw2100_hang_check(struct work_struct *work)
5930 {
5931         struct ipw2100_priv *priv =
5932                 container_of(work, struct ipw2100_priv, hang_check.work);
5933         unsigned long flags;
5934         u32 rtc = 0xa5a5a5a5;
5935         u32 len = sizeof(rtc);
5936         int restart = 0;
5937
5938         spin_lock_irqsave(&priv->low_lock, flags);
5939
5940         if (priv->fatal_error != 0) {
5941                 /* If fatal_error is set then we need to restart */
5942                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5943                                priv->net_dev->name);
5944
5945                 restart = 1;
5946         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5947                    (rtc == priv->last_rtc)) {
5948                 /* Check if firmware is hung */
5949                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5950                                priv->net_dev->name);
5951
5952                 restart = 1;
5953         }
5954
5955         if (restart) {
5956                 /* Kill timer */
5957                 priv->stop_hang_check = 1;
5958                 priv->hangs++;
5959
5960                 /* Restart the NIC */
5961                 schedule_reset(priv);
5962         }
5963
5964         priv->last_rtc = rtc;
5965
5966         if (!priv->stop_hang_check)
5967                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5968
5969         spin_unlock_irqrestore(&priv->low_lock, flags);
5970 }
5971
5972 static void ipw2100_rf_kill(struct work_struct *work)
5973 {
5974         struct ipw2100_priv *priv =
5975                 container_of(work, struct ipw2100_priv, rf_kill.work);
5976         unsigned long flags;
5977
5978         spin_lock_irqsave(&priv->low_lock, flags);
5979
5980         if (rf_kill_active(priv)) {
5981                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5982                 if (!priv->stop_rf_kill)
5983                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
5984                                            round_jiffies(HZ));
5985                 goto exit_unlock;
5986         }
5987
5988         /* RF Kill is now disabled, so bring the device back up */
5989
5990         if (!(priv->status & STATUS_RF_KILL_MASK)) {
5991                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5992                                   "device\n");
5993                 schedule_reset(priv);
5994         } else
5995                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
5996                                   "enabled\n");
5997
5998       exit_unlock:
5999         spin_unlock_irqrestore(&priv->low_lock, flags);
6000 }
6001
6002 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6003
6004 /* Look into using netdev destructor to shutdown ieee80211? */
6005
6006 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6007                                                void __iomem * base_addr,
6008                                                unsigned long mem_start,
6009                                                unsigned long mem_len)
6010 {
6011         struct ipw2100_priv *priv;
6012         struct net_device *dev;
6013
6014         dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6015         if (!dev)
6016                 return NULL;
6017         priv = ieee80211_priv(dev);
6018         priv->ieee = netdev_priv(dev);
6019         priv->pci_dev = pci_dev;
6020         priv->net_dev = dev;
6021
6022         priv->ieee->hard_start_xmit = ipw2100_tx;
6023         priv->ieee->set_security = shim__set_security;
6024
6025         priv->ieee->perfect_rssi = -20;
6026         priv->ieee->worst_rssi = -85;
6027
6028         dev->open = ipw2100_open;
6029         dev->stop = ipw2100_close;
6030         dev->init = ipw2100_net_init;
6031         dev->ethtool_ops = &ipw2100_ethtool_ops;
6032         dev->tx_timeout = ipw2100_tx_timeout;
6033         dev->wireless_handlers = &ipw2100_wx_handler_def;
6034         priv->wireless_data.ieee80211 = priv->ieee;
6035         dev->wireless_data = &priv->wireless_data;
6036         dev->set_mac_address = ipw2100_set_address;
6037         dev->watchdog_timeo = 3 * HZ;
6038         dev->irq = 0;
6039
6040         dev->base_addr = (unsigned long)base_addr;
6041         dev->mem_start = mem_start;
6042         dev->mem_end = dev->mem_start + mem_len - 1;
6043
6044         /* NOTE: We don't use the wireless_handlers hook
6045          * in dev as the system will start throwing WX requests
6046          * to us before we're actually initialized and it just
6047          * ends up causing problems.  So, we just handle
6048          * the WX extensions through the ipw2100_ioctl interface */
6049
6050         /* memset() puts everything to 0, so we only have explicitely set
6051          * those values that need to be something else */
6052
6053         /* If power management is turned on, default to AUTO mode */
6054         priv->power_mode = IPW_POWER_AUTO;
6055
6056 #ifdef CONFIG_IPW2100_MONITOR
6057         priv->config |= CFG_CRC_CHECK;
6058 #endif
6059         priv->ieee->wpa_enabled = 0;
6060         priv->ieee->drop_unencrypted = 0;
6061         priv->ieee->privacy_invoked = 0;
6062         priv->ieee->ieee802_1x = 1;
6063
6064         /* Set module parameters */
6065         switch (mode) {
6066         case 1:
6067                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6068                 break;
6069 #ifdef CONFIG_IPW2100_MONITOR
6070         case 2:
6071                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6072                 break;
6073 #endif
6074         default:
6075         case 0:
6076                 priv->ieee->iw_mode = IW_MODE_INFRA;
6077                 break;
6078         }
6079
6080         if (disable == 1)
6081                 priv->status |= STATUS_RF_KILL_SW;
6082
6083         if (channel != 0 &&
6084             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6085                 priv->config |= CFG_STATIC_CHANNEL;
6086                 priv->channel = channel;
6087         }
6088
6089         if (associate)
6090                 priv->config |= CFG_ASSOCIATE;
6091
6092         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6093         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6094         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6095         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6096         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6097         priv->tx_power = IPW_TX_POWER_DEFAULT;
6098         priv->tx_rates = DEFAULT_TX_RATES;
6099
6100         strcpy(priv->nick, "ipw2100");
6101
6102         spin_lock_init(&priv->low_lock);
6103         mutex_init(&priv->action_mutex);
6104         mutex_init(&priv->adapter_mutex);
6105
6106         init_waitqueue_head(&priv->wait_command_queue);
6107
6108         netif_carrier_off(dev);
6109
6110         INIT_LIST_HEAD(&priv->msg_free_list);
6111         INIT_LIST_HEAD(&priv->msg_pend_list);
6112         INIT_STAT(&priv->msg_free_stat);
6113         INIT_STAT(&priv->msg_pend_stat);
6114
6115         INIT_LIST_HEAD(&priv->tx_free_list);
6116         INIT_LIST_HEAD(&priv->tx_pend_list);
6117         INIT_STAT(&priv->tx_free_stat);
6118         INIT_STAT(&priv->tx_pend_stat);
6119
6120         INIT_LIST_HEAD(&priv->fw_pend_list);
6121         INIT_STAT(&priv->fw_pend_stat);
6122
6123         priv->workqueue = create_workqueue(DRV_NAME);
6124
6125         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6126         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6127         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6128         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6129         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6130         INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6131         INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6132
6133         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6134                      ipw2100_irq_tasklet, (unsigned long)priv);
6135
6136         /* NOTE:  We do not start the deferred work for status checks yet */
6137         priv->stop_rf_kill = 1;
6138         priv->stop_hang_check = 1;
6139
6140         return dev;
6141 }
6142
6143 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6144                                 const struct pci_device_id *ent)
6145 {
6146         unsigned long mem_start, mem_len, mem_flags;
6147         void __iomem *base_addr = NULL;
6148         struct net_device *dev = NULL;
6149         struct ipw2100_priv *priv = NULL;
6150         int err = 0;
6151         int registered = 0;
6152         u32 val;
6153
6154         IPW_DEBUG_INFO("enter\n");
6155
6156         mem_start = pci_resource_start(pci_dev, 0);
6157         mem_len = pci_resource_len(pci_dev, 0);
6158         mem_flags = pci_resource_flags(pci_dev, 0);
6159
6160         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6161                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6162                 err = -ENODEV;
6163                 goto fail;
6164         }
6165
6166         base_addr = ioremap_nocache(mem_start, mem_len);
6167         if (!base_addr) {
6168                 printk(KERN_WARNING DRV_NAME
6169                        "Error calling ioremap_nocache.\n");
6170                 err = -EIO;
6171                 goto fail;
6172         }
6173
6174         /* allocate and initialize our net_device */
6175         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6176         if (!dev) {
6177                 printk(KERN_WARNING DRV_NAME
6178                        "Error calling ipw2100_alloc_device.\n");
6179                 err = -ENOMEM;
6180                 goto fail;
6181         }
6182
6183         /* set up PCI mappings for device */
6184         err = pci_enable_device(pci_dev);
6185         if (err) {
6186                 printk(KERN_WARNING DRV_NAME
6187                        "Error calling pci_enable_device.\n");
6188                 return err;
6189         }
6190
6191         priv = ieee80211_priv(dev);
6192
6193         pci_set_master(pci_dev);
6194         pci_set_drvdata(pci_dev, priv);
6195
6196         err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6197         if (err) {
6198                 printk(KERN_WARNING DRV_NAME
6199                        "Error calling pci_set_dma_mask.\n");
6200                 pci_disable_device(pci_dev);
6201                 return err;
6202         }
6203
6204         err = pci_request_regions(pci_dev, DRV_NAME);
6205         if (err) {
6206                 printk(KERN_WARNING DRV_NAME
6207                        "Error calling pci_request_regions.\n");
6208                 pci_disable_device(pci_dev);
6209                 return err;
6210         }
6211
6212         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6213          * PCI Tx retries from interfering with C3 CPU state */
6214         pci_read_config_dword(pci_dev, 0x40, &val);
6215         if ((val & 0x0000ff00) != 0)
6216                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6217
6218         pci_set_power_state(pci_dev, PCI_D0);
6219
6220         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6221                 printk(KERN_WARNING DRV_NAME
6222                        "Device not found via register read.\n");
6223                 err = -ENODEV;
6224                 goto fail;
6225         }
6226
6227         SET_NETDEV_DEV(dev, &pci_dev->dev);
6228
6229         /* Force interrupts to be shut off on the device */
6230         priv->status |= STATUS_INT_ENABLED;
6231         ipw2100_disable_interrupts(priv);
6232
6233         /* Allocate and initialize the Tx/Rx queues and lists */
6234         if (ipw2100_queues_allocate(priv)) {
6235                 printk(KERN_WARNING DRV_NAME
6236                        "Error calling ipw2100_queues_allocate.\n");
6237                 err = -ENOMEM;
6238                 goto fail;
6239         }
6240         ipw2100_queues_initialize(priv);
6241
6242         err = request_irq(pci_dev->irq,
6243                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6244         if (err) {
6245                 printk(KERN_WARNING DRV_NAME
6246                        "Error calling request_irq: %d.\n", pci_dev->irq);
6247                 goto fail;
6248         }
6249         dev->irq = pci_dev->irq;
6250
6251         IPW_DEBUG_INFO("Attempting to register device...\n");
6252
6253         printk(KERN_INFO DRV_NAME
6254                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6255
6256         /* Bring up the interface.  Pre 0.46, after we registered the
6257          * network device we would call ipw2100_up.  This introduced a race
6258          * condition with newer hotplug configurations (network was coming
6259          * up and making calls before the device was initialized).
6260          *
6261          * If we called ipw2100_up before we registered the device, then the
6262          * device name wasn't registered.  So, we instead use the net_dev->init
6263          * member to call a function that then just turns and calls ipw2100_up.
6264          * net_dev->init is called after name allocation but before the
6265          * notifier chain is called */
6266         err = register_netdev(dev);
6267         if (err) {
6268                 printk(KERN_WARNING DRV_NAME
6269                        "Error calling register_netdev.\n");
6270                 goto fail;
6271         }
6272
6273         mutex_lock(&priv->action_mutex);
6274         registered = 1;
6275
6276         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6277
6278         /* perform this after register_netdev so that dev->name is set */
6279         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6280         if (err)
6281                 goto fail_unlock;
6282
6283         /* If the RF Kill switch is disabled, go ahead and complete the
6284          * startup sequence */
6285         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6286                 /* Enable the adapter - sends HOST_COMPLETE */
6287                 if (ipw2100_enable_adapter(priv)) {
6288                         printk(KERN_WARNING DRV_NAME
6289                                ": %s: failed in call to enable adapter.\n",
6290                                priv->net_dev->name);
6291                         ipw2100_hw_stop_adapter(priv);
6292                         err = -EIO;
6293                         goto fail_unlock;
6294                 }
6295
6296                 /* Start a scan . . . */
6297                 ipw2100_set_scan_options(priv);
6298                 ipw2100_start_scan(priv);
6299         }
6300
6301         IPW_DEBUG_INFO("exit\n");
6302
6303         priv->status |= STATUS_INITIALIZED;
6304
6305         mutex_unlock(&priv->action_mutex);
6306
6307         return 0;
6308
6309       fail_unlock:
6310         mutex_unlock(&priv->action_mutex);
6311
6312       fail:
6313         if (dev) {
6314                 if (registered)
6315                         unregister_netdev(dev);
6316
6317                 ipw2100_hw_stop_adapter(priv);
6318
6319                 ipw2100_disable_interrupts(priv);
6320
6321                 if (dev->irq)
6322                         free_irq(dev->irq, priv);
6323
6324                 ipw2100_kill_workqueue(priv);
6325
6326                 /* These are safe to call even if they weren't allocated */
6327                 ipw2100_queues_free(priv);
6328                 sysfs_remove_group(&pci_dev->dev.kobj,
6329                                    &ipw2100_attribute_group);
6330
6331                 free_ieee80211(dev);
6332                 pci_set_drvdata(pci_dev, NULL);
6333         }
6334
6335         if (base_addr)
6336                 iounmap(base_addr);
6337
6338         pci_release_regions(pci_dev);
6339         pci_disable_device(pci_dev);
6340
6341         return err;
6342 }
6343
6344 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6345 {
6346         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6347         struct net_device *dev;
6348
6349         if (priv) {
6350                 mutex_lock(&priv->action_mutex);
6351
6352                 priv->status &= ~STATUS_INITIALIZED;
6353
6354                 dev = priv->net_dev;
6355                 sysfs_remove_group(&pci_dev->dev.kobj,
6356                                    &ipw2100_attribute_group);
6357
6358 #ifdef CONFIG_PM
6359                 if (ipw2100_firmware.version)
6360                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6361 #endif
6362                 /* Take down the hardware */
6363                 ipw2100_down(priv);
6364
6365                 /* Release the mutex so that the network subsystem can
6366                  * complete any needed calls into the driver... */
6367                 mutex_unlock(&priv->action_mutex);
6368
6369                 /* Unregister the device first - this results in close()
6370                  * being called if the device is open.  If we free storage
6371                  * first, then close() will crash. */
6372                 unregister_netdev(dev);
6373
6374                 /* ipw2100_down will ensure that there is no more pending work
6375                  * in the workqueue's, so we can safely remove them now. */
6376                 ipw2100_kill_workqueue(priv);
6377
6378                 ipw2100_queues_free(priv);
6379
6380                 /* Free potential debugging firmware snapshot */
6381                 ipw2100_snapshot_free(priv);
6382
6383                 if (dev->irq)
6384                         free_irq(dev->irq, priv);
6385
6386                 if (dev->base_addr)
6387                         iounmap((void __iomem *)dev->base_addr);
6388
6389                 free_ieee80211(dev);
6390         }
6391
6392         pci_release_regions(pci_dev);
6393         pci_disable_device(pci_dev);
6394
6395         IPW_DEBUG_INFO("exit\n");
6396 }
6397
6398 #ifdef CONFIG_PM
6399 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6400 {
6401         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6402         struct net_device *dev = priv->net_dev;
6403
6404         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6405
6406         mutex_lock(&priv->action_mutex);
6407         if (priv->status & STATUS_INITIALIZED) {
6408                 /* Take down the device; powers it off, etc. */
6409                 ipw2100_down(priv);
6410         }
6411
6412         /* Remove the PRESENT state of the device */
6413         netif_device_detach(dev);
6414
6415         pci_save_state(pci_dev);
6416         pci_disable_device(pci_dev);
6417         pci_set_power_state(pci_dev, PCI_D3hot);
6418
6419         mutex_unlock(&priv->action_mutex);
6420
6421         return 0;
6422 }
6423
6424 static int ipw2100_resume(struct pci_dev *pci_dev)
6425 {
6426         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6427         struct net_device *dev = priv->net_dev;
6428         int err;
6429         u32 val;
6430
6431         if (IPW2100_PM_DISABLED)
6432                 return 0;
6433
6434         mutex_lock(&priv->action_mutex);
6435
6436         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6437
6438         pci_set_power_state(pci_dev, PCI_D0);
6439         err = pci_enable_device(pci_dev);
6440         if (err) {
6441                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6442                        dev->name);
6443                 return err;
6444         }
6445         pci_restore_state(pci_dev);
6446
6447         /*
6448          * Suspend/Resume resets the PCI configuration space, so we have to
6449          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6450          * from interfering with C3 CPU state. pci_restore_state won't help
6451          * here since it only restores the first 64 bytes pci config header.
6452          */
6453         pci_read_config_dword(pci_dev, 0x40, &val);
6454         if ((val & 0x0000ff00) != 0)
6455                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6456
6457         /* Set the device back into the PRESENT state; this will also wake
6458          * the queue of needed */
6459         netif_device_attach(dev);
6460
6461         /* Bring the device back up */
6462         if (!(priv->status & STATUS_RF_KILL_SW))
6463                 ipw2100_up(priv, 0);
6464
6465         mutex_unlock(&priv->action_mutex);
6466
6467         return 0;
6468 }
6469 #endif
6470
6471 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6472
6473 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6474         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6475         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6476         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6477         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6478         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6479         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6480         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6481         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6482         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6483         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6484         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6485         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6486         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6487
6488         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6489         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6490         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6491         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6492         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6493
6494         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6495         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6496         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6497         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6498         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6499         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6500         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6501
6502         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6503
6504         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6505         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6506         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6507         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6508         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6509         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6510         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6511
6512         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6513         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6514         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6515         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6516         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6517         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6518
6519         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6520         {0,},
6521 };
6522
6523 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6524
6525 static struct pci_driver ipw2100_pci_driver = {
6526         .name = DRV_NAME,
6527         .id_table = ipw2100_pci_id_table,
6528         .probe = ipw2100_pci_init_one,
6529         .remove = __devexit_p(ipw2100_pci_remove_one),
6530 #ifdef CONFIG_PM
6531         .suspend = ipw2100_suspend,
6532         .resume = ipw2100_resume,
6533 #endif
6534 };
6535
6536 /**
6537  * Initialize the ipw2100 driver/module
6538  *
6539  * @returns 0 if ok, < 0 errno node con error.
6540  *
6541  * Note: we cannot init the /proc stuff until the PCI driver is there,
6542  * or we risk an unlikely race condition on someone accessing
6543  * uninitialized data in the PCI dev struct through /proc.
6544  */
6545 static int __init ipw2100_init(void)
6546 {
6547         int ret;
6548
6549         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6550         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6551
6552         ret = pci_register_driver(&ipw2100_pci_driver);
6553         if (ret)
6554                 goto out;
6555
6556         set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6557 #ifdef CONFIG_IPW2100_DEBUG
6558         ipw2100_debug_level = debug;
6559         ret = driver_create_file(&ipw2100_pci_driver.driver,
6560                                  &driver_attr_debug_level);
6561 #endif
6562
6563 out:
6564         return ret;
6565 }
6566
6567 /**
6568  * Cleanup ipw2100 driver registration
6569  */
6570 static void __exit ipw2100_exit(void)
6571 {
6572         /* FIXME: IPG: check that we have no instances of the devices open */
6573 #ifdef CONFIG_IPW2100_DEBUG
6574         driver_remove_file(&ipw2100_pci_driver.driver,
6575                            &driver_attr_debug_level);
6576 #endif
6577         pci_unregister_driver(&ipw2100_pci_driver);
6578         remove_acceptable_latency("ipw2100");
6579 }
6580
6581 module_init(ipw2100_init);
6582 module_exit(ipw2100_exit);
6583
6584 #define WEXT_USECHANNELS 1
6585
6586 static const long ipw2100_frequencies[] = {
6587         2412, 2417, 2422, 2427,
6588         2432, 2437, 2442, 2447,
6589         2452, 2457, 2462, 2467,
6590         2472, 2484
6591 };
6592
6593 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6594                     sizeof(ipw2100_frequencies[0]))
6595
6596 static const long ipw2100_rates_11b[] = {
6597         1000000,
6598         2000000,
6599         5500000,
6600         11000000
6601 };
6602
6603 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6604
6605 static int ipw2100_wx_get_name(struct net_device *dev,
6606                                struct iw_request_info *info,
6607                                union iwreq_data *wrqu, char *extra)
6608 {
6609         /*
6610          * This can be called at any time.  No action lock required
6611          */
6612
6613         struct ipw2100_priv *priv = ieee80211_priv(dev);
6614         if (!(priv->status & STATUS_ASSOCIATED))
6615                 strcpy(wrqu->name, "unassociated");
6616         else
6617                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6618
6619         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6620         return 0;
6621 }
6622
6623 static int ipw2100_wx_set_freq(struct net_device *dev,
6624                                struct iw_request_info *info,
6625                                union iwreq_data *wrqu, char *extra)
6626 {
6627         struct ipw2100_priv *priv = ieee80211_priv(dev);
6628         struct iw_freq *fwrq = &wrqu->freq;
6629         int err = 0;
6630
6631         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6632                 return -EOPNOTSUPP;
6633
6634         mutex_lock(&priv->action_mutex);
6635         if (!(priv->status & STATUS_INITIALIZED)) {
6636                 err = -EIO;
6637                 goto done;
6638         }
6639
6640         /* if setting by freq convert to channel */
6641         if (fwrq->e == 1) {
6642                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6643                         int f = fwrq->m / 100000;
6644                         int c = 0;
6645
6646                         while ((c < REG_MAX_CHANNEL) &&
6647                                (f != ipw2100_frequencies[c]))
6648                                 c++;
6649
6650                         /* hack to fall through */
6651                         fwrq->e = 0;
6652                         fwrq->m = c + 1;
6653                 }
6654         }
6655
6656         if (fwrq->e > 0 || fwrq->m > 1000) {
6657                 err = -EOPNOTSUPP;
6658                 goto done;
6659         } else {                /* Set the channel */
6660                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6661                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6662         }
6663
6664       done:
6665         mutex_unlock(&priv->action_mutex);
6666         return err;
6667 }
6668
6669 static int ipw2100_wx_get_freq(struct net_device *dev,
6670                                struct iw_request_info *info,
6671                                union iwreq_data *wrqu, char *extra)
6672 {
6673         /*
6674          * This can be called at any time.  No action lock required
6675          */
6676
6677         struct ipw2100_priv *priv = ieee80211_priv(dev);
6678
6679         wrqu->freq.e = 0;
6680
6681         /* If we are associated, trying to associate, or have a statically
6682          * configured CHANNEL then return that; otherwise return ANY */
6683         if (priv->config & CFG_STATIC_CHANNEL ||
6684             priv->status & STATUS_ASSOCIATED)
6685                 wrqu->freq.m = priv->channel;
6686         else
6687                 wrqu->freq.m = 0;
6688
6689         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6690         return 0;
6691
6692 }
6693
6694 static int ipw2100_wx_set_mode(struct net_device *dev,
6695                                struct iw_request_info *info,
6696                                union iwreq_data *wrqu, char *extra)
6697 {
6698         struct ipw2100_priv *priv = ieee80211_priv(dev);
6699         int err = 0;
6700
6701         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6702
6703         if (wrqu->mode == priv->ieee->iw_mode)
6704                 return 0;
6705
6706         mutex_lock(&priv->action_mutex);
6707         if (!(priv->status & STATUS_INITIALIZED)) {
6708                 err = -EIO;
6709                 goto done;
6710         }
6711
6712         switch (wrqu->mode) {
6713 #ifdef CONFIG_IPW2100_MONITOR
6714         case IW_MODE_MONITOR:
6715                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6716                 break;
6717 #endif                          /* CONFIG_IPW2100_MONITOR */
6718         case IW_MODE_ADHOC:
6719                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6720                 break;
6721         case IW_MODE_INFRA:
6722         case IW_MODE_AUTO:
6723         default:
6724                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6725                 break;
6726         }
6727
6728       done:
6729         mutex_unlock(&priv->action_mutex);
6730         return err;
6731 }
6732
6733 static int ipw2100_wx_get_mode(struct net_device *dev,
6734                                struct iw_request_info *info,
6735                                union iwreq_data *wrqu, char *extra)
6736 {
6737         /*
6738          * This can be called at any time.  No action lock required
6739          */
6740
6741         struct ipw2100_priv *priv = ieee80211_priv(dev);
6742
6743         wrqu->mode = priv->ieee->iw_mode;
6744         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6745
6746         return 0;
6747 }
6748
6749 #define POWER_MODES 5
6750
6751 /* Values are in microsecond */
6752 static const s32 timeout_duration[POWER_MODES] = {
6753         350000,
6754         250000,
6755         75000,
6756         37000,
6757         25000,
6758 };
6759
6760 static const s32 period_duration[POWER_MODES] = {
6761         400000,
6762         700000,
6763         1000000,
6764         1000000,
6765         1000000
6766 };
6767
6768 static int ipw2100_wx_get_range(struct net_device *dev,
6769                                 struct iw_request_info *info,
6770                                 union iwreq_data *wrqu, char *extra)
6771 {
6772         /*
6773          * This can be called at any time.  No action lock required
6774          */
6775
6776         struct ipw2100_priv *priv = ieee80211_priv(dev);
6777         struct iw_range *range = (struct iw_range *)extra;
6778         u16 val;
6779         int i, level;
6780
6781         wrqu->data.length = sizeof(*range);
6782         memset(range, 0, sizeof(*range));
6783
6784         /* Let's try to keep this struct in the same order as in
6785          * linux/include/wireless.h
6786          */
6787
6788         /* TODO: See what values we can set, and remove the ones we can't
6789          * set, or fill them with some default data.
6790          */
6791
6792         /* ~5 Mb/s real (802.11b) */
6793         range->throughput = 5 * 1000 * 1000;
6794
6795 //      range->sensitivity;     /* signal level threshold range */
6796
6797         range->max_qual.qual = 100;
6798         /* TODO: Find real max RSSI and stick here */
6799         range->max_qual.level = 0;
6800         range->max_qual.noise = 0;
6801         range->max_qual.updated = 7;    /* Updated all three */
6802
6803         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6804         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6805         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6806         range->avg_qual.noise = 0;
6807         range->avg_qual.updated = 7;    /* Updated all three */
6808
6809         range->num_bitrates = RATE_COUNT;
6810
6811         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6812                 range->bitrate[i] = ipw2100_rates_11b[i];
6813         }
6814
6815         range->min_rts = MIN_RTS_THRESHOLD;
6816         range->max_rts = MAX_RTS_THRESHOLD;
6817         range->min_frag = MIN_FRAG_THRESHOLD;
6818         range->max_frag = MAX_FRAG_THRESHOLD;
6819
6820         range->min_pmp = period_duration[0];    /* Minimal PM period */
6821         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6822         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6823         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6824
6825         /* How to decode max/min PM period */
6826         range->pmp_flags = IW_POWER_PERIOD;
6827         /* How to decode max/min PM period */
6828         range->pmt_flags = IW_POWER_TIMEOUT;
6829         /* What PM options are supported */
6830         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6831
6832         range->encoding_size[0] = 5;
6833         range->encoding_size[1] = 13;   /* Different token sizes */
6834         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6835         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6836 //      range->encoding_login_index;            /* token index for login token */
6837
6838         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6839                 range->txpower_capa = IW_TXPOW_DBM;
6840                 range->num_txpower = IW_MAX_TXPOWER;
6841                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6842                      i < IW_MAX_TXPOWER;
6843                      i++, level -=
6844                      ((IPW_TX_POWER_MAX_DBM -
6845                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6846                         range->txpower[i] = level / 16;
6847         } else {
6848                 range->txpower_capa = 0;
6849                 range->num_txpower = 0;
6850         }
6851
6852         /* Set the Wireless Extension versions */
6853         range->we_version_compiled = WIRELESS_EXT;
6854         range->we_version_source = 18;
6855
6856 //      range->retry_capa;      /* What retry options are supported */
6857 //      range->retry_flags;     /* How to decode max/min retry limit */
6858 //      range->r_time_flags;    /* How to decode max/min retry life */
6859 //      range->min_retry;       /* Minimal number of retries */
6860 //      range->max_retry;       /* Maximal number of retries */
6861 //      range->min_r_time;      /* Minimal retry lifetime */
6862 //      range->max_r_time;      /* Maximal retry lifetime */
6863
6864         range->num_channels = FREQ_COUNT;
6865
6866         val = 0;
6867         for (i = 0; i < FREQ_COUNT; i++) {
6868                 // TODO: Include only legal frequencies for some countries
6869 //              if (local->channel_mask & (1 << i)) {
6870                 range->freq[val].i = i + 1;
6871                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6872                 range->freq[val].e = 1;
6873                 val++;
6874 //              }
6875                 if (val == IW_MAX_FREQUENCIES)
6876                         break;
6877         }
6878         range->num_frequency = val;
6879
6880         /* Event capability (kernel + driver) */
6881         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6882                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6883         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6884
6885         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6886                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6887
6888         IPW_DEBUG_WX("GET Range\n");
6889
6890         return 0;
6891 }
6892
6893 static int ipw2100_wx_set_wap(struct net_device *dev,
6894                               struct iw_request_info *info,
6895                               union iwreq_data *wrqu, char *extra)
6896 {
6897         struct ipw2100_priv *priv = ieee80211_priv(dev);
6898         int err = 0;
6899
6900         static const unsigned char any[] = {
6901                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6902         };
6903         static const unsigned char off[] = {
6904                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6905         };
6906         DECLARE_MAC_BUF(mac);
6907
6908         // sanity checks
6909         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6910                 return -EINVAL;
6911
6912         mutex_lock(&priv->action_mutex);
6913         if (!(priv->status & STATUS_INITIALIZED)) {
6914                 err = -EIO;
6915                 goto done;
6916         }
6917
6918         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6919             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6920                 /* we disable mandatory BSSID association */
6921                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6922                 priv->config &= ~CFG_STATIC_BSSID;
6923                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6924                 goto done;
6925         }
6926
6927         priv->config |= CFG_STATIC_BSSID;
6928         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6929
6930         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6931
6932         IPW_DEBUG_WX("SET BSSID -> %s\n",
6933                      print_mac(mac, wrqu->ap_addr.sa_data));
6934
6935       done:
6936         mutex_unlock(&priv->action_mutex);
6937         return err;
6938 }
6939
6940 static int ipw2100_wx_get_wap(struct net_device *dev,
6941                               struct iw_request_info *info,
6942                               union iwreq_data *wrqu, char *extra)
6943 {
6944         /*
6945          * This can be called at any time.  No action lock required
6946          */
6947
6948         struct ipw2100_priv *priv = ieee80211_priv(dev);
6949         DECLARE_MAC_BUF(mac);
6950
6951         /* If we are associated, trying to associate, or have a statically
6952          * configured BSSID then return that; otherwise return ANY */
6953         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6954                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6955                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6956         } else
6957                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6958
6959         IPW_DEBUG_WX("Getting WAP BSSID: %s\n",
6960                      print_mac(mac, wrqu->ap_addr.sa_data));
6961         return 0;
6962 }
6963
6964 static int ipw2100_wx_set_essid(struct net_device *dev,
6965                                 struct iw_request_info *info,
6966                                 union iwreq_data *wrqu, char *extra)
6967 {
6968         struct ipw2100_priv *priv = ieee80211_priv(dev);
6969         char *essid = "";       /* ANY */
6970         int length = 0;
6971         int err = 0;
6972
6973         mutex_lock(&priv->action_mutex);
6974         if (!(priv->status & STATUS_INITIALIZED)) {
6975                 err = -EIO;
6976                 goto done;
6977         }
6978
6979         if (wrqu->essid.flags && wrqu->essid.length) {
6980                 length = wrqu->essid.length;
6981                 essid = extra;
6982         }
6983
6984         if (length == 0) {
6985                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6986                 priv->config &= ~CFG_STATIC_ESSID;
6987                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6988                 goto done;
6989         }
6990
6991         length = min(length, IW_ESSID_MAX_SIZE);
6992
6993         priv->config |= CFG_STATIC_ESSID;
6994
6995         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6996                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6997                 err = 0;
6998                 goto done;
6999         }
7000
7001         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
7002                      length);
7003
7004         priv->essid_len = length;
7005         memcpy(priv->essid, essid, priv->essid_len);
7006
7007         err = ipw2100_set_essid(priv, essid, length, 0);
7008
7009       done:
7010         mutex_unlock(&priv->action_mutex);
7011         return err;
7012 }
7013
7014 static int ipw2100_wx_get_essid(struct net_device *dev,
7015                                 struct iw_request_info *info,
7016                                 union iwreq_data *wrqu, char *extra)
7017 {
7018         /*
7019          * This can be called at any time.  No action lock required
7020          */
7021
7022         struct ipw2100_priv *priv = ieee80211_priv(dev);
7023
7024         /* If we are associated, trying to associate, or have a statically
7025          * configured ESSID then return that; otherwise return ANY */
7026         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7027                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7028                              escape_essid(priv->essid, priv->essid_len));
7029                 memcpy(extra, priv->essid, priv->essid_len);
7030                 wrqu->essid.length = priv->essid_len;
7031                 wrqu->essid.flags = 1;  /* active */
7032         } else {
7033                 IPW_DEBUG_WX("Getting essid: ANY\n");
7034                 wrqu->essid.length = 0;
7035                 wrqu->essid.flags = 0;  /* active */
7036         }
7037
7038         return 0;
7039 }
7040
7041 static int ipw2100_wx_set_nick(struct net_device *dev,
7042                                struct iw_request_info *info,
7043                                union iwreq_data *wrqu, char *extra)
7044 {
7045         /*
7046          * This can be called at any time.  No action lock required
7047          */
7048
7049         struct ipw2100_priv *priv = ieee80211_priv(dev);
7050
7051         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7052                 return -E2BIG;
7053
7054         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7055         memset(priv->nick, 0, sizeof(priv->nick));
7056         memcpy(priv->nick, extra, wrqu->data.length);
7057
7058         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7059
7060         return 0;
7061 }
7062
7063 static int ipw2100_wx_get_nick(struct net_device *dev,
7064                                struct iw_request_info *info,
7065                                union iwreq_data *wrqu, char *extra)
7066 {
7067         /*
7068          * This can be called at any time.  No action lock required
7069          */
7070
7071         struct ipw2100_priv *priv = ieee80211_priv(dev);
7072
7073         wrqu->data.length = strlen(priv->nick);
7074         memcpy(extra, priv->nick, wrqu->data.length);
7075         wrqu->data.flags = 1;   /* active */
7076
7077         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7078
7079         return 0;
7080 }
7081
7082 static int ipw2100_wx_set_rate(struct net_device *dev,
7083                                struct iw_request_info *info,
7084                                union iwreq_data *wrqu, char *extra)
7085 {
7086         struct ipw2100_priv *priv = ieee80211_priv(dev);
7087         u32 target_rate = wrqu->bitrate.value;
7088         u32 rate;
7089         int err = 0;
7090
7091         mutex_lock(&priv->action_mutex);
7092         if (!(priv->status & STATUS_INITIALIZED)) {
7093                 err = -EIO;
7094                 goto done;
7095         }
7096
7097         rate = 0;
7098
7099         if (target_rate == 1000000 ||
7100             (!wrqu->bitrate.fixed && target_rate > 1000000))
7101                 rate |= TX_RATE_1_MBIT;
7102         if (target_rate == 2000000 ||
7103             (!wrqu->bitrate.fixed && target_rate > 2000000))
7104                 rate |= TX_RATE_2_MBIT;
7105         if (target_rate == 5500000 ||
7106             (!wrqu->bitrate.fixed && target_rate > 5500000))
7107                 rate |= TX_RATE_5_5_MBIT;
7108         if (target_rate == 11000000 ||
7109             (!wrqu->bitrate.fixed && target_rate > 11000000))
7110                 rate |= TX_RATE_11_MBIT;
7111         if (rate == 0)
7112                 rate = DEFAULT_TX_RATES;
7113
7114         err = ipw2100_set_tx_rates(priv, rate, 0);
7115
7116         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7117       done:
7118         mutex_unlock(&priv->action_mutex);
7119         return err;
7120 }
7121
7122 static int ipw2100_wx_get_rate(struct net_device *dev,
7123                                struct iw_request_info *info,
7124                                union iwreq_data *wrqu, char *extra)
7125 {
7126         struct ipw2100_priv *priv = ieee80211_priv(dev);
7127         int val;
7128         int len = sizeof(val);
7129         int err = 0;
7130
7131         if (!(priv->status & STATUS_ENABLED) ||
7132             priv->status & STATUS_RF_KILL_MASK ||
7133             !(priv->status & STATUS_ASSOCIATED)) {
7134                 wrqu->bitrate.value = 0;
7135                 return 0;
7136         }
7137
7138         mutex_lock(&priv->action_mutex);
7139         if (!(priv->status & STATUS_INITIALIZED)) {
7140                 err = -EIO;
7141                 goto done;
7142         }
7143
7144         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7145         if (err) {
7146                 IPW_DEBUG_WX("failed querying ordinals.\n");
7147                 return err;
7148         }
7149
7150         switch (val & TX_RATE_MASK) {
7151         case TX_RATE_1_MBIT:
7152                 wrqu->bitrate.value = 1000000;
7153                 break;
7154         case TX_RATE_2_MBIT:
7155                 wrqu->bitrate.value = 2000000;
7156                 break;
7157         case TX_RATE_5_5_MBIT:
7158                 wrqu->bitrate.value = 5500000;
7159                 break;
7160         case TX_RATE_11_MBIT:
7161                 wrqu->bitrate.value = 11000000;
7162                 break;
7163         default:
7164                 wrqu->bitrate.value = 0;
7165         }
7166
7167         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7168
7169       done:
7170         mutex_unlock(&priv->action_mutex);
7171         return err;
7172 }
7173
7174 static int ipw2100_wx_set_rts(struct net_device *dev,
7175                               struct iw_request_info *info,
7176                               union iwreq_data *wrqu, char *extra)
7177 {
7178         struct ipw2100_priv *priv = ieee80211_priv(dev);
7179         int value, err;
7180
7181         /* Auto RTS not yet supported */
7182         if (wrqu->rts.fixed == 0)
7183                 return -EINVAL;
7184
7185         mutex_lock(&priv->action_mutex);
7186         if (!(priv->status & STATUS_INITIALIZED)) {
7187                 err = -EIO;
7188                 goto done;
7189         }
7190
7191         if (wrqu->rts.disabled)
7192                 value = priv->rts_threshold | RTS_DISABLED;
7193         else {
7194                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7195                         err = -EINVAL;
7196                         goto done;
7197                 }
7198                 value = wrqu->rts.value;
7199         }
7200
7201         err = ipw2100_set_rts_threshold(priv, value);
7202
7203         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7204       done:
7205         mutex_unlock(&priv->action_mutex);
7206         return err;
7207 }
7208
7209 static int ipw2100_wx_get_rts(struct net_device *dev,
7210                               struct iw_request_info *info,
7211                               union iwreq_data *wrqu, char *extra)
7212 {
7213         /*
7214          * This can be called at any time.  No action lock required
7215          */
7216
7217         struct ipw2100_priv *priv = ieee80211_priv(dev);
7218
7219         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7220         wrqu->rts.fixed = 1;    /* no auto select */
7221
7222         /* If RTS is set to the default value, then it is disabled */
7223         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7224
7225         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7226
7227         return 0;
7228 }
7229
7230 static int ipw2100_wx_set_txpow(struct net_device *dev,
7231                                 struct iw_request_info *info,
7232                                 union iwreq_data *wrqu, char *extra)
7233 {
7234         struct ipw2100_priv *priv = ieee80211_priv(dev);
7235         int err = 0, value;
7236         
7237         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7238                 return -EINPROGRESS;
7239
7240         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7241                 return 0;
7242
7243         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7244                 return -EINVAL;
7245
7246         if (wrqu->txpower.fixed == 0)
7247                 value = IPW_TX_POWER_DEFAULT;
7248         else {
7249                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7250                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7251                         return -EINVAL;
7252
7253                 value = wrqu->txpower.value;
7254         }
7255
7256         mutex_lock(&priv->action_mutex);
7257         if (!(priv->status & STATUS_INITIALIZED)) {
7258                 err = -EIO;
7259                 goto done;
7260         }
7261
7262         err = ipw2100_set_tx_power(priv, value);
7263
7264         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7265
7266       done:
7267         mutex_unlock(&priv->action_mutex);
7268         return err;
7269 }
7270
7271 static int ipw2100_wx_get_txpow(struct net_device *dev,
7272                                 struct iw_request_info *info,
7273                                 union iwreq_data *wrqu, char *extra)
7274 {
7275         /*
7276          * This can be called at any time.  No action lock required
7277          */
7278
7279         struct ipw2100_priv *priv = ieee80211_priv(dev);
7280
7281         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7282
7283         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7284                 wrqu->txpower.fixed = 0;
7285                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7286         } else {
7287                 wrqu->txpower.fixed = 1;
7288                 wrqu->txpower.value = priv->tx_power;
7289         }
7290
7291         wrqu->txpower.flags = IW_TXPOW_DBM;
7292
7293         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7294
7295         return 0;
7296 }
7297
7298 static int ipw2100_wx_set_frag(struct net_device *dev,
7299                                struct iw_request_info *info,
7300                                union iwreq_data *wrqu, char *extra)
7301 {
7302         /*
7303          * This can be called at any time.  No action lock required
7304          */
7305
7306         struct ipw2100_priv *priv = ieee80211_priv(dev);
7307
7308         if (!wrqu->frag.fixed)
7309                 return -EINVAL;
7310
7311         if (wrqu->frag.disabled) {
7312                 priv->frag_threshold |= FRAG_DISABLED;
7313                 priv->ieee->fts = DEFAULT_FTS;
7314         } else {
7315                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7316                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7317                         return -EINVAL;
7318
7319                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7320                 priv->frag_threshold = priv->ieee->fts;
7321         }
7322
7323         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7324
7325         return 0;
7326 }
7327
7328 static int ipw2100_wx_get_frag(struct net_device *dev,
7329                                struct iw_request_info *info,
7330                                union iwreq_data *wrqu, char *extra)
7331 {
7332         /*
7333          * This can be called at any time.  No action lock required
7334          */
7335
7336         struct ipw2100_priv *priv = ieee80211_priv(dev);
7337         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7338         wrqu->frag.fixed = 0;   /* no auto select */
7339         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7340
7341         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7342
7343         return 0;
7344 }
7345
7346 static int ipw2100_wx_set_retry(struct net_device *dev,
7347                                 struct iw_request_info *info,
7348                                 union iwreq_data *wrqu, char *extra)
7349 {
7350         struct ipw2100_priv *priv = ieee80211_priv(dev);
7351         int err = 0;
7352
7353         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7354                 return -EINVAL;
7355
7356         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7357                 return 0;
7358
7359         mutex_lock(&priv->action_mutex);
7360         if (!(priv->status & STATUS_INITIALIZED)) {
7361                 err = -EIO;
7362                 goto done;
7363         }
7364
7365         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7366                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7367                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7368                              wrqu->retry.value);
7369                 goto done;
7370         }
7371
7372         if (wrqu->retry.flags & IW_RETRY_LONG) {
7373                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7374                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7375                              wrqu->retry.value);
7376                 goto done;
7377         }
7378
7379         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7380         if (!err)
7381                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7382
7383         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7384
7385       done:
7386         mutex_unlock(&priv->action_mutex);
7387         return err;
7388 }
7389
7390 static int ipw2100_wx_get_retry(struct net_device *dev,
7391                                 struct iw_request_info *info,
7392                                 union iwreq_data *wrqu, char *extra)
7393 {
7394         /*
7395          * This can be called at any time.  No action lock required
7396          */
7397
7398         struct ipw2100_priv *priv = ieee80211_priv(dev);
7399
7400         wrqu->retry.disabled = 0;       /* can't be disabled */
7401
7402         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7403                 return -EINVAL;
7404
7405         if (wrqu->retry.flags & IW_RETRY_LONG) {
7406                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7407                 wrqu->retry.value = priv->long_retry_limit;
7408         } else {
7409                 wrqu->retry.flags =
7410                     (priv->short_retry_limit !=
7411                      priv->long_retry_limit) ?
7412                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7413
7414                 wrqu->retry.value = priv->short_retry_limit;
7415         }
7416
7417         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7418
7419         return 0;
7420 }
7421
7422 static int ipw2100_wx_set_scan(struct net_device *dev,
7423                                struct iw_request_info *info,
7424                                union iwreq_data *wrqu, char *extra)
7425 {
7426         struct ipw2100_priv *priv = ieee80211_priv(dev);
7427         int err = 0;
7428
7429         mutex_lock(&priv->action_mutex);
7430         if (!(priv->status & STATUS_INITIALIZED)) {
7431                 err = -EIO;
7432                 goto done;
7433         }
7434
7435         IPW_DEBUG_WX("Initiating scan...\n");
7436
7437         priv->user_requested_scan = 1;
7438         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7439                 IPW_DEBUG_WX("Start scan failed.\n");
7440
7441                 /* TODO: Mark a scan as pending so when hardware initialized
7442                  *       a scan starts */
7443         }
7444
7445       done:
7446         mutex_unlock(&priv->action_mutex);
7447         return err;
7448 }
7449
7450 static int ipw2100_wx_get_scan(struct net_device *dev,
7451                                struct iw_request_info *info,
7452                                union iwreq_data *wrqu, char *extra)
7453 {
7454         /*
7455          * This can be called at any time.  No action lock required
7456          */
7457
7458         struct ipw2100_priv *priv = ieee80211_priv(dev);
7459         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7460 }
7461
7462 /*
7463  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7464  */
7465 static int ipw2100_wx_set_encode(struct net_device *dev,
7466                                  struct iw_request_info *info,
7467                                  union iwreq_data *wrqu, char *key)
7468 {
7469         /*
7470          * No check of STATUS_INITIALIZED required
7471          */
7472
7473         struct ipw2100_priv *priv = ieee80211_priv(dev);
7474         return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7475 }
7476
7477 static int ipw2100_wx_get_encode(struct net_device *dev,
7478                                  struct iw_request_info *info,
7479                                  union iwreq_data *wrqu, char *key)
7480 {
7481         /*
7482          * This can be called at any time.  No action lock required
7483          */
7484
7485         struct ipw2100_priv *priv = ieee80211_priv(dev);
7486         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7487 }
7488
7489 static int ipw2100_wx_set_power(struct net_device *dev,
7490                                 struct iw_request_info *info,
7491                                 union iwreq_data *wrqu, char *extra)
7492 {
7493         struct ipw2100_priv *priv = ieee80211_priv(dev);
7494         int err = 0;
7495
7496         mutex_lock(&priv->action_mutex);
7497         if (!(priv->status & STATUS_INITIALIZED)) {
7498                 err = -EIO;
7499                 goto done;
7500         }
7501
7502         if (wrqu->power.disabled) {
7503                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7504                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7505                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7506                 goto done;
7507         }
7508
7509         switch (wrqu->power.flags & IW_POWER_MODE) {
7510         case IW_POWER_ON:       /* If not specified */
7511         case IW_POWER_MODE:     /* If set all mask */
7512         case IW_POWER_ALL_R:    /* If explicitely state all */
7513                 break;
7514         default:                /* Otherwise we don't support it */
7515                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7516                              wrqu->power.flags);
7517                 err = -EOPNOTSUPP;
7518                 goto done;
7519         }
7520
7521         /* If the user hasn't specified a power management mode yet, default
7522          * to BATTERY */
7523         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7524         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7525
7526         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7527
7528       done:
7529         mutex_unlock(&priv->action_mutex);
7530         return err;
7531
7532 }
7533
7534 static int ipw2100_wx_get_power(struct net_device *dev,
7535                                 struct iw_request_info *info,
7536                                 union iwreq_data *wrqu, char *extra)
7537 {
7538         /*
7539          * This can be called at any time.  No action lock required
7540          */
7541
7542         struct ipw2100_priv *priv = ieee80211_priv(dev);
7543
7544         if (!(priv->power_mode & IPW_POWER_ENABLED))
7545                 wrqu->power.disabled = 1;
7546         else {
7547                 wrqu->power.disabled = 0;
7548                 wrqu->power.flags = 0;
7549         }
7550
7551         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7552
7553         return 0;
7554 }
7555
7556 /*
7557  * WE-18 WPA support
7558  */
7559
7560 /* SIOCSIWGENIE */
7561 static int ipw2100_wx_set_genie(struct net_device *dev,
7562                                 struct iw_request_info *info,
7563                                 union iwreq_data *wrqu, char *extra)
7564 {
7565
7566         struct ipw2100_priv *priv = ieee80211_priv(dev);
7567         struct ieee80211_device *ieee = priv->ieee;
7568         u8 *buf;
7569
7570         if (!ieee->wpa_enabled)
7571                 return -EOPNOTSUPP;
7572
7573         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7574             (wrqu->data.length && extra == NULL))
7575                 return -EINVAL;
7576
7577         if (wrqu->data.length) {
7578                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7579                 if (buf == NULL)
7580                         return -ENOMEM;
7581
7582                 kfree(ieee->wpa_ie);
7583                 ieee->wpa_ie = buf;
7584                 ieee->wpa_ie_len = wrqu->data.length;
7585         } else {
7586                 kfree(ieee->wpa_ie);
7587                 ieee->wpa_ie = NULL;
7588                 ieee->wpa_ie_len = 0;
7589         }
7590
7591         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7592
7593         return 0;
7594 }
7595
7596 /* SIOCGIWGENIE */
7597 static int ipw2100_wx_get_genie(struct net_device *dev,
7598                                 struct iw_request_info *info,
7599                                 union iwreq_data *wrqu, char *extra)
7600 {
7601         struct ipw2100_priv *priv = ieee80211_priv(dev);
7602         struct ieee80211_device *ieee = priv->ieee;
7603
7604         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7605                 wrqu->data.length = 0;
7606                 return 0;
7607         }
7608
7609         if (wrqu->data.length < ieee->wpa_ie_len)
7610                 return -E2BIG;
7611
7612         wrqu->data.length = ieee->wpa_ie_len;
7613         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7614
7615         return 0;
7616 }
7617
7618 /* SIOCSIWAUTH */
7619 static int ipw2100_wx_set_auth(struct net_device *dev,
7620                                struct iw_request_info *info,
7621                                union iwreq_data *wrqu, char *extra)
7622 {
7623         struct ipw2100_priv *priv = ieee80211_priv(dev);
7624         struct ieee80211_device *ieee = priv->ieee;
7625         struct iw_param *param = &wrqu->param;
7626         struct ieee80211_crypt_data *crypt;
7627         unsigned long flags;
7628         int ret = 0;
7629
7630         switch (param->flags & IW_AUTH_INDEX) {
7631         case IW_AUTH_WPA_VERSION:
7632         case IW_AUTH_CIPHER_PAIRWISE:
7633         case IW_AUTH_CIPHER_GROUP:
7634         case IW_AUTH_KEY_MGMT:
7635                 /*
7636                  * ipw2200 does not use these parameters
7637                  */
7638                 break;
7639
7640         case IW_AUTH_TKIP_COUNTERMEASURES:
7641                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7642                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7643                         break;
7644
7645                 flags = crypt->ops->get_flags(crypt->priv);
7646
7647                 if (param->value)
7648                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7649                 else
7650                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7651
7652                 crypt->ops->set_flags(flags, crypt->priv);
7653
7654                 break;
7655
7656         case IW_AUTH_DROP_UNENCRYPTED:{
7657                         /* HACK:
7658                          *
7659                          * wpa_supplicant calls set_wpa_enabled when the driver
7660                          * is loaded and unloaded, regardless of if WPA is being
7661                          * used.  No other calls are made which can be used to
7662                          * determine if encryption will be used or not prior to
7663                          * association being expected.  If encryption is not being
7664                          * used, drop_unencrypted is set to false, else true -- we
7665                          * can use this to determine if the CAP_PRIVACY_ON bit should
7666                          * be set.
7667                          */
7668                         struct ieee80211_security sec = {
7669                                 .flags = SEC_ENABLED,
7670                                 .enabled = param->value,
7671                         };
7672                         priv->ieee->drop_unencrypted = param->value;
7673                         /* We only change SEC_LEVEL for open mode. Others
7674                          * are set by ipw_wpa_set_encryption.
7675                          */
7676                         if (!param->value) {
7677                                 sec.flags |= SEC_LEVEL;
7678                                 sec.level = SEC_LEVEL_0;
7679                         } else {
7680                                 sec.flags |= SEC_LEVEL;
7681                                 sec.level = SEC_LEVEL_1;
7682                         }
7683                         if (priv->ieee->set_security)
7684                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7685                         break;
7686                 }
7687
7688         case IW_AUTH_80211_AUTH_ALG:
7689                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7690                 break;
7691
7692         case IW_AUTH_WPA_ENABLED:
7693                 ret = ipw2100_wpa_enable(priv, param->value);
7694                 break;
7695
7696         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7697                 ieee->ieee802_1x = param->value;
7698                 break;
7699
7700                 //case IW_AUTH_ROAMING_CONTROL:
7701         case IW_AUTH_PRIVACY_INVOKED:
7702                 ieee->privacy_invoked = param->value;
7703                 break;
7704
7705         default:
7706                 return -EOPNOTSUPP;
7707         }
7708         return ret;
7709 }
7710
7711 /* SIOCGIWAUTH */
7712 static int ipw2100_wx_get_auth(struct net_device *dev,
7713                                struct iw_request_info *info,
7714                                union iwreq_data *wrqu, char *extra)
7715 {
7716         struct ipw2100_priv *priv = ieee80211_priv(dev);
7717         struct ieee80211_device *ieee = priv->ieee;
7718         struct ieee80211_crypt_data *crypt;
7719         struct iw_param *param = &wrqu->param;
7720         int ret = 0;
7721
7722         switch (param->flags & IW_AUTH_INDEX) {
7723         case IW_AUTH_WPA_VERSION:
7724         case IW_AUTH_CIPHER_PAIRWISE:
7725         case IW_AUTH_CIPHER_GROUP:
7726         case IW_AUTH_KEY_MGMT:
7727                 /*
7728                  * wpa_supplicant will control these internally
7729                  */
7730                 ret = -EOPNOTSUPP;
7731                 break;
7732
7733         case IW_AUTH_TKIP_COUNTERMEASURES:
7734                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7735                 if (!crypt || !crypt->ops->get_flags) {
7736                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7737                                           "crypt not set!\n");
7738                         break;
7739                 }
7740
7741                 param->value = (crypt->ops->get_flags(crypt->priv) &
7742                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7743
7744                 break;
7745
7746         case IW_AUTH_DROP_UNENCRYPTED:
7747                 param->value = ieee->drop_unencrypted;
7748                 break;
7749
7750         case IW_AUTH_80211_AUTH_ALG:
7751                 param->value = priv->ieee->sec.auth_mode;
7752                 break;
7753
7754         case IW_AUTH_WPA_ENABLED:
7755                 param->value = ieee->wpa_enabled;
7756                 break;
7757
7758         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7759                 param->value = ieee->ieee802_1x;
7760                 break;
7761
7762         case IW_AUTH_ROAMING_CONTROL:
7763         case IW_AUTH_PRIVACY_INVOKED:
7764                 param->value = ieee->privacy_invoked;
7765                 break;
7766
7767         default:
7768                 return -EOPNOTSUPP;
7769         }
7770         return 0;
7771 }
7772
7773 /* SIOCSIWENCODEEXT */
7774 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7775                                     struct iw_request_info *info,
7776                                     union iwreq_data *wrqu, char *extra)
7777 {
7778         struct ipw2100_priv *priv = ieee80211_priv(dev);
7779         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7780 }
7781
7782 /* SIOCGIWENCODEEXT */
7783 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7784                                     struct iw_request_info *info,
7785                                     union iwreq_data *wrqu, char *extra)
7786 {
7787         struct ipw2100_priv *priv = ieee80211_priv(dev);
7788         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7789 }
7790
7791 /* SIOCSIWMLME */
7792 static int ipw2100_wx_set_mlme(struct net_device *dev,
7793                                struct iw_request_info *info,
7794                                union iwreq_data *wrqu, char *extra)
7795 {
7796         struct ipw2100_priv *priv = ieee80211_priv(dev);
7797         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7798         u16 reason;
7799
7800         reason = cpu_to_le16(mlme->reason_code);
7801
7802         switch (mlme->cmd) {
7803         case IW_MLME_DEAUTH:
7804                 // silently ignore
7805                 break;
7806
7807         case IW_MLME_DISASSOC:
7808                 ipw2100_disassociate_bssid(priv);
7809                 break;
7810
7811         default:
7812                 return -EOPNOTSUPP;
7813         }
7814         return 0;
7815 }
7816
7817 /*
7818  *
7819  * IWPRIV handlers
7820  *
7821  */
7822 #ifdef CONFIG_IPW2100_MONITOR
7823 static int ipw2100_wx_set_promisc(struct net_device *dev,
7824                                   struct iw_request_info *info,
7825                                   union iwreq_data *wrqu, char *extra)
7826 {
7827         struct ipw2100_priv *priv = ieee80211_priv(dev);
7828         int *parms = (int *)extra;
7829         int enable = (parms[0] > 0);
7830         int err = 0;
7831
7832         mutex_lock(&priv->action_mutex);
7833         if (!(priv->status & STATUS_INITIALIZED)) {
7834                 err = -EIO;
7835                 goto done;
7836         }
7837
7838         if (enable) {
7839                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7840                         err = ipw2100_set_channel(priv, parms[1], 0);
7841                         goto done;
7842                 }
7843                 priv->channel = parms[1];
7844                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7845         } else {
7846                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7847                         err = ipw2100_switch_mode(priv, priv->last_mode);
7848         }
7849       done:
7850         mutex_unlock(&priv->action_mutex);
7851         return err;
7852 }
7853
7854 static int ipw2100_wx_reset(struct net_device *dev,
7855                             struct iw_request_info *info,
7856                             union iwreq_data *wrqu, char *extra)
7857 {
7858         struct ipw2100_priv *priv = ieee80211_priv(dev);
7859         if (priv->status & STATUS_INITIALIZED)
7860                 schedule_reset(priv);
7861         return 0;
7862 }
7863
7864 #endif
7865
7866 static int ipw2100_wx_set_powermode(struct net_device *dev,
7867                                     struct iw_request_info *info,
7868                                     union iwreq_data *wrqu, char *extra)
7869 {
7870         struct ipw2100_priv *priv = ieee80211_priv(dev);
7871         int err = 0, mode = *(int *)extra;
7872
7873         mutex_lock(&priv->action_mutex);
7874         if (!(priv->status & STATUS_INITIALIZED)) {
7875                 err = -EIO;
7876                 goto done;
7877         }
7878
7879         if ((mode < 0) || (mode > POWER_MODES))
7880                 mode = IPW_POWER_AUTO;
7881
7882         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7883                 err = ipw2100_set_power_mode(priv, mode);
7884       done:
7885         mutex_unlock(&priv->action_mutex);
7886         return err;
7887 }
7888
7889 #define MAX_POWER_STRING 80
7890 static int ipw2100_wx_get_powermode(struct net_device *dev,
7891                                     struct iw_request_info *info,
7892                                     union iwreq_data *wrqu, char *extra)
7893 {
7894         /*
7895          * This can be called at any time.  No action lock required
7896          */
7897
7898         struct ipw2100_priv *priv = ieee80211_priv(dev);
7899         int level = IPW_POWER_LEVEL(priv->power_mode);
7900         s32 timeout, period;
7901
7902         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7903                 snprintf(extra, MAX_POWER_STRING,
7904                          "Power save level: %d (Off)", level);
7905         } else {
7906                 switch (level) {
7907                 case IPW_POWER_MODE_CAM:
7908                         snprintf(extra, MAX_POWER_STRING,
7909                                  "Power save level: %d (None)", level);
7910                         break;
7911                 case IPW_POWER_AUTO:
7912                         snprintf(extra, MAX_POWER_STRING,
7913                                  "Power save level: %d (Auto)", level);
7914                         break;
7915                 default:
7916                         timeout = timeout_duration[level - 1] / 1000;
7917                         period = period_duration[level - 1] / 1000;
7918                         snprintf(extra, MAX_POWER_STRING,
7919                                  "Power save level: %d "
7920                                  "(Timeout %dms, Period %dms)",
7921                                  level, timeout, period);
7922                 }
7923         }
7924
7925         wrqu->data.length = strlen(extra) + 1;
7926
7927         return 0;
7928 }
7929
7930 static int ipw2100_wx_set_preamble(struct net_device *dev,
7931                                    struct iw_request_info *info,
7932                                    union iwreq_data *wrqu, char *extra)
7933 {
7934         struct ipw2100_priv *priv = ieee80211_priv(dev);
7935         int err, mode = *(int *)extra;
7936
7937         mutex_lock(&priv->action_mutex);
7938         if (!(priv->status & STATUS_INITIALIZED)) {
7939                 err = -EIO;
7940                 goto done;
7941         }
7942
7943         if (mode == 1)
7944                 priv->config |= CFG_LONG_PREAMBLE;
7945         else if (mode == 0)
7946                 priv->config &= ~CFG_LONG_PREAMBLE;
7947         else {
7948                 err = -EINVAL;
7949                 goto done;
7950         }
7951
7952         err = ipw2100_system_config(priv, 0);
7953
7954       done:
7955         mutex_unlock(&priv->action_mutex);
7956         return err;
7957 }
7958
7959 static int ipw2100_wx_get_preamble(struct net_device *dev,
7960                                    struct iw_request_info *info,
7961                                    union iwreq_data *wrqu, char *extra)
7962 {
7963         /*
7964          * This can be called at any time.  No action lock required
7965          */
7966
7967         struct ipw2100_priv *priv = ieee80211_priv(dev);
7968
7969         if (priv->config & CFG_LONG_PREAMBLE)
7970                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7971         else
7972                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7973
7974         return 0;
7975 }
7976
7977 #ifdef CONFIG_IPW2100_MONITOR
7978 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7979                                     struct iw_request_info *info,
7980                                     union iwreq_data *wrqu, char *extra)
7981 {
7982         struct ipw2100_priv *priv = ieee80211_priv(dev);
7983         int err, mode = *(int *)extra;
7984
7985         mutex_lock(&priv->action_mutex);
7986         if (!(priv->status & STATUS_INITIALIZED)) {
7987                 err = -EIO;
7988                 goto done;
7989         }
7990
7991         if (mode == 1)
7992                 priv->config |= CFG_CRC_CHECK;
7993         else if (mode == 0)
7994                 priv->config &= ~CFG_CRC_CHECK;
7995         else {
7996                 err = -EINVAL;
7997                 goto done;
7998         }
7999         err = 0;
8000
8001       done:
8002         mutex_unlock(&priv->action_mutex);
8003         return err;
8004 }
8005
8006 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8007                                     struct iw_request_info *info,
8008                                     union iwreq_data *wrqu, char *extra)
8009 {
8010         /*
8011          * This can be called at any time.  No action lock required
8012          */
8013
8014         struct ipw2100_priv *priv = ieee80211_priv(dev);
8015
8016         if (priv->config & CFG_CRC_CHECK)
8017                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8018         else
8019                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8020
8021         return 0;
8022 }
8023 #endif                          /* CONFIG_IPW2100_MONITOR */
8024
8025 static iw_handler ipw2100_wx_handlers[] = {
8026         NULL,                   /* SIOCSIWCOMMIT */
8027         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8028         NULL,                   /* SIOCSIWNWID */
8029         NULL,                   /* SIOCGIWNWID */
8030         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8031         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8032         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8033         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8034         NULL,                   /* SIOCSIWSENS */
8035         NULL,                   /* SIOCGIWSENS */
8036         NULL,                   /* SIOCSIWRANGE */
8037         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8038         NULL,                   /* SIOCSIWPRIV */
8039         NULL,                   /* SIOCGIWPRIV */
8040         NULL,                   /* SIOCSIWSTATS */
8041         NULL,                   /* SIOCGIWSTATS */
8042         NULL,                   /* SIOCSIWSPY */
8043         NULL,                   /* SIOCGIWSPY */
8044         NULL,                   /* SIOCGIWTHRSPY */
8045         NULL,                   /* SIOCWIWTHRSPY */
8046         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8047         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8048         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8049         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8050         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8051         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8052         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8053         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8054         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8055         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8056         NULL,                   /* -- hole -- */
8057         NULL,                   /* -- hole -- */
8058         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8059         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8060         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8061         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8062         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8063         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8064         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8065         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8066         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8067         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8068         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8069         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8070         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8071         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8072         NULL,                   /* -- hole -- */
8073         NULL,                   /* -- hole -- */
8074         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8075         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8076         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8077         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8078         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8079         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8080         NULL,                   /* SIOCSIWPMKSA */
8081 };
8082
8083 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8084 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8085 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8086 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8087 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8088 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8089 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8090 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8091
8092 static const struct iw_priv_args ipw2100_private_args[] = {
8093
8094 #ifdef CONFIG_IPW2100_MONITOR
8095         {
8096          IPW2100_PRIV_SET_MONITOR,
8097          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8098         {
8099          IPW2100_PRIV_RESET,
8100          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8101 #endif                          /* CONFIG_IPW2100_MONITOR */
8102
8103         {
8104          IPW2100_PRIV_SET_POWER,
8105          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8106         {
8107          IPW2100_PRIV_GET_POWER,
8108          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8109          "get_power"},
8110         {
8111          IPW2100_PRIV_SET_LONGPREAMBLE,
8112          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8113         {
8114          IPW2100_PRIV_GET_LONGPREAMBLE,
8115          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8116 #ifdef CONFIG_IPW2100_MONITOR
8117         {
8118          IPW2100_PRIV_SET_CRC_CHECK,
8119          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8120         {
8121          IPW2100_PRIV_GET_CRC_CHECK,
8122          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8123 #endif                          /* CONFIG_IPW2100_MONITOR */
8124 };
8125
8126 static iw_handler ipw2100_private_handler[] = {
8127 #ifdef CONFIG_IPW2100_MONITOR
8128         ipw2100_wx_set_promisc,
8129         ipw2100_wx_reset,
8130 #else                           /* CONFIG_IPW2100_MONITOR */
8131         NULL,
8132         NULL,
8133 #endif                          /* CONFIG_IPW2100_MONITOR */
8134         ipw2100_wx_set_powermode,
8135         ipw2100_wx_get_powermode,
8136         ipw2100_wx_set_preamble,
8137         ipw2100_wx_get_preamble,
8138 #ifdef CONFIG_IPW2100_MONITOR
8139         ipw2100_wx_set_crc_check,
8140         ipw2100_wx_get_crc_check,
8141 #else                           /* CONFIG_IPW2100_MONITOR */
8142         NULL,
8143         NULL,
8144 #endif                          /* CONFIG_IPW2100_MONITOR */
8145 };
8146
8147 /*
8148  * Get wireless statistics.
8149  * Called by /proc/net/wireless
8150  * Also called by SIOCGIWSTATS
8151  */
8152 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8153 {
8154         enum {
8155                 POOR = 30,
8156                 FAIR = 60,
8157                 GOOD = 80,
8158                 VERY_GOOD = 90,
8159                 EXCELLENT = 95,
8160                 PERFECT = 100
8161         };
8162         int rssi_qual;
8163         int tx_qual;
8164         int beacon_qual;
8165
8166         struct ipw2100_priv *priv = ieee80211_priv(dev);
8167         struct iw_statistics *wstats;
8168         u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8169         u32 ord_len = sizeof(u32);
8170
8171         if (!priv)
8172                 return (struct iw_statistics *)NULL;
8173
8174         wstats = &priv->wstats;
8175
8176         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8177          * ipw2100_wx_wireless_stats seems to be called before fw is
8178          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8179          * and associated; if not associcated, the values are all meaningless
8180          * anyway, so set them all to NULL and INVALID */
8181         if (!(priv->status & STATUS_ASSOCIATED)) {
8182                 wstats->miss.beacon = 0;
8183                 wstats->discard.retries = 0;
8184                 wstats->qual.qual = 0;
8185                 wstats->qual.level = 0;
8186                 wstats->qual.noise = 0;
8187                 wstats->qual.updated = 7;
8188                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8189                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8190                 return wstats;
8191         }
8192
8193         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8194                                 &missed_beacons, &ord_len))
8195                 goto fail_get_ordinal;
8196
8197         /* If we don't have a connection the quality and level is 0 */
8198         if (!(priv->status & STATUS_ASSOCIATED)) {
8199                 wstats->qual.qual = 0;
8200                 wstats->qual.level = 0;
8201         } else {
8202                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8203                                         &rssi, &ord_len))
8204                         goto fail_get_ordinal;
8205                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8206                 if (rssi < 10)
8207                         rssi_qual = rssi * POOR / 10;
8208                 else if (rssi < 15)
8209                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8210                 else if (rssi < 20)
8211                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8212                 else if (rssi < 30)
8213                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8214                             10 + GOOD;
8215                 else
8216                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8217                             10 + VERY_GOOD;
8218
8219                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8220                                         &tx_retries, &ord_len))
8221                         goto fail_get_ordinal;
8222
8223                 if (tx_retries > 75)
8224                         tx_qual = (90 - tx_retries) * POOR / 15;
8225                 else if (tx_retries > 70)
8226                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8227                 else if (tx_retries > 65)
8228                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8229                 else if (tx_retries > 50)
8230                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8231                             15 + GOOD;
8232                 else
8233                         tx_qual = (50 - tx_retries) *
8234                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8235
8236                 if (missed_beacons > 50)
8237                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8238                 else if (missed_beacons > 40)
8239                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8240                             10 + POOR;
8241                 else if (missed_beacons > 32)
8242                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8243                             18 + FAIR;
8244                 else if (missed_beacons > 20)
8245                         beacon_qual = (32 - missed_beacons) *
8246                             (VERY_GOOD - GOOD) / 20 + GOOD;
8247                 else
8248                         beacon_qual = (20 - missed_beacons) *
8249                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8250
8251                 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8252
8253 #ifdef CONFIG_IPW2100_DEBUG
8254                 if (beacon_qual == quality)
8255                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8256                 else if (tx_qual == quality)
8257                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8258                 else if (quality != 100)
8259                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8260                 else
8261                         IPW_DEBUG_WX("Quality not clamped.\n");
8262 #endif
8263
8264                 wstats->qual.qual = quality;
8265                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8266         }
8267
8268         wstats->qual.noise = 0;
8269         wstats->qual.updated = 7;
8270         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8271
8272         /* FIXME: this is percent and not a # */
8273         wstats->miss.beacon = missed_beacons;
8274
8275         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8276                                 &tx_failures, &ord_len))
8277                 goto fail_get_ordinal;
8278         wstats->discard.retries = tx_failures;
8279
8280         return wstats;
8281
8282       fail_get_ordinal:
8283         IPW_DEBUG_WX("failed querying ordinals.\n");
8284
8285         return (struct iw_statistics *)NULL;
8286 }
8287
8288 static struct iw_handler_def ipw2100_wx_handler_def = {
8289         .standard = ipw2100_wx_handlers,
8290         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8291         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8292         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8293         .private = (iw_handler *) ipw2100_private_handler,
8294         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8295         .get_wireless_stats = ipw2100_wx_wireless_stats,
8296 };
8297
8298 static void ipw2100_wx_event_work(struct work_struct *work)
8299 {
8300         struct ipw2100_priv *priv =
8301                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8302         union iwreq_data wrqu;
8303         int len = ETH_ALEN;
8304
8305         if (priv->status & STATUS_STOPPING)
8306                 return;
8307
8308         mutex_lock(&priv->action_mutex);
8309
8310         IPW_DEBUG_WX("enter\n");
8311
8312         mutex_unlock(&priv->action_mutex);
8313
8314         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8315
8316         /* Fetch BSSID from the hardware */
8317         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8318             priv->status & STATUS_RF_KILL_MASK ||
8319             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8320                                 &priv->bssid, &len)) {
8321                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8322         } else {
8323                 /* We now have the BSSID, so can finish setting to the full
8324                  * associated state */
8325                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8326                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8327                 priv->status &= ~STATUS_ASSOCIATING;
8328                 priv->status |= STATUS_ASSOCIATED;
8329                 netif_carrier_on(priv->net_dev);
8330                 netif_wake_queue(priv->net_dev);
8331         }
8332
8333         if (!(priv->status & STATUS_ASSOCIATED)) {
8334                 IPW_DEBUG_WX("Configuring ESSID\n");
8335                 mutex_lock(&priv->action_mutex);
8336                 /* This is a disassociation event, so kick the firmware to
8337                  * look for another AP */
8338                 if (priv->config & CFG_STATIC_ESSID)
8339                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8340                                           0);
8341                 else
8342                         ipw2100_set_essid(priv, NULL, 0, 0);
8343                 mutex_unlock(&priv->action_mutex);
8344         }
8345
8346         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8347 }
8348
8349 #define IPW2100_FW_MAJOR_VERSION 1
8350 #define IPW2100_FW_MINOR_VERSION 3
8351
8352 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8353 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8354
8355 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8356                              IPW2100_FW_MAJOR_VERSION)
8357
8358 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8359 "." __stringify(IPW2100_FW_MINOR_VERSION)
8360
8361 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8362
8363 /*
8364
8365 BINARY FIRMWARE HEADER FORMAT
8366
8367 offset      length   desc
8368 0           2        version
8369 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8370 4           4        fw_len
8371 8           4        uc_len
8372 C           fw_len   firmware data
8373 12 + fw_len uc_len   microcode data
8374
8375 */
8376
8377 struct ipw2100_fw_header {
8378         short version;
8379         short mode;
8380         unsigned int fw_size;
8381         unsigned int uc_size;
8382 } __attribute__ ((packed));
8383
8384 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8385 {
8386         struct ipw2100_fw_header *h =
8387             (struct ipw2100_fw_header *)fw->fw_entry->data;
8388
8389         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8390                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8391                        "(detected version id of %u). "
8392                        "See Documentation/networking/README.ipw2100\n",
8393                        h->version);
8394                 return 1;
8395         }
8396
8397         fw->version = h->version;
8398         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8399         fw->fw.size = h->fw_size;
8400         fw->uc.data = fw->fw.data + h->fw_size;
8401         fw->uc.size = h->uc_size;
8402
8403         return 0;
8404 }
8405
8406 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8407                                 struct ipw2100_fw *fw)
8408 {
8409         char *fw_name;
8410         int rc;
8411
8412         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8413                        priv->net_dev->name);
8414
8415         switch (priv->ieee->iw_mode) {
8416         case IW_MODE_ADHOC:
8417                 fw_name = IPW2100_FW_NAME("-i");
8418                 break;
8419 #ifdef CONFIG_IPW2100_MONITOR
8420         case IW_MODE_MONITOR:
8421                 fw_name = IPW2100_FW_NAME("-p");
8422                 break;
8423 #endif
8424         case IW_MODE_INFRA:
8425         default:
8426                 fw_name = IPW2100_FW_NAME("");
8427                 break;
8428         }
8429
8430         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8431
8432         if (rc < 0) {
8433                 printk(KERN_ERR DRV_NAME ": "
8434                        "%s: Firmware '%s' not available or load failed.\n",
8435                        priv->net_dev->name, fw_name);
8436                 return rc;
8437         }
8438         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8439                        fw->fw_entry->size);
8440
8441         ipw2100_mod_firmware_load(fw);
8442
8443         return 0;
8444 }
8445
8446 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8447                                      struct ipw2100_fw *fw)
8448 {
8449         fw->version = 0;
8450         if (fw->fw_entry)
8451                 release_firmware(fw->fw_entry);
8452         fw->fw_entry = NULL;
8453 }
8454
8455 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8456                                  size_t max)
8457 {
8458         char ver[MAX_FW_VERSION_LEN];
8459         u32 len = MAX_FW_VERSION_LEN;
8460         u32 tmp;
8461         int i;
8462         /* firmware version is an ascii string (max len of 14) */
8463         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8464                 return -EIO;
8465         tmp = max;
8466         if (len >= max)
8467                 len = max - 1;
8468         for (i = 0; i < len; i++)
8469                 buf[i] = ver[i];
8470         buf[i] = '\0';
8471         return tmp;
8472 }
8473
8474 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8475                                     size_t max)
8476 {
8477         u32 ver;
8478         u32 len = sizeof(ver);
8479         /* microcode version is a 32 bit integer */
8480         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8481                 return -EIO;
8482         return snprintf(buf, max, "%08X", ver);
8483 }
8484
8485 /*
8486  * On exit, the firmware will have been freed from the fw list
8487  */
8488 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8489 {
8490         /* firmware is constructed of N contiguous entries, each entry is
8491          * structured as:
8492          *
8493          * offset    sie         desc
8494          * 0         4           address to write to
8495          * 4         2           length of data run
8496          * 6         length      data
8497          */
8498         unsigned int addr;
8499         unsigned short len;
8500
8501         const unsigned char *firmware_data = fw->fw.data;
8502         unsigned int firmware_data_left = fw->fw.size;
8503
8504         while (firmware_data_left > 0) {
8505                 addr = *(u32 *) (firmware_data);
8506                 firmware_data += 4;
8507                 firmware_data_left -= 4;
8508
8509                 len = *(u16 *) (firmware_data);
8510                 firmware_data += 2;
8511                 firmware_data_left -= 2;
8512
8513                 if (len > 32) {
8514                         printk(KERN_ERR DRV_NAME ": "
8515                                "Invalid firmware run-length of %d bytes\n",
8516                                len);
8517                         return -EINVAL;
8518                 }
8519
8520                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8521                 firmware_data += len;
8522                 firmware_data_left -= len;
8523         }
8524
8525         return 0;
8526 }
8527
8528 struct symbol_alive_response {
8529         u8 cmd_id;
8530         u8 seq_num;
8531         u8 ucode_rev;
8532         u8 eeprom_valid;
8533         u16 valid_flags;
8534         u8 IEEE_addr[6];
8535         u16 flags;
8536         u16 pcb_rev;
8537         u16 clock_settle_time;  // 1us LSB
8538         u16 powerup_settle_time;        // 1us LSB
8539         u16 hop_settle_time;    // 1us LSB
8540         u8 date[3];             // month, day, year
8541         u8 time[2];             // hours, minutes
8542         u8 ucode_valid;
8543 };
8544
8545 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8546                                   struct ipw2100_fw *fw)
8547 {
8548         struct net_device *dev = priv->net_dev;
8549         const unsigned char *microcode_data = fw->uc.data;
8550         unsigned int microcode_data_left = fw->uc.size;
8551         void __iomem *reg = (void __iomem *)dev->base_addr;
8552
8553         struct symbol_alive_response response;
8554         int i, j;
8555         u8 data;
8556
8557         /* Symbol control */
8558         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8559         readl(reg);
8560         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8561         readl(reg);
8562
8563         /* HW config */
8564         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8565         readl(reg);
8566         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8567         readl(reg);
8568
8569         /* EN_CS_ACCESS bit to reset control store pointer */
8570         write_nic_byte(dev, 0x210000, 0x40);
8571         readl(reg);
8572         write_nic_byte(dev, 0x210000, 0x0);
8573         readl(reg);
8574         write_nic_byte(dev, 0x210000, 0x40);
8575         readl(reg);
8576
8577         /* copy microcode from buffer into Symbol */
8578
8579         while (microcode_data_left > 0) {
8580                 write_nic_byte(dev, 0x210010, *microcode_data++);
8581                 write_nic_byte(dev, 0x210010, *microcode_data++);
8582                 microcode_data_left -= 2;
8583         }
8584
8585         /* EN_CS_ACCESS bit to reset the control store pointer */
8586         write_nic_byte(dev, 0x210000, 0x0);
8587         readl(reg);
8588
8589         /* Enable System (Reg 0)
8590          * first enable causes garbage in RX FIFO */
8591         write_nic_byte(dev, 0x210000, 0x0);
8592         readl(reg);
8593         write_nic_byte(dev, 0x210000, 0x80);
8594         readl(reg);
8595
8596         /* Reset External Baseband Reg */
8597         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8598         readl(reg);
8599         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8600         readl(reg);
8601
8602         /* HW Config (Reg 5) */
8603         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8604         readl(reg);
8605         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8606         readl(reg);
8607
8608         /* Enable System (Reg 0)
8609          * second enable should be OK */
8610         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8611         readl(reg);
8612         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8613
8614         /* check Symbol is enabled - upped this from 5 as it wasn't always
8615          * catching the update */
8616         for (i = 0; i < 10; i++) {
8617                 udelay(10);
8618
8619                 /* check Dino is enabled bit */
8620                 read_nic_byte(dev, 0x210000, &data);
8621                 if (data & 0x1)
8622                         break;
8623         }
8624
8625         if (i == 10) {
8626                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8627                        dev->name);
8628                 return -EIO;
8629         }
8630
8631         /* Get Symbol alive response */
8632         for (i = 0; i < 30; i++) {
8633                 /* Read alive response structure */
8634                 for (j = 0;
8635                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8636                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8637
8638                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8639                         break;
8640                 udelay(10);
8641         }
8642
8643         if (i == 30) {
8644                 printk(KERN_ERR DRV_NAME
8645                        ": %s: No response from Symbol - hw not alive\n",
8646                        dev->name);
8647                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8648                 return -EIO;
8649         }
8650
8651         return 0;
8652 }