1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/i2c-algo-bit.h>
18 #include <linux/mii.h>
19 #include "net_driver.h"
25 #include "falcon_hwdefs.h"
26 #include "falcon_io.h"
30 #include "workarounds.h"
32 /* Falcon hardware control.
33 * Falcon is the internal codename for the SFC4000 controller that is
34 * present in SFE400X evaluation boards
38 * struct falcon_nic_data - Falcon NIC state
39 * @next_buffer_table: First available buffer table id
40 * @pci_dev2: The secondary PCI device if present
41 * @i2c_data: Operations and state for I2C bit-bashing algorithm
42 * @int_error_count: Number of internal errors seen recently
43 * @int_error_expire: Time at which error count will be expired
45 struct falcon_nic_data {
46 unsigned next_buffer_table;
47 struct pci_dev *pci_dev2;
48 struct i2c_algo_bit_data i2c_data;
50 unsigned int_error_count;
51 unsigned long int_error_expire;
54 /**************************************************************************
58 **************************************************************************
61 static int disable_dma_stats;
63 /* This is set to 16 for a good reason. In summary, if larger than
64 * 16, the descriptor cache holds more than a default socket
65 * buffer's worth of packets (for UDP we can only have at most one
66 * socket buffer's worth outstanding). This combined with the fact
67 * that we only get 1 TX event per descriptor cache means the NIC
70 #define TX_DC_ENTRIES 16
71 #define TX_DC_ENTRIES_ORDER 0
72 #define TX_DC_BASE 0x130000
74 #define RX_DC_ENTRIES 64
75 #define RX_DC_ENTRIES_ORDER 2
76 #define RX_DC_BASE 0x100000
78 static const unsigned int
79 /* "Large" EEPROM device: Atmel AT25640 or similar
80 * 8 KB, 16-bit address, 32 B write block */
81 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
82 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
83 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
84 /* Default flash device: Atmel AT25F1024
85 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
86 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
87 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
88 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
89 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
90 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
92 /* RX FIFO XOFF watermark
94 * When the amount of the RX FIFO increases used increases past this
95 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
96 * This also has an effect on RX/TX arbitration
98 static int rx_xoff_thresh_bytes = -1;
99 module_param(rx_xoff_thresh_bytes, int, 0644);
100 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
102 /* RX FIFO XON watermark
104 * When the amount of the RX FIFO used decreases below this
105 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
106 * This also has an effect on RX/TX arbitration
108 static int rx_xon_thresh_bytes = -1;
109 module_param(rx_xon_thresh_bytes, int, 0644);
110 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
112 /* TX descriptor ring size - min 512 max 4k */
113 #define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
114 #define FALCON_TXD_RING_SIZE 1024
115 #define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
117 /* RX descriptor ring size - min 512 max 4k */
118 #define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
119 #define FALCON_RXD_RING_SIZE 1024
120 #define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
122 /* Event queue size - max 32k */
123 #define FALCON_EVQ_ORDER EVQ_SIZE_4K
124 #define FALCON_EVQ_SIZE 4096
125 #define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
127 /* If FALCON_MAX_INT_ERRORS internal errors occur within
128 * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
131 #define FALCON_INT_ERROR_EXPIRE 3600
132 #define FALCON_MAX_INT_ERRORS 5
134 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
136 #define FALCON_FLUSH_INTERVAL 10
137 #define FALCON_FLUSH_POLL_COUNT 100
139 /**************************************************************************
143 **************************************************************************
146 /* DMA address mask */
147 #define FALCON_DMA_MASK DMA_BIT_MASK(46)
149 /* TX DMA length mask (13-bit) */
150 #define FALCON_TX_DMA_MASK (4096 - 1)
152 /* Size and alignment of special buffers (4KB) */
153 #define FALCON_BUF_SIZE 4096
155 /* Dummy SRAM size code */
156 #define SRM_NB_BSZ_ONCHIP_ONLY (-1)
158 #define FALCON_IS_DUAL_FUNC(efx) \
159 (falcon_rev(efx) < FALCON_REV_B0)
161 /**************************************************************************
163 * Falcon hardware access
165 **************************************************************************/
167 /* Read the current event from the event queue */
168 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
171 return (((efx_qword_t *) (channel->eventq.addr)) + index);
174 /* See if an event is present
176 * We check both the high and low dword of the event for all ones. We
177 * wrote all ones when we cleared the event, and no valid event can
178 * have all ones in either its high or low dwords. This approach is
179 * robust against reordering.
181 * Note that using a single 64-bit comparison is incorrect; even
182 * though the CPU read will be atomic, the DMA write may not be.
184 static inline int falcon_event_present(efx_qword_t *event)
186 return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
187 EFX_DWORD_IS_ALL_ONES(event->dword[1])));
190 /**************************************************************************
192 * I2C bus - this is a bit-bashing interface using GPIO pins
193 * Note that it uses the output enables to tristate the outputs
194 * SDA is the data pin and SCL is the clock
196 **************************************************************************
198 static void falcon_setsda(void *data, int state)
200 struct efx_nic *efx = (struct efx_nic *)data;
203 falcon_read(efx, ®, GPIO_CTL_REG_KER);
204 EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, !state);
205 falcon_write(efx, ®, GPIO_CTL_REG_KER);
208 static void falcon_setscl(void *data, int state)
210 struct efx_nic *efx = (struct efx_nic *)data;
213 falcon_read(efx, ®, GPIO_CTL_REG_KER);
214 EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, !state);
215 falcon_write(efx, ®, GPIO_CTL_REG_KER);
218 static int falcon_getsda(void *data)
220 struct efx_nic *efx = (struct efx_nic *)data;
223 falcon_read(efx, ®, GPIO_CTL_REG_KER);
224 return EFX_OWORD_FIELD(reg, GPIO3_IN);
227 static int falcon_getscl(void *data)
229 struct efx_nic *efx = (struct efx_nic *)data;
232 falcon_read(efx, ®, GPIO_CTL_REG_KER);
233 return EFX_OWORD_FIELD(reg, GPIO0_IN);
236 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
237 .setsda = falcon_setsda,
238 .setscl = falcon_setscl,
239 .getsda = falcon_getsda,
240 .getscl = falcon_getscl,
242 /* Wait up to 50 ms for slave to let us pull SCL high */
243 .timeout = DIV_ROUND_UP(HZ, 20),
246 /**************************************************************************
248 * Falcon special buffer handling
249 * Special buffers are used for event queues and the TX and RX
252 *************************************************************************/
255 * Initialise a Falcon special buffer
257 * This will define a buffer (previously allocated via
258 * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
259 * it to be used for event queues, descriptor rings etc.
262 falcon_init_special_buffer(struct efx_nic *efx,
263 struct efx_special_buffer *buffer)
265 efx_qword_t buf_desc;
270 EFX_BUG_ON_PARANOID(!buffer->addr);
272 /* Write buffer descriptors to NIC */
273 for (i = 0; i < buffer->entries; i++) {
274 index = buffer->index + i;
275 dma_addr = buffer->dma_addr + (i * 4096);
276 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
277 index, (unsigned long long)dma_addr);
278 EFX_POPULATE_QWORD_4(buf_desc,
279 IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K,
281 BUF_ADR_FBUF, (dma_addr >> 12),
282 BUF_OWNER_ID_FBUF, 0);
283 falcon_write_sram(efx, &buf_desc, index);
287 /* Unmaps a buffer from Falcon and clears the buffer table entries */
289 falcon_fini_special_buffer(struct efx_nic *efx,
290 struct efx_special_buffer *buffer)
292 efx_oword_t buf_tbl_upd;
293 unsigned int start = buffer->index;
294 unsigned int end = (buffer->index + buffer->entries - 1);
296 if (!buffer->entries)
299 EFX_LOG(efx, "unmapping special buffers %d-%d\n",
300 buffer->index, buffer->index + buffer->entries - 1);
302 EFX_POPULATE_OWORD_4(buf_tbl_upd,
306 BUF_CLR_START_ID, start);
307 falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER);
311 * Allocate a new Falcon special buffer
313 * This allocates memory for a new buffer, clears it and allocates a
314 * new buffer ID range. It does not write into Falcon's buffer table.
316 * This call will allocate 4KB buffers, since Falcon can't use 8KB
317 * buffers for event queues and descriptor rings.
319 static int falcon_alloc_special_buffer(struct efx_nic *efx,
320 struct efx_special_buffer *buffer,
323 struct falcon_nic_data *nic_data = efx->nic_data;
325 len = ALIGN(len, FALCON_BUF_SIZE);
327 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
332 buffer->entries = len / FALCON_BUF_SIZE;
333 BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
335 /* All zeros is a potentially valid event so memset to 0xff */
336 memset(buffer->addr, 0xff, len);
338 /* Select new buffer ID */
339 buffer->index = nic_data->next_buffer_table;
340 nic_data->next_buffer_table += buffer->entries;
342 EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
343 "(virt %p phys %llx)\n", buffer->index,
344 buffer->index + buffer->entries - 1,
345 (u64)buffer->dma_addr, len,
346 buffer->addr, (u64)virt_to_phys(buffer->addr));
351 static void falcon_free_special_buffer(struct efx_nic *efx,
352 struct efx_special_buffer *buffer)
357 EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
358 "(virt %p phys %llx)\n", buffer->index,
359 buffer->index + buffer->entries - 1,
360 (u64)buffer->dma_addr, buffer->len,
361 buffer->addr, (u64)virt_to_phys(buffer->addr));
363 pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
369 /**************************************************************************
371 * Falcon generic buffer handling
372 * These buffers are used for interrupt status and MAC stats
374 **************************************************************************/
376 static int falcon_alloc_buffer(struct efx_nic *efx,
377 struct efx_buffer *buffer, unsigned int len)
379 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
384 memset(buffer->addr, 0, len);
388 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
391 pci_free_consistent(efx->pci_dev, buffer->len,
392 buffer->addr, buffer->dma_addr);
397 /**************************************************************************
401 **************************************************************************/
403 /* Returns a pointer to the specified transmit descriptor in the TX
404 * descriptor queue belonging to the specified channel.
406 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
409 return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
412 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
413 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
418 write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
419 EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr);
420 falcon_writel_page(tx_queue->efx, ®,
421 TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue);
425 /* For each entry inserted into the software descriptor ring, create a
426 * descriptor in the hardware TX descriptor ring (in host memory), and
429 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
432 struct efx_tx_buffer *buffer;
436 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
439 write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
440 buffer = &tx_queue->buffer[write_ptr];
441 txd = falcon_tx_desc(tx_queue, write_ptr);
442 ++tx_queue->write_count;
444 /* Create TX descriptor ring entry */
445 EFX_POPULATE_QWORD_5(*txd,
447 TX_KER_CONT, buffer->continuation,
448 TX_KER_BYTE_CNT, buffer->len,
449 TX_KER_BUF_REGION, 0,
450 TX_KER_BUF_ADR, buffer->dma_addr);
451 } while (tx_queue->write_count != tx_queue->insert_count);
453 wmb(); /* Ensure descriptors are written before they are fetched */
454 falcon_notify_tx_desc(tx_queue);
457 /* Allocate hardware resources for a TX queue */
458 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
460 struct efx_nic *efx = tx_queue->efx;
461 return falcon_alloc_special_buffer(efx, &tx_queue->txd,
462 FALCON_TXD_RING_SIZE *
463 sizeof(efx_qword_t));
466 void falcon_init_tx(struct efx_tx_queue *tx_queue)
468 efx_oword_t tx_desc_ptr;
469 struct efx_nic *efx = tx_queue->efx;
471 tx_queue->flushed = false;
473 /* Pin TX descriptor ring */
474 falcon_init_special_buffer(efx, &tx_queue->txd);
476 /* Push TX descriptor ring to card */
477 EFX_POPULATE_OWORD_10(tx_desc_ptr,
481 TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
482 TX_DESCQ_EVQ_ID, tx_queue->channel->channel,
483 TX_DESCQ_OWNER_ID, 0,
484 TX_DESCQ_LABEL, tx_queue->queue,
485 TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
487 TX_NON_IP_DROP_DIS_B0, 1);
489 if (falcon_rev(efx) >= FALCON_REV_B0) {
490 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
491 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, !csum);
492 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, !csum);
495 falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
498 if (falcon_rev(efx) < FALCON_REV_B0) {
501 /* Only 128 bits in this register */
502 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
504 falcon_read(efx, ®, TX_CHKSM_CFG_REG_KER_A1);
505 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
506 clear_bit_le(tx_queue->queue, (void *)®);
508 set_bit_le(tx_queue->queue, (void *)®);
509 falcon_write(efx, ®, TX_CHKSM_CFG_REG_KER_A1);
513 static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
515 struct efx_nic *efx = tx_queue->efx;
516 efx_oword_t tx_flush_descq;
518 /* Post a flush command */
519 EFX_POPULATE_OWORD_2(tx_flush_descq,
520 TX_FLUSH_DESCQ_CMD, 1,
521 TX_FLUSH_DESCQ, tx_queue->queue);
522 falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER);
525 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
527 struct efx_nic *efx = tx_queue->efx;
528 efx_oword_t tx_desc_ptr;
530 /* The queue should have been flushed */
531 WARN_ON(!tx_queue->flushed);
533 /* Remove TX descriptor ring from card */
534 EFX_ZERO_OWORD(tx_desc_ptr);
535 falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
538 /* Unpin TX descriptor ring */
539 falcon_fini_special_buffer(efx, &tx_queue->txd);
542 /* Free buffers backing TX queue */
543 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
545 falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
548 /**************************************************************************
552 **************************************************************************/
554 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
555 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
558 return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
561 /* This creates an entry in the RX descriptor queue */
562 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
565 struct efx_rx_buffer *rx_buf;
568 rxd = falcon_rx_desc(rx_queue, index);
569 rx_buf = efx_rx_buffer(rx_queue, index);
570 EFX_POPULATE_QWORD_3(*rxd,
573 rx_queue->efx->type->rx_buffer_padding,
574 RX_KER_BUF_REGION, 0,
575 RX_KER_BUF_ADR, rx_buf->dma_addr);
578 /* This writes to the RX_DESC_WPTR register for the specified receive
581 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
586 while (rx_queue->notified_count != rx_queue->added_count) {
587 falcon_build_rx_desc(rx_queue,
588 rx_queue->notified_count &
589 FALCON_RXD_RING_MASK);
590 ++rx_queue->notified_count;
594 write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
595 EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr);
596 falcon_writel_page(rx_queue->efx, ®,
597 RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue);
600 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
602 struct efx_nic *efx = rx_queue->efx;
603 return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
604 FALCON_RXD_RING_SIZE *
605 sizeof(efx_qword_t));
608 void falcon_init_rx(struct efx_rx_queue *rx_queue)
610 efx_oword_t rx_desc_ptr;
611 struct efx_nic *efx = rx_queue->efx;
612 bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
613 bool iscsi_digest_en = is_b0;
615 EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
616 rx_queue->queue, rx_queue->rxd.index,
617 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
619 rx_queue->flushed = false;
621 /* Pin RX descriptor ring */
622 falcon_init_special_buffer(efx, &rx_queue->rxd);
624 /* Push RX descriptor ring to card */
625 EFX_POPULATE_OWORD_10(rx_desc_ptr,
626 RX_ISCSI_DDIG_EN, iscsi_digest_en,
627 RX_ISCSI_HDIG_EN, iscsi_digest_en,
628 RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
629 RX_DESCQ_EVQ_ID, rx_queue->channel->channel,
630 RX_DESCQ_OWNER_ID, 0,
631 RX_DESCQ_LABEL, rx_queue->queue,
632 RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
633 RX_DESCQ_TYPE, 0 /* kernel queue */ ,
634 /* For >=B0 this is scatter so disable */
635 RX_DESCQ_JUMBO, !is_b0,
637 falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
641 static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
643 struct efx_nic *efx = rx_queue->efx;
644 efx_oword_t rx_flush_descq;
646 /* Post a flush command */
647 EFX_POPULATE_OWORD_2(rx_flush_descq,
648 RX_FLUSH_DESCQ_CMD, 1,
649 RX_FLUSH_DESCQ, rx_queue->queue);
650 falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER);
653 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
655 efx_oword_t rx_desc_ptr;
656 struct efx_nic *efx = rx_queue->efx;
658 /* The queue should already have been flushed */
659 WARN_ON(!rx_queue->flushed);
661 /* Remove RX descriptor ring from card */
662 EFX_ZERO_OWORD(rx_desc_ptr);
663 falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
666 /* Unpin RX descriptor ring */
667 falcon_fini_special_buffer(efx, &rx_queue->rxd);
670 /* Free buffers backing RX queue */
671 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
673 falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
676 /**************************************************************************
678 * Falcon event queue processing
679 * Event queues are processed by per-channel tasklets.
681 **************************************************************************/
683 /* Update a channel's event queue's read pointer (RPTR) register
685 * This writes the EVQ_RPTR_REG register for the specified channel's
688 * Note that EVQ_RPTR_REG contains the index of the "last read" event,
689 * whereas channel->eventq_read_ptr contains the index of the "next to
692 void falcon_eventq_read_ack(struct efx_channel *channel)
695 struct efx_nic *efx = channel->efx;
697 EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr);
698 falcon_writel_table(efx, ®, efx->type->evq_rptr_tbl_base,
702 /* Use HW to insert a SW defined event */
703 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
705 efx_oword_t drv_ev_reg;
707 EFX_POPULATE_OWORD_2(drv_ev_reg,
708 DRV_EV_QID, channel->channel,
710 EFX_QWORD_FIELD64(*event, WHOLE_EVENT));
711 falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER);
714 /* Handle a transmit completion event
716 * Falcon batches TX completion events; the message we receive is of
717 * the form "complete all TX events up to this index".
719 static void falcon_handle_tx_event(struct efx_channel *channel,
722 unsigned int tx_ev_desc_ptr;
723 unsigned int tx_ev_q_label;
724 struct efx_tx_queue *tx_queue;
725 struct efx_nic *efx = channel->efx;
727 if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) {
728 /* Transmit completion */
729 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR);
730 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
731 tx_queue = &efx->tx_queue[tx_ev_q_label];
732 channel->irq_mod_score +=
733 (tx_ev_desc_ptr - tx_queue->read_count) &
734 efx->type->txd_ring_mask;
735 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
736 } else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) {
737 /* Rewrite the FIFO write pointer */
738 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
739 tx_queue = &efx->tx_queue[tx_ev_q_label];
741 if (efx_dev_registered(efx))
742 netif_tx_lock(efx->net_dev);
743 falcon_notify_tx_desc(tx_queue);
744 if (efx_dev_registered(efx))
745 netif_tx_unlock(efx->net_dev);
746 } else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) &&
747 EFX_WORKAROUND_10727(efx)) {
748 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
750 EFX_ERR(efx, "channel %d unexpected TX event "
751 EFX_QWORD_FMT"\n", channel->channel,
752 EFX_QWORD_VAL(*event));
756 /* Detect errors included in the rx_evt_pkt_ok bit. */
757 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
758 const efx_qword_t *event,
762 struct efx_nic *efx = rx_queue->efx;
763 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
764 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
765 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
766 bool rx_ev_other_err, rx_ev_pause_frm;
767 bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
768 unsigned rx_ev_pkt_type;
770 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
771 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
772 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC);
773 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE);
774 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
775 RX_EV_BUF_OWNER_ID_ERR);
776 rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR);
777 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
778 RX_EV_IP_HDR_CHKSUM_ERR);
779 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
780 RX_EV_TCP_UDP_CHKSUM_ERR);
781 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR);
782 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC);
783 rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
784 0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB));
785 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR);
787 /* Every error apart from tobe_disc and pause_frm */
788 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
789 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
790 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
792 /* Count errors that are not in MAC stats. Ignore expected
793 * checksum errors during self-test. */
795 ++rx_queue->channel->n_rx_frm_trunc;
796 else if (rx_ev_tobe_disc)
797 ++rx_queue->channel->n_rx_tobe_disc;
798 else if (!efx->loopback_selftest) {
799 if (rx_ev_ip_hdr_chksum_err)
800 ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
801 else if (rx_ev_tcp_udp_chksum_err)
802 ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
804 if (rx_ev_ip_frag_err)
805 ++rx_queue->channel->n_rx_ip_frag_err;
807 /* The frame must be discarded if any of these are true. */
808 *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
809 rx_ev_tobe_disc | rx_ev_pause_frm);
811 /* TOBE_DISC is expected on unicast mismatches; don't print out an
812 * error message. FRM_TRUNC indicates RXDP dropped the packet due
813 * to a FIFO overflow.
815 #ifdef EFX_ENABLE_DEBUG
816 if (rx_ev_other_err) {
817 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
818 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
819 rx_queue->queue, EFX_QWORD_VAL(*event),
820 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
821 rx_ev_ip_hdr_chksum_err ?
822 " [IP_HDR_CHKSUM_ERR]" : "",
823 rx_ev_tcp_udp_chksum_err ?
824 " [TCP_UDP_CHKSUM_ERR]" : "",
825 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
826 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
827 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
828 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
829 rx_ev_pause_frm ? " [PAUSE]" : "");
834 /* Handle receive events that are not in-order. */
835 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
838 struct efx_nic *efx = rx_queue->efx;
839 unsigned expected, dropped;
841 expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
842 dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
843 FALCON_RXD_RING_MASK);
844 EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
845 dropped, index, expected);
847 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
848 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
851 /* Handle a packet received event
853 * Falcon silicon gives a "discard" flag if it's a unicast packet with the
854 * wrong destination address
855 * Also "is multicast" and "matches multicast filter" flags can be used to
856 * discard non-matching multicast packets.
858 static void falcon_handle_rx_event(struct efx_channel *channel,
859 const efx_qword_t *event)
861 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
862 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
863 unsigned expected_ptr;
864 bool rx_ev_pkt_ok, discard = false, checksummed;
865 struct efx_rx_queue *rx_queue;
866 struct efx_nic *efx = channel->efx;
868 /* Basic packet information */
869 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT);
870 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK);
871 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
872 WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT));
873 WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1);
874 WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL) != channel->channel);
876 rx_queue = &efx->rx_queue[channel->channel];
878 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
879 expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
880 if (unlikely(rx_ev_desc_ptr != expected_ptr))
881 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
883 if (likely(rx_ev_pkt_ok)) {
884 /* If packet is marked as OK and packet type is TCP/IPv4 or
885 * UDP/IPv4, then we can rely on the hardware checksum.
887 checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type);
889 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
894 /* Detect multicast packets that didn't match the filter */
895 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
896 if (rx_ev_mcast_pkt) {
897 unsigned int rx_ev_mcast_hash_match =
898 EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH);
900 if (unlikely(!rx_ev_mcast_hash_match))
904 channel->irq_mod_score += 2;
906 /* Handle received packet */
907 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
908 checksummed, discard);
911 /* Global events are basically PHY events */
912 static void falcon_handle_global_event(struct efx_channel *channel,
915 struct efx_nic *efx = channel->efx;
916 bool handled = false;
918 if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) ||
919 EFX_QWORD_FIELD(*event, G_PHY1_INTR) ||
920 EFX_QWORD_FIELD(*event, XG_PHY_INTR) ||
921 EFX_QWORD_FIELD(*event, XFP_PHY_INTR)) {
922 efx->phy_op->clear_interrupt(efx);
923 queue_work(efx->workqueue, &efx->phy_work);
927 if ((falcon_rev(efx) >= FALCON_REV_B0) &&
928 EFX_QWORD_FIELD(*event, XG_MNT_INTR_B0)) {
929 queue_work(efx->workqueue, &efx->mac_work);
933 if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) {
934 EFX_ERR(efx, "channel %d seen global RX_RESET "
935 "event. Resetting.\n", channel->channel);
937 atomic_inc(&efx->rx_reset);
938 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
939 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
944 EFX_ERR(efx, "channel %d unknown global event "
945 EFX_QWORD_FMT "\n", channel->channel,
946 EFX_QWORD_VAL(*event));
949 static void falcon_handle_driver_event(struct efx_channel *channel,
952 struct efx_nic *efx = channel->efx;
953 unsigned int ev_sub_code;
954 unsigned int ev_sub_data;
956 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
957 ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA);
959 switch (ev_sub_code) {
960 case TX_DESCQ_FLS_DONE_EV_DECODE:
961 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
962 channel->channel, ev_sub_data);
964 case RX_DESCQ_FLS_DONE_EV_DECODE:
965 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
966 channel->channel, ev_sub_data);
968 case EVQ_INIT_DONE_EV_DECODE:
969 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
970 channel->channel, ev_sub_data);
972 case SRM_UPD_DONE_EV_DECODE:
973 EFX_TRACE(efx, "channel %d SRAM update done\n",
976 case WAKE_UP_EV_DECODE:
977 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
978 channel->channel, ev_sub_data);
980 case TIMER_EV_DECODE:
981 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
982 channel->channel, ev_sub_data);
984 case RX_RECOVERY_EV_DECODE:
985 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
986 "Resetting.\n", channel->channel);
987 atomic_inc(&efx->rx_reset);
988 efx_schedule_reset(efx,
989 EFX_WORKAROUND_6555(efx) ?
990 RESET_TYPE_RX_RECOVERY :
993 case RX_DSC_ERROR_EV_DECODE:
994 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
995 " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
996 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
998 case TX_DSC_ERROR_EV_DECODE:
999 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
1000 " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
1001 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1004 EFX_TRACE(efx, "channel %d unknown driver event code %d "
1005 "data %04x\n", channel->channel, ev_sub_code,
1011 int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
1013 unsigned int read_ptr;
1014 efx_qword_t event, *p_event;
1018 read_ptr = channel->eventq_read_ptr;
1021 p_event = falcon_event(channel, read_ptr);
1024 if (!falcon_event_present(&event))
1028 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1029 channel->channel, EFX_QWORD_VAL(event));
1031 /* Clear this event by marking it all ones */
1032 EFX_SET_QWORD(*p_event);
1034 ev_code = EFX_QWORD_FIELD(event, EV_CODE);
1037 case RX_IP_EV_DECODE:
1038 falcon_handle_rx_event(channel, &event);
1041 case TX_IP_EV_DECODE:
1042 falcon_handle_tx_event(channel, &event);
1044 case DRV_GEN_EV_DECODE:
1045 channel->eventq_magic
1046 = EFX_QWORD_FIELD(event, EVQ_MAGIC);
1047 EFX_LOG(channel->efx, "channel %d received generated "
1048 "event "EFX_QWORD_FMT"\n", channel->channel,
1049 EFX_QWORD_VAL(event));
1051 case GLOBAL_EV_DECODE:
1052 falcon_handle_global_event(channel, &event);
1054 case DRIVER_EV_DECODE:
1055 falcon_handle_driver_event(channel, &event);
1058 EFX_ERR(channel->efx, "channel %d unknown event type %d"
1059 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1060 ev_code, EFX_QWORD_VAL(event));
1063 /* Increment read pointer */
1064 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1066 } while (rx_packets < rx_quota);
1068 channel->eventq_read_ptr = read_ptr;
1072 void falcon_set_int_moderation(struct efx_channel *channel)
1074 efx_dword_t timer_cmd;
1075 struct efx_nic *efx = channel->efx;
1077 /* Set timer register */
1078 if (channel->irq_moderation) {
1079 /* Round to resolution supported by hardware. The value we
1080 * program is based at 0. So actual interrupt moderation
1081 * achieved is ((x + 1) * res).
1083 channel->irq_moderation -= (channel->irq_moderation %
1084 FALCON_IRQ_MOD_RESOLUTION);
1085 if (channel->irq_moderation < FALCON_IRQ_MOD_RESOLUTION)
1086 channel->irq_moderation = FALCON_IRQ_MOD_RESOLUTION;
1087 EFX_POPULATE_DWORD_2(timer_cmd,
1088 TIMER_MODE, TIMER_MODE_INT_HLDOFF,
1090 channel->irq_moderation /
1091 FALCON_IRQ_MOD_RESOLUTION - 1);
1093 EFX_POPULATE_DWORD_2(timer_cmd,
1094 TIMER_MODE, TIMER_MODE_DIS,
1097 falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER,
1102 /* Allocate buffer table entries for event queue */
1103 int falcon_probe_eventq(struct efx_channel *channel)
1105 struct efx_nic *efx = channel->efx;
1106 unsigned int evq_size;
1108 evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
1109 return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
1112 void falcon_init_eventq(struct efx_channel *channel)
1114 efx_oword_t evq_ptr;
1115 struct efx_nic *efx = channel->efx;
1117 EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1118 channel->channel, channel->eventq.index,
1119 channel->eventq.index + channel->eventq.entries - 1);
1121 /* Pin event queue buffer */
1122 falcon_init_special_buffer(efx, &channel->eventq);
1124 /* Fill event queue with all ones (i.e. empty events) */
1125 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1127 /* Push event queue to card */
1128 EFX_POPULATE_OWORD_3(evq_ptr,
1130 EVQ_SIZE, FALCON_EVQ_ORDER,
1131 EVQ_BUF_BASE_ID, channel->eventq.index);
1132 falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1135 falcon_set_int_moderation(channel);
1138 void falcon_fini_eventq(struct efx_channel *channel)
1140 efx_oword_t eventq_ptr;
1141 struct efx_nic *efx = channel->efx;
1143 /* Remove event queue from card */
1144 EFX_ZERO_OWORD(eventq_ptr);
1145 falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1148 /* Unpin event queue */
1149 falcon_fini_special_buffer(efx, &channel->eventq);
1152 /* Free buffers backing event queue */
1153 void falcon_remove_eventq(struct efx_channel *channel)
1155 falcon_free_special_buffer(channel->efx, &channel->eventq);
1159 /* Generates a test event on the event queue. A subsequent call to
1160 * process_eventq() should pick up the event and place the value of
1161 * "magic" into channel->eventq_magic;
1163 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1165 efx_qword_t test_event;
1167 EFX_POPULATE_QWORD_2(test_event,
1168 EV_CODE, DRV_GEN_EV_DECODE,
1170 falcon_generate_event(channel, &test_event);
1173 void falcon_sim_phy_event(struct efx_nic *efx)
1175 efx_qword_t phy_event;
1177 EFX_POPULATE_QWORD_1(phy_event, EV_CODE, GLOBAL_EV_DECODE);
1179 EFX_SET_OWORD_FIELD(phy_event, XG_PHY_INTR, 1);
1181 EFX_SET_OWORD_FIELD(phy_event, G_PHY0_INTR, 1);
1183 falcon_generate_event(&efx->channel[0], &phy_event);
1186 /**************************************************************************
1190 **************************************************************************/
1193 static void falcon_poll_flush_events(struct efx_nic *efx)
1195 struct efx_channel *channel = &efx->channel[0];
1196 struct efx_tx_queue *tx_queue;
1197 struct efx_rx_queue *rx_queue;
1198 unsigned int read_ptr = channel->eventq_read_ptr;
1199 unsigned int end_ptr = (read_ptr - 1) & FALCON_EVQ_MASK;
1202 efx_qword_t *event = falcon_event(channel, read_ptr);
1203 int ev_code, ev_sub_code, ev_queue;
1206 if (!falcon_event_present(event))
1209 ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
1210 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
1211 if (ev_code == DRIVER_EV_DECODE &&
1212 ev_sub_code == TX_DESCQ_FLS_DONE_EV_DECODE) {
1213 ev_queue = EFX_QWORD_FIELD(*event,
1214 DRIVER_EV_TX_DESCQ_ID);
1215 if (ev_queue < EFX_TX_QUEUE_COUNT) {
1216 tx_queue = efx->tx_queue + ev_queue;
1217 tx_queue->flushed = true;
1219 } else if (ev_code == DRIVER_EV_DECODE &&
1220 ev_sub_code == RX_DESCQ_FLS_DONE_EV_DECODE) {
1221 ev_queue = EFX_QWORD_FIELD(*event,
1222 DRIVER_EV_RX_DESCQ_ID);
1223 ev_failed = EFX_QWORD_FIELD(*event,
1224 DRIVER_EV_RX_FLUSH_FAIL);
1225 if (ev_queue < efx->n_rx_queues) {
1226 rx_queue = efx->rx_queue + ev_queue;
1228 /* retry the rx flush */
1230 falcon_flush_rx_queue(rx_queue);
1232 rx_queue->flushed = true;
1236 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1237 } while (read_ptr != end_ptr);
1240 /* Handle tx and rx flushes at the same time, since they run in
1241 * parallel in the hardware and there's no reason for us to
1243 int falcon_flush_queues(struct efx_nic *efx)
1245 struct efx_rx_queue *rx_queue;
1246 struct efx_tx_queue *tx_queue;
1250 /* Issue flush requests */
1251 efx_for_each_tx_queue(tx_queue, efx) {
1252 tx_queue->flushed = false;
1253 falcon_flush_tx_queue(tx_queue);
1255 efx_for_each_rx_queue(rx_queue, efx) {
1256 rx_queue->flushed = false;
1257 falcon_flush_rx_queue(rx_queue);
1260 /* Poll the evq looking for flush completions. Since we're not pushing
1261 * any more rx or tx descriptors at this point, we're in no danger of
1262 * overflowing the evq whilst we wait */
1263 for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
1264 msleep(FALCON_FLUSH_INTERVAL);
1265 falcon_poll_flush_events(efx);
1267 /* Check if every queue has been succesfully flushed */
1268 outstanding = false;
1269 efx_for_each_tx_queue(tx_queue, efx)
1270 outstanding |= !tx_queue->flushed;
1271 efx_for_each_rx_queue(rx_queue, efx)
1272 outstanding |= !rx_queue->flushed;
1277 /* Mark the queues as all flushed. We're going to return failure
1278 * leading to a reset, or fake up success anyway. "flushed" now
1279 * indicates that we tried to flush. */
1280 efx_for_each_tx_queue(tx_queue, efx) {
1281 if (!tx_queue->flushed)
1282 EFX_ERR(efx, "tx queue %d flush command timed out\n",
1284 tx_queue->flushed = true;
1286 efx_for_each_rx_queue(rx_queue, efx) {
1287 if (!rx_queue->flushed)
1288 EFX_ERR(efx, "rx queue %d flush command timed out\n",
1290 rx_queue->flushed = true;
1293 if (EFX_WORKAROUND_7803(efx))
1299 /**************************************************************************
1301 * Falcon hardware interrupts
1302 * The hardware interrupt handler does very little work; all the event
1303 * queue processing is carried out by per-channel tasklets.
1305 **************************************************************************/
1307 /* Enable/disable/generate Falcon interrupts */
1308 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1311 efx_oword_t int_en_reg_ker;
1313 EFX_POPULATE_OWORD_2(int_en_reg_ker,
1315 DRV_INT_EN_KER, enabled);
1316 falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER);
1319 void falcon_enable_interrupts(struct efx_nic *efx)
1321 efx_oword_t int_adr_reg_ker;
1322 struct efx_channel *channel;
1324 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1325 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1327 /* Program address */
1328 EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1329 NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx),
1330 INT_ADR_KER, efx->irq_status.dma_addr);
1331 falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER);
1333 /* Enable interrupts */
1334 falcon_interrupts(efx, 1, 0);
1336 /* Force processing of all the channels to get the EVQ RPTRs up to
1338 efx_for_each_channel(channel, efx)
1339 efx_schedule_channel(channel);
1342 void falcon_disable_interrupts(struct efx_nic *efx)
1344 /* Disable interrupts */
1345 falcon_interrupts(efx, 0, 0);
1348 /* Generate a Falcon test interrupt
1349 * Interrupt must already have been enabled, otherwise nasty things
1352 void falcon_generate_interrupt(struct efx_nic *efx)
1354 falcon_interrupts(efx, 1, 1);
1357 /* Acknowledge a legacy interrupt from Falcon
1359 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1361 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1362 * BIU. Interrupt acknowledge is read sensitive so must write instead
1363 * (then read to ensure the BIU collector is flushed)
1365 * NB most hardware supports MSI interrupts
1367 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1371 EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e);
1372 falcon_writel(efx, ®, INT_ACK_REG_KER_A1);
1373 falcon_readl(efx, ®, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1);
1376 /* Process a fatal interrupt
1377 * Disable bus mastering ASAP and schedule a reset
1379 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1381 struct falcon_nic_data *nic_data = efx->nic_data;
1382 efx_oword_t *int_ker = efx->irq_status.addr;
1383 efx_oword_t fatal_intr;
1384 int error, mem_perr;
1386 falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER);
1387 error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR);
1389 EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1390 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1391 EFX_OWORD_VAL(fatal_intr),
1392 error ? "disabling bus mastering" : "no recognised error");
1396 /* If this is a memory parity error dump which blocks are offending */
1397 mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER);
1400 falcon_read(efx, ®, MEM_STAT_REG_KER);
1401 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1402 EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1405 /* Disable both devices */
1406 pci_clear_master(efx->pci_dev);
1407 if (FALCON_IS_DUAL_FUNC(efx))
1408 pci_clear_master(nic_data->pci_dev2);
1409 falcon_disable_interrupts(efx);
1411 /* Count errors and reset or disable the NIC accordingly */
1412 if (nic_data->int_error_count == 0 ||
1413 time_after(jiffies, nic_data->int_error_expire)) {
1414 nic_data->int_error_count = 0;
1415 nic_data->int_error_expire =
1416 jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
1418 if (++nic_data->int_error_count < FALCON_MAX_INT_ERRORS) {
1419 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1420 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1422 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1423 "NIC will be disabled\n");
1424 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1430 /* Handle a legacy interrupt from Falcon
1431 * Acknowledges the interrupt and schedule event queue processing.
1433 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1435 struct efx_nic *efx = dev_id;
1436 efx_oword_t *int_ker = efx->irq_status.addr;
1437 irqreturn_t result = IRQ_NONE;
1438 struct efx_channel *channel;
1443 /* Read the ISR which also ACKs the interrupts */
1444 falcon_readl(efx, ®, INT_ISR0_B0);
1445 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1447 /* Check to see if we have a serious error condition */
1448 syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1449 if (unlikely(syserr))
1450 return falcon_fatal_interrupt(efx);
1452 /* Schedule processing of any interrupting queues */
1453 efx_for_each_channel(channel, efx) {
1455 falcon_event_present(
1456 falcon_event(channel, channel->eventq_read_ptr))) {
1457 efx_schedule_channel(channel);
1458 result = IRQ_HANDLED;
1463 if (result == IRQ_HANDLED) {
1464 efx->last_irq_cpu = raw_smp_processor_id();
1465 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1466 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1473 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1475 struct efx_nic *efx = dev_id;
1476 efx_oword_t *int_ker = efx->irq_status.addr;
1477 struct efx_channel *channel;
1481 /* Check to see if this is our interrupt. If it isn't, we
1482 * exit without having touched the hardware.
1484 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1485 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1486 raw_smp_processor_id());
1489 efx->last_irq_cpu = raw_smp_processor_id();
1490 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1491 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1493 /* Check to see if we have a serious error condition */
1494 syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1495 if (unlikely(syserr))
1496 return falcon_fatal_interrupt(efx);
1498 /* Determine interrupting queues, clear interrupt status
1499 * register and acknowledge the device interrupt.
1501 BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1502 queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1503 EFX_ZERO_OWORD(*int_ker);
1504 wmb(); /* Ensure the vector is cleared before interrupt ack */
1505 falcon_irq_ack_a1(efx);
1507 /* Schedule processing of any interrupting queues */
1508 channel = &efx->channel[0];
1511 efx_schedule_channel(channel);
1519 /* Handle an MSI interrupt from Falcon
1521 * Handle an MSI hardware interrupt. This routine schedules event
1522 * queue processing. No interrupt acknowledgement cycle is necessary.
1523 * Also, we never need to check that the interrupt is for us, since
1524 * MSI interrupts cannot be shared.
1526 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1528 struct efx_channel *channel = dev_id;
1529 struct efx_nic *efx = channel->efx;
1530 efx_oword_t *int_ker = efx->irq_status.addr;
1533 efx->last_irq_cpu = raw_smp_processor_id();
1534 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1535 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1537 /* Check to see if we have a serious error condition */
1538 syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1539 if (unlikely(syserr))
1540 return falcon_fatal_interrupt(efx);
1542 /* Schedule processing of the channel */
1543 efx_schedule_channel(channel);
1549 /* Setup RSS indirection table.
1550 * This maps from the hash value of the packet to RXQ
1552 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1555 unsigned long offset;
1558 if (falcon_rev(efx) < FALCON_REV_B0)
1561 for (offset = RX_RSS_INDIR_TBL_B0;
1562 offset < RX_RSS_INDIR_TBL_B0 + 0x800;
1564 EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0,
1565 i % efx->n_rx_queues);
1566 falcon_writel(efx, &dword, offset);
1571 /* Hook interrupt handler(s)
1572 * Try MSI and then legacy interrupts.
1574 int falcon_init_interrupt(struct efx_nic *efx)
1576 struct efx_channel *channel;
1579 if (!EFX_INT_MODE_USE_MSI(efx)) {
1580 irq_handler_t handler;
1581 if (falcon_rev(efx) >= FALCON_REV_B0)
1582 handler = falcon_legacy_interrupt_b0;
1584 handler = falcon_legacy_interrupt_a1;
1586 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1589 EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1596 /* Hook MSI or MSI-X interrupt */
1597 efx_for_each_channel(channel, efx) {
1598 rc = request_irq(channel->irq, falcon_msi_interrupt,
1599 IRQF_PROBE_SHARED, /* Not shared */
1600 channel->name, channel);
1602 EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1610 efx_for_each_channel(channel, efx)
1611 free_irq(channel->irq, channel);
1616 void falcon_fini_interrupt(struct efx_nic *efx)
1618 struct efx_channel *channel;
1621 /* Disable MSI/MSI-X interrupts */
1622 efx_for_each_channel(channel, efx) {
1624 free_irq(channel->irq, channel);
1627 /* ACK legacy interrupt */
1628 if (falcon_rev(efx) >= FALCON_REV_B0)
1629 falcon_read(efx, ®, INT_ISR0_B0);
1631 falcon_irq_ack_a1(efx);
1633 /* Disable legacy interrupt */
1634 if (efx->legacy_irq)
1635 free_irq(efx->legacy_irq, efx);
1638 /**************************************************************************
1642 **************************************************************************
1645 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1647 static int falcon_spi_poll(struct efx_nic *efx)
1650 falcon_read(efx, ®, EE_SPI_HCMD_REG_KER);
1651 return EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1654 /* Wait for SPI command completion */
1655 static int falcon_spi_wait(struct efx_nic *efx)
1657 /* Most commands will finish quickly, so we start polling at
1658 * very short intervals. Sometimes the command may have to
1659 * wait for VPD or expansion ROM access outside of our
1660 * control, so we allow up to 100 ms. */
1661 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
1664 for (i = 0; i < 10; i++) {
1665 if (!falcon_spi_poll(efx))
1671 if (!falcon_spi_poll(efx))
1673 if (time_after_eq(jiffies, timeout)) {
1674 EFX_ERR(efx, "timed out waiting for SPI\n");
1677 schedule_timeout_uninterruptible(1);
1681 int falcon_spi_cmd(const struct efx_spi_device *spi,
1682 unsigned int command, int address,
1683 const void *in, void *out, size_t len)
1685 struct efx_nic *efx = spi->efx;
1686 bool addressed = (address >= 0);
1687 bool reading = (out != NULL);
1691 /* Input validation */
1692 if (len > FALCON_SPI_MAX_LEN)
1694 BUG_ON(!mutex_is_locked(&efx->spi_lock));
1696 /* Check that previous command is not still running */
1697 rc = falcon_spi_poll(efx);
1701 /* Program address register, if we have an address */
1703 EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address);
1704 falcon_write(efx, ®, EE_SPI_HADR_REG_KER);
1707 /* Program data register, if we have data */
1709 memcpy(®, in, len);
1710 falcon_write(efx, ®, EE_SPI_HDATA_REG_KER);
1713 /* Issue read/write command */
1714 EFX_POPULATE_OWORD_7(reg,
1715 EE_SPI_HCMD_CMD_EN, 1,
1716 EE_SPI_HCMD_SF_SEL, spi->device_id,
1717 EE_SPI_HCMD_DABCNT, len,
1718 EE_SPI_HCMD_READ, reading,
1719 EE_SPI_HCMD_DUBCNT, 0,
1721 (addressed ? spi->addr_len : 0),
1722 EE_SPI_HCMD_ENC, command);
1723 falcon_write(efx, ®, EE_SPI_HCMD_REG_KER);
1725 /* Wait for read/write to complete */
1726 rc = falcon_spi_wait(efx);
1732 falcon_read(efx, ®, EE_SPI_HDATA_REG_KER);
1733 memcpy(out, ®, len);
1740 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1742 return min(FALCON_SPI_MAX_LEN,
1743 (spi->block_size - (start & (spi->block_size - 1))));
1747 efx_spi_munge_command(const struct efx_spi_device *spi,
1748 const u8 command, const unsigned int address)
1750 return command | (((address >> 8) & spi->munge_address) << 3);
1753 /* Wait up to 10 ms for buffered write completion */
1754 int falcon_spi_wait_write(const struct efx_spi_device *spi)
1756 struct efx_nic *efx = spi->efx;
1757 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1762 rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1763 &status, sizeof(status));
1766 if (!(status & SPI_STATUS_NRDY))
1768 if (time_after_eq(jiffies, timeout)) {
1769 EFX_ERR(efx, "SPI write timeout on device %d"
1770 " last status=0x%02x\n",
1771 spi->device_id, status);
1774 schedule_timeout_uninterruptible(1);
1778 int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1779 size_t len, size_t *retlen, u8 *buffer)
1781 size_t block_len, pos = 0;
1782 unsigned int command;
1786 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1788 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1789 rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1790 buffer + pos, block_len);
1795 /* Avoid locking up the system */
1797 if (signal_pending(current)) {
1808 int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1809 size_t len, size_t *retlen, const u8 *buffer)
1811 u8 verify_buffer[FALCON_SPI_MAX_LEN];
1812 size_t block_len, pos = 0;
1813 unsigned int command;
1817 rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1821 block_len = min(len - pos,
1822 falcon_spi_write_limit(spi, start + pos));
1823 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1824 rc = falcon_spi_cmd(spi, command, start + pos,
1825 buffer + pos, NULL, block_len);
1829 rc = falcon_spi_wait_write(spi);
1833 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1834 rc = falcon_spi_cmd(spi, command, start + pos,
1835 NULL, verify_buffer, block_len);
1836 if (memcmp(verify_buffer, buffer + pos, block_len)) {
1843 /* Avoid locking up the system */
1845 if (signal_pending(current)) {
1856 /**************************************************************************
1860 **************************************************************************
1863 static int falcon_reset_macs(struct efx_nic *efx)
1868 if (falcon_rev(efx) < FALCON_REV_B0) {
1869 /* It's not safe to use GLB_CTL_REG to reset the
1870 * macs, so instead use the internal MAC resets
1872 if (!EFX_IS10G(efx)) {
1873 EFX_POPULATE_OWORD_1(reg, GM_SW_RST, 1);
1874 falcon_write(efx, ®, GM_CFG1_REG);
1877 EFX_POPULATE_OWORD_1(reg, GM_SW_RST, 0);
1878 falcon_write(efx, ®, GM_CFG1_REG);
1882 EFX_POPULATE_OWORD_1(reg, XM_CORE_RST, 1);
1883 falcon_write(efx, ®, XM_GLB_CFG_REG);
1885 for (count = 0; count < 10000; count++) {
1886 falcon_read(efx, ®, XM_GLB_CFG_REG);
1887 if (EFX_OWORD_FIELD(reg, XM_CORE_RST) == 0)
1892 EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
1897 /* MAC stats will fail whilst the TX fifo is draining. Serialise
1898 * the drain sequence with the statistics fetch */
1899 efx_stats_disable(efx);
1901 falcon_read(efx, ®, MAC0_CTRL_REG_KER);
1902 EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0, 1);
1903 falcon_write(efx, ®, MAC0_CTRL_REG_KER);
1905 falcon_read(efx, ®, GLB_CTL_REG_KER);
1906 EFX_SET_OWORD_FIELD(reg, RST_XGTX, 1);
1907 EFX_SET_OWORD_FIELD(reg, RST_XGRX, 1);
1908 EFX_SET_OWORD_FIELD(reg, RST_EM, 1);
1909 falcon_write(efx, ®, GLB_CTL_REG_KER);
1913 falcon_read(efx, ®, GLB_CTL_REG_KER);
1914 if (!EFX_OWORD_FIELD(reg, RST_XGTX) &&
1915 !EFX_OWORD_FIELD(reg, RST_XGRX) &&
1916 !EFX_OWORD_FIELD(reg, RST_EM)) {
1917 EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1922 EFX_ERR(efx, "MAC reset failed\n");
1929 efx_stats_enable(efx);
1931 /* If we've reset the EM block and the link is up, then
1932 * we'll have to kick the XAUI link so the PHY can recover */
1933 if (efx->link_up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
1934 falcon_reset_xaui(efx);
1939 void falcon_drain_tx_fifo(struct efx_nic *efx)
1943 if ((falcon_rev(efx) < FALCON_REV_B0) ||
1944 (efx->loopback_mode != LOOPBACK_NONE))
1947 falcon_read(efx, ®, MAC0_CTRL_REG_KER);
1948 /* There is no point in draining more than once */
1949 if (EFX_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0))
1952 falcon_reset_macs(efx);
1955 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1959 if (falcon_rev(efx) < FALCON_REV_B0)
1962 /* Isolate the MAC -> RX */
1963 falcon_read(efx, ®, RX_CFG_REG_KER);
1964 EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 0);
1965 falcon_write(efx, ®, RX_CFG_REG_KER);
1968 falcon_drain_tx_fifo(efx);
1971 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1977 switch (efx->link_speed) {
1978 case 10000: link_speed = 3; break;
1979 case 1000: link_speed = 2; break;
1980 case 100: link_speed = 1; break;
1981 default: link_speed = 0; break;
1983 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1984 * as advertised. Disable to ensure packets are not
1985 * indefinitely held and TX queue can be flushed at any point
1986 * while the link is down. */
1987 EFX_POPULATE_OWORD_5(reg,
1988 MAC_XOFF_VAL, 0xffff /* max pause time */,
1990 MAC_UC_PROM, efx->promiscuous,
1991 MAC_LINK_STATUS, 1, /* always set */
1992 MAC_SPEED, link_speed);
1993 /* On B0, MAC backpressure can be disabled and packets get
1995 if (falcon_rev(efx) >= FALCON_REV_B0) {
1996 EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0,
2000 falcon_write(efx, ®, MAC0_CTRL_REG_KER);
2002 /* Restore the multicast hash registers. */
2003 falcon_set_multicast_hash(efx);
2005 /* Transmission of pause frames when RX crosses the threshold is
2006 * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
2007 * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
2008 tx_fc = !!(efx->link_fc & EFX_FC_TX);
2009 falcon_read(efx, ®, RX_CFG_REG_KER);
2010 EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc);
2012 /* Unisolate the MAC -> RX */
2013 if (falcon_rev(efx) >= FALCON_REV_B0)
2014 EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1);
2015 falcon_write(efx, ®, RX_CFG_REG_KER);
2018 int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
2024 if (disable_dma_stats)
2027 /* Statistics fetch will fail if the MAC is in TX drain */
2028 if (falcon_rev(efx) >= FALCON_REV_B0) {
2030 falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
2031 if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
2035 dma_done = (efx->stats_buffer.addr + done_offset);
2036 *dma_done = FALCON_STATS_NOT_DONE;
2037 wmb(); /* ensure done flag is clear */
2039 /* Initiate DMA transfer of stats */
2040 EFX_POPULATE_OWORD_2(reg,
2041 MAC_STAT_DMA_CMD, 1,
2043 efx->stats_buffer.dma_addr);
2044 falcon_write(efx, ®, MAC0_STAT_DMA_REG_KER);
2046 /* Wait for transfer to complete */
2047 for (i = 0; i < 400; i++) {
2048 if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) {
2049 rmb(); /* Ensure the stats are valid. */
2055 EFX_ERR(efx, "timed out waiting for statistics\n");
2059 /**************************************************************************
2061 * PHY access via GMII
2063 **************************************************************************
2066 /* Use the top bit of the MII PHY id to indicate the PHY type
2067 * (1G/10G), with the remaining bits as the actual PHY id.
2069 * This allows us to avoid leaking information from the mii_if_info
2070 * structure into other data structures.
2072 #define FALCON_PHY_ID_ID_WIDTH EFX_WIDTH(MD_PRT_DEV_ADR)
2073 #define FALCON_PHY_ID_ID_MASK ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
2074 #define FALCON_PHY_ID_WIDTH (FALCON_PHY_ID_ID_WIDTH + 1)
2075 #define FALCON_PHY_ID_MASK ((1 << FALCON_PHY_ID_WIDTH) - 1)
2076 #define FALCON_PHY_ID_10G (1 << (FALCON_PHY_ID_WIDTH - 1))
2079 /* Packing the clause 45 port and device fields into a single value */
2080 #define MD_PRT_ADR_COMP_LBN (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
2081 #define MD_PRT_ADR_COMP_WIDTH MD_PRT_ADR_WIDTH
2082 #define MD_DEV_ADR_COMP_LBN 0
2083 #define MD_DEV_ADR_COMP_WIDTH MD_DEV_ADR_WIDTH
2086 /* Wait for GMII access to complete */
2087 static int falcon_gmii_wait(struct efx_nic *efx)
2089 efx_dword_t md_stat;
2092 /* wait upto 50ms - taken max from datasheet */
2093 for (count = 0; count < 5000; count++) {
2094 falcon_readl(efx, &md_stat, MD_STAT_REG_KER);
2095 if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) {
2096 if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 ||
2097 EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) {
2098 EFX_ERR(efx, "error from GMII access "
2100 EFX_DWORD_VAL(md_stat));
2107 EFX_ERR(efx, "timed out waiting for GMII\n");
2111 /* Writes a GMII register of a PHY connected to Falcon using MDIO. */
2112 static void falcon_mdio_write(struct net_device *net_dev, int phy_id,
2113 int addr, int value)
2115 struct efx_nic *efx = netdev_priv(net_dev);
2116 unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK;
2119 /* The 'generic' prt/dev packing in mdio_10g.h is conveniently
2120 * chosen so that the only current user, Falcon, can take the
2121 * packed value and use them directly.
2122 * Fail to build if this assumption is broken.
2124 BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G);
2125 BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH);
2126 BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN);
2127 BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN);
2129 if (phy_id2 == PHY_ADDR_INVALID)
2132 /* See falcon_mdio_read for an explanation. */
2133 if (!(phy_id & FALCON_PHY_ID_10G)) {
2134 int mmd = ffs(efx->phy_op->mmds) - 1;
2135 EFX_TRACE(efx, "Fixing erroneous clause22 write\n");
2136 phy_id2 = mdio_clause45_pack(phy_id2, mmd)
2137 & FALCON_PHY_ID_ID_MASK;
2140 EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id,
2143 spin_lock_bh(&efx->phy_lock);
2145 /* Check MII not currently being accessed */
2146 if (falcon_gmii_wait(efx) != 0)
2149 /* Write the address/ID register */
2150 EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2151 falcon_write(efx, ®, MD_PHY_ADR_REG_KER);
2153 EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2);
2154 falcon_write(efx, ®, MD_ID_REG_KER);
2157 EFX_POPULATE_OWORD_1(reg, MD_TXD, value);
2158 falcon_write(efx, ®, MD_TXD_REG_KER);
2160 EFX_POPULATE_OWORD_2(reg,
2163 falcon_write(efx, ®, MD_CS_REG_KER);
2165 /* Wait for data to be written */
2166 if (falcon_gmii_wait(efx) != 0) {
2167 /* Abort the write operation */
2168 EFX_POPULATE_OWORD_2(reg,
2171 falcon_write(efx, ®, MD_CS_REG_KER);
2176 spin_unlock_bh(&efx->phy_lock);
2179 /* Reads a GMII register from a PHY connected to Falcon. If no value
2180 * could be read, -1 will be returned. */
2181 static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr)
2183 struct efx_nic *efx = netdev_priv(net_dev);
2184 unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK;
2188 if (phy_addr == PHY_ADDR_INVALID)
2191 /* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
2192 * but the generic Linux code does not make any distinction or have
2193 * any state for this.
2194 * We spot the case where someone tried to talk 22 to a 45 PHY and
2195 * redirect the request to the lowest numbered MMD as a clause45
2196 * request. This is enough to allow simple queries like id and link
2197 * state to succeed. TODO: We may need to do more in future.
2199 if (!(phy_id & FALCON_PHY_ID_10G)) {
2200 int mmd = ffs(efx->phy_op->mmds) - 1;
2201 EFX_TRACE(efx, "Fixing erroneous clause22 read\n");
2202 phy_addr = mdio_clause45_pack(phy_addr, mmd)
2203 & FALCON_PHY_ID_ID_MASK;
2206 spin_lock_bh(&efx->phy_lock);
2208 /* Check MII not currently being accessed */
2209 if (falcon_gmii_wait(efx) != 0)
2212 EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2213 falcon_write(efx, ®, MD_PHY_ADR_REG_KER);
2215 EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr);
2216 falcon_write(efx, ®, MD_ID_REG_KER);
2218 /* Request data to be read */
2219 EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0);
2220 falcon_write(efx, ®, MD_CS_REG_KER);
2222 /* Wait for data to become available */
2223 value = falcon_gmii_wait(efx);
2225 falcon_read(efx, ®, MD_RXD_REG_KER);
2226 value = EFX_OWORD_FIELD(reg, MD_RXD);
2227 EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n",
2228 phy_id, addr, value);
2230 /* Abort the read operation */
2231 EFX_POPULATE_OWORD_2(reg,
2234 falcon_write(efx, ®, MD_CS_REG_KER);
2236 EFX_LOG(efx, "read from GMII 0x%x register %02x, got "
2237 "error %d\n", phy_id, addr, value);
2241 spin_unlock_bh(&efx->phy_lock);
2246 static void falcon_init_mdio(struct mii_if_info *gmii)
2248 gmii->mdio_read = falcon_mdio_read;
2249 gmii->mdio_write = falcon_mdio_write;
2250 gmii->phy_id_mask = FALCON_PHY_ID_MASK;
2251 gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1);
2254 static int falcon_probe_phy(struct efx_nic *efx)
2256 switch (efx->phy_type) {
2257 case PHY_TYPE_SFX7101:
2258 efx->phy_op = &falcon_sfx7101_phy_ops;
2260 case PHY_TYPE_SFT9001A:
2261 case PHY_TYPE_SFT9001B:
2262 efx->phy_op = &falcon_sft9001_phy_ops;
2264 case PHY_TYPE_QT2022C2:
2265 case PHY_TYPE_QT2025C:
2266 efx->phy_op = &falcon_xfp_phy_ops;
2269 EFX_ERR(efx, "Unknown PHY type %d\n",
2274 if (efx->phy_op->macs & EFX_XMAC)
2275 efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
2276 (1 << LOOPBACK_XGXS) |
2277 (1 << LOOPBACK_XAUI));
2278 if (efx->phy_op->macs & EFX_GMAC)
2279 efx->loopback_modes |= (1 << LOOPBACK_GMAC);
2280 efx->loopback_modes |= efx->phy_op->loopbacks;
2285 int falcon_switch_mac(struct efx_nic *efx)
2287 struct efx_mac_operations *old_mac_op = efx->mac_op;
2288 efx_oword_t nic_stat;
2292 /* Don't try to fetch MAC stats while we're switching MACs */
2293 efx_stats_disable(efx);
2295 /* Internal loopbacks override the phy speed setting */
2296 if (efx->loopback_mode == LOOPBACK_GMAC) {
2297 efx->link_speed = 1000;
2298 efx->link_fd = true;
2299 } else if (LOOPBACK_INTERNAL(efx)) {
2300 efx->link_speed = 10000;
2301 efx->link_fd = true;
2304 WARN_ON(!mutex_is_locked(&efx->mac_lock));
2305 efx->mac_op = (EFX_IS10G(efx) ?
2306 &falcon_xmac_operations : &falcon_gmac_operations);
2308 /* Always push the NIC_STAT_REG setting even if the mac hasn't
2309 * changed, because this function is run post online reset */
2310 falcon_read(efx, &nic_stat, NIC_STAT_REG);
2311 strap_val = EFX_IS10G(efx) ? 5 : 3;
2312 if (falcon_rev(efx) >= FALCON_REV_B0) {
2313 EFX_SET_OWORD_FIELD(nic_stat, EE_STRAP_EN, 1);
2314 EFX_SET_OWORD_FIELD(nic_stat, EE_STRAP_OVR, strap_val);
2315 falcon_write(efx, &nic_stat, NIC_STAT_REG);
2317 /* Falcon A1 does not support 1G/10G speed switching
2318 * and must not be used with a PHY that does. */
2319 BUG_ON(EFX_OWORD_FIELD(nic_stat, STRAP_PINS) != strap_val);
2322 if (old_mac_op == efx->mac_op)
2325 EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2326 /* Not all macs support a mac-level link state */
2329 rc = falcon_reset_macs(efx);
2331 efx_stats_enable(efx);
2335 /* This call is responsible for hooking in the MAC and PHY operations */
2336 int falcon_probe_port(struct efx_nic *efx)
2340 /* Hook in PHY operations table */
2341 rc = falcon_probe_phy(efx);
2345 /* Set up GMII structure for PHY */
2346 efx->mii.supports_gmii = true;
2347 falcon_init_mdio(&efx->mii);
2349 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2350 if (falcon_rev(efx) >= FALCON_REV_B0)
2351 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2353 efx->wanted_fc = EFX_FC_RX;
2355 /* Allocate buffer for stats */
2356 rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2357 FALCON_MAC_STATS_SIZE);
2360 EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
2361 (u64)efx->stats_buffer.dma_addr,
2362 efx->stats_buffer.addr,
2363 (u64)virt_to_phys(efx->stats_buffer.addr));
2368 void falcon_remove_port(struct efx_nic *efx)
2370 falcon_free_buffer(efx, &efx->stats_buffer);
2373 /**************************************************************************
2375 * Multicast filtering
2377 **************************************************************************
2380 void falcon_set_multicast_hash(struct efx_nic *efx)
2382 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2384 /* Broadcast packets go through the multicast hash filter.
2385 * ether_crc_le() of the broadcast address is 0xbe2612ff
2386 * so we always add bit 0xff to the mask.
2388 set_bit_le(0xff, mc_hash->byte);
2390 falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER);
2391 falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER);
2395 /**************************************************************************
2399 **************************************************************************/
2401 int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2403 struct falcon_nvconfig *nvconfig;
2404 struct efx_spi_device *spi;
2406 int rc, magic_num, struct_ver;
2407 __le16 *word, *limit;
2410 spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2414 region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
2417 nvconfig = region + NVCONFIG_OFFSET;
2419 mutex_lock(&efx->spi_lock);
2420 rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2421 mutex_unlock(&efx->spi_lock);
2423 EFX_ERR(efx, "Failed to read %s\n",
2424 efx->spi_flash ? "flash" : "EEPROM");
2429 magic_num = le16_to_cpu(nvconfig->board_magic_num);
2430 struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2433 if (magic_num != NVCONFIG_BOARD_MAGIC_NUM) {
2434 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2437 if (struct_ver < 2) {
2438 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2440 } else if (struct_ver < 4) {
2441 word = &nvconfig->board_magic_num;
2442 limit = (__le16 *) (nvconfig + 1);
2445 limit = region + FALCON_NVCONFIG_END;
2447 for (csum = 0; word < limit; ++word)
2448 csum += le16_to_cpu(*word);
2450 if (~csum & 0xffff) {
2451 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2457 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2464 /* Registers tested in the falcon register test */
2468 } efx_test_registers[] = {
2469 { ADR_REGION_REG_KER,
2470 EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2472 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2474 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2476 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2477 { MAC0_CTRL_REG_KER,
2478 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2479 { SRM_TX_DC_CFG_REG_KER,
2480 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2481 { RX_DC_CFG_REG_KER,
2482 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2483 { RX_DC_PF_WM_REG_KER,
2484 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2486 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2488 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2490 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2492 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2494 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2496 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2498 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2500 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2502 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2504 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2507 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2508 const efx_oword_t *mask)
2510 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2511 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2514 int falcon_test_registers(struct efx_nic *efx)
2516 unsigned address = 0, i, j;
2517 efx_oword_t mask, imask, original, reg, buf;
2519 /* Falcon should be in loopback to isolate the XMAC from the PHY */
2520 WARN_ON(!LOOPBACK_INTERNAL(efx));
2522 for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
2523 address = efx_test_registers[i].address;
2524 mask = imask = efx_test_registers[i].mask;
2525 EFX_INVERT_OWORD(imask);
2527 falcon_read(efx, &original, address);
2529 /* bit sweep on and off */
2530 for (j = 0; j < 128; j++) {
2531 if (!EFX_EXTRACT_OWORD32(mask, j, j))
2534 /* Test this testable bit can be set in isolation */
2535 EFX_AND_OWORD(reg, original, mask);
2536 EFX_SET_OWORD32(reg, j, j, 1);
2538 falcon_write(efx, ®, address);
2539 falcon_read(efx, &buf, address);
2541 if (efx_masked_compare_oword(®, &buf, &mask))
2544 /* Test this testable bit can be cleared in isolation */
2545 EFX_OR_OWORD(reg, original, mask);
2546 EFX_SET_OWORD32(reg, j, j, 0);
2548 falcon_write(efx, ®, address);
2549 falcon_read(efx, &buf, address);
2551 if (efx_masked_compare_oword(®, &buf, &mask))
2555 falcon_write(efx, &original, address);
2561 EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2562 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2563 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2567 /**************************************************************************
2571 **************************************************************************
2574 /* Resets NIC to known state. This routine must be called in process
2575 * context and is allowed to sleep. */
2576 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2578 struct falcon_nic_data *nic_data = efx->nic_data;
2579 efx_oword_t glb_ctl_reg_ker;
2582 EFX_LOG(efx, "performing hardware reset (%d)\n", method);
2584 /* Initiate device reset */
2585 if (method == RESET_TYPE_WORLD) {
2586 rc = pci_save_state(efx->pci_dev);
2588 EFX_ERR(efx, "failed to backup PCI state of primary "
2589 "function prior to hardware reset\n");
2592 if (FALCON_IS_DUAL_FUNC(efx)) {
2593 rc = pci_save_state(nic_data->pci_dev2);
2595 EFX_ERR(efx, "failed to backup PCI state of "
2596 "secondary function prior to "
2597 "hardware reset\n");
2602 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2603 EXT_PHY_RST_DUR, 0x7,
2606 int reset_phy = (method == RESET_TYPE_INVISIBLE ?
2607 EXCLUDE_FROM_RESET : 0);
2609 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2610 EXT_PHY_RST_CTL, reset_phy,
2611 PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
2612 PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
2613 PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
2614 EE_RST_CTL, EXCLUDE_FROM_RESET,
2615 EXT_PHY_RST_DUR, 0x7 /* 10ms */,
2618 falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2620 EFX_LOG(efx, "waiting for hardware reset\n");
2621 schedule_timeout_uninterruptible(HZ / 20);
2623 /* Restore PCI configuration if needed */
2624 if (method == RESET_TYPE_WORLD) {
2625 if (FALCON_IS_DUAL_FUNC(efx)) {
2626 rc = pci_restore_state(nic_data->pci_dev2);
2628 EFX_ERR(efx, "failed to restore PCI config for "
2629 "the secondary function\n");
2633 rc = pci_restore_state(efx->pci_dev);
2635 EFX_ERR(efx, "failed to restore PCI config for the "
2636 "primary function\n");
2639 EFX_LOG(efx, "successfully restored PCI config\n");
2642 /* Assert that reset complete */
2643 falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2644 if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) {
2646 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2649 EFX_LOG(efx, "hardware reset complete\n");
2653 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2656 pci_restore_state(efx->pci_dev);
2663 /* Zeroes out the SRAM contents. This routine must be called in
2664 * process context and is allowed to sleep.
2666 static int falcon_reset_sram(struct efx_nic *efx)
2668 efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2671 /* Set the SRAM wake/sleep GPIO appropriately. */
2672 falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2673 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1);
2674 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1);
2675 falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2677 /* Initiate SRAM reset */
2678 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2679 SRAM_OOB_BT_INIT_EN, 1,
2680 SRM_NUM_BANKS_AND_BANK_SIZE, 0);
2681 falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2683 /* Wait for SRAM reset to complete */
2686 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2688 /* SRAM reset is slow; expect around 16ms */
2689 schedule_timeout_uninterruptible(HZ / 50);
2691 /* Check for reset complete */
2692 falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2693 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) {
2694 EFX_LOG(efx, "SRAM reset complete\n");
2698 } while (++count < 20); /* wait upto 0.4 sec */
2700 EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2704 static int falcon_spi_device_init(struct efx_nic *efx,
2705 struct efx_spi_device **spi_device_ret,
2706 unsigned int device_id, u32 device_type)
2708 struct efx_spi_device *spi_device;
2710 if (device_type != 0) {
2711 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2714 spi_device->device_id = device_id;
2716 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2717 spi_device->addr_len =
2718 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2719 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2720 spi_device->addr_len == 1);
2721 spi_device->erase_command =
2722 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2723 spi_device->erase_size =
2724 1 << SPI_DEV_TYPE_FIELD(device_type,
2725 SPI_DEV_TYPE_ERASE_SIZE);
2726 spi_device->block_size =
2727 1 << SPI_DEV_TYPE_FIELD(device_type,
2728 SPI_DEV_TYPE_BLOCK_SIZE);
2730 spi_device->efx = efx;
2735 kfree(*spi_device_ret);
2736 *spi_device_ret = spi_device;
2741 static void falcon_remove_spi_devices(struct efx_nic *efx)
2743 kfree(efx->spi_eeprom);
2744 efx->spi_eeprom = NULL;
2745 kfree(efx->spi_flash);
2746 efx->spi_flash = NULL;
2749 /* Extract non-volatile configuration */
2750 static int falcon_probe_nvconfig(struct efx_nic *efx)
2752 struct falcon_nvconfig *nvconfig;
2756 nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2760 rc = falcon_read_nvram(efx, nvconfig);
2761 if (rc == -EINVAL) {
2762 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2763 efx->phy_type = PHY_TYPE_NONE;
2764 efx->mii.phy_id = PHY_ADDR_INVALID;
2770 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2771 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2773 efx->phy_type = v2->port0_phy_type;
2774 efx->mii.phy_id = v2->port0_phy_addr;
2775 board_rev = le16_to_cpu(v2->board_revision);
2777 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2778 __le32 fl = v3->spi_device_type[EE_SPI_FLASH];
2779 __le32 ee = v3->spi_device_type[EE_SPI_EEPROM];
2780 rc = falcon_spi_device_init(efx, &efx->spi_flash,
2785 rc = falcon_spi_device_init(efx, &efx->spi_eeprom,
2793 /* Read the MAC addresses */
2794 memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2796 EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id);
2798 efx_set_board_info(efx, board_rev);
2804 falcon_remove_spi_devices(efx);
2810 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2811 * count, port speed). Set workaround and feature flags accordingly.
2813 static int falcon_probe_nic_variant(struct efx_nic *efx)
2815 efx_oword_t altera_build;
2816 efx_oword_t nic_stat;
2818 falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER);
2819 if (EFX_OWORD_FIELD(altera_build, VER_ALL)) {
2820 EFX_ERR(efx, "Falcon FPGA not supported\n");
2824 falcon_read(efx, &nic_stat, NIC_STAT_REG);
2826 switch (falcon_rev(efx)) {
2829 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2833 if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) {
2834 EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2843 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2847 /* Initial assumed speed */
2848 efx->link_speed = EFX_OWORD_FIELD(nic_stat, STRAP_10G) ? 10000 : 1000;
2853 /* Probe all SPI devices on the NIC */
2854 static void falcon_probe_spi_devices(struct efx_nic *efx)
2856 efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2859 falcon_read(efx, &gpio_ctl, GPIO_CTL_REG_KER);
2860 falcon_read(efx, &nic_stat, NIC_STAT_REG);
2861 falcon_read(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2863 if (EFX_OWORD_FIELD(gpio_ctl, BOOTED_USING_NVDEVICE)) {
2864 boot_dev = (EFX_OWORD_FIELD(nic_stat, SF_PRST) ?
2865 EE_SPI_FLASH : EE_SPI_EEPROM);
2866 EFX_LOG(efx, "Booted from %s\n",
2867 boot_dev == EE_SPI_FLASH ? "flash" : "EEPROM");
2869 /* Disable VPD and set clock dividers to safe
2870 * values for initial programming. */
2872 EFX_LOG(efx, "Booted from internal ASIC settings;"
2873 " setting SPI config\n");
2874 EFX_POPULATE_OWORD_3(ee_vpd_cfg, EE_VPD_EN, 0,
2875 /* 125 MHz / 7 ~= 20 MHz */
2877 /* 125 MHz / 63 ~= 2 MHz */
2878 EE_EE_CLOCK_DIV, 63);
2879 falcon_write(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2882 if (boot_dev == EE_SPI_FLASH)
2883 falcon_spi_device_init(efx, &efx->spi_flash, EE_SPI_FLASH,
2884 default_flash_type);
2885 if (boot_dev == EE_SPI_EEPROM)
2886 falcon_spi_device_init(efx, &efx->spi_eeprom, EE_SPI_EEPROM,
2890 int falcon_probe_nic(struct efx_nic *efx)
2892 struct falcon_nic_data *nic_data;
2895 /* Allocate storage for hardware specific data */
2896 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2899 efx->nic_data = nic_data;
2901 /* Determine number of ports etc. */
2902 rc = falcon_probe_nic_variant(efx);
2906 /* Probe secondary function if expected */
2907 if (FALCON_IS_DUAL_FUNC(efx)) {
2908 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2910 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2912 if (dev->bus == efx->pci_dev->bus &&
2913 dev->devfn == efx->pci_dev->devfn + 1) {
2914 nic_data->pci_dev2 = dev;
2918 if (!nic_data->pci_dev2) {
2919 EFX_ERR(efx, "failed to find secondary function\n");
2925 /* Now we can reset the NIC */
2926 rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2928 EFX_ERR(efx, "failed to reset NIC\n");
2932 /* Allocate memory for INT_KER */
2933 rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2936 BUG_ON(efx->irq_status.dma_addr & 0x0f);
2938 EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
2939 (u64)efx->irq_status.dma_addr,
2940 efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
2942 falcon_probe_spi_devices(efx);
2944 /* Read in the non-volatile configuration */
2945 rc = falcon_probe_nvconfig(efx);
2949 /* Initialise I2C adapter */
2950 efx->i2c_adap.owner = THIS_MODULE;
2951 nic_data->i2c_data = falcon_i2c_bit_operations;
2952 nic_data->i2c_data.data = efx;
2953 efx->i2c_adap.algo_data = &nic_data->i2c_data;
2954 efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
2955 strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
2956 rc = i2c_bit_add_bus(&efx->i2c_adap);
2963 falcon_remove_spi_devices(efx);
2964 falcon_free_buffer(efx, &efx->irq_status);
2967 if (nic_data->pci_dev2) {
2968 pci_dev_put(nic_data->pci_dev2);
2969 nic_data->pci_dev2 = NULL;
2973 kfree(efx->nic_data);
2977 /* This call performs hardware-specific global initialisation, such as
2978 * defining the descriptor cache sizes and number of RSS channels.
2979 * It does not set up any buffers, descriptor rings or event queues.
2981 int falcon_init_nic(struct efx_nic *efx)
2987 /* Use on-chip SRAM */
2988 falcon_read(efx, &temp, NIC_STAT_REG);
2989 EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1);
2990 falcon_write(efx, &temp, NIC_STAT_REG);
2992 /* Set the source of the GMAC clock */
2993 if (falcon_rev(efx) == FALCON_REV_B0) {
2994 falcon_read(efx, &temp, GPIO_CTL_REG_KER);
2995 EFX_SET_OWORD_FIELD(temp, GPIO_USE_NIC_CLK, true);
2996 falcon_write(efx, &temp, GPIO_CTL_REG_KER);
2999 /* Set buffer table mode */
3000 EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL);
3001 falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER);
3003 rc = falcon_reset_sram(efx);
3007 /* Set positions of descriptor caches in SRAM. */
3008 EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
3009 falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER);
3010 EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
3011 falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER);
3013 /* Set TX descriptor cache size. */
3014 BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
3015 EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
3016 falcon_write(efx, &temp, TX_DC_CFG_REG_KER);
3018 /* Set RX descriptor cache size. Set low watermark to size-8, as
3019 * this allows most efficient prefetching.
3021 BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
3022 EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
3023 falcon_write(efx, &temp, RX_DC_CFG_REG_KER);
3024 EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
3025 falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER);
3027 /* Clear the parity enables on the TX data fifos as
3028 * they produce false parity errors because of timing issues
3030 if (EFX_WORKAROUND_5129(efx)) {
3031 falcon_read(efx, &temp, SPARE_REG_KER);
3032 EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0);
3033 falcon_write(efx, &temp, SPARE_REG_KER);
3036 /* Enable all the genuinely fatal interrupts. (They are still
3037 * masked by the overall interrupt mask, controlled by
3038 * falcon_interrupts()).
3040 * Note: All other fatal interrupts are enabled
3042 EFX_POPULATE_OWORD_3(temp,
3043 ILL_ADR_INT_KER_EN, 1,
3044 RBUF_OWN_INT_KER_EN, 1,
3045 TBUF_OWN_INT_KER_EN, 1);
3046 EFX_INVERT_OWORD(temp);
3047 falcon_write(efx, &temp, FATAL_INTR_REG_KER);
3049 if (EFX_WORKAROUND_7244(efx)) {
3050 falcon_read(efx, &temp, RX_FILTER_CTL_REG);
3051 EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8);
3052 EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8);
3053 EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8);
3054 EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8);
3055 falcon_write(efx, &temp, RX_FILTER_CTL_REG);
3058 falcon_setup_rss_indir_table(efx);
3060 /* Setup RX. Wait for descriptor is broken and must
3061 * be disabled. RXDP recovery shouldn't be needed, but is.
3063 falcon_read(efx, &temp, RX_SELF_RST_REG_KER);
3064 EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1);
3065 EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1);
3066 if (EFX_WORKAROUND_5583(efx))
3067 EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1);
3068 falcon_write(efx, &temp, RX_SELF_RST_REG_KER);
3070 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
3071 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
3073 falcon_read(efx, &temp, TX_CFG2_REG_KER);
3074 EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe);
3075 EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1);
3076 EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1);
3077 EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0);
3078 EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1);
3079 /* Enable SW_EV to inherit in char driver - assume harmless here */
3080 EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1);
3081 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
3082 EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2);
3083 /* Squash TX of packets of 16 bytes or less */
3084 if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
3085 EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1);
3086 falcon_write(efx, &temp, TX_CFG2_REG_KER);
3088 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
3089 * descriptors (which is bad).
3091 falcon_read(efx, &temp, TX_CFG_REG_KER);
3092 EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0);
3093 falcon_write(efx, &temp, TX_CFG_REG_KER);
3096 falcon_read(efx, &temp, RX_CFG_REG_KER);
3097 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0);
3098 if (EFX_WORKAROUND_7575(efx))
3099 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE,
3101 if (falcon_rev(efx) >= FALCON_REV_B0)
3102 EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1);
3104 /* RX FIFO flow control thresholds */
3105 thresh = ((rx_xon_thresh_bytes >= 0) ?
3106 rx_xon_thresh_bytes : efx->type->rx_xon_thresh);
3107 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256);
3108 thresh = ((rx_xoff_thresh_bytes >= 0) ?
3109 rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh);
3110 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256);
3111 /* RX control FIFO thresholds [32 entries] */
3112 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 20);
3113 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 25);
3114 falcon_write(efx, &temp, RX_CFG_REG_KER);
3116 /* Set destination of both TX and RX Flush events */
3117 if (falcon_rev(efx) >= FALCON_REV_B0) {
3118 EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0);
3119 falcon_write(efx, &temp, DP_CTRL_REG);
3125 void falcon_remove_nic(struct efx_nic *efx)
3127 struct falcon_nic_data *nic_data = efx->nic_data;
3130 /* Remove I2C adapter and clear it in preparation for a retry */
3131 rc = i2c_del_adapter(&efx->i2c_adap);
3133 memset(&efx->i2c_adap, 0, sizeof(efx->i2c_adap));
3135 falcon_remove_spi_devices(efx);
3136 falcon_free_buffer(efx, &efx->irq_status);
3138 falcon_reset_hw(efx, RESET_TYPE_ALL);
3140 /* Release the second function after the reset */
3141 if (nic_data->pci_dev2) {
3142 pci_dev_put(nic_data->pci_dev2);
3143 nic_data->pci_dev2 = NULL;
3146 /* Tear down the private nic state */
3147 kfree(efx->nic_data);
3148 efx->nic_data = NULL;
3151 void falcon_update_nic_stats(struct efx_nic *efx)
3155 falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER);
3156 efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT);
3159 /**************************************************************************
3161 * Revision-dependent attributes used by efx.c
3163 **************************************************************************
3166 struct efx_nic_type falcon_a_nic_type = {
3168 .mem_map_size = 0x20000,
3169 .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1,
3170 .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1,
3171 .buf_tbl_base = BUF_TBL_KER_A1,
3172 .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1,
3173 .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1,
3174 .txd_ring_mask = FALCON_TXD_RING_MASK,
3175 .rxd_ring_mask = FALCON_RXD_RING_MASK,
3176 .evq_size = FALCON_EVQ_SIZE,
3177 .max_dma_mask = FALCON_DMA_MASK,
3178 .tx_dma_mask = FALCON_TX_DMA_MASK,
3179 .bug5391_mask = 0xf,
3180 .rx_xoff_thresh = 2048,
3181 .rx_xon_thresh = 512,
3182 .rx_buffer_padding = 0x24,
3183 .max_interrupt_mode = EFX_INT_MODE_MSI,
3184 .phys_addr_channels = 4,
3187 struct efx_nic_type falcon_b_nic_type = {
3189 /* Map everything up to and including the RSS indirection
3190 * table. Don't map MSI-X table, MSI-X PBA since Linux
3191 * requires that they not be mapped. */
3192 .mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800,
3193 .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0,
3194 .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0,
3195 .buf_tbl_base = BUF_TBL_KER_B0,
3196 .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0,
3197 .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0,
3198 .txd_ring_mask = FALCON_TXD_RING_MASK,
3199 .rxd_ring_mask = FALCON_RXD_RING_MASK,
3200 .evq_size = FALCON_EVQ_SIZE,
3201 .max_dma_mask = FALCON_DMA_MASK,
3202 .tx_dma_mask = FALCON_TX_DMA_MASK,
3204 .rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */
3205 .rx_xon_thresh = 27648, /* ~3*max MTU */
3206 .rx_buffer_padding = 0,
3207 .max_interrupt_mode = EFX_INT_MODE_MSIX,
3208 .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3209 * interrupt handler only supports 32