Merge branch 'juju' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394/linux13...
[linux-2.6] / drivers / net / wireless / zd1211rw / zd_usb.c
1 /* zd_usb.c
2  *
3  * This program is free software; you can redistribute it and/or modify
4  * it under the terms of the GNU General Public License as published by
5  * the Free Software Foundation; either version 2 of the License, or
6  * (at your option) any later version.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  */
17
18 #include <asm/unaligned.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/firmware.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/skbuff.h>
26 #include <linux/usb.h>
27 #include <linux/workqueue.h>
28 #include <net/ieee80211.h>
29
30 #include "zd_def.h"
31 #include "zd_netdev.h"
32 #include "zd_mac.h"
33 #include "zd_usb.h"
34 #include "zd_util.h"
35
36 static struct usb_device_id usb_ids[] = {
37         /* ZD1211 */
38         { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
39         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
40         { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
41         { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
42         { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
43         { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
44         { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
45         { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
46         { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
47         { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
48         { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
49         { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
50         { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
51         { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
52         { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
53         { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
54         { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
55         { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
56         { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
57         /* ZD1211B */
58         { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
59         { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
60         { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
61         { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
62         { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
63         { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
64         { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
65         { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
66         { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
67         { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
68         { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
69         { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
70         { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
71         { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
72         { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
73         /* "Driverless" devices that need ejecting */
74         { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
75         { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
76         {}
77 };
78
79 MODULE_LICENSE("GPL");
80 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
81 MODULE_AUTHOR("Ulrich Kunitz");
82 MODULE_AUTHOR("Daniel Drake");
83 MODULE_VERSION("1.0");
84 MODULE_DEVICE_TABLE(usb, usb_ids);
85
86 #define FW_ZD1211_PREFIX        "zd1211/zd1211_"
87 #define FW_ZD1211B_PREFIX       "zd1211/zd1211b_"
88
89 /* USB device initialization */
90
91 static int request_fw_file(
92         const struct firmware **fw, const char *name, struct device *device)
93 {
94         int r;
95
96         dev_dbg_f(device, "fw name %s\n", name);
97
98         r = request_firmware(fw, name, device);
99         if (r)
100                 dev_err(device,
101                        "Could not load firmware file %s. Error number %d\n",
102                        name, r);
103         return r;
104 }
105
106 static inline u16 get_bcdDevice(const struct usb_device *udev)
107 {
108         return le16_to_cpu(udev->descriptor.bcdDevice);
109 }
110
111 enum upload_code_flags {
112         REBOOT = 1,
113 };
114
115 /* Ensures that MAX_TRANSFER_SIZE is even. */
116 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
117
118 static int upload_code(struct usb_device *udev,
119         const u8 *data, size_t size, u16 code_offset, int flags)
120 {
121         u8 *p;
122         int r;
123
124         /* USB request blocks need "kmalloced" buffers.
125          */
126         p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
127         if (!p) {
128                 dev_err(&udev->dev, "out of memory\n");
129                 r = -ENOMEM;
130                 goto error;
131         }
132
133         size &= ~1;
134         while (size > 0) {
135                 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
136                         size : MAX_TRANSFER_SIZE;
137
138                 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
139
140                 memcpy(p, data, transfer_size);
141                 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
142                         USB_REQ_FIRMWARE_DOWNLOAD,
143                         USB_DIR_OUT | USB_TYPE_VENDOR,
144                         code_offset, 0, p, transfer_size, 1000 /* ms */);
145                 if (r < 0) {
146                         dev_err(&udev->dev,
147                                "USB control request for firmware upload"
148                                " failed. Error number %d\n", r);
149                         goto error;
150                 }
151                 transfer_size = r & ~1;
152
153                 size -= transfer_size;
154                 data += transfer_size;
155                 code_offset += transfer_size/sizeof(u16);
156         }
157
158         if (flags & REBOOT) {
159                 u8 ret;
160
161                 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
162                         USB_REQ_FIRMWARE_CONFIRM,
163                         USB_DIR_IN | USB_TYPE_VENDOR,
164                         0, 0, &ret, sizeof(ret), 5000 /* ms */);
165                 if (r != sizeof(ret)) {
166                         dev_err(&udev->dev,
167                                 "control request firmeware confirmation failed."
168                                 " Return value %d\n", r);
169                         if (r >= 0)
170                                 r = -ENODEV;
171                         goto error;
172                 }
173                 if (ret & 0x80) {
174                         dev_err(&udev->dev,
175                                 "Internal error while downloading."
176                                 " Firmware confirm return value %#04x\n",
177                                 (unsigned int)ret);
178                         r = -ENODEV;
179                         goto error;
180                 }
181                 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
182                         (unsigned int)ret);
183         }
184
185         r = 0;
186 error:
187         kfree(p);
188         return r;
189 }
190
191 static u16 get_word(const void *data, u16 offset)
192 {
193         const __le16 *p = data;
194         return le16_to_cpu(p[offset]);
195 }
196
197 static char *get_fw_name(char *buffer, size_t size, u8 device_type,
198                        const char* postfix)
199 {
200         scnprintf(buffer, size, "%s%s",
201                 device_type == DEVICE_ZD1211B ?
202                         FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
203                 postfix);
204         return buffer;
205 }
206
207 static int handle_version_mismatch(struct usb_device *udev, u8 device_type,
208         const struct firmware *ub_fw)
209 {
210         const struct firmware *ur_fw = NULL;
211         int offset;
212         int r = 0;
213         char fw_name[128];
214
215         r = request_fw_file(&ur_fw,
216                 get_fw_name(fw_name, sizeof(fw_name), device_type, "ur"),
217                 &udev->dev);
218         if (r)
219                 goto error;
220
221         r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
222         if (r)
223                 goto error;
224
225         offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
226         r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
227                 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
228
229         /* At this point, the vendor driver downloads the whole firmware
230          * image, hacks around with version IDs, and uploads it again,
231          * completely overwriting the boot code. We do not do this here as
232          * it is not required on any tested devices, and it is suspected to
233          * cause problems. */
234 error:
235         release_firmware(ur_fw);
236         return r;
237 }
238
239 static int upload_firmware(struct usb_device *udev, u8 device_type)
240 {
241         int r;
242         u16 fw_bcdDevice;
243         u16 bcdDevice;
244         const struct firmware *ub_fw = NULL;
245         const struct firmware *uph_fw = NULL;
246         char fw_name[128];
247
248         bcdDevice = get_bcdDevice(udev);
249
250         r = request_fw_file(&ub_fw,
251                 get_fw_name(fw_name, sizeof(fw_name), device_type,  "ub"),
252                 &udev->dev);
253         if (r)
254                 goto error;
255
256         fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
257
258         if (fw_bcdDevice != bcdDevice) {
259                 dev_info(&udev->dev,
260                         "firmware version %#06x and device bootcode version "
261                         "%#06x differ\n", fw_bcdDevice, bcdDevice);
262                 if (bcdDevice <= 0x4313)
263                         dev_warn(&udev->dev, "device has old bootcode, please "
264                                 "report success or failure\n");
265
266                 r = handle_version_mismatch(udev, device_type, ub_fw);
267                 if (r)
268                         goto error;
269         } else {
270                 dev_dbg_f(&udev->dev,
271                         "firmware device id %#06x is equal to the "
272                         "actual device id\n", fw_bcdDevice);
273         }
274
275
276         r = request_fw_file(&uph_fw,
277                 get_fw_name(fw_name, sizeof(fw_name), device_type, "uphr"),
278                 &udev->dev);
279         if (r)
280                 goto error;
281
282         r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
283         if (r) {
284                 dev_err(&udev->dev,
285                         "Could not upload firmware code uph. Error number %d\n",
286                         r);
287         }
288
289         /* FALL-THROUGH */
290 error:
291         release_firmware(ub_fw);
292         release_firmware(uph_fw);
293         return r;
294 }
295
296 #define urb_dev(urb) (&(urb)->dev->dev)
297
298 static inline void handle_regs_int(struct urb *urb)
299 {
300         struct zd_usb *usb = urb->context;
301         struct zd_usb_interrupt *intr = &usb->intr;
302         int len;
303
304         ZD_ASSERT(in_interrupt());
305         spin_lock(&intr->lock);
306
307         if (intr->read_regs_enabled) {
308                 intr->read_regs.length = len = urb->actual_length;
309
310                 if (len > sizeof(intr->read_regs.buffer))
311                         len = sizeof(intr->read_regs.buffer);
312                 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
313                 intr->read_regs_enabled = 0;
314                 complete(&intr->read_regs.completion);
315                 goto out;
316         }
317
318         dev_dbg_f(urb_dev(urb), "regs interrupt ignored\n");
319 out:
320         spin_unlock(&intr->lock);
321 }
322
323 static inline void handle_retry_failed_int(struct urb *urb)
324 {
325         struct zd_usb *usb = urb->context;
326         struct zd_mac *mac = zd_usb_to_mac(usb);
327         struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
328
329         ieee->stats.tx_errors++;
330         ieee->ieee_stats.tx_retry_limit_exceeded++;
331         dev_dbg_f(urb_dev(urb), "retry failed interrupt\n");
332 }
333
334
335 static void int_urb_complete(struct urb *urb)
336 {
337         int r;
338         struct usb_int_header *hdr;
339
340         switch (urb->status) {
341         case 0:
342                 break;
343         case -ESHUTDOWN:
344         case -EINVAL:
345         case -ENODEV:
346         case -ENOENT:
347         case -ECONNRESET:
348         case -EPIPE:
349                 goto kfree;
350         default:
351                 goto resubmit;
352         }
353
354         if (urb->actual_length < sizeof(hdr)) {
355                 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
356                 goto resubmit;
357         }
358
359         hdr = urb->transfer_buffer;
360         if (hdr->type != USB_INT_TYPE) {
361                 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
362                 goto resubmit;
363         }
364
365         switch (hdr->id) {
366         case USB_INT_ID_REGS:
367                 handle_regs_int(urb);
368                 break;
369         case USB_INT_ID_RETRY_FAILED:
370                 handle_retry_failed_int(urb);
371                 break;
372         default:
373                 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
374                         (unsigned int)hdr->id);
375                 goto resubmit;
376         }
377
378 resubmit:
379         r = usb_submit_urb(urb, GFP_ATOMIC);
380         if (r) {
381                 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
382                 goto kfree;
383         }
384         return;
385 kfree:
386         kfree(urb->transfer_buffer);
387 }
388
389 static inline int int_urb_interval(struct usb_device *udev)
390 {
391         switch (udev->speed) {
392         case USB_SPEED_HIGH:
393                 return 4;
394         case USB_SPEED_LOW:
395                 return 10;
396         case USB_SPEED_FULL:
397         default:
398                 return 1;
399         }
400 }
401
402 static inline int usb_int_enabled(struct zd_usb *usb)
403 {
404         unsigned long flags;
405         struct zd_usb_interrupt *intr = &usb->intr;
406         struct urb *urb;
407
408         spin_lock_irqsave(&intr->lock, flags);
409         urb = intr->urb;
410         spin_unlock_irqrestore(&intr->lock, flags);
411         return urb != NULL;
412 }
413
414 int zd_usb_enable_int(struct zd_usb *usb)
415 {
416         int r;
417         struct usb_device *udev;
418         struct zd_usb_interrupt *intr = &usb->intr;
419         void *transfer_buffer = NULL;
420         struct urb *urb;
421
422         dev_dbg_f(zd_usb_dev(usb), "\n");
423
424         urb = usb_alloc_urb(0, GFP_KERNEL);
425         if (!urb) {
426                 r = -ENOMEM;
427                 goto out;
428         }
429
430         ZD_ASSERT(!irqs_disabled());
431         spin_lock_irq(&intr->lock);
432         if (intr->urb) {
433                 spin_unlock_irq(&intr->lock);
434                 r = 0;
435                 goto error_free_urb;
436         }
437         intr->urb = urb;
438         spin_unlock_irq(&intr->lock);
439
440         /* TODO: make it a DMA buffer */
441         r = -ENOMEM;
442         transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_KERNEL);
443         if (!transfer_buffer) {
444                 dev_dbg_f(zd_usb_dev(usb),
445                         "couldn't allocate transfer_buffer\n");
446                 goto error_set_urb_null;
447         }
448
449         udev = zd_usb_to_usbdev(usb);
450         usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
451                          transfer_buffer, USB_MAX_EP_INT_BUFFER,
452                          int_urb_complete, usb,
453                          intr->interval);
454
455         dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
456         r = usb_submit_urb(urb, GFP_KERNEL);
457         if (r) {
458                 dev_dbg_f(zd_usb_dev(usb),
459                          "Couldn't submit urb. Error number %d\n", r);
460                 goto error;
461         }
462
463         return 0;
464 error:
465         kfree(transfer_buffer);
466 error_set_urb_null:
467         spin_lock_irq(&intr->lock);
468         intr->urb = NULL;
469         spin_unlock_irq(&intr->lock);
470 error_free_urb:
471         usb_free_urb(urb);
472 out:
473         return r;
474 }
475
476 void zd_usb_disable_int(struct zd_usb *usb)
477 {
478         unsigned long flags;
479         struct zd_usb_interrupt *intr = &usb->intr;
480         struct urb *urb;
481
482         spin_lock_irqsave(&intr->lock, flags);
483         urb = intr->urb;
484         if (!urb) {
485                 spin_unlock_irqrestore(&intr->lock, flags);
486                 return;
487         }
488         intr->urb = NULL;
489         spin_unlock_irqrestore(&intr->lock, flags);
490
491         usb_kill_urb(urb);
492         dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
493         usb_free_urb(urb);
494 }
495
496 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
497                              unsigned int length)
498 {
499         int i;
500         struct zd_mac *mac = zd_usb_to_mac(usb);
501         const struct rx_length_info *length_info;
502
503         if (length < sizeof(struct rx_length_info)) {
504                 /* It's not a complete packet anyhow. */
505                 struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
506                 ieee->stats.rx_errors++;
507                 ieee->stats.rx_length_errors++;
508                 return;
509         }
510         length_info = (struct rx_length_info *)
511                 (buffer + length - sizeof(struct rx_length_info));
512
513         /* It might be that three frames are merged into a single URB
514          * transaction. We have to check for the length info tag.
515          *
516          * While testing we discovered that length_info might be unaligned,
517          * because if USB transactions are merged, the last packet will not
518          * be padded. Unaligned access might also happen if the length_info
519          * structure is not present.
520          */
521         if (get_unaligned(&length_info->tag) == cpu_to_le16(RX_LENGTH_INFO_TAG))
522         {
523                 unsigned int l, k, n;
524                 for (i = 0, l = 0;; i++) {
525                         k = le16_to_cpu(get_unaligned(&length_info->length[i]));
526                         if (k == 0)
527                                 return;
528                         n = l+k;
529                         if (n > length)
530                                 return;
531                         zd_mac_rx_irq(mac, buffer+l, k);
532                         if (i >= 2)
533                                 return;
534                         l = (n+3) & ~3;
535                 }
536         } else {
537                 zd_mac_rx_irq(mac, buffer, length);
538         }
539 }
540
541 static void rx_urb_complete(struct urb *urb)
542 {
543         struct zd_usb *usb;
544         struct zd_usb_rx *rx;
545         const u8 *buffer;
546         unsigned int length;
547
548         switch (urb->status) {
549         case 0:
550                 break;
551         case -ESHUTDOWN:
552         case -EINVAL:
553         case -ENODEV:
554         case -ENOENT:
555         case -ECONNRESET:
556         case -EPIPE:
557                 return;
558         default:
559                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
560                 goto resubmit;
561         }
562
563         buffer = urb->transfer_buffer;
564         length = urb->actual_length;
565         usb = urb->context;
566         rx = &usb->rx;
567
568         if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
569                 /* If there is an old first fragment, we don't care. */
570                 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
571                 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
572                 spin_lock(&rx->lock);
573                 memcpy(rx->fragment, buffer, length);
574                 rx->fragment_length = length;
575                 spin_unlock(&rx->lock);
576                 goto resubmit;
577         }
578
579         spin_lock(&rx->lock);
580         if (rx->fragment_length > 0) {
581                 /* We are on a second fragment, we believe */
582                 ZD_ASSERT(length + rx->fragment_length <=
583                           ARRAY_SIZE(rx->fragment));
584                 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
585                 memcpy(rx->fragment+rx->fragment_length, buffer, length);
586                 handle_rx_packet(usb, rx->fragment,
587                                  rx->fragment_length + length);
588                 rx->fragment_length = 0;
589                 spin_unlock(&rx->lock);
590         } else {
591                 spin_unlock(&rx->lock);
592                 handle_rx_packet(usb, buffer, length);
593         }
594
595 resubmit:
596         usb_submit_urb(urb, GFP_ATOMIC);
597 }
598
599 static struct urb *alloc_urb(struct zd_usb *usb)
600 {
601         struct usb_device *udev = zd_usb_to_usbdev(usb);
602         struct urb *urb;
603         void *buffer;
604
605         urb = usb_alloc_urb(0, GFP_KERNEL);
606         if (!urb)
607                 return NULL;
608         buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
609                                   &urb->transfer_dma);
610         if (!buffer) {
611                 usb_free_urb(urb);
612                 return NULL;
613         }
614
615         usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
616                           buffer, USB_MAX_RX_SIZE,
617                           rx_urb_complete, usb);
618         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
619
620         return urb;
621 }
622
623 static void free_urb(struct urb *urb)
624 {
625         if (!urb)
626                 return;
627         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
628                         urb->transfer_buffer, urb->transfer_dma);
629         usb_free_urb(urb);
630 }
631
632 int zd_usb_enable_rx(struct zd_usb *usb)
633 {
634         int i, r;
635         struct zd_usb_rx *rx = &usb->rx;
636         struct urb **urbs;
637
638         dev_dbg_f(zd_usb_dev(usb), "\n");
639
640         r = -ENOMEM;
641         urbs = kcalloc(URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
642         if (!urbs)
643                 goto error;
644         for (i = 0; i < URBS_COUNT; i++) {
645                 urbs[i] = alloc_urb(usb);
646                 if (!urbs[i])
647                         goto error;
648         }
649
650         ZD_ASSERT(!irqs_disabled());
651         spin_lock_irq(&rx->lock);
652         if (rx->urbs) {
653                 spin_unlock_irq(&rx->lock);
654                 r = 0;
655                 goto error;
656         }
657         rx->urbs = urbs;
658         rx->urbs_count = URBS_COUNT;
659         spin_unlock_irq(&rx->lock);
660
661         for (i = 0; i < URBS_COUNT; i++) {
662                 r = usb_submit_urb(urbs[i], GFP_KERNEL);
663                 if (r)
664                         goto error_submit;
665         }
666
667         return 0;
668 error_submit:
669         for (i = 0; i < URBS_COUNT; i++) {
670                 usb_kill_urb(urbs[i]);
671         }
672         spin_lock_irq(&rx->lock);
673         rx->urbs = NULL;
674         rx->urbs_count = 0;
675         spin_unlock_irq(&rx->lock);
676 error:
677         if (urbs) {
678                 for (i = 0; i < URBS_COUNT; i++)
679                         free_urb(urbs[i]);
680         }
681         return r;
682 }
683
684 void zd_usb_disable_rx(struct zd_usb *usb)
685 {
686         int i;
687         unsigned long flags;
688         struct urb **urbs;
689         unsigned int count;
690         struct zd_usb_rx *rx = &usb->rx;
691
692         spin_lock_irqsave(&rx->lock, flags);
693         urbs = rx->urbs;
694         count = rx->urbs_count;
695         spin_unlock_irqrestore(&rx->lock, flags);
696         if (!urbs)
697                 return;
698
699         for (i = 0; i < count; i++) {
700                 usb_kill_urb(urbs[i]);
701                 free_urb(urbs[i]);
702         }
703         kfree(urbs);
704
705         spin_lock_irqsave(&rx->lock, flags);
706         rx->urbs = NULL;
707         rx->urbs_count = 0;
708         spin_unlock_irqrestore(&rx->lock, flags);
709 }
710
711 static void tx_urb_complete(struct urb *urb)
712 {
713         int r;
714
715         switch (urb->status) {
716         case 0:
717                 break;
718         case -ESHUTDOWN:
719         case -EINVAL:
720         case -ENODEV:
721         case -ENOENT:
722         case -ECONNRESET:
723         case -EPIPE:
724                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
725                 break;
726         default:
727                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
728                 goto resubmit;
729         }
730 free_urb:
731         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
732                         urb->transfer_buffer, urb->transfer_dma);
733         usb_free_urb(urb);
734         return;
735 resubmit:
736         r = usb_submit_urb(urb, GFP_ATOMIC);
737         if (r) {
738                 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
739                 goto free_urb;
740         }
741 }
742
743 /* Puts the frame on the USB endpoint. It doesn't wait for
744  * completion. The frame must contain the control set.
745  */
746 int zd_usb_tx(struct zd_usb *usb, const u8 *frame, unsigned int length)
747 {
748         int r;
749         struct usb_device *udev = zd_usb_to_usbdev(usb);
750         struct urb *urb;
751         void *buffer;
752
753         urb = usb_alloc_urb(0, GFP_ATOMIC);
754         if (!urb) {
755                 r = -ENOMEM;
756                 goto out;
757         }
758
759         buffer = usb_buffer_alloc(zd_usb_to_usbdev(usb), length, GFP_ATOMIC,
760                                   &urb->transfer_dma);
761         if (!buffer) {
762                 r = -ENOMEM;
763                 goto error_free_urb;
764         }
765         memcpy(buffer, frame, length);
766
767         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
768                           buffer, length, tx_urb_complete, NULL);
769         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
770
771         r = usb_submit_urb(urb, GFP_ATOMIC);
772         if (r)
773                 goto error;
774         return 0;
775 error:
776         usb_buffer_free(zd_usb_to_usbdev(usb), length, buffer,
777                         urb->transfer_dma);
778 error_free_urb:
779         usb_free_urb(urb);
780 out:
781         return r;
782 }
783
784 static inline void init_usb_interrupt(struct zd_usb *usb)
785 {
786         struct zd_usb_interrupt *intr = &usb->intr;
787
788         spin_lock_init(&intr->lock);
789         intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
790         init_completion(&intr->read_regs.completion);
791         intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
792 }
793
794 static inline void init_usb_rx(struct zd_usb *usb)
795 {
796         struct zd_usb_rx *rx = &usb->rx;
797         spin_lock_init(&rx->lock);
798         if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
799                 rx->usb_packet_size = 512;
800         } else {
801                 rx->usb_packet_size = 64;
802         }
803         ZD_ASSERT(rx->fragment_length == 0);
804 }
805
806 static inline void init_usb_tx(struct zd_usb *usb)
807 {
808         /* FIXME: at this point we will allocate a fixed number of urb's for
809          * use in a cyclic scheme */
810 }
811
812 void zd_usb_init(struct zd_usb *usb, struct net_device *netdev,
813                  struct usb_interface *intf)
814 {
815         memset(usb, 0, sizeof(*usb));
816         usb->intf = usb_get_intf(intf);
817         usb_set_intfdata(usb->intf, netdev);
818         init_usb_interrupt(usb);
819         init_usb_tx(usb);
820         init_usb_rx(usb);
821 }
822
823 void zd_usb_clear(struct zd_usb *usb)
824 {
825         usb_set_intfdata(usb->intf, NULL);
826         usb_put_intf(usb->intf);
827         ZD_MEMCLEAR(usb, sizeof(*usb));
828         /* FIXME: usb_interrupt, usb_tx, usb_rx? */
829 }
830
831 static const char *speed(enum usb_device_speed speed)
832 {
833         switch (speed) {
834         case USB_SPEED_LOW:
835                 return "low";
836         case USB_SPEED_FULL:
837                 return "full";
838         case USB_SPEED_HIGH:
839                 return "high";
840         default:
841                 return "unknown speed";
842         }
843 }
844
845 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
846 {
847         return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
848                 le16_to_cpu(udev->descriptor.idVendor),
849                 le16_to_cpu(udev->descriptor.idProduct),
850                 get_bcdDevice(udev),
851                 speed(udev->speed));
852 }
853
854 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
855 {
856         struct usb_device *udev = interface_to_usbdev(usb->intf);
857         return scnprint_id(udev, buffer, size);
858 }
859
860 #ifdef DEBUG
861 static void print_id(struct usb_device *udev)
862 {
863         char buffer[40];
864
865         scnprint_id(udev, buffer, sizeof(buffer));
866         buffer[sizeof(buffer)-1] = 0;
867         dev_dbg_f(&udev->dev, "%s\n", buffer);
868 }
869 #else
870 #define print_id(udev) do { } while (0)
871 #endif
872
873 static int eject_installer(struct usb_interface *intf)
874 {
875         struct usb_device *udev = interface_to_usbdev(intf);
876         struct usb_host_interface *iface_desc = &intf->altsetting[0];
877         struct usb_endpoint_descriptor *endpoint;
878         unsigned char *cmd;
879         u8 bulk_out_ep;
880         int r;
881
882         /* Find bulk out endpoint */
883         endpoint = &iface_desc->endpoint[1].desc;
884         if ((endpoint->bEndpointAddress & USB_TYPE_MASK) == USB_DIR_OUT &&
885             (endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
886             USB_ENDPOINT_XFER_BULK) {
887                 bulk_out_ep = endpoint->bEndpointAddress;
888         } else {
889                 dev_err(&udev->dev,
890                         "zd1211rw: Could not find bulk out endpoint\n");
891                 return -ENODEV;
892         }
893
894         cmd = kzalloc(31, GFP_KERNEL);
895         if (cmd == NULL)
896                 return -ENODEV;
897
898         /* USB bulk command block */
899         cmd[0] = 0x55;  /* bulk command signature */
900         cmd[1] = 0x53;  /* bulk command signature */
901         cmd[2] = 0x42;  /* bulk command signature */
902         cmd[3] = 0x43;  /* bulk command signature */
903         cmd[14] = 6;    /* command length */
904
905         cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
906         cmd[19] = 0x2;  /* eject disc */
907
908         dev_info(&udev->dev, "Ejecting virtual installer media...\n");
909         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
910                 cmd, 31, NULL, 2000);
911         kfree(cmd);
912         if (r)
913                 return r;
914
915         /* At this point, the device disconnects and reconnects with the real
916          * ID numbers. */
917
918         usb_set_intfdata(intf, NULL);
919         return 0;
920 }
921
922 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
923 {
924         int r;
925         struct usb_device *udev = interface_to_usbdev(intf);
926         struct net_device *netdev = NULL;
927
928         print_id(udev);
929
930         if (id->driver_info & DEVICE_INSTALLER)
931                 return eject_installer(intf);
932
933         switch (udev->speed) {
934         case USB_SPEED_LOW:
935         case USB_SPEED_FULL:
936         case USB_SPEED_HIGH:
937                 break;
938         default:
939                 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
940                 r = -ENODEV;
941                 goto error;
942         }
943
944         usb_reset_device(interface_to_usbdev(intf));
945
946         netdev = zd_netdev_alloc(intf);
947         if (netdev == NULL) {
948                 r = -ENOMEM;
949                 goto error;
950         }
951
952         r = upload_firmware(udev, id->driver_info);
953         if (r) {
954                 dev_err(&intf->dev,
955                        "couldn't load firmware. Error number %d\n", r);
956                 goto error;
957         }
958
959         r = usb_reset_configuration(udev);
960         if (r) {
961                 dev_dbg_f(&intf->dev,
962                         "couldn't reset configuration. Error number %d\n", r);
963                 goto error;
964         }
965
966         /* At this point the interrupt endpoint is not generally enabled. We
967          * save the USB bandwidth until the network device is opened. But
968          * notify that the initialization of the MAC will require the
969          * interrupts to be temporary enabled.
970          */
971         r = zd_mac_init_hw(zd_netdev_mac(netdev), id->driver_info);
972         if (r) {
973                 dev_dbg_f(&intf->dev,
974                          "couldn't initialize mac. Error number %d\n", r);
975                 goto error;
976         }
977
978         r = register_netdev(netdev);
979         if (r) {
980                 dev_dbg_f(&intf->dev,
981                          "couldn't register netdev. Error number %d\n", r);
982                 goto error;
983         }
984
985         dev_dbg_f(&intf->dev, "successful\n");
986         dev_info(&intf->dev,"%s\n", netdev->name);
987         return 0;
988 error:
989         usb_reset_device(interface_to_usbdev(intf));
990         zd_netdev_free(netdev);
991         return r;
992 }
993
994 static void disconnect(struct usb_interface *intf)
995 {
996         struct net_device *netdev = zd_intf_to_netdev(intf);
997         struct zd_mac *mac = zd_netdev_mac(netdev);
998         struct zd_usb *usb = &mac->chip.usb;
999
1000         /* Either something really bad happened, or we're just dealing with
1001          * a DEVICE_INSTALLER. */
1002         if (netdev == NULL)
1003                 return;
1004
1005         dev_dbg_f(zd_usb_dev(usb), "\n");
1006
1007         zd_netdev_disconnect(netdev);
1008
1009         /* Just in case something has gone wrong! */
1010         zd_usb_disable_rx(usb);
1011         zd_usb_disable_int(usb);
1012
1013         /* If the disconnect has been caused by a removal of the
1014          * driver module, the reset allows reloading of the driver. If the
1015          * reset will not be executed here, the upload of the firmware in the
1016          * probe function caused by the reloading of the driver will fail.
1017          */
1018         usb_reset_device(interface_to_usbdev(intf));
1019
1020         zd_netdev_free(netdev);
1021         dev_dbg(&intf->dev, "disconnected\n");
1022 }
1023
1024 static struct usb_driver driver = {
1025         .name           = "zd1211rw",
1026         .id_table       = usb_ids,
1027         .probe          = probe,
1028         .disconnect     = disconnect,
1029 };
1030
1031 struct workqueue_struct *zd_workqueue;
1032
1033 static int __init usb_init(void)
1034 {
1035         int r;
1036
1037         pr_debug("%s usb_init()\n", driver.name);
1038
1039         zd_workqueue = create_singlethread_workqueue(driver.name);
1040         if (zd_workqueue == NULL) {
1041                 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1042                 return -ENOMEM;
1043         }
1044
1045         r = usb_register(&driver);
1046         if (r) {
1047                 destroy_workqueue(zd_workqueue);
1048                 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1049                        driver.name, r);
1050                 return r;
1051         }
1052
1053         pr_debug("%s initialized\n", driver.name);
1054         return 0;
1055 }
1056
1057 static void __exit usb_exit(void)
1058 {
1059         pr_debug("%s usb_exit()\n", driver.name);
1060         usb_deregister(&driver);
1061         destroy_workqueue(zd_workqueue);
1062 }
1063
1064 module_init(usb_init);
1065 module_exit(usb_exit);
1066
1067 static int usb_int_regs_length(unsigned int count)
1068 {
1069         return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1070 }
1071
1072 static void prepare_read_regs_int(struct zd_usb *usb)
1073 {
1074         struct zd_usb_interrupt *intr = &usb->intr;
1075
1076         spin_lock_irq(&intr->lock);
1077         intr->read_regs_enabled = 1;
1078         INIT_COMPLETION(intr->read_regs.completion);
1079         spin_unlock_irq(&intr->lock);
1080 }
1081
1082 static void disable_read_regs_int(struct zd_usb *usb)
1083 {
1084         struct zd_usb_interrupt *intr = &usb->intr;
1085
1086         spin_lock_irq(&intr->lock);
1087         intr->read_regs_enabled = 0;
1088         spin_unlock_irq(&intr->lock);
1089 }
1090
1091 static int get_results(struct zd_usb *usb, u16 *values,
1092                        struct usb_req_read_regs *req, unsigned int count)
1093 {
1094         int r;
1095         int i;
1096         struct zd_usb_interrupt *intr = &usb->intr;
1097         struct read_regs_int *rr = &intr->read_regs;
1098         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1099
1100         spin_lock_irq(&intr->lock);
1101
1102         r = -EIO;
1103         /* The created block size seems to be larger than expected.
1104          * However results appear to be correct.
1105          */
1106         if (rr->length < usb_int_regs_length(count)) {
1107                 dev_dbg_f(zd_usb_dev(usb),
1108                          "error: actual length %d less than expected %d\n",
1109                          rr->length, usb_int_regs_length(count));
1110                 goto error_unlock;
1111         }
1112         if (rr->length > sizeof(rr->buffer)) {
1113                 dev_dbg_f(zd_usb_dev(usb),
1114                          "error: actual length %d exceeds buffer size %zu\n",
1115                          rr->length, sizeof(rr->buffer));
1116                 goto error_unlock;
1117         }
1118
1119         for (i = 0; i < count; i++) {
1120                 struct reg_data *rd = &regs->regs[i];
1121                 if (rd->addr != req->addr[i]) {
1122                         dev_dbg_f(zd_usb_dev(usb),
1123                                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1124                                  le16_to_cpu(rd->addr),
1125                                  le16_to_cpu(req->addr[i]));
1126                         goto error_unlock;
1127                 }
1128                 values[i] = le16_to_cpu(rd->value);
1129         }
1130
1131         r = 0;
1132 error_unlock:
1133         spin_unlock_irq(&intr->lock);
1134         return r;
1135 }
1136
1137 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1138                      const zd_addr_t *addresses, unsigned int count)
1139 {
1140         int r;
1141         int i, req_len, actual_req_len;
1142         struct usb_device *udev;
1143         struct usb_req_read_regs *req = NULL;
1144         unsigned long timeout;
1145
1146         if (count < 1) {
1147                 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1148                 return -EINVAL;
1149         }
1150         if (count > USB_MAX_IOREAD16_COUNT) {
1151                 dev_dbg_f(zd_usb_dev(usb),
1152                          "error: count %u exceeds possible max %u\n",
1153                          count, USB_MAX_IOREAD16_COUNT);
1154                 return -EINVAL;
1155         }
1156         if (in_atomic()) {
1157                 dev_dbg_f(zd_usb_dev(usb),
1158                          "error: io in atomic context not supported\n");
1159                 return -EWOULDBLOCK;
1160         }
1161         if (!usb_int_enabled(usb)) {
1162                  dev_dbg_f(zd_usb_dev(usb),
1163                           "error: usb interrupt not enabled\n");
1164                 return -EWOULDBLOCK;
1165         }
1166
1167         req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1168         req = kmalloc(req_len, GFP_KERNEL);
1169         if (!req)
1170                 return -ENOMEM;
1171         req->id = cpu_to_le16(USB_REQ_READ_REGS);
1172         for (i = 0; i < count; i++)
1173                 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1174
1175         udev = zd_usb_to_usbdev(usb);
1176         prepare_read_regs_int(usb);
1177         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1178                          req, req_len, &actual_req_len, 1000 /* ms */);
1179         if (r) {
1180                 dev_dbg_f(zd_usb_dev(usb),
1181                         "error in usb_bulk_msg(). Error number %d\n", r);
1182                 goto error;
1183         }
1184         if (req_len != actual_req_len) {
1185                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1186                         " req_len %d != actual_req_len %d\n",
1187                         req_len, actual_req_len);
1188                 r = -EIO;
1189                 goto error;
1190         }
1191
1192         timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1193                                               msecs_to_jiffies(1000));
1194         if (!timeout) {
1195                 disable_read_regs_int(usb);
1196                 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1197                 r = -ETIMEDOUT;
1198                 goto error;
1199         }
1200
1201         r = get_results(usb, values, req, count);
1202 error:
1203         kfree(req);
1204         return r;
1205 }
1206
1207 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1208                       unsigned int count)
1209 {
1210         int r;
1211         struct usb_device *udev;
1212         struct usb_req_write_regs *req = NULL;
1213         int i, req_len, actual_req_len;
1214
1215         if (count == 0)
1216                 return 0;
1217         if (count > USB_MAX_IOWRITE16_COUNT) {
1218                 dev_dbg_f(zd_usb_dev(usb),
1219                         "error: count %u exceeds possible max %u\n",
1220                         count, USB_MAX_IOWRITE16_COUNT);
1221                 return -EINVAL;
1222         }
1223         if (in_atomic()) {
1224                 dev_dbg_f(zd_usb_dev(usb),
1225                         "error: io in atomic context not supported\n");
1226                 return -EWOULDBLOCK;
1227         }
1228
1229         req_len = sizeof(struct usb_req_write_regs) +
1230                   count * sizeof(struct reg_data);
1231         req = kmalloc(req_len, GFP_KERNEL);
1232         if (!req)
1233                 return -ENOMEM;
1234
1235         req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1236         for (i = 0; i < count; i++) {
1237                 struct reg_data *rw  = &req->reg_writes[i];
1238                 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1239                 rw->value = cpu_to_le16(ioreqs[i].value);
1240         }
1241
1242         udev = zd_usb_to_usbdev(usb);
1243         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1244                          req, req_len, &actual_req_len, 1000 /* ms */);
1245         if (r) {
1246                 dev_dbg_f(zd_usb_dev(usb),
1247                         "error in usb_bulk_msg(). Error number %d\n", r);
1248                 goto error;
1249         }
1250         if (req_len != actual_req_len) {
1251                 dev_dbg_f(zd_usb_dev(usb),
1252                         "error in usb_bulk_msg()"
1253                         " req_len %d != actual_req_len %d\n",
1254                         req_len, actual_req_len);
1255                 r = -EIO;
1256                 goto error;
1257         }
1258
1259         /* FALL-THROUGH with r == 0 */
1260 error:
1261         kfree(req);
1262         return r;
1263 }
1264
1265 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1266 {
1267         int r;
1268         struct usb_device *udev;
1269         struct usb_req_rfwrite *req = NULL;
1270         int i, req_len, actual_req_len;
1271         u16 bit_value_template;
1272
1273         if (in_atomic()) {
1274                 dev_dbg_f(zd_usb_dev(usb),
1275                         "error: io in atomic context not supported\n");
1276                 return -EWOULDBLOCK;
1277         }
1278         if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1279                 dev_dbg_f(zd_usb_dev(usb),
1280                         "error: bits %d are smaller than"
1281                         " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1282                         bits, USB_MIN_RFWRITE_BIT_COUNT);
1283                 return -EINVAL;
1284         }
1285         if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1286                 dev_dbg_f(zd_usb_dev(usb),
1287                         "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1288                         bits, USB_MAX_RFWRITE_BIT_COUNT);
1289                 return -EINVAL;
1290         }
1291 #ifdef DEBUG
1292         if (value & (~0UL << bits)) {
1293                 dev_dbg_f(zd_usb_dev(usb),
1294                         "error: value %#09x has bits >= %d set\n",
1295                         value, bits);
1296                 return -EINVAL;
1297         }
1298 #endif /* DEBUG */
1299
1300         dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1301
1302         r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1303         if (r) {
1304                 dev_dbg_f(zd_usb_dev(usb),
1305                         "error %d: Couldn't read CR203\n", r);
1306                 goto out;
1307         }
1308         bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1309
1310         req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1311         req = kmalloc(req_len, GFP_KERNEL);
1312         if (!req)
1313                 return -ENOMEM;
1314
1315         req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1316         /* 1: 3683a, but not used in ZYDAS driver */
1317         req->value = cpu_to_le16(2);
1318         req->bits = cpu_to_le16(bits);
1319
1320         for (i = 0; i < bits; i++) {
1321                 u16 bv = bit_value_template;
1322                 if (value & (1 << (bits-1-i)))
1323                         bv |= RF_DATA;
1324                 req->bit_values[i] = cpu_to_le16(bv);
1325         }
1326
1327         udev = zd_usb_to_usbdev(usb);
1328         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1329                          req, req_len, &actual_req_len, 1000 /* ms */);
1330         if (r) {
1331                 dev_dbg_f(zd_usb_dev(usb),
1332                         "error in usb_bulk_msg(). Error number %d\n", r);
1333                 goto out;
1334         }
1335         if (req_len != actual_req_len) {
1336                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1337                         " req_len %d != actual_req_len %d\n",
1338                         req_len, actual_req_len);
1339                 r = -EIO;
1340                 goto out;
1341         }
1342
1343         /* FALL-THROUGH with r == 0 */
1344 out:
1345         kfree(req);
1346         return r;
1347 }