1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/errno.h>
4 #include <linux/hpet.h>
5 #include <linux/init.h>
6 #include <linux/sysdev.h>
12 extern struct clock_event_device *global_clock_event;
14 #define HPET_MASK CLOCKSOURCE_MASK(32)
17 /* FSEC = 10^-15 NSEC = 10^-9 */
18 #define FSEC_PER_NSEC 1000000
21 * HPET address is set in acpi/boot.c, when an ACPI entry exists
23 unsigned long hpet_address;
24 static void __iomem * hpet_virt_address;
26 static inline unsigned long hpet_readl(unsigned long a)
28 return readl(hpet_virt_address + a);
31 static inline void hpet_writel(unsigned long d, unsigned long a)
33 writel(d, hpet_virt_address + a);
37 * HPET command line enable / disable
39 static int boot_hpet_disable;
41 static int __init hpet_setup(char* str)
44 if (!strncmp("disable", str, 7))
45 boot_hpet_disable = 1;
49 __setup("hpet=", hpet_setup);
51 static inline int is_hpet_capable(void)
53 return (!boot_hpet_disable && hpet_address);
57 * HPET timer interrupt enable / disable
59 static int hpet_legacy_int_enabled;
62 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
64 int is_hpet_enabled(void)
66 return is_hpet_capable() && hpet_legacy_int_enabled;
70 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
71 * timer 0 and timer 1 in case of RTC emulation.
74 static void hpet_reserve_platform_timers(unsigned long id)
76 struct hpet __iomem *hpet = hpet_virt_address;
77 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
78 unsigned int nrtimers, i;
81 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
83 memset(&hd, 0, sizeof (hd));
84 hd.hd_phys_address = hpet_address;
85 hd.hd_address = hpet_virt_address;
86 hd.hd_nirqs = nrtimers;
87 hd.hd_flags = HPET_DATA_PLATFORM;
88 hpet_reserve_timer(&hd, 0);
90 #ifdef CONFIG_HPET_EMULATE_RTC
91 hpet_reserve_timer(&hd, 1);
94 hd.hd_irq[0] = HPET_LEGACY_8254;
95 hd.hd_irq[1] = HPET_LEGACY_RTC;
97 for (i = 2; i < nrtimers; timer++, i++)
98 hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
99 Tn_INT_ROUTE_CNF_SHIFT;
105 static void hpet_reserve_platform_timers(unsigned long id) { }
111 static unsigned long hpet_period;
113 static void hpet_set_mode(enum clock_event_mode mode,
114 struct clock_event_device *evt);
115 static int hpet_next_event(unsigned long delta,
116 struct clock_event_device *evt);
119 * The hpet clock event device
121 static struct clock_event_device hpet_clockevent = {
123 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
124 .set_mode = hpet_set_mode,
125 .set_next_event = hpet_next_event,
130 static void hpet_start_counter(void)
132 unsigned long cfg = hpet_readl(HPET_CFG);
134 cfg &= ~HPET_CFG_ENABLE;
135 hpet_writel(cfg, HPET_CFG);
136 hpet_writel(0, HPET_COUNTER);
137 hpet_writel(0, HPET_COUNTER + 4);
138 cfg |= HPET_CFG_ENABLE;
139 hpet_writel(cfg, HPET_CFG);
142 static void hpet_enable_int(void)
144 unsigned long cfg = hpet_readl(HPET_CFG);
146 cfg |= HPET_CFG_LEGACY;
147 hpet_writel(cfg, HPET_CFG);
148 hpet_legacy_int_enabled = 1;
151 static void hpet_set_mode(enum clock_event_mode mode,
152 struct clock_event_device *evt)
154 unsigned long cfg, cmp, now;
158 case CLOCK_EVT_MODE_PERIODIC:
159 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
160 delta >>= hpet_clockevent.shift;
161 now = hpet_readl(HPET_COUNTER);
162 cmp = now + (unsigned long) delta;
163 cfg = hpet_readl(HPET_T0_CFG);
164 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
165 HPET_TN_SETVAL | HPET_TN_32BIT;
166 hpet_writel(cfg, HPET_T0_CFG);
168 * The first write after writing TN_SETVAL to the
169 * config register sets the counter value, the second
170 * write sets the period.
172 hpet_writel(cmp, HPET_T0_CMP);
174 hpet_writel((unsigned long) delta, HPET_T0_CMP);
177 case CLOCK_EVT_MODE_ONESHOT:
178 cfg = hpet_readl(HPET_T0_CFG);
179 cfg &= ~HPET_TN_PERIODIC;
180 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
181 hpet_writel(cfg, HPET_T0_CFG);
184 case CLOCK_EVT_MODE_UNUSED:
185 case CLOCK_EVT_MODE_SHUTDOWN:
186 cfg = hpet_readl(HPET_T0_CFG);
187 cfg &= ~HPET_TN_ENABLE;
188 hpet_writel(cfg, HPET_T0_CFG);
193 static int hpet_next_event(unsigned long delta,
194 struct clock_event_device *evt)
198 cnt = hpet_readl(HPET_COUNTER);
200 hpet_writel(cnt, HPET_T0_CMP);
202 return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
206 * Clock source related code
208 static cycle_t read_hpet(void)
210 return (cycle_t)hpet_readl(HPET_COUNTER);
213 static struct clocksource clocksource_hpet = {
219 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
223 * Try to setup the HPET timer
225 int __init hpet_enable(void)
231 if (!is_hpet_capable())
234 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
237 * Read the period and check for a sane value:
239 hpet_period = hpet_readl(HPET_PERIOD);
240 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
244 * The period is a femto seconds value. We need to calculate the
245 * scaled math multiplication factor for nanosecond to hpet tick
248 hpet_freq = 1000000000000000ULL;
249 do_div(hpet_freq, hpet_period);
250 hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
252 /* Calculate the min / max delta */
253 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
255 hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
259 * Read the HPET ID register to retrieve the IRQ routing
260 * information and the number of channels
262 id = hpet_readl(HPET_ID);
264 #ifdef CONFIG_HPET_EMULATE_RTC
266 * The legacy routing mode needs at least two channels, tick timer
267 * and the rtc emulation channel.
269 if (!(id & HPET_ID_NUMBER))
273 /* Start the counter */
274 hpet_start_counter();
276 /* Initialize and register HPET clocksource
278 * hpet period is in femto seconds per cycle
279 * so we need to convert this to ns/cyc units
280 * aproximated by mult/2^shift
282 * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
283 * fsec/cyc * 1ns/1000000fsec * 2^shift = mult
284 * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
285 * (fsec/cyc << shift)/1000000 = mult
286 * (hpet_period << shift)/FSEC_PER_NSEC = mult
288 tmp = (u64)hpet_period << HPET_SHIFT;
289 do_div(tmp, FSEC_PER_NSEC);
290 clocksource_hpet.mult = (u32)tmp;
292 clocksource_register(&clocksource_hpet);
295 if (id & HPET_ID_LEGSUP) {
297 hpet_reserve_platform_timers(id);
299 * Start hpet with the boot cpu mask and make it
300 * global after the IO_APIC has been initialized.
302 hpet_clockevent.cpumask =cpumask_of_cpu(0);
303 clockevents_register_device(&hpet_clockevent);
304 global_clock_event = &hpet_clockevent;
310 iounmap(hpet_virt_address);
311 hpet_virt_address = NULL;
312 boot_hpet_disable = 1;
317 #ifdef CONFIG_HPET_EMULATE_RTC
319 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
320 * is enabled, we support RTC interrupt functionality in software.
321 * RTC has 3 kinds of interrupts:
322 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
324 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
325 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
326 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
327 * (1) and (2) above are implemented using polling at a frequency of
328 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
329 * overhead. (DEFAULT_RTC_INT_FREQ)
330 * For (3), we use interrupts at 64Hz or user specified periodic
331 * frequency, whichever is higher.
333 #include <linux/mc146818rtc.h>
334 #include <linux/rtc.h>
336 #define DEFAULT_RTC_INT_FREQ 64
337 #define DEFAULT_RTC_SHIFT 6
338 #define RTC_NUM_INTS 1
340 static unsigned long hpet_rtc_flags;
341 static unsigned long hpet_prev_update_sec;
342 static struct rtc_time hpet_alarm_time;
343 static unsigned long hpet_pie_count;
344 static unsigned long hpet_t1_cmp;
345 static unsigned long hpet_default_delta;
346 static unsigned long hpet_pie_delta;
347 static unsigned long hpet_pie_limit;
350 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
351 * is not supported by all HPET implementations for timer 1.
353 * hpet_rtc_timer_init() is called when the rtc is initialized.
355 int hpet_rtc_timer_init(void)
357 unsigned long cfg, cnt, delta, flags;
359 if (!is_hpet_enabled())
362 if (!hpet_default_delta) {
365 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
366 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
367 hpet_default_delta = (unsigned long) clc;
370 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
371 delta = hpet_default_delta;
373 delta = hpet_pie_delta;
375 local_irq_save(flags);
377 cnt = delta + hpet_readl(HPET_COUNTER);
378 hpet_writel(cnt, HPET_T1_CMP);
381 cfg = hpet_readl(HPET_T1_CFG);
382 cfg &= ~HPET_TN_PERIODIC;
383 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
384 hpet_writel(cfg, HPET_T1_CFG);
386 local_irq_restore(flags);
392 * The functions below are called from rtc driver.
393 * Return 0 if HPET is not being used.
394 * Otherwise do the necessary changes and return 1.
396 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
398 if (!is_hpet_enabled())
401 hpet_rtc_flags &= ~bit_mask;
405 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
407 unsigned long oldbits = hpet_rtc_flags;
409 if (!is_hpet_enabled())
412 hpet_rtc_flags |= bit_mask;
415 hpet_rtc_timer_init();
420 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
423 if (!is_hpet_enabled())
426 hpet_alarm_time.tm_hour = hrs;
427 hpet_alarm_time.tm_min = min;
428 hpet_alarm_time.tm_sec = sec;
433 int hpet_set_periodic_freq(unsigned long freq)
437 if (!is_hpet_enabled())
440 if (freq <= DEFAULT_RTC_INT_FREQ)
441 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
443 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
445 clc >>= hpet_clockevent.shift;
446 hpet_pie_delta = (unsigned long) clc;
451 int hpet_rtc_dropped_irq(void)
453 return is_hpet_enabled();
456 static void hpet_rtc_timer_reinit(void)
458 unsigned long cfg, delta;
461 if (unlikely(!hpet_rtc_flags)) {
462 cfg = hpet_readl(HPET_T1_CFG);
463 cfg &= ~HPET_TN_ENABLE;
464 hpet_writel(cfg, HPET_T1_CFG);
468 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
469 delta = hpet_default_delta;
471 delta = hpet_pie_delta;
474 * Increment the comparator value until we are ahead of the
478 hpet_t1_cmp += delta;
479 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
481 } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
484 if (hpet_rtc_flags & RTC_PIE)
485 hpet_pie_count += lost_ints;
486 if (printk_ratelimit())
487 printk(KERN_WARNING "rtc: lost %d interrupts\n",
492 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
494 struct rtc_time curr_time;
495 unsigned long rtc_int_flag = 0;
497 hpet_rtc_timer_reinit();
499 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
500 rtc_get_rtc_time(&curr_time);
502 if (hpet_rtc_flags & RTC_UIE &&
503 curr_time.tm_sec != hpet_prev_update_sec) {
504 rtc_int_flag = RTC_UF;
505 hpet_prev_update_sec = curr_time.tm_sec;
508 if (hpet_rtc_flags & RTC_PIE &&
509 ++hpet_pie_count >= hpet_pie_limit) {
510 rtc_int_flag |= RTC_PF;
514 if (hpet_rtc_flags & RTC_PIE &&
515 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
516 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
517 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
518 rtc_int_flag |= RTC_AF;
521 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
522 rtc_interrupt(rtc_int_flag, dev_id);
530 * Suspend/resume part
535 static int hpet_suspend(struct sys_device *sys_device, pm_message_t state)
537 unsigned long cfg = hpet_readl(HPET_CFG);
539 cfg &= ~(HPET_CFG_ENABLE|HPET_CFG_LEGACY);
540 hpet_writel(cfg, HPET_CFG);
545 static int hpet_resume(struct sys_device *sys_device)
549 hpet_start_counter();
551 id = hpet_readl(HPET_ID);
553 if (id & HPET_ID_LEGSUP)
559 static struct sysdev_class hpet_class = {
560 set_kset_name("hpet"),
561 .suspend = hpet_suspend,
562 .resume = hpet_resume,
565 static struct sys_device hpet_device = {
571 static __init int hpet_register_sysfs(void)
575 if (!is_hpet_capable())
578 err = sysdev_class_register(&hpet_class);
581 err = sysdev_register(&hpet_device);
583 sysdev_class_unregister(&hpet_class);
589 device_initcall(hpet_register_sysfs);