2 * Dynamic DMA mapping support.
4 * On i386 there is no hardware dynamic DMA address translation,
5 * so consistent alloc/free are merely page allocation/freeing.
6 * The rest of the dynamic DMA mapping interface is implemented
10 #include <linux/types.h>
12 #include <linux/string.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
17 struct dma_coherent_mem {
22 unsigned long *bitmap;
25 void *dma_alloc_coherent(struct device *dev, size_t size,
26 dma_addr_t *dma_handle, gfp_t gfp)
29 struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
30 int order = get_order(size);
31 /* ignore region specifiers */
32 gfp &= ~(__GFP_DMA | __GFP_HIGHMEM);
35 int page = bitmap_find_free_region(mem->bitmap, mem->size,
38 *dma_handle = mem->device_base + (page << PAGE_SHIFT);
39 ret = mem->virt_base + (page << PAGE_SHIFT);
43 if (mem->flags & DMA_MEMORY_EXCLUSIVE)
47 if (dev == NULL || (dev->coherent_dma_mask < 0xffffffff))
50 ret = (void *)__get_free_pages(gfp, order);
54 *dma_handle = virt_to_phys(ret);
58 EXPORT_SYMBOL(dma_alloc_coherent);
60 void dma_free_coherent(struct device *dev, size_t size,
61 void *vaddr, dma_addr_t dma_handle)
63 struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
64 int order = get_order(size);
66 if (mem && vaddr >= mem->virt_base && vaddr < (mem->virt_base + (mem->size << PAGE_SHIFT))) {
67 int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
69 bitmap_release_region(mem->bitmap, page, order);
71 free_pages((unsigned long)vaddr, order);
73 EXPORT_SYMBOL(dma_free_coherent);
75 int dma_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
76 dma_addr_t device_addr, size_t size, int flags)
78 void __iomem *mem_base = NULL;
79 int pages = size >> PAGE_SHIFT;
80 int bitmap_size = (pages + 31)/32;
82 if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0)
89 /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */
91 mem_base = ioremap(bus_addr, size);
95 dev->dma_mem = kmalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
98 memset(dev->dma_mem, 0, sizeof(struct dma_coherent_mem));
99 dev->dma_mem->bitmap = kmalloc(bitmap_size, GFP_KERNEL);
100 if (!dev->dma_mem->bitmap)
102 memset(dev->dma_mem->bitmap, 0, bitmap_size);
104 dev->dma_mem->virt_base = mem_base;
105 dev->dma_mem->device_base = device_addr;
106 dev->dma_mem->size = pages;
107 dev->dma_mem->flags = flags;
109 if (flags & DMA_MEMORY_MAP)
110 return DMA_MEMORY_MAP;
112 return DMA_MEMORY_IO;
115 kfree(dev->dma_mem->bitmap);
121 EXPORT_SYMBOL(dma_declare_coherent_memory);
123 void dma_release_declared_memory(struct device *dev)
125 struct dma_coherent_mem *mem = dev->dma_mem;
130 iounmap(mem->virt_base);
134 EXPORT_SYMBOL(dma_release_declared_memory);
136 void *dma_mark_declared_memory_occupied(struct device *dev,
137 dma_addr_t device_addr, size_t size)
139 struct dma_coherent_mem *mem = dev->dma_mem;
140 int pages = (size + (device_addr & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
144 return ERR_PTR(-EINVAL);
146 pos = (device_addr - mem->device_base) >> PAGE_SHIFT;
147 err = bitmap_allocate_region(mem->bitmap, pos, get_order(pages));
150 return mem->virt_base + (pos << PAGE_SHIFT);
152 EXPORT_SYMBOL(dma_mark_declared_memory_occupied);